ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.222 by root, Sun Apr 6 12:45:58 2008 UTC vs.
Revision 1.287 by root, Mon Apr 20 19:45:58 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
52# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
55# endif 67# endif
56# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
58# endif 70# endif
59# else 71# else
60# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
62# endif 74# endif
126# define EV_USE_EVENTFD 1 138# define EV_USE_EVENTFD 1
127# else 139# else
128# define EV_USE_EVENTFD 0 140# define EV_USE_EVENTFD 0
129# endif 141# endif
130# endif 142# endif
131 143
132#endif 144#endif
133 145
134#include <math.h> 146#include <math.h>
135#include <stdlib.h> 147#include <stdlib.h>
136#include <fcntl.h> 148#include <fcntl.h>
154#ifndef _WIN32 166#ifndef _WIN32
155# include <sys/time.h> 167# include <sys/time.h>
156# include <sys/wait.h> 168# include <sys/wait.h>
157# include <unistd.h> 169# include <unistd.h>
158#else 170#else
171# include <io.h>
159# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 173# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
163# endif 176# endif
164#endif 177#endif
165 178
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
167 180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
188
168#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
169# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
170#endif 195#endif
171 196
172#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 199#endif
175 200
176#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
177# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
178#endif 207#endif
179 208
180#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
182#endif 211#endif
235# else 264# else
236# define EV_USE_EVENTFD 0 265# define EV_USE_EVENTFD 0
237# endif 266# endif
238#endif 267#endif
239 268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 288
242#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 306# include <sys/select.h>
260# endif 307# endif
261#endif 308#endif
262 309
263#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
264# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
265#endif 319#endif
266 320
267#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
269#endif 332#endif
270 333
271#if EV_USE_EVENTFD 334#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 336# include <stdint.h>
279} 342}
280# endif 343# endif
281#endif 344#endif
282 345
283/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
284 353
285/* 354/*
286 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
300# define expect(expr,value) __builtin_expect ((expr),(value)) 369# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 370# define noinline __attribute__ ((noinline))
302#else 371#else
303# define expect(expr,value) (expr) 372# define expect(expr,value) (expr)
304# define noinline 373# define noinline
305# if __STDC_VERSION__ < 199901L 374# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline 375# define inline
307# endif 376# endif
308#endif 377#endif
309 378
310#define expect_false(expr) expect ((expr) != 0, 0) 379#define expect_false(expr) expect ((expr) != 0, 0)
325 394
326typedef ev_watcher *W; 395typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 396typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
329 398
330#if EV_USE_MONOTONIC 399#define ev_active(w) ((W)(w))->active
400#define ev_at(w) ((WT)(w))->at
401
402#if EV_USE_REALTIME
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 410#endif
335 411
336#ifdef _WIN32 412#ifdef _WIN32
337# include "ev_win32.c" 413# include "ev_win32.c"
346{ 422{
347 syserr_cb = cb; 423 syserr_cb = cb;
348} 424}
349 425
350static void noinline 426static void noinline
351syserr (const char *msg) 427ev_syserr (const char *msg)
352{ 428{
353 if (!msg) 429 if (!msg)
354 msg = "(libev) system error"; 430 msg = "(libev) system error";
355 431
356 if (syserr_cb) 432 if (syserr_cb)
360 perror (msg); 436 perror (msg);
361 abort (); 437 abort ();
362 } 438 }
363} 439}
364 440
441static void *
442ev_realloc_emul (void *ptr, long size)
443{
444 /* some systems, notably openbsd and darwin, fail to properly
445 * implement realloc (x, 0) (as required by both ansi c-98 and
446 * the single unix specification, so work around them here.
447 */
448
449 if (size)
450 return realloc (ptr, size);
451
452 free (ptr);
453 return 0;
454}
455
365static void *(*alloc)(void *ptr, long size); 456static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
366 457
367void 458void
368ev_set_allocator (void *(*cb)(void *ptr, long size)) 459ev_set_allocator (void *(*cb)(void *ptr, long size))
369{ 460{
370 alloc = cb; 461 alloc = cb;
371} 462}
372 463
373inline_speed void * 464inline_speed void *
374ev_realloc (void *ptr, long size) 465ev_realloc (void *ptr, long size)
375{ 466{
376 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 467 ptr = alloc (ptr, size);
377 468
378 if (!ptr && size) 469 if (!ptr && size)
379 { 470 {
380 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 471 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
381 abort (); 472 abort ();
392typedef struct 483typedef struct
393{ 484{
394 WL head; 485 WL head;
395 unsigned char events; 486 unsigned char events;
396 unsigned char reify; 487 unsigned char reify;
488 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
489 unsigned char unused;
490#if EV_USE_EPOLL
491 unsigned int egen; /* generation counter to counter epoll bugs */
492#endif
397#if EV_SELECT_IS_WINSOCKET 493#if EV_SELECT_IS_WINSOCKET
398 SOCKET handle; 494 SOCKET handle;
399#endif 495#endif
400} ANFD; 496} ANFD;
401 497
404 W w; 500 W w;
405 int events; 501 int events;
406} ANPENDING; 502} ANPENDING;
407 503
408#if EV_USE_INOTIFY 504#if EV_USE_INOTIFY
505/* hash table entry per inotify-id */
409typedef struct 506typedef struct
410{ 507{
411 WL head; 508 WL head;
412} ANFS; 509} ANFS;
510#endif
511
512/* Heap Entry */
513#if EV_HEAP_CACHE_AT
514 typedef struct {
515 ev_tstamp at;
516 WT w;
517 } ANHE;
518
519 #define ANHE_w(he) (he).w /* access watcher, read-write */
520 #define ANHE_at(he) (he).at /* access cached at, read-only */
521 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
522#else
523 typedef WT ANHE;
524
525 #define ANHE_w(he) (he)
526 #define ANHE_at(he) (he)->at
527 #define ANHE_at_cache(he)
413#endif 528#endif
414 529
415#if EV_MULTIPLICITY 530#if EV_MULTIPLICITY
416 531
417 struct ev_loop 532 struct ev_loop
442 557
443ev_tstamp 558ev_tstamp
444ev_time (void) 559ev_time (void)
445{ 560{
446#if EV_USE_REALTIME 561#if EV_USE_REALTIME
562 if (expect_true (have_realtime))
563 {
447 struct timespec ts; 564 struct timespec ts;
448 clock_gettime (CLOCK_REALTIME, &ts); 565 clock_gettime (CLOCK_REALTIME, &ts);
449 return ts.tv_sec + ts.tv_nsec * 1e-9; 566 return ts.tv_sec + ts.tv_nsec * 1e-9;
450#else 567 }
568#endif
569
451 struct timeval tv; 570 struct timeval tv;
452 gettimeofday (&tv, 0); 571 gettimeofday (&tv, 0);
453 return tv.tv_sec + tv.tv_usec * 1e-6; 572 return tv.tv_sec + tv.tv_usec * 1e-6;
454#endif
455} 573}
456 574
457ev_tstamp inline_size 575inline_size ev_tstamp
458get_clock (void) 576get_clock (void)
459{ 577{
460#if EV_USE_MONOTONIC 578#if EV_USE_MONOTONIC
461 if (expect_true (have_monotonic)) 579 if (expect_true (have_monotonic))
462 { 580 {
495 struct timeval tv; 613 struct timeval tv;
496 614
497 tv.tv_sec = (time_t)delay; 615 tv.tv_sec = (time_t)delay;
498 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 616 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
499 617
618 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
619 /* somehting nto guaranteed by newer posix versions, but guaranteed */
620 /* by older ones */
500 select (0, 0, 0, 0, &tv); 621 select (0, 0, 0, 0, &tv);
501#endif 622#endif
502 } 623 }
503} 624}
504 625
505/*****************************************************************************/ 626/*****************************************************************************/
506 627
507int inline_size 628#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
629
630inline_size int
508array_nextsize (int elem, int cur, int cnt) 631array_nextsize (int elem, int cur, int cnt)
509{ 632{
510 int ncur = cur + 1; 633 int ncur = cur + 1;
511 634
512 do 635 do
513 ncur <<= 1; 636 ncur <<= 1;
514 while (cnt > ncur); 637 while (cnt > ncur);
515 638
516 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 639 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
517 if (elem * ncur > 4096) 640 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
518 { 641 {
519 ncur *= elem; 642 ncur *= elem;
520 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 643 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
521 ncur = ncur - sizeof (void *) * 4; 644 ncur = ncur - sizeof (void *) * 4;
522 ncur /= elem; 645 ncur /= elem;
523 } 646 }
524 647
