ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.222 by root, Sun Apr 6 12:45:58 2008 UTC vs.
Revision 1.233 by root, Tue May 6 23:34:16 2008 UTC

300# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
302#else 302#else
303# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
304# define noinline 304# define noinline
305# if __STDC_VERSION__ < 199901L 305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline 306# define inline
307# endif 307# endif
308#endif 308#endif
309 309
310#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
325 325
326typedef ev_watcher *W; 326typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
329 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
330#if EV_USE_MONOTONIC 333#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 335/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 337#endif
360 perror (msg); 363 perror (msg);
361 abort (); 364 abort ();
362 } 365 }
363} 366}
364 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
365static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
366 384
367void 385void
368ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
369{ 387{
370 alloc = cb; 388 alloc = cb;
371} 389}
372 390
373inline_speed void * 391inline_speed void *
374ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
375{ 393{
376 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
377 395
378 if (!ptr && size) 396 if (!ptr && size)
379 { 397 {
380 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
381 abort (); 399 abort ();
502 } 520 }
503} 521}
504 522
505/*****************************************************************************/ 523/*****************************************************************************/
506 524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526
507int inline_size 527int inline_size
508array_nextsize (int elem, int cur, int cnt) 528array_nextsize (int elem, int cur, int cnt)
509{ 529{
510 int ncur = cur + 1; 530 int ncur = cur + 1;
511 531
512 do 532 do
513 ncur <<= 1; 533 ncur <<= 1;
514 while (cnt > ncur); 534 while (cnt > ncur);
515 535
516 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
517 if (elem * ncur > 4096) 537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
518 { 538 {
519 ncur *= elem; 539 ncur *= elem;
520 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
521 ncur = ncur - sizeof (void *) * 4; 541 ncur = ncur - sizeof (void *) * 4;
522 ncur /= elem; 542 ncur /= elem;
523 } 543 }
524 544
525 return ncur; 545 return ncur;
739 } 759 }
740} 760}
741 761
742/*****************************************************************************/ 762/*****************************************************************************/
743 763
764/* towards the root */
744void inline_speed 765void inline_speed
745upheap (WT *heap, int k) 766upheap (WT *heap, int k)
746{ 767{
747 WT w = heap [k]; 768 WT w = heap [k];
748 769
749 while (k) 770 for (;;)
750 { 771 {
751 int p = (k - 1) >> 1; 772 int p = k >> 1;
752 773
774 /* maybe we could use a dummy element at heap [0]? */
753 if (heap [p]->at <= w->at) 775 if (!p || heap [p]->at <= w->at)
754 break; 776 break;
755 777
756 heap [k] = heap [p]; 778 heap [k] = heap [p];
757 ((W)heap [k])->active = k + 1; 779 ev_active (heap [k]) = k;
758 k = p; 780 k = p;
759 } 781 }
760 782
761 heap [k] = w; 783 heap [k] = w;
762 ((W)heap [k])->active = k + 1; 784 ev_active (heap [k]) = k;
763} 785}
764 786
787/* away from the root */
765void inline_speed 788void inline_speed
766downheap (WT *heap, int N, int k) 789downheap (WT *heap, int N, int k)
767{ 790{
768 WT w = heap [k]; 791 WT w = heap [k];
769 792
770 for (;;) 793 for (;;)
771 { 794 {
772 int c = (k << 1) + 1; 795 int c = k << 1;
773 796
774 if (c >= N) 797 if (c > N)
775 break; 798 break;
776 799
777 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 800 c += c < N && heap [c]->at > heap [c + 1]->at
778 ? 1 : 0; 801 ? 1 : 0;
779 802
780 if (w->at <= heap [c]->at) 803 if (w->at <= heap [c]->at)