525 return ncur; 648 return ncur;
529array_realloc (int elem, void *base, int *cur, int cnt) 652array_realloc (int elem, void *base, int *cur, int cnt)
530{ 653{
531 *cur = array_nextsize (elem, *cur, cnt); 654 *cur = array_nextsize (elem, *cur, cnt);
532 return ev_realloc (base, elem * *cur); 655 return ev_realloc (base, elem * *cur);
533} 656}
657
658#define array_init_zero(base,count) \
659 memset ((void *)(base), 0, sizeof (*(base)) * (count))
534 660
535#define array_needsize(type,base,cur,cnt,init) \ 661#define array_needsize(type,base,cur,cnt,init) \
536 if (expect_false ((cnt) > (cur))) \ 662 if (expect_false ((cnt) > (cur))) \
537 { \ 663 { \
538 int ocur_ = (cur); \ 664 int ocur_ = (cur); \
550 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 676 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
551 } 677 }
552#endif 678#endif
553 679
554#define array_free(stem, idx) \ 680#define array_free(stem, idx) \
555 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 681 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
556 682
557/*****************************************************************************/ 683/*****************************************************************************/
558 684
559void noinline 685void noinline
560ev_feed_event (EV_P_ void *w, int revents) 686ev_feed_event (EV_P_ void *w, int revents)
571 pendings [pri][w_->pending - 1].w = w_; 697 pendings [pri][w_->pending - 1].w = w_;
572 pendings [pri][w_->pending - 1].events = revents; 698 pendings [pri][w_->pending - 1].events = revents;
573 } 699 }
574} 700}
575 701
576void inline_speed 702inline_speed void
703feed_reverse (EV_P_ W w)
704{
705 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
706 rfeeds [rfeedcnt++] = w;
707}
708
709inline_size void
710feed_reverse_done (EV_P_ int revents)
711{
712 do
713 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
714 while (rfeedcnt);
715}
716
717inline_speed void
577queue_events (EV_P_ W *events, int eventcnt, int type) 718queue_events (EV_P_ W *events, int eventcnt, int type)
578{ 719{
579 int i; 720 int i;
580 721
581 for (i = 0; i < eventcnt; ++i) 722 for (i = 0; i < eventcnt; ++i)
582 ev_feed_event (EV_A_ events [i], type); 723 ev_feed_event (EV_A_ events [i], type);
583} 724}
584 725
585/*****************************************************************************/ 726/*****************************************************************************/
586 727
587void inline_size 728inline_speed void
588anfds_init (ANFD *base, int count)
589{
590 while (count--)
591 {
592 base->head = 0;
593 base->events = EV_NONE;
594 base->reify = 0;
595
596 ++base;
597 }
598}
599
600void inline_speed
601fd_event (EV_P_ int fd, int revents) 729fd_event (EV_P_ int fd, int revents)
602{ 730{
603 ANFD *anfd = anfds + fd; 731 ANFD *anfd = anfds + fd;
604 ev_io *w; 732 ev_io *w;
605 733
617{ 745{
618 if (fd >= 0 && fd < anfdmax) 746 if (fd >= 0 && fd < anfdmax)
619 fd_event (EV_A_ fd, revents); 747 fd_event (EV_A_ fd, revents);
620} 748}
621 749
622void inline_size 750inline_size void
623fd_reify (EV_P) 751fd_reify (EV_P)
624{ 752{
625 int i; 753 int i;
626 754
627 for (i = 0; i < fdchangecnt; ++i) 755 for (i = 0; i < fdchangecnt; ++i)
636 events |= (unsigned char)w->events; 764 events |= (unsigned char)w->events;
637 765
638#if EV_SELECT_IS_WINSOCKET 766#if EV_SELECT_IS_WINSOCKET
639 if (events) 767 if (events)
640 { 768 {
641 unsigned long argp; 769 unsigned long arg;
642 #ifdef EV_FD_TO_WIN32_HANDLE 770 #ifdef EV_FD_TO_WIN32_HANDLE
643 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 771 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
644 #else 772 #else
645 anfd->handle = _get_osfhandle (fd); 773 anfd->handle = _get_osfhandle (fd);
646 #endif 774 #endif
647 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 775 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
648 } 776 }
649#endif 777#endif
650 778
651 { 779 {
652 unsigned char o_events = anfd->events; 780 unsigned char o_events = anfd->events;
653 unsigned char o_reify = anfd->reify; 781 unsigned char o_reify = anfd->reify;
654 782
655 anfd->reify = 0; 783 anfd->reify = 0;
656 anfd->events = events; 784 anfd->events = events;
657 785
658 if (o_events != events || o_reify & EV_IOFDSET) 786 if (o_events != events || o_reify & EV__IOFDSET)
659 backend_modify (EV_A_ fd, o_events, events); 787 backend_modify (EV_A_ fd, o_events, events);
660 } 788 }
661 } 789 }
662 790
663 fdchangecnt = 0; 791 fdchangecnt = 0;
664} 792}
665 793
666void inline_size 794inline_size void
667fd_change (EV_P_ int fd, int flags) 795fd_change (EV_P_ int fd, int flags)
668{ 796{
669 unsigned char reify = anfds [fd].reify; 797 unsigned char reify = anfds [fd].reify;
670 anfds [fd].reify |= flags; 798 anfds [fd].reify |= flags;
671 799
675 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 803 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
676 fdchanges [fdchangecnt - 1] = fd; 804 fdchanges [fdchangecnt - 1] = fd;
677 } 805 }
678} 806}
679 807
680void inline_speed 808inline_speed void
681fd_kill (EV_P_ int fd) 809fd_kill (EV_P_ int fd)
682{ 810{
683 ev_io *w; 811 ev_io *w;
684 812
685 while ((w = (ev_io *)anfds [fd].head)) 813 while ((w = (ev_io *)anfds [fd].head))
687 ev_io_stop (EV_A_ w); 815 ev_io_stop (EV_A_ w);
688 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 816 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
689 } 817 }
690} 818}
691 819
692int inline_size 820inline_size int
693fd_valid (int fd) 821fd_valid (int fd)
694{ 822{
695#ifdef _WIN32 823#ifdef _WIN32
696 return _get_osfhandle (fd) != -1; 824 return _get_osfhandle (fd) != -1;
697#else 825#else
705{ 833{
706 int fd; 834 int fd;
707 835
708 for (fd = 0; fd < anfdmax; ++fd) 836 for (fd = 0; fd < anfdmax; ++fd)
709 if (anfds [fd].events) 837 if (anfds [fd].events)
710 if (!fd_valid (fd) == -1 && errno == EBADF) 838 if (!fd_valid (fd) && errno == EBADF)
711 fd_kill (EV_A_ fd); 839 fd_kill (EV_A_ fd);
712} 840}
713 841
714/* called on ENOMEM in select/poll to kill some fds and retry */ 842/* called on ENOMEM in select/poll to kill some fds and retry */
715static void noinline 843static void noinline
733 861
734 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
735 if (anfds [fd].events) 863 if (anfds [fd].events)
736 { 864 {
737 anfds [fd].events = 0; 865 anfds [fd].events = 0;
866 anfds [fd].emask = 0;
738 fd_change (EV_A_ fd, EV_IOFDSET | 1); 867 fd_change (EV_A_ fd, EV__IOFDSET | 1);
739 } 868 }
740} 869}
741 870
742/*****************************************************************************/ 871/*****************************************************************************/
743 872
744void inline_speed 873/*
745upheap (WT *heap, int k) 874 * the heap functions want a real array index. array index 0 uis guaranteed to not
746{ 875 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
747 WT w = heap [k]; 876 * the branching factor of the d-tree.
877 */
748 878
749 while (k) 879/*
750 { 880 * at the moment we allow libev the luxury of two heaps,
751 int p = (k - 1) >> 1; 881 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
882 * which is more cache-efficient.
883 * the difference is about 5% with 50000+ watchers.
884 */
885#if EV_USE_4HEAP
752 886
753 if (heap [p]->at <= w->at) 887#define DHEAP 4
888#define HEAP0 (DHEAP - 1) /* index of first element in heap */
889#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
890#define UPHEAP_DONE(p,k) ((p) == (k))
891
892/* away from the root */
893inline_speed void
894downheap (ANHE *heap, int N, int k)
895{
896 ANHE he = heap [k];
897 ANHE *E = heap + N + HEAP0;
898
899 for (;;)
900 {
901 ev_tstamp minat;
902 ANHE *minpos;
903 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
904
905 /* find minimum child */
906 if (expect_true (pos + DHEAP - 1 < E))
907 {
908 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
909 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
910 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
911 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
912 }
913 else if (pos < E)
914 {
915 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
916 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
917 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
918 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
919 }
920 else
754 break; 921 break;
755 922
923 if (ANHE_at (he) <= minat)
924 break;
925
926 heap [k] = *minpos;
927 ev_active (ANHE_w (*minpos)) = k;
928
929 k = minpos - heap;
930 }
931
932 heap [k] = he;
933 ev_active (ANHE_w (he)) = k;
934}
935
936#else /* 4HEAP */
937
938#define HEAP0 1
939#define HPARENT(k) ((k) >> 1)
940#define UPHEAP_DONE(p,k) (!(p))
941
942/* away from the root */
943inline_speed void
944downheap (ANHE *heap, int N, int k)
945{
946 ANHE he = heap [k];
947
948 for (;;)
949 {
950 int c = k << 1;
951
952 if (c > N + HEAP0 - 1)
953 break;
954
955 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
956 ? 1 : 0;
957
958 if (ANHE_at (he) <= ANHE_at (heap [c]))
959 break;
960
961 heap [k] = heap [c];
962 ev_active (ANHE_w (heap [k])) = k;
963
964 k = c;
965 }
966
967 heap [k] = he;
968 ev_active (ANHE_w (he)) = k;
969}
970#endif
971
972/* towards the root */
973inline_speed void
974upheap (ANHE *heap, int k)
975{
976 ANHE he = heap [k];
977
978 for (;;)
979 {
980 int p = HPARENT (k);
981
982 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
983 break;
984
756 heap [k] = heap [p]; 985 heap [k] = heap [p];
757 ((W)heap [k])->active = k + 1; 986 ev_active (ANHE_w (heap [k])) = k;
758 k = p; 987 k = p;
759 } 988 }
760 989
761 heap [k] = w; 990 heap [k] = he;
762 ((W)heap [k])->active = k + 1; 991 ev_active (ANHE_w (he)) = k;
763} 992}
764 993
765void inline_speed 994inline_size void
766downheap (WT *heap, int N, int k)
767{
768 WT w = heap [k];
769
770 for (;;)
771 {
772 int c = (k << 1) + 1;
773
774 if (c >= N)
775 break;
776
777 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
778 ? 1 : 0;
779
780 if (w->at <= heap [c]->at)
781 break;
782
783 heap [k] = heap [c];
784 ((W)heap [k])->active = k + 1;
785
786 k = c;
787 }
788
789 heap [k] = w;
790 ((W)heap [k])->active = k + 1;
791}
792
793void inline_size
794adjustheap (WT *heap, int N, int k) 995adjustheap (ANHE *heap, int N, int k)
795{ 996{
997 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
796 upheap (heap, k); 998 upheap (heap, k);
999 else
797 downheap (heap, N, k); 1000 downheap (heap, N, k);
1001}
1002
1003/* rebuild the heap: this function is used only once and executed rarely */
1004inline_size void
1005reheap (ANHE *heap, int N)
1006{
1007 int i;
1008
1009 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1010 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1011 for (i = 0; i < N; ++i)
1012 upheap (heap, i + HEAP0);
798} 1013}
799 1014
800/*****************************************************************************/ 1015/*****************************************************************************/
801 1016
802typedef struct 1017typedef struct
808static ANSIG *signals; 1023static ANSIG *signals;
809static int signalmax; 1024static int signalmax;
810 1025
811static EV_ATOMIC_T gotsig; 1026static EV_ATOMIC_T gotsig;
812 1027
813void inline_size
814signals_init (ANSIG *base, int count)
815{
816 while (count--)
817 {
818 base->head = 0;
819 base->gotsig = 0;
820
821 ++base;
822 }
823}
824
825/*****************************************************************************/ 1028/*****************************************************************************/
826 1029
827void inline_speed 1030inline_speed void
828fd_intern (int fd) 1031fd_intern (int fd)
829{ 1032{
830#ifdef _WIN32 1033#ifdef _WIN32
831 int arg = 1; 1034 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1035 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else 1036#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 1037 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 1038 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 1039#endif
850 } 1053 }
851 else 1054 else
852#endif 1055#endif
853 { 1056 {
854 while (pipe (evpipe)) 1057 while (pipe (evpipe))
855 syserr ("(libev) error creating signal/async pipe"); 1058 ev_syserr ("(libev) error creating signal/async pipe");
856 1059
857 fd_intern (evpipe [0]); 1060 fd_intern (evpipe [0]);
858 fd_intern (evpipe [1]); 1061 fd_intern (evpipe [1]);
859 ev_io_set (&pipeev, evpipe [0], EV_READ); 1062 ev_io_set (&pipeev, evpipe [0], EV_READ);
860 } 1063 }
862 ev_io_start (EV_A_ &pipeev); 1065 ev_io_start (EV_A_ &pipeev);
863 ev_unref (EV_A); /* watcher should not keep loop alive */ 1066 ev_unref (EV_A); /* watcher should not keep loop alive */
864 } 1067 }
865} 1068}
866 1069
867void inline_size 1070inline_size void
868evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1071evpipe_write (EV_P_ EV_ATOMIC_T *flag)
869{ 1072{
870 if (!*flag) 1073 if (!*flag)
871 { 1074 {
872 int old_errno = errno; /* save errno because write might clobber it */ 1075 int old_errno = errno; /* save errno because write might clobber it */
891pipecb (EV_P_ ev_io *iow, int revents) 1094pipecb (EV_P_ ev_io *iow, int revents)
892{ 1095{
893#if EV_USE_EVENTFD 1096#if EV_USE_EVENTFD
894 if (evfd >= 0) 1097 if (evfd >= 0)
895 { 1098 {
896 uint64_t counter = 1; 1099 uint64_t counter;
897 read (evfd, &counter, sizeof (uint64_t)); 1100 read (evfd, &counter, sizeof (uint64_t));
898 } 1101 }
899 else 1102 else
900#endif 1103#endif
901 { 1104 {
950ev_feed_signal_event (EV_P_ int signum) 1153ev_feed_signal_event (EV_P_ int signum)
951{ 1154{
952 WL w; 1155 WL w;
953 1156
954#if EV_MULTIPLICITY 1157#if EV_MULTIPLICITY
955 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1158 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
956#endif 1159#endif
957 1160
958 --signum; 1161 --signum;
959 1162
960 if (signum < 0 || signum >= signalmax) 1163 if (signum < 0 || signum >= signalmax)
976 1179
977#ifndef WIFCONTINUED 1180#ifndef WIFCONTINUED
978# define WIFCONTINUED(status) 0 1181# define WIFCONTINUED(status) 0
979#endif 1182#endif
980 1183
981void inline_speed 1184inline_speed void
982child_reap (EV_P_ int chain, int pid, int status) 1185child_reap (EV_P_ int chain, int pid, int status)
983{ 1186{
984 ev_child *w; 1187 ev_child *w;
985 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1188 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
986 1189
1089 /* kqueue is borked on everything but netbsd apparently */ 1292 /* kqueue is borked on everything but netbsd apparently */
1090 /* it usually doesn't work correctly on anything but sockets and pipes */ 1293 /* it usually doesn't work correctly on anything but sockets and pipes */
1091 flags &= ~EVBACKEND_KQUEUE; 1294 flags &= ~EVBACKEND_KQUEUE;
1092#endif 1295#endif
1093#ifdef __APPLE__ 1296#ifdef __APPLE__
1094 // flags &= ~EVBACKEND_KQUEUE; for documentation 1297 /* only select works correctly on that "unix-certified" platform */
1095 flags &= ~EVBACKEND_POLL; 1298 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1299 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1096#endif 1300#endif
1097 1301
1098 return flags; 1302 return flags;
1099} 1303}
1100 1304
1137static void noinline 1341static void noinline
1138loop_init (EV_P_ unsigned int flags) 1342loop_init (EV_P_ unsigned int flags)
1139{ 1343{
1140 if (!backend) 1344 if (!backend)
1141 { 1345 {
1346#if EV_USE_REALTIME
1347 if (!have_realtime)
1348 {
1349 struct timespec ts;
1350
1351 if (!clock_gettime (CLOCK_REALTIME, &ts))
1352 have_realtime = 1;
1353 }
1354#endif
1355
1142#if EV_USE_MONOTONIC 1356#if EV_USE_MONOTONIC
1357 if (!have_monotonic)
1143 { 1358 {
1144 struct timespec ts; 1359 struct timespec ts;
1360
1145 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1361 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1146 have_monotonic = 1; 1362 have_monotonic = 1;
1147 } 1363 }
1148#endif 1364#endif
1149 1365
1150 ev_rt_now = ev_time (); 1366 ev_rt_now = ev_time ();
1151 mn_now = get_clock (); 1367 mn_now = get_clock ();
1152 now_floor = mn_now; 1368 now_floor = mn_now;
1170 if (!(flags & EVFLAG_NOENV) 1386 if (!(flags & EVFLAG_NOENV)
1171 && !enable_secure () 1387 && !enable_secure ()
1172 && getenv ("LIBEV_FLAGS")) 1388 && getenv ("LIBEV_FLAGS"))
1173 flags = atoi (getenv ("LIBEV_FLAGS")); 1389 flags = atoi (getenv ("LIBEV_FLAGS"));
1174 1390
1175 if (!(flags & 0x0000ffffUL)) 1391 if (!(flags & 0x0000ffffU))
1176 flags |= ev_recommended_backends (); 1392 flags |= ev_recommended_backends ();
1177 1393
1178#if EV_USE_PORT 1394#if EV_USE_PORT
1179 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1395 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1180#endif 1396#endif
1251 } 1467 }
1252 1468
1253 ev_free (anfds); anfdmax = 0; 1469 ev_free (anfds); anfdmax = 0;
1254 1470
1255 /* have to use the microsoft-never-gets-it-right macro */ 1471 /* have to use the microsoft-never-gets-it-right macro */
1472 array_free (rfeed, EMPTY);
1256 array_free (fdchange, EMPTY); 1473 array_free (fdchange, EMPTY);
1257 array_free (timer, EMPTY); 1474 array_free (timer, EMPTY);
1258#if EV_PERIODIC_ENABLE 1475#if EV_PERIODIC_ENABLE
1259 array_free (periodic, EMPTY); 1476 array_free (periodic, EMPTY);
1260#endif 1477#endif
1268#endif 1485#endif
1269 1486
1270 backend = 0; 1487 backend = 0;
1271} 1488}
1272 1489
1490#if EV_USE_INOTIFY
1273void inline_size infy_fork (EV_P); 1491inline_size void infy_fork (EV_P);
1492#endif
1274 1493
1275void inline_size 1494inline_size void
1276loop_fork (EV_P) 1495loop_fork (EV_P)
1277{ 1496{
1278#if EV_USE_PORT 1497#if EV_USE_PORT
1279 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1498 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1280#endif 1499#endif
1318 1537
1319 postfork = 0; 1538 postfork = 0;
1320} 1539}