781 break; 804 break;
782 805
783 heap [k] = heap [c]; 806 heap [k] = heap [c];
784 ((W)heap [k])->active = k + 1; 807 ev_active (heap [k]) = k;
785 808
786 k = c; 809 k = c;
787 } 810 }
788 811
789 heap [k] = w; 812 heap [k] = w;
790 ((W)heap [k])->active = k + 1; 813 ev_active (heap [k]) = k;
791} 814}
792 815
793void inline_size 816void inline_size
794adjustheap (WT *heap, int N, int k) 817adjustheap (WT *heap, int N, int k)
795{ 818{
891pipecb (EV_P_ ev_io *iow, int revents) 914pipecb (EV_P_ ev_io *iow, int revents)
892{ 915{
893#if EV_USE_EVENTFD 916#if EV_USE_EVENTFD
894 if (evfd >= 0) 917 if (evfd >= 0)
895 { 918 {
896 uint64_t counter = 1; 919 uint64_t counter;
897 read (evfd, &counter, sizeof (uint64_t)); 920 read (evfd, &counter, sizeof (uint64_t));
898 } 921 }
899 else 922 else
900#endif 923#endif
901 { 924 {
1170 if (!(flags & EVFLAG_NOENV) 1193 if (!(flags & EVFLAG_NOENV)
1171 && !enable_secure () 1194 && !enable_secure ()
1172 && getenv ("LIBEV_FLAGS")) 1195 && getenv ("LIBEV_FLAGS"))
1173 flags = atoi (getenv ("LIBEV_FLAGS")); 1196 flags = atoi (getenv ("LIBEV_FLAGS"));
1174 1197
1175 if (!(flags & 0x0000ffffUL)) 1198 if (!(flags & 0x0000ffffU))
1176 flags |= ev_recommended_backends (); 1199 flags |= ev_recommended_backends ();
1177 1200
1178#if EV_USE_PORT 1201#if EV_USE_PORT
1179 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1202 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1180#endif 1203#endif
1268#endif 1291#endif
1269 1292
1270 backend = 0; 1293 backend = 0;
1271} 1294}
1272 1295
1296#if EV_USE_INOTIFY
1273void inline_size infy_fork (EV_P); 1297void inline_size infy_fork (EV_P);
1298#endif
1274 1299
1275void inline_size 1300void inline_size
1276loop_fork (EV_P) 1301loop_fork (EV_P)
1277{ 1302{
1278#if EV_USE_PORT 1303#if EV_USE_PORT
1439} 1464}
1440 1465
1441void inline_size 1466void inline_size
1442timers_reify (EV_P) 1467timers_reify (EV_P)
1443{ 1468{
1444 while (timercnt && ((WT)timers [0])->at <= mn_now) 1469 while (timercnt && ev_at (timers [1]) <= mn_now)
1445 { 1470 {
1446 ev_timer *w = (ev_timer *)timers [0]; 1471 ev_timer *w = (ev_timer *)timers [1];
1447 1472
1448 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1473 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1449 1474
1450 /* first reschedule or stop timer */ 1475 /* first reschedule or stop timer */
1451 if (w->repeat) 1476 if (w->repeat)
1452 { 1477 {
1453 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1478 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1454 1479
1455 ((WT)w)->at += w->repeat; 1480 ev_at (w) += w->repeat;
1456 if (((WT)w)->at < mn_now) 1481 if (ev_at (w) < mn_now)
1457 ((WT)w)->at = mn_now; 1482 ev_at (w) = mn_now;
1458 1483
1459 downheap (timers, timercnt, 0); 1484 downheap (timers, timercnt, 1);
1460 } 1485 }
1461 else 1486 else
1462 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1487 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1463 1488
1464 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1489 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1467 1492
1468#if EV_PERIODIC_ENABLE 1493#if EV_PERIODIC_ENABLE
1469void inline_size 1494void inline_size
1470periodics_reify (EV_P) 1495periodics_reify (EV_P)
1471{ 1496{
1472 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1497 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1473 { 1498 {
1474 ev_periodic *w = (ev_periodic *)periodics [0]; 1499 ev_periodic *w = (ev_periodic *)periodics [1];
1475 1500
1476 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1501 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1477 1502
1478 /* first reschedule or stop timer */ 1503 /* first reschedule or stop timer */
1479 if (w->reschedule_cb) 1504 if (w->reschedule_cb)
1480 { 1505 {
1481 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON); 1506 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1482 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1507 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0); 1508 downheap (periodics, periodiccnt, 1);