1321 1540
1322#if EV_MULTIPLICITY 1541#if EV_MULTIPLICITY
1542
1323struct ev_loop * 1543struct ev_loop *
1324ev_loop_new (unsigned int flags) 1544ev_loop_new (unsigned int flags)
1325{ 1545{
1326 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1546 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1327 1547
1346ev_loop_fork (EV_P) 1566ev_loop_fork (EV_P)
1347{ 1567{
1348 postfork = 1; /* must be in line with ev_default_fork */ 1568 postfork = 1; /* must be in line with ev_default_fork */
1349} 1569}
1350 1570
1571#if EV_VERIFY
1572static void noinline
1573verify_watcher (EV_P_ W w)
1574{
1575 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1576
1577 if (w->pending)
1578 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1579}
1580
1581static void noinline
1582verify_heap (EV_P_ ANHE *heap, int N)
1583{
1584 int i;
1585
1586 for (i = HEAP0; i < N + HEAP0; ++i)
1587 {
1588 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1589 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1590 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1591
1592 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1593 }
1594}
1595
1596static void noinline
1597array_verify (EV_P_ W *ws, int cnt)
1598{
1599 while (cnt--)
1600 {
1601 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1602 verify_watcher (EV_A_ ws [cnt]);
1603 }
1604}
1605#endif
1606
1607void
1608ev_loop_verify (EV_P)
1609{
1610#if EV_VERIFY
1611 int i;
1612 WL w;
1613
1614 assert (activecnt >= -1);
1615
1616 assert (fdchangemax >= fdchangecnt);
1617 for (i = 0; i < fdchangecnt; ++i)
1618 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1619
1620 assert (anfdmax >= 0);
1621 for (i = 0; i < anfdmax; ++i)
1622 for (w = anfds [i].head; w; w = w->next)
1623 {
1624 verify_watcher (EV_A_ (W)w);
1625 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1626 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1627 }
1628
1629 assert (timermax >= timercnt);
1630 verify_heap (EV_A_ timers, timercnt);
1631
1632#if EV_PERIODIC_ENABLE
1633 assert (periodicmax >= periodiccnt);
1634 verify_heap (EV_A_ periodics, periodiccnt);
1635#endif
1636
1637 for (i = NUMPRI; i--; )
1638 {
1639 assert (pendingmax [i] >= pendingcnt [i]);
1640#if EV_IDLE_ENABLE
1641 assert (idleall >= 0);
1642 assert (idlemax [i] >= idlecnt [i]);
1643 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1644#endif
1645 }
1646
1647#if EV_FORK_ENABLE
1648 assert (forkmax >= forkcnt);
1649 array_verify (EV_A_ (W *)forks, forkcnt);
1650#endif
1651
1652#if EV_ASYNC_ENABLE
1653 assert (asyncmax >= asynccnt);
1654 array_verify (EV_A_ (W *)asyncs, asynccnt);
1655#endif
1656
1657 assert (preparemax >= preparecnt);
1658 array_verify (EV_A_ (W *)prepares, preparecnt);
1659
1660 assert (checkmax >= checkcnt);
1661 array_verify (EV_A_ (W *)checks, checkcnt);
1662
1663# if 0
1664 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1665 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1351#endif 1666# endif
1667#endif
1668}
1669
1670#endif /* multiplicity */
1352 1671
1353#if EV_MULTIPLICITY 1672#if EV_MULTIPLICITY
1354struct ev_loop * 1673struct ev_loop *
1355ev_default_loop_init (unsigned int flags) 1674ev_default_loop_init (unsigned int flags)
1356#else 1675#else
1389{ 1708{
1390#if EV_MULTIPLICITY 1709#if EV_MULTIPLICITY
1391 struct ev_loop *loop = ev_default_loop_ptr; 1710 struct ev_loop *loop = ev_default_loop_ptr;
1392#endif 1711#endif
1393 1712
1713 ev_default_loop_ptr = 0;
1714
1394#ifndef _WIN32 1715#ifndef _WIN32
1395 ev_ref (EV_A); /* child watcher */ 1716 ev_ref (EV_A); /* child watcher */
1396 ev_signal_stop (EV_A_ &childev); 1717 ev_signal_stop (EV_A_ &childev);
1397#endif 1718#endif
1398 1719
1404{ 1725{
1405#if EV_MULTIPLICITY 1726#if EV_MULTIPLICITY
1406 struct ev_loop *loop = ev_default_loop_ptr; 1727 struct ev_loop *loop = ev_default_loop_ptr;
1407#endif 1728#endif
1408 1729
1409 if (backend)
1410 postfork = 1; /* must be in line with ev_loop_fork */ 1730 postfork = 1; /* must be in line with ev_loop_fork */
1411} 1731}
1412 1732
1413/*****************************************************************************/ 1733/*****************************************************************************/
1414 1734
1415void 1735void
1416ev_invoke (EV_P_ void *w, int revents) 1736ev_invoke (EV_P_ void *w, int revents)
1417{ 1737{
1418 EV_CB_INVOKE ((W)w, revents); 1738 EV_CB_INVOKE ((W)w, revents);
1419} 1739}
1420 1740
1421void inline_speed 1741inline_speed void
1422call_pending (EV_P) 1742call_pending (EV_P)
1423{ 1743{
1424 int pri; 1744 int pri;
1425 1745
1426 for (pri = NUMPRI; pri--; ) 1746 for (pri = NUMPRI; pri--; )
1428 { 1748 {
1429 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1749 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1430 1750
1431 if (expect_true (p->w)) 1751 if (expect_true (p->w))
1432 { 1752 {
1433 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1753 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1434 1754
1435 p->w->pending = 0; 1755 p->w->pending = 0;
1436 EV_CB_INVOKE (p->w, p->events); 1756 EV_CB_INVOKE (p->w, p->events);
1757 EV_FREQUENT_CHECK;
1437 } 1758 }
1438 } 1759 }
1439} 1760}
1440 1761
1441void inline_size
1442timers_reify (EV_P)
1443{
1444 while (timercnt && ((WT)timers [0])->at <= mn_now)
1445 {
1446 ev_timer *w = (ev_timer *)timers [0];
1447
1448 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1449
1450 /* first reschedule or stop timer */
1451 if (w->repeat)
1452 {
1453 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1454
1455 ((WT)w)->at += w->repeat;
1456 if (((WT)w)->at < mn_now)
1457 ((WT)w)->at = mn_now;
1458
1459 downheap (timers, timercnt, 0);
1460 }
1461 else
1462 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1463
1464 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1465 }
1466}
1467
1468#if EV_PERIODIC_ENABLE
1469void inline_size
1470periodics_reify (EV_P)
1471{
1472 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1473 {
1474 ev_periodic *w = (ev_periodic *)periodics [0];
1475
1476 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1477
1478 /* first reschedule or stop timer */
1479 if (w->reschedule_cb)
1480 {
1481 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1482 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else if (w->interval)
1486 {
1487 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1488 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1489 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1490 downheap (periodics, periodiccnt, 0);
1491 }
1492 else
1493 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1494
1495 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1496 }
1497}
1498
1499static void noinline
1500periodics_reschedule (EV_P)
1501{
1502 int i;
1503
1504 /* adjust periodics after time jump */
1505 for (i = 0; i < periodiccnt; ++i)
1506 {
1507 ev_periodic *w = (ev_periodic *)periodics [i];
1508
1509 if (w->reschedule_cb)
1510 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1511 else if (w->interval)
1512 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1513 }
1514
1515 /* now rebuild the heap */
1516 for (i = periodiccnt >> 1; i--; )
1517 downheap (periodics, periodiccnt, i);
1518}
1519#endif
1520
1521#if EV_IDLE_ENABLE 1762#if EV_IDLE_ENABLE
1522void inline_size 1763inline_size void
1523idle_reify (EV_P) 1764idle_reify (EV_P)
1524{ 1765{
1525 if (expect_false (idleall)) 1766 if (expect_false (idleall))
1526 { 1767 {
1527 int pri; 1768 int pri;
1539 } 1780 }
1540 } 1781 }
1541} 1782}
1542#endif 1783#endif
1543 1784
1544void inline_speed 1785inline_size void
1786timers_reify (EV_P)
1787{
1788 EV_FREQUENT_CHECK;
1789
1790 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1791 {
1792 do
1793 {
1794 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1795
1796 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1797
1798 /* first reschedule or stop timer */
1799 if (w->repeat)
1800 {
1801 ev_at (w) += w->repeat;
1802 if (ev_at (w) < mn_now)
1803 ev_at (w) = mn_now;
1804
1805 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1806
1807 ANHE_at_cache (timers [HEAP0]);
1808 downheap (timers, timercnt, HEAP0);
1809 }
1810 else
1811 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1812
1813 EV_FREQUENT_CHECK;
1814 feed_reverse (EV_A_ (W)w);
1815 }
1816 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1817
1818 feed_reverse_done (EV_A_ EV_TIMEOUT);
1819 }
1820}
1821
1822#if EV_PERIODIC_ENABLE
1823inline_size void
1824periodics_reify (EV_P)
1825{
1826 EV_FREQUENT_CHECK;
1827
1828 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1829 {
1830 int feed_count = 0;
1831
1832 do
1833 {
1834 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1835
1836 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1837
1838 /* first reschedule or stop timer */
1839 if (w->reschedule_cb)
1840 {
1841 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1842
1843 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1844
1845 ANHE_at_cache (periodics [HEAP0]);
1846 downheap (periodics, periodiccnt, HEAP0);
1847 }
1848 else if (w->interval)
1849 {
1850 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1851 /* if next trigger time is not sufficiently in the future, put it there */
1852 /* this might happen because of floating point inexactness */
1853 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1854 {
1855 ev_at (w) += w->interval;
1856
1857 /* if interval is unreasonably low we might still have a time in the past */
1858 /* so correct this. this will make the periodic very inexact, but the user */
1859 /* has effectively asked to get triggered more often than possible */
1860 if (ev_at (w) < ev_rt_now)
1861 ev_at (w) = ev_rt_now;
1862 }
1863
1864 ANHE_at_cache (periodics [HEAP0]);
1865 downheap (periodics, periodiccnt, HEAP0);
1866 }
1867 else
1868 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1869
1870 EV_FREQUENT_CHECK;
1871 feed_reverse (EV_A_ (W)w);
1872 }
1873 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1874
1875 feed_reverse_done (EV_A_ EV_PERIODIC);
1876 }
1877}
1878
1879static void noinline
1880periodics_reschedule (EV_P)
1881{
1882 int i;
1883
1884 /* adjust periodics after time jump */
1885 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1886 {
1887 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1888
1889 if (w->reschedule_cb)
1890 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1891 else if (w->interval)
1892 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1893
1894 ANHE_at_cache (periodics [i]);
1895 }
1896
1897 reheap (periodics, periodiccnt);
1898}
1899#endif
1900
1901static void noinline
1902timers_reschedule (EV_P_ ev_tstamp adjust)
1903{
1904 int i;
1905
1906 for (i = 0; i < timercnt; ++i)
1907 {
1908 ANHE *he = timers + i + HEAP0;
1909 ANHE_w (*he)->at += adjust;
1910 ANHE_at_cache (*he);
1911 }
1912}
1913
1914inline_speed void
1545time_update (EV_P_ ev_tstamp max_block) 1915time_update (EV_P_ ev_tstamp max_block)
1546{ 1916{
1547 int i; 1917 int i;
1548 1918
1549#if EV_USE_MONOTONIC 1919#if EV_USE_MONOTONIC
1574 */ 1944 */
1575 for (i = 4; --i; ) 1945 for (i = 4; --i; )
1576 { 1946 {
1577 rtmn_diff = ev_rt_now - mn_now; 1947 rtmn_diff = ev_rt_now - mn_now;
1578 1948
1579 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1949 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1580 return; /* all is well */ 1950 return; /* all is well */
1581 1951
1582 ev_rt_now = ev_time (); 1952 ev_rt_now = ev_time ();
1583 mn_now = get_clock (); 1953 mn_now = get_clock ();
1584 now_floor = mn_now; 1954 now_floor = mn_now;
1585 } 1955 }
1586 1956
1957 /* no timer adjustment, as the monotonic clock doesn't jump */
1958 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1587# if EV_PERIODIC_ENABLE 1959# if EV_PERIODIC_ENABLE
1588 periodics_reschedule (EV_A); 1960 periodics_reschedule (EV_A);
1589# endif 1961# endif
1590 /* no timer adjustment, as the monotonic clock doesn't jump */
1591 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1592 } 1962 }
1593 else 1963 else
1594#endif 1964#endif
1595 { 1965 {
1596 ev_rt_now = ev_time (); 1966 ev_rt_now = ev_time ();
1597 1967
1598 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 1968 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1599 { 1969 {
1970 /* adjust timers. this is easy, as the offset is the same for all of them */
1971 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1600#if EV_PERIODIC_ENABLE 1972#if EV_PERIODIC_ENABLE
1601 periodics_reschedule (EV_A); 1973 periodics_reschedule (EV_A);
1602#endif 1974#endif
1603 /* adjust timers. this is easy, as the offset is the same for all of them */
1604 for (i = 0; i < timercnt; ++i)
1605 ((WT)timers [i])->at += ev_rt_now - mn_now;
1606 } 1975 }
1607 1976
1608 mn_now = ev_rt_now; 1977 mn_now = ev_rt_now;
1609 } 1978 }
1610} 1979}
1611 1980
1612void
1613ev_ref (EV_P)
1614{
1615 ++activecnt;
1616}
1617
1618void
1619ev_unref (EV_P)
1620{
1621 --activecnt;
1622}
1623
1624static int loop_done; 1981static int loop_done;
1625 1982
1626void 1983void
1627ev_loop (EV_P_ int flags) 1984ev_loop (EV_P_ int flags)
1628{ 1985{
1630 1987
1631 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1988 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1632 1989
1633 do 1990 do
1634 { 1991 {
1992#if EV_VERIFY >= 2
1993 ev_loop_verify (EV_A);
1994#endif
1995
1635#ifndef _WIN32 1996#ifndef _WIN32
1636 if (expect_false (curpid)) /* penalise the forking check even more */ 1997 if (expect_false (curpid)) /* penalise the forking check even more */
1637 if (expect_false (getpid () != curpid)) 1998 if (expect_false (getpid () != curpid))
1638 { 1999 {
1639 curpid = getpid (); 2000 curpid = getpid ();
1656 { 2017 {
1657 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2018 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1658 call_pending (EV_A); 2019 call_pending (EV_A);
1659 } 2020 }
1660 2021
1661 if (expect_false (!activecnt))
1662 break;
1663
1664 /* we might have forked, so reify kernel state if necessary */ 2022 /* we might have forked, so reify kernel state if necessary */
1665 if (expect_false (postfork)) 2023 if (expect_false (postfork))
1666 loop_fork (EV_A); 2024 loop_fork (EV_A);
1667 2025
1668 /* update fd-related kernel structures */ 2026 /* update fd-related kernel structures */
1680 2038
1681 waittime = MAX_BLOCKTIME; 2039 waittime = MAX_BLOCKTIME;
1682 2040
1683 if (timercnt) 2041 if (timercnt)
1684 { 2042 {
1685 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2043 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1686 if (waittime > to) waittime = to; 2044 if (waittime > to) waittime = to;
1687 } 2045 }
1688 2046
1689#if EV_PERIODIC_ENABLE 2047#if EV_PERIODIC_ENABLE
1690 if (periodiccnt) 2048 if (periodiccnt)
1691 { 2049 {
1692 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2050 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1693 if (waittime > to) waittime = to; 2051 if (waittime > to) waittime = to;
1694 } 2052 }
1695#endif 2053#endif
1696 2054
1697 if (expect_false (waittime < timeout_blocktime)) 2055 if (expect_false (waittime < timeout_blocktime))
1747ev_unloop (EV_P_ int how) 2105ev_unloop (EV_P_ int how)
1748{ 2106{
1749 loop_done = how; 2107 loop_done = how;
1750} 2108}
1751 2109
2110void
2111ev_ref (EV_P)
2112{
2113 ++activecnt;
2114}
2115
2116void
2117ev_unref (EV_P)
2118{
2119 --activecnt;
2120}
2121
2122void
2123ev_now_update (EV_P)
2124{
2125 time_update (EV_A_ 1e100);
2126}
2127
2128void
2129ev_suspend (EV_P)
2130{
2131 ev_now_update (EV_A);
2132}
2133
2134void
2135ev_resume (EV_P)
2136{
2137 ev_tstamp mn_prev = mn_now;
2138
2139 ev_now_update (EV_A);
2140 timers_reschedule (EV_A_ mn_now - mn_prev);
2141#if EV_PERIODIC_ENABLE
2142 periodics_reschedule (EV_A);
2143#endif
2144}
2145
1752/*****************************************************************************/ 2146/*****************************************************************************/
1753 2147
1754void inline_size 2148inline_size void
1755wlist_add (WL *head, WL elem) 2149wlist_add (WL *head, WL elem)
1756{ 2150{
1757 elem->next = *head; 2151 elem->next = *head;
1758 *head = elem; 2152 *head = elem;
1759} 2153}
1760 2154
1761void inline_size 2155inline_size void
1762wlist_del (WL *head, WL elem) 2156wlist_del (WL *head, WL elem)
1763{ 2157{
1764 while (*head) 2158 while (*head)
1765 { 2159 {
1766 if (*head == elem) 2160 if (*head == elem)
1771 2165
1772 head = &(*head)->next; 2166 head = &(*head)->next;
1773 } 2167 }
1774} 2168}
1775 2169
1776void inline_speed 2170inline_speed void
1777clear_pending (EV_P_ W w) 2171clear_pending (EV_P_ W w)
1778{ 2172{
1779 if (w->pending) 2173 if (w->pending)
1780 { 2174 {
1781 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2175 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1798 } 2192 }
1799 else 2193 else
1800 return 0; 2194 return 0;
1801} 2195}
1802 2196
1803void inline_size 2197inline_size void
1804pri_adjust (EV_P_ W w) 2198pri_adjust (EV_P_ W w)
1805{ 2199{
1806 int pri = w->priority; 2200 int pri = w->priority;
1807 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2201 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1808 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2202 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1809 w->priority = pri; 2203 w->priority = pri;
1810} 2204}
1811 2205
1812void inline_speed 2206inline_speed void
1813ev_start (EV_P_ W w, int active) 2207ev_start (EV_P_ W w, int active)
1814{ 2208{
1815 pri_adjust (EV_A_ w); 2209 pri_adjust (EV_A_ w);
1816 w->active = active; 2210 w->active = active;
1817 ev_ref (EV_A); 2211 ev_ref (EV_A);
1818} 2212}
1819 2213
1820void inline_size 2214inline_size void
1821ev_stop (EV_P_ W w) 2215ev_stop (EV_P_ W w)
1822{ 2216{