1484 } 1509 }
1485 else if (w->interval) 1510 else if (w->interval)
1486 { 1511 {
1487 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1512 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1488 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval; 1513 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1489 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1514 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1490 downheap (periodics, periodiccnt, 0); 1515 downheap (periodics, periodiccnt, 1);
1491 } 1516 }
1492 else 1517 else
1493 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1518 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1494 1519
1495 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1520 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1500periodics_reschedule (EV_P) 1525periodics_reschedule (EV_P)
1501{ 1526{
1502 int i; 1527 int i;
1503 1528
1504 /* adjust periodics after time jump */ 1529 /* adjust periodics after time jump */
1505 for (i = 0; i < periodiccnt; ++i) 1530 for (i = 1; i <= periodiccnt; ++i)
1506 { 1531 {
1507 ev_periodic *w = (ev_periodic *)periodics [i]; 1532 ev_periodic *w = (ev_periodic *)periodics [i];
1508 1533
1509 if (w->reschedule_cb) 1534 if (w->reschedule_cb)
1510 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1535 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1511 else if (w->interval) 1536 else if (w->interval)
1512 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1537 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1513 } 1538 }
1514 1539
1515 /* now rebuild the heap */ 1540 /* now rebuild the heap */
1516 for (i = periodiccnt >> 1; i--; ) 1541 for (i = periodiccnt >> 1; i--; )
1517 downheap (periodics, periodiccnt, i); 1542 downheap (periodics, periodiccnt, i);
1599 { 1624 {
1600#if EV_PERIODIC_ENABLE 1625#if EV_PERIODIC_ENABLE
1601 periodics_reschedule (EV_A); 1626 periodics_reschedule (EV_A);
1602#endif 1627#endif
1603 /* adjust timers. this is easy, as the offset is the same for all of them */ 1628 /* adjust timers. this is easy, as the offset is the same for all of them */
1604 for (i = 0; i < timercnt; ++i) 1629 for (i = 1; i <= timercnt; ++i)
1605 ((WT)timers [i])->at += ev_rt_now - mn_now; 1630 ev_at (timers [i]) += ev_rt_now - mn_now;
1606 } 1631 }
1607 1632
1608 mn_now = ev_rt_now; 1633 mn_now = ev_rt_now;
1609 } 1634 }
1610} 1635}
1680 1705
1681 waittime = MAX_BLOCKTIME; 1706 waittime = MAX_BLOCKTIME;
1682 1707
1683 if (timercnt) 1708 if (timercnt)
1684 { 1709 {
1685 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1710 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1686 if (waittime > to) waittime = to; 1711 if (waittime > to) waittime = to;
1687 } 1712 }
1688 1713
1689#if EV_PERIODIC_ENABLE 1714#if EV_PERIODIC_ENABLE
1690 if (periodiccnt) 1715 if (periodiccnt)
1691 { 1716 {
1692 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1717 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1693 if (waittime > to) waittime = to; 1718 if (waittime > to) waittime = to;
1694 } 1719 }
1695#endif 1720#endif
1696 1721
1697 if (expect_false (waittime < timeout_blocktime)) 1722 if (expect_false (waittime < timeout_blocktime))
1863ev_timer_start (EV_P_ ev_timer *w) 1888ev_timer_start (EV_P_ ev_timer *w)
1864{ 1889{
1865 if (expect_false (ev_is_active (w))) 1890 if (expect_false (ev_is_active (w)))
1866 return; 1891 return;
1867 1892
1868 ((WT)w)->at += mn_now; 1893 ev_at (w) += mn_now;
1869 1894
1870 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1895 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1871 1896
1872 ev_start (EV_A_ (W)w, ++timercnt); 1897 ev_start (EV_A_ (W)w, ++timercnt);
1873 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 1898 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1874 timers [timercnt - 1] = (WT)w; 1899 timers [timercnt] = (WT)w;