1823 ev_unref (EV_A); 2217 ev_unref (EV_A);
1824 w->active = 0; 2218 w->active = 0;
1825} 2219}
1832 int fd = w->fd; 2226 int fd = w->fd;
1833 2227
1834 if (expect_false (ev_is_active (w))) 2228 if (expect_false (ev_is_active (w)))
1835 return; 2229 return;
1836 2230
1837 assert (("ev_io_start called with negative fd", fd >= 0)); 2231 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2232 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2233
2234 EV_FREQUENT_CHECK;
1838 2235
1839 ev_start (EV_A_ (W)w, 1); 2236 ev_start (EV_A_ (W)w, 1);
1840 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2237 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1841 wlist_add (&anfds[fd].head, (WL)w); 2238 wlist_add (&anfds[fd].head, (WL)w);
1842 2239
1843 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2240 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1844 w->events &= ~EV_IOFDSET; 2241 w->events &= ~EV__IOFDSET;
2242
2243 EV_FREQUENT_CHECK;
1845} 2244}
1846 2245
1847void noinline 2246void noinline
1848ev_io_stop (EV_P_ ev_io *w) 2247ev_io_stop (EV_P_ ev_io *w)
1849{ 2248{
1850 clear_pending (EV_A_ (W)w); 2249 clear_pending (EV_A_ (W)w);
1851 if (expect_false (!ev_is_active (w))) 2250 if (expect_false (!ev_is_active (w)))
1852 return; 2251 return;
1853 2252
1854 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2253 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2254
2255 EV_FREQUENT_CHECK;
1855 2256
1856 wlist_del (&anfds[w->fd].head, (WL)w); 2257 wlist_del (&anfds[w->fd].head, (WL)w);
1857 ev_stop (EV_A_ (W)w); 2258 ev_stop (EV_A_ (W)w);
1858 2259
1859 fd_change (EV_A_ w->fd, 1); 2260 fd_change (EV_A_ w->fd, 1);
2261
2262 EV_FREQUENT_CHECK;
1860} 2263}
1861 2264
1862void noinline 2265void noinline
1863ev_timer_start (EV_P_ ev_timer *w) 2266ev_timer_start (EV_P_ ev_timer *w)
1864{ 2267{
1865 if (expect_false (ev_is_active (w))) 2268 if (expect_false (ev_is_active (w)))
1866 return; 2269 return;
1867 2270
1868 ((WT)w)->at += mn_now; 2271 ev_at (w) += mn_now;
1869 2272
1870 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2273 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1871 2274
2275 EV_FREQUENT_CHECK;
2276
2277 ++timercnt;
1872 ev_start (EV_A_ (W)w, ++timercnt); 2278 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1873 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2279 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1874 timers [timercnt - 1] = (WT)w; 2280 ANHE_w (timers [ev_active (w)]) = (WT)w;
1875 upheap (timers, timercnt - 1); 2281 ANHE_at_cache (timers [ev_active (w)]);
2282 upheap (timers, ev_active (w));
1876 2283
2284 EV_FREQUENT_CHECK;
2285
1877 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2286 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1878} 2287}
1879 2288
1880void noinline 2289void noinline
1881ev_timer_stop (EV_P_ ev_timer *w) 2290ev_timer_stop (EV_P_ ev_timer *w)
1882{ 2291{
1883 clear_pending (EV_A_ (W)w); 2292 clear_pending (EV_A_ (W)w);
1884 if (expect_false (!ev_is_active (w))) 2293 if (expect_false (!ev_is_active (w)))
1885 return; 2294 return;
1886 2295
1887 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2296 EV_FREQUENT_CHECK;
1888 2297
1889 { 2298 {
1890 int active = ((W)w)->active; 2299 int active = ev_active (w);
1891 2300
2301 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2302
2303 --timercnt;
2304
1892 if (expect_true (--active < --timercnt)) 2305 if (expect_true (active < timercnt + HEAP0))
1893 { 2306 {
1894 timers [active] = timers [timercnt]; 2307 timers [active] = timers [timercnt + HEAP0];
1895 adjustheap (timers, timercnt, active); 2308 adjustheap (timers, timercnt, active);
1896 } 2309 }
1897 } 2310 }
1898 2311
1899 ((WT)w)->at -= mn_now; 2312 EV_FREQUENT_CHECK;
2313
2314 ev_at (w) -= mn_now;
1900 2315
1901 ev_stop (EV_A_ (W)w); 2316 ev_stop (EV_A_ (W)w);
1902} 2317}
1903 2318
1904void noinline 2319void noinline
1905ev_timer_again (EV_P_ ev_timer *w) 2320ev_timer_again (EV_P_ ev_timer *w)
1906{ 2321{
2322 EV_FREQUENT_CHECK;
2323
1907 if (ev_is_active (w)) 2324 if (ev_is_active (w))
1908 { 2325 {
1909 if (w->repeat) 2326 if (w->repeat)
1910 { 2327 {
1911 ((WT)w)->at = mn_now + w->repeat; 2328 ev_at (w) = mn_now + w->repeat;
2329 ANHE_at_cache (timers [ev_active (w)]);
1912 adjustheap (timers, timercnt, ((W)w)->active - 1); 2330 adjustheap (timers, timercnt, ev_active (w));
1913 } 2331 }
1914 else 2332 else
1915 ev_timer_stop (EV_A_ w); 2333 ev_timer_stop (EV_A_ w);
1916 } 2334 }
1917 else if (w->repeat) 2335 else if (w->repeat)
1918 { 2336 {
1919 w->at = w->repeat; 2337 ev_at (w) = w->repeat;
1920 ev_timer_start (EV_A_ w); 2338 ev_timer_start (EV_A_ w);
1921 } 2339 }
2340
2341 EV_FREQUENT_CHECK;
1922} 2342}
1923 2343
1924#if EV_PERIODIC_ENABLE 2344#if EV_PERIODIC_ENABLE
1925void noinline 2345void noinline
1926ev_periodic_start (EV_P_ ev_periodic *w) 2346ev_periodic_start (EV_P_ ev_periodic *w)
1927{ 2347{
1928 if (expect_false (ev_is_active (w))) 2348 if (expect_false (ev_is_active (w)))
1929 return; 2349 return;
1930 2350
1931 if (w->reschedule_cb) 2351 if (w->reschedule_cb)
1932 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2352 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1933 else if (w->interval) 2353 else if (w->interval)
1934 { 2354 {
1935 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2355 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1936 /* this formula differs from the one in periodic_reify because we do not always round up */ 2356 /* this formula differs from the one in periodic_reify because we do not always round up */
1937 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2357 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1938 } 2358 }
1939 else 2359 else
1940 ((WT)w)->at = w->offset; 2360 ev_at (w) = w->offset;
1941 2361
2362 EV_FREQUENT_CHECK;
2363
2364 ++periodiccnt;
1942 ev_start (EV_A_ (W)w, ++periodiccnt); 2365 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1943 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2366 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1944 periodics [periodiccnt - 1] = (WT)w; 2367 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1945 upheap (periodics, periodiccnt - 1); 2368 ANHE_at_cache (periodics [ev_active (w)]);
2369 upheap (periodics, ev_active (w));
1946 2370
2371 EV_FREQUENT_CHECK;
2372
1947 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2373 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1948} 2374}
1949 2375
1950void noinline 2376void noinline
1951ev_periodic_stop (EV_P_ ev_periodic *w) 2377ev_periodic_stop (EV_P_ ev_periodic *w)
1952{ 2378{
1953 clear_pending (EV_A_ (W)w); 2379 clear_pending (EV_A_ (W)w);
1954 if (expect_false (!ev_is_active (w))) 2380 if (expect_false (!ev_is_active (w)))
1955 return; 2381 return;
1956 2382
1957 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2383 EV_FREQUENT_CHECK;
1958 2384
1959 { 2385 {
1960 int active = ((W)w)->active; 2386 int active = ev_active (w);
1961 2387
2388 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2389
2390 --periodiccnt;
2391
1962 if (expect_true (--active < --periodiccnt)) 2392 if (expect_true (active < periodiccnt + HEAP0))
1963 { 2393 {
1964 periodics [active] = periodics [periodiccnt]; 2394 periodics [active] = periodics [periodiccnt + HEAP0];
1965 adjustheap (periodics, periodiccnt, active); 2395 adjustheap (periodics, periodiccnt, active);
1966 } 2396 }
1967 } 2397 }
1968 2398
2399 EV_FREQUENT_CHECK;
2400
1969 ev_stop (EV_A_ (W)w); 2401 ev_stop (EV_A_ (W)w);
1970} 2402}
1971 2403
1972void noinline 2404void noinline
1973ev_periodic_again (EV_P_ ev_periodic *w) 2405ev_periodic_again (EV_P_ ev_periodic *w)
1984 2416
1985void noinline 2417void noinline
1986ev_signal_start (EV_P_ ev_signal *w) 2418ev_signal_start (EV_P_ ev_signal *w)
1987{ 2419{
1988#if EV_MULTIPLICITY 2420#if EV_MULTIPLICITY
1989 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2421 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1990#endif 2422#endif
1991 if (expect_false (ev_is_active (w))) 2423 if (expect_false (ev_is_active (w)))
1992 return; 2424 return;
1993 2425
1994 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2426 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
1995 2427
1996 evpipe_init (EV_A); 2428 evpipe_init (EV_A);
2429
2430 EV_FREQUENT_CHECK;
1997 2431
1998 { 2432 {
1999#ifndef _WIN32 2433#ifndef _WIN32
2000 sigset_t full, prev; 2434 sigset_t full, prev;
2001 sigfillset (&full); 2435 sigfillset (&full);
2002 sigprocmask (SIG_SETMASK, &full, &prev); 2436 sigprocmask (SIG_SETMASK, &full, &prev);
2003#endif 2437#endif
2004 2438
2005 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2439 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2006 2440
2007#ifndef _WIN32 2441#ifndef _WIN32
2008 sigprocmask (SIG_SETMASK, &prev, 0); 2442 sigprocmask (SIG_SETMASK, &prev, 0);
2009#endif 2443#endif
2010 } 2444 }
2022 sigfillset (&sa.sa_mask); 2456 sigfillset (&sa.sa_mask);
2023 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2457 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2024 sigaction (w->signum, &sa, 0); 2458 sigaction (w->signum, &sa, 0);
2025#endif 2459#endif
2026 } 2460 }
2461
2462 EV_FREQUENT_CHECK;
2027} 2463}
2028 2464
2029void noinline 2465void noinline
2030ev_signal_stop (EV_P_ ev_signal *w) 2466ev_signal_stop (EV_P_ ev_signal *w)
2031{ 2467{
2032 clear_pending (EV_A_ (W)w); 2468 clear_pending (EV_A_ (W)w);
2033 if (expect_false (!ev_is_active (w))) 2469 if (expect_false (!ev_is_active (w)))
2034 return; 2470 return;
2035 2471
2472 EV_FREQUENT_CHECK;
2473
2036 wlist_del (&signals [w->signum - 1].head, (WL)w); 2474 wlist_del (&signals [w->signum - 1].head, (WL)w);
2037 ev_stop (EV_A_ (W)w); 2475 ev_stop (EV_A_ (W)w);
2038 2476
2039 if (!signals [w->signum - 1].head) 2477 if (!signals [w->signum - 1].head)
2040 signal (w->signum, SIG_DFL); 2478 signal (w->signum, SIG_DFL);
2479
2480 EV_FREQUENT_CHECK;
2041} 2481}
2042 2482
2043void 2483void
2044ev_child_start (EV_P_ ev_child *w) 2484ev_child_start (EV_P_ ev_child *w)
2045{ 2485{
2046#if EV_MULTIPLICITY 2486#if EV_MULTIPLICITY
2047 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2487 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2048#endif 2488#endif
2049 if (expect_false (ev_is_active (w))) 2489 if (expect_false (ev_is_active (w)))
2050 return; 2490 return;
2051 2491
2492 EV_FREQUENT_CHECK;
2493
2052 ev_start (EV_A_ (W)w, 1); 2494 ev_start (EV_A_ (W)w, 1);
2053 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2495 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2496
2497 EV_FREQUENT_CHECK;
2054} 2498}
2055 2499
2056void 2500void
2057ev_child_stop (EV_P_ ev_child *w) 2501ev_child_stop (EV_P_ ev_child *w)
2058{ 2502{
2059 clear_pending (EV_A_ (W)w); 2503 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2504 if (expect_false (!ev_is_active (w)))
2061 return; 2505 return;
2062 2506
2507 EV_FREQUENT_CHECK;
2508
2063 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2509 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2064 ev_stop (EV_A_ (W)w); 2510 ev_stop (EV_A_ (W)w);
2511
2512 EV_FREQUENT_CHECK;
2065} 2513}
2066 2514
2067#if EV_STAT_ENABLE 2515#if EV_STAT_ENABLE
2068 2516
2069# ifdef _WIN32 2517# ifdef _WIN32
2070# undef lstat 2518# undef lstat
2071# define lstat(a,b) _stati64 (a,b) 2519# define lstat(a,b) _stati64 (a,b)
2072# endif 2520# endif
2073 2521
2074#define DEF_STAT_INTERVAL 5.0074891 2522#define DEF_STAT_INTERVAL 5.0074891
2523#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2075#define MIN_STAT_INTERVAL 0.1074891 2524#define MIN_STAT_INTERVAL 0.1074891
2076 2525
2077static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2526static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2078 2527
2079#if EV_USE_INOTIFY 2528#if EV_USE_INOTIFY
2080# define EV_INOTIFY_BUFSIZE 8192 2529# define EV_INOTIFY_BUFSIZE 8192
2084{ 2533{
2085 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2534 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2086 2535
2087 if (w->wd < 0) 2536 if (w->wd < 0)
2088 { 2537 {
2538 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2089 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2539 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2090 2540
2091 /* monitor some parent directory for speedup hints */ 2541 /* monitor some parent directory for speedup hints */
2542 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2543 /* but an efficiency issue only */
2092 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2544 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2093 { 2545 {
2094 char path [4096]; 2546 char path [4096];
2095 strcpy (path, w->path); 2547 strcpy (path, w->path);
2096 2548
2099 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2551 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2100 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2552 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2101 2553
2102 char *pend = strrchr (path, '/'); 2554 char *pend = strrchr (path, '/');
2103 2555
2104 if (!pend) 2556 if (!pend || pend == path)
2105 break; /* whoops, no '/', complain to your admin */ 2557 break;
2106 2558
2107 *pend = 0; 2559 *pend = 0;
2108 w->wd = inotify_add_watch (fs_fd, path, mask); 2560 w->wd = inotify_add_watch (fs_fd, path, mask);
2109 } 2561 }
2110 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2562 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2111 } 2563 }
2112 } 2564 }
2113 else
2114 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2115 2565
2116 if (w->wd >= 0) 2566 if (w->wd >= 0)
2567 {
2117 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2568 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2569
2570 /* now local changes will be tracked by inotify, but remote changes won't */
2571 /* unless the filesystem it known to be local, we therefore still poll */
2572 /* also do poll on <2.6.25, but with normal frequency */
2573 struct statfs sfs;
2574
2575 if (fs_2625 && !statfs (w->path, &sfs))
2576 if (sfs.f_type == 0x1373 /* devfs */
2577 || sfs.f_type == 0xEF53 /* ext2/3 */
2578 || sfs.f_type == 0x3153464a /* jfs */
2579 || sfs.f_type == 0x52654973 /* reiser3 */
2580 || sfs.f_type == 0x01021994 /* tempfs */
2581 || sfs.f_type == 0x58465342 /* xfs */)
2582 return;
2583
2584 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2585 ev_timer_again (EV_A_ &w->timer);
2586 }
2118} 2587}
2119 2588
2120static void noinline 2589static void noinline
2121infy_del (EV_P_ ev_stat *w) 2590infy_del (EV_P_ ev_stat *w)
2122{ 2591{
2136 2605
2137static void noinline 2606static void noinline
2138infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2607infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2139{ 2608{
2140 if (slot < 0) 2609 if (slot < 0)
2141 /* overflow, need to check for all hahs slots */ 2610 /* overflow, need to check for all hash slots */
2142 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2611 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2143 infy_wd (EV_A_ slot, wd, ev); 2612 infy_wd (EV_A_ slot, wd, ev);
2144 else 2613 else
2145 { 2614 {
2146 WL w_; 2615 WL w_;
2152 2621
2153 if (w->wd == wd || wd == -1) 2622 if (w->wd == wd || wd == -1)
2154 { 2623 {
2155 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2624 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2156 { 2625 {
2626 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2157 w->wd = -1; 2627 w->wd = -1;
2158 infy_add (EV_A_ w); /* re-add, no matter what */ 2628 infy_add (EV_A_ w); /* re-add, no matter what */
2159 } 2629 }
2160 2630
2161 stat_timer_cb (EV_A_ &w->timer, 0); 2631 stat_timer_cb (EV_A_ &w->timer, 0);
2174 2644
2175 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2645 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2176 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2646 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2177} 2647}
2178 2648
2179void inline_size 2649inline_size void
2650check_2625 (EV_P)
2651{
2652 /* kernels < 2.6.25 are borked
2653 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2654 */
2655 struct utsname buf;
2656 int major, minor, micro;
2657
2658 if (uname (&buf))
2659 return;
2660
2661 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2662 return;
2663
2664 if (major < 2
2665 || (major == 2 && minor < 6)
2666 || (major == 2 && minor == 6 && micro < 25))
2667 return;
2668
2669 fs_2625 = 1;
2670}
2671
2672inline_size void
2180infy_init (EV_P) 2673infy_init (EV_P)
2181{ 2674{
2182 if (fs_fd != -2) 2675 if (fs_fd != -2)
2183 return; 2676 return;
2677
2678 fs_fd = -1;
2679
2680 check_2625 (EV_A);
2184 2681
2185 fs_fd = inotify_init (); 2682 fs_fd = inotify_init ();
2186 2683
2187 if (fs_fd >= 0) 2684 if (fs_fd >= 0)
2188 { 2685 {
2190 ev_set_priority (&fs_w, EV_MAXPRI); 2687 ev_set_priority (&fs_w, EV_MAXPRI);
2191 ev_io_start (EV_A_ &fs_w); 2688 ev_io_start (EV_A_ &fs_w);
2192 } 2689 }
2193} 2690}
2194 2691
2195void inline_size 2692inline_size void
2196infy_fork (EV_P) 2693infy_fork (EV_P)
2197{ 2694{
2198 int slot; 2695 int slot;
2199 2696
2200 if (fs_fd < 0) 2697 if (fs_fd < 0)
2216 w->wd = -1; 2713 w->wd = -1;
2217 2714
2218 if (fs_fd >= 0) 2715 if (fs_fd >= 0)
2219 infy_add (EV_A_ w); /* re-add, no matter what */ 2716 infy_add (EV_A_ w); /* re-add, no matter what */
2220 else 2717 else
2221 ev_timer_start (EV_A_ &w->timer); 2718 ev_timer_again (EV_A_ &w->timer);
2222 } 2719 }
2223
2224 } 2720 }
2225} 2721}
2226 2722
2723#endif
2724
2725#ifdef _WIN32
2726# define EV_LSTAT(p,b) _stati64 (p, b)
2727#else
2728# define EV_LSTAT(p,b) lstat (p, b)
2227#endif 2729#endif
2228 2730
2229void 2731void
2230ev_stat_stat (EV_P_ ev_stat *w) 2732ev_stat_stat (EV_P_ ev_stat *w)
2231{ 2733{
2258 || w->prev.st_atime != w->attr.st_atime 2760 || w->prev.st_atime != w->attr.st_atime