1875 upheap (timers, timercnt - 1); 1900 upheap (timers, timercnt);
1876 1901
1877 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1902 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1878} 1903}
1879 1904
1880void noinline 1905void noinline
1881ev_timer_stop (EV_P_ ev_timer *w) 1906ev_timer_stop (EV_P_ ev_timer *w)
1882{ 1907{
1883 clear_pending (EV_A_ (W)w); 1908 clear_pending (EV_A_ (W)w);
1884 if (expect_false (!ev_is_active (w))) 1909 if (expect_false (!ev_is_active (w)))
1885 return; 1910 return;
1886 1911
1887 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1888
1889 { 1912 {
1890 int active = ((W)w)->active; 1913 int active = ev_active (w);
1891 1914
1915 assert (("internal timer heap corruption", timers [active] == (WT)w));
1916
1892 if (expect_true (--active < --timercnt)) 1917 if (expect_true (active < timercnt))
1893 { 1918 {
1894 timers [active] = timers [timercnt]; 1919 timers [active] = timers [timercnt];
1895 adjustheap (timers, timercnt, active); 1920 adjustheap (timers, timercnt, active);
1896 } 1921 }
1922
1923 --timercnt;
1897 } 1924 }
1898 1925
1899 ((WT)w)->at -= mn_now; 1926 ev_at (w) -= mn_now;
1900 1927
1901 ev_stop (EV_A_ (W)w); 1928 ev_stop (EV_A_ (W)w);
1902} 1929}
1903 1930
1904void noinline 1931void noinline
1906{ 1933{
1907 if (ev_is_active (w)) 1934 if (ev_is_active (w))
1908 { 1935 {
1909 if (w->repeat) 1936 if (w->repeat)
1910 { 1937 {
1911 ((WT)w)->at = mn_now + w->repeat; 1938 ev_at (w) = mn_now + w->repeat;
1912 adjustheap (timers, timercnt, ((W)w)->active - 1); 1939 adjustheap (timers, timercnt, ev_active (w));
1913 } 1940 }
1914 else 1941 else
1915 ev_timer_stop (EV_A_ w); 1942 ev_timer_stop (EV_A_ w);
1916 } 1943 }
1917 else if (w->repeat) 1944 else if (w->repeat)
1918 { 1945 {
1919 w->at = w->repeat; 1946 ev_at (w) = w->repeat;
1920 ev_timer_start (EV_A_ w); 1947 ev_timer_start (EV_A_ w);
1921 } 1948 }
1922} 1949}
1923 1950
1924#if EV_PERIODIC_ENABLE 1951#if EV_PERIODIC_ENABLE
1927{ 1954{
1928 if (expect_false (ev_is_active (w))) 1955 if (expect_false (ev_is_active (w)))
1929 return; 1956 return;
1930 1957
1931 if (w->reschedule_cb) 1958 if (w->reschedule_cb)
1932 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1933 else if (w->interval) 1960 else if (w->interval)
1934 { 1961 {
1935 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1962 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1936 /* this formula differs from the one in periodic_reify because we do not always round up */ 1963 /* this formula differs from the one in periodic_reify because we do not always round up */
1937 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 1964 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1938 } 1965 }
1939 else 1966 else
1940 ((WT)w)->at = w->offset; 1967 ev_at (w) = w->offset;
1941 1968
1942 ev_start (EV_A_ (W)w, ++periodiccnt); 1969 ev_start (EV_A_ (W)w, ++periodiccnt);
1943 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 1970 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1944 periodics [periodiccnt - 1] = (WT)w; 1971 periodics [periodiccnt] = (WT)w;
1945 upheap (periodics, periodiccnt - 1); 1972 upheap (periodics, periodiccnt);
1946 1973
1947 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1974 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1948} 1975}
1949 1976
1950void noinline 1977void noinline
1951ev_periodic_stop (EV_P_ ev_periodic *w) 1978ev_periodic_stop (EV_P_ ev_periodic *w)
1952{ 1979{
1953 clear_pending (EV_A_ (W)w); 1980 clear_pending (EV_A_ (W)w);
1954 if (expect_false (!ev_is_active (w))) 1981 if (expect_false (!ev_is_active (w)))
1955 return; 1982 return;
1956 1983
1957 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1958
1959 { 1984 {
1960 int active = ((W)w)->active; 1985 int active = ev_active (w);
1961 1986
1987 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1988
1962 if (expect_true (--active < --periodiccnt)) 1989 if (expect_true (active < periodiccnt))