2259 || w->prev.st_mtime != w->attr.st_mtime 2761 || w->prev.st_mtime != w->attr.st_mtime
2260 || w->prev.st_ctime != w->attr.st_ctime 2762 || w->prev.st_ctime != w->attr.st_ctime
2261 ) { 2763 ) {
2262 #if EV_USE_INOTIFY 2764 #if EV_USE_INOTIFY
2765 if (fs_fd >= 0)
2766 {
2263 infy_del (EV_A_ w); 2767 infy_del (EV_A_ w);
2264 infy_add (EV_A_ w); 2768 infy_add (EV_A_ w);
2265 ev_stat_stat (EV_A_ w); /* avoid race... */ 2769 ev_stat_stat (EV_A_ w); /* avoid race... */
2770 }
2266 #endif 2771 #endif
2267 2772
2268 ev_feed_event (EV_A_ w, EV_STAT); 2773 ev_feed_event (EV_A_ w, EV_STAT);
2269 } 2774 }
2270} 2775}
2273ev_stat_start (EV_P_ ev_stat *w) 2778ev_stat_start (EV_P_ ev_stat *w)
2274{ 2779{
2275 if (expect_false (ev_is_active (w))) 2780 if (expect_false (ev_is_active (w)))
2276 return; 2781 return;
2277 2782
2278 /* since we use memcmp, we need to clear any padding data etc. */
2279 memset (&w->prev, 0, sizeof (ev_statdata));
2280 memset (&w->attr, 0, sizeof (ev_statdata));
2281
2282 ev_stat_stat (EV_A_ w); 2783 ev_stat_stat (EV_A_ w);
2283 2784
2785 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2284 if (w->interval < MIN_STAT_INTERVAL) 2786 w->interval = MIN_STAT_INTERVAL;
2285 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2286 2787
2287 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2788 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2288 ev_set_priority (&w->timer, ev_priority (w)); 2789 ev_set_priority (&w->timer, ev_priority (w));
2289 2790
2290#if EV_USE_INOTIFY 2791#if EV_USE_INOTIFY
2291 infy_init (EV_A); 2792 infy_init (EV_A);
2292 2793
2293 if (fs_fd >= 0) 2794 if (fs_fd >= 0)
2294 infy_add (EV_A_ w); 2795 infy_add (EV_A_ w);
2295 else 2796 else
2296#endif 2797#endif
2297 ev_timer_start (EV_A_ &w->timer); 2798 ev_timer_again (EV_A_ &w->timer);
2298 2799
2299 ev_start (EV_A_ (W)w, 1); 2800 ev_start (EV_A_ (W)w, 1);
2801
2802 EV_FREQUENT_CHECK;
2300} 2803}
2301 2804
2302void 2805void
2303ev_stat_stop (EV_P_ ev_stat *w) 2806ev_stat_stop (EV_P_ ev_stat *w)
2304{ 2807{
2305 clear_pending (EV_A_ (W)w); 2808 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 2809 if (expect_false (!ev_is_active (w)))
2307 return; 2810 return;
2308 2811
2812 EV_FREQUENT_CHECK;
2813
2309#if EV_USE_INOTIFY 2814#if EV_USE_INOTIFY
2310 infy_del (EV_A_ w); 2815 infy_del (EV_A_ w);
2311#endif 2816#endif
2312 ev_timer_stop (EV_A_ &w->timer); 2817 ev_timer_stop (EV_A_ &w->timer);
2313 2818
2314 ev_stop (EV_A_ (W)w); 2819 ev_stop (EV_A_ (W)w);
2820
2821 EV_FREQUENT_CHECK;
2315} 2822}
2316#endif 2823#endif
2317 2824
2318#if EV_IDLE_ENABLE 2825#if EV_IDLE_ENABLE
2319void 2826void
2321{ 2828{
2322 if (expect_false (ev_is_active (w))) 2829 if (expect_false (ev_is_active (w)))
2323 return; 2830 return;
2324 2831
2325 pri_adjust (EV_A_ (W)w); 2832 pri_adjust (EV_A_ (W)w);
2833
2834 EV_FREQUENT_CHECK;
2326 2835
2327 { 2836 {
2328 int active = ++idlecnt [ABSPRI (w)]; 2837 int active = ++idlecnt [ABSPRI (w)];
2329 2838
2330 ++idleall; 2839 ++idleall;
2331 ev_start (EV_A_ (W)w, active); 2840 ev_start (EV_A_ (W)w, active);
2332 2841
2333 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2842 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2334 idles [ABSPRI (w)][active - 1] = w; 2843 idles [ABSPRI (w)][active - 1] = w;
2335 } 2844 }
2845
2846 EV_FREQUENT_CHECK;
2336} 2847}
2337 2848
2338void 2849void
2339ev_idle_stop (EV_P_ ev_idle *w) 2850ev_idle_stop (EV_P_ ev_idle *w)
2340{ 2851{
2341 clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
2342 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
2343 return; 2854 return;
2344 2855
2856 EV_FREQUENT_CHECK;
2857
2345 { 2858 {
2346 int active = ((W)w)->active; 2859 int active = ev_active (w);
2347 2860
2348 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2861 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2349 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2862 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2350 2863
2351 ev_stop (EV_A_ (W)w); 2864 ev_stop (EV_A_ (W)w);
2352 --idleall; 2865 --idleall;
2353 } 2866 }
2867
2868 EV_FREQUENT_CHECK;
2354} 2869}
2355#endif 2870#endif
2356 2871
2357void 2872void
2358ev_prepare_start (EV_P_ ev_prepare *w) 2873ev_prepare_start (EV_P_ ev_prepare *w)
2359{ 2874{
2360 if (expect_false (ev_is_active (w))) 2875 if (expect_false (ev_is_active (w)))
2361 return; 2876 return;
2877
2878 EV_FREQUENT_CHECK;
2362 2879
2363 ev_start (EV_A_ (W)w, ++preparecnt); 2880 ev_start (EV_A_ (W)w, ++preparecnt);
2364 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2881 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2365 prepares [preparecnt - 1] = w; 2882 prepares [preparecnt - 1] = w;
2883
2884 EV_FREQUENT_CHECK;
2366} 2885}
2367 2886
2368void 2887void
2369ev_prepare_stop (EV_P_ ev_prepare *w) 2888ev_prepare_stop (EV_P_ ev_prepare *w)
2370{ 2889{
2371 clear_pending (EV_A_ (W)w); 2890 clear_pending (EV_A_ (W)w);
2372 if (expect_false (!ev_is_active (w))) 2891 if (expect_false (!ev_is_active (w)))
2373 return; 2892 return;
2374 2893
2894 EV_FREQUENT_CHECK;
2895
2375 { 2896 {
2376 int active = ((W)w)->active; 2897 int active = ev_active (w);
2898
2377 prepares [active - 1] = prepares [--preparecnt]; 2899 prepares [active - 1] = prepares [--preparecnt];
2378 ((W)prepares [active - 1])->active = active; 2900 ev_active (prepares [active - 1]) = active;
2379 } 2901 }
2380 2902
2381 ev_stop (EV_A_ (W)w); 2903 ev_stop (EV_A_ (W)w);
2904
2905 EV_FREQUENT_CHECK;
2382} 2906}
2383 2907
2384void 2908void
2385ev_check_start (EV_P_ ev_check *w) 2909ev_check_start (EV_P_ ev_check *w)
2386{ 2910{
2387 if (expect_false (ev_is_active (w))) 2911 if (expect_false (ev_is_active (w)))
2388 return; 2912 return;
2913
2914 EV_FREQUENT_CHECK;
2389 2915
2390 ev_start (EV_A_ (W)w, ++checkcnt); 2916 ev_start (EV_A_ (W)w, ++checkcnt);
2391 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2917 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2392 checks [checkcnt - 1] = w; 2918 checks [checkcnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2393} 2921}
2394 2922
2395void 2923void
2396ev_check_stop (EV_P_ ev_check *w) 2924ev_check_stop (EV_P_ ev_check *w)
2397{ 2925{
2398 clear_pending (EV_A_ (W)w); 2926 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 2927 if (expect_false (!ev_is_active (w)))
2400 return; 2928 return;
2401 2929
2930 EV_FREQUENT_CHECK;
2931
2402 { 2932 {
2403 int active = ((W)w)->active; 2933 int active = ev_active (w);
2934
2404 checks [active - 1] = checks [--checkcnt]; 2935 checks [active - 1] = checks [--checkcnt];
2405 ((W)checks [active - 1])->active = active; 2936 ev_active (checks [active - 1]) = active;
2406 } 2937 }
2407 2938
2408 ev_stop (EV_A_ (W)w); 2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2409} 2942}
2410 2943
2411#if EV_EMBED_ENABLE 2944#if EV_EMBED_ENABLE
2412void noinline 2945void noinline
2413ev_embed_sweep (EV_P_ ev_embed *w) 2946ev_embed_sweep (EV_P_ ev_embed *w)
2440 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2973 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2441 } 2974 }
2442 } 2975 }
2443} 2976}
2444 2977
2978static void
2979embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2980{
2981 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2982
2983 ev_embed_stop (EV_A_ w);
2984
2985 {
2986 struct ev_loop *loop = w->other;
2987
2988 ev_loop_fork (EV_A);
2989 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2990 }
2991
2992 ev_embed_start (EV_A_ w);
2993}
2994
2445#if 0 2995#if 0
2446static void 2996static void
2447embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2997embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2448{ 2998{
2449 ev_idle_stop (EV_A_ idle); 2999 ev_idle_stop (EV_A_ idle);
2456 if (expect_false (ev_is_active (w))) 3006 if (expect_false (ev_is_active (w)))
2457 return; 3007 return;
2458 3008
2459 { 3009 {
2460 struct ev_loop *loop = w->other; 3010 struct ev_loop *loop = w->other;
2461 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3011 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2462 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3012 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2463 } 3013 }
3014
3015 EV_FREQUENT_CHECK;
2464 3016
2465 ev_set_priority (&w->io, ev_priority (w)); 3017 ev_set_priority (&w->io, ev_priority (w));
2466 ev_io_start (EV_A_ &w->io); 3018 ev_io_start (EV_A_ &w->io);
2467 3019
2468 ev_prepare_init (&w->prepare, embed_prepare_cb); 3020 ev_prepare_init (&w->prepare, embed_prepare_cb);
2469 ev_set_priority (&w->prepare, EV_MINPRI); 3021 ev_set_priority (&w->prepare, EV_MINPRI);
2470 ev_prepare_start (EV_A_ &w->prepare); 3022 ev_prepare_start (EV_A_ &w->prepare);
2471 3023
3024 ev_fork_init (&w->fork, embed_fork_cb);
3025 ev_fork_start (EV_A_ &w->fork);
3026
2472 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3027