1963 { 1990 {
1964 periodics [active] = periodics [periodiccnt]; 1991 periodics [active] = periodics [periodiccnt];
1965 adjustheap (periodics, periodiccnt, active); 1992 adjustheap (periodics, periodiccnt, active);
1966 } 1993 }
1994
1995 --periodiccnt;
1967 } 1996 }
1968 1997
1969 ev_stop (EV_A_ (W)w); 1998 ev_stop (EV_A_ (W)w);
1970} 1999}
1971 2000
2087 if (w->wd < 0) 2116 if (w->wd < 0)
2088 { 2117 {
2089 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2118 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2090 2119
2091 /* monitor some parent directory for speedup hints */ 2120 /* monitor some parent directory for speedup hints */
2121 /* note that exceeding the hardcoded limit is not a correctness issue, */
2122 /* but an efficiency issue only */
2092 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2123 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2093 { 2124 {
2094 char path [4096]; 2125 char path [4096];
2095 strcpy (path, w->path); 2126 strcpy (path, w->path);
2096 2127
2341 clear_pending (EV_A_ (W)w); 2372 clear_pending (EV_A_ (W)w);
2342 if (expect_false (!ev_is_active (w))) 2373 if (expect_false (!ev_is_active (w)))
2343 return; 2374 return;
2344 2375
2345 { 2376 {
2346 int active = ((W)w)->active; 2377 int active = ev_active (w);
2347 2378
2348 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2379 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2349 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2380 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2350 2381
2351 ev_stop (EV_A_ (W)w); 2382 ev_stop (EV_A_ (W)w);
2352 --idleall; 2383 --idleall;
2353 } 2384 }
2354} 2385}
2371 clear_pending (EV_A_ (W)w); 2402 clear_pending (EV_A_ (W)w);
2372 if (expect_false (!ev_is_active (w))) 2403 if (expect_false (!ev_is_active (w)))
2373 return; 2404 return;
2374 2405
2375 { 2406 {
2376 int active = ((W)w)->active; 2407 int active = ev_active (w);
2408
2377 prepares [active - 1] = prepares [--preparecnt]; 2409 prepares [active - 1] = prepares [--preparecnt];
2378 ((W)prepares [active - 1])->active = active; 2410 ev_active (prepares [active - 1]) = active;
2379 } 2411 }
2380 2412
2381 ev_stop (EV_A_ (W)w); 2413 ev_stop (EV_A_ (W)w);
2382} 2414}
2383 2415
2398 clear_pending (EV_A_ (W)w); 2430 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 2431 if (expect_false (!ev_is_active (w)))
2400 return; 2432 return;
2401 2433
2402 { 2434 {
2403 int active = ((W)w)->active; 2435 int active = ev_active (w);
2436
2404 checks [active - 1] = checks [--checkcnt]; 2437 checks [active - 1] = checks [--checkcnt];
2405 ((W)checks [active - 1])->active = active; 2438 ev_active (checks [active - 1]) = active;
2406 } 2439 }
2407 2440
2408 ev_stop (EV_A_ (W)w); 2441 ev_stop (EV_A_ (W)w);
2409} 2442}
2410 2443
2506 clear_pending (EV_A_ (W)w); 2539 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 2540 if (expect_false (!ev_is_active (w)))
2508 return; 2541 return;
2509 2542
2510 { 2543 {
2511 int active = ((W)w)->active; 2544 int active = ev_active (w);
2545
2512 forks [active - 1] = forks [--forkcnt]; 2546 forks [active - 1] = forks [--forkcnt];
2513 ((W)forks [active - 1])->active = active; 2547 ev_active (forks [active - 1]) = active;
2514 } 2548 }
2515 2549
2516 ev_stop (EV_A_ (W)w); 2550 ev_stop (EV_A_ (W)w);
2517} 2551}
2518#endif 2552#endif
2537 clear_pending (EV_A_ (W)w); 2571 clear_pending (EV_A_ (W)w);
2538 if (expect_false (!ev_is_active (w))) 2572 if (expect_false (!ev_is_active (w)))
2539 return; 2573 return;
2540 2574
2541 { 2575 {
2542 int active = ((W)w)->active; 2576 int active = ev_active (w);
2577
2543 asyncs [active - 1] = asyncs [--asynccnt]; 2578 asyncs [active - 1] = asyncs [--asynccnt];
2544 ((W)asyncs [active - 1])->active = active; 2579 ev_active (asyncs [active - 1]) = active;
2545 } 2580 }
2546 2581
2547 ev_stop (EV_A_ (W)w); 2582 ev_stop (EV_A_ (W)w);
2548} 2583}
2549 2584

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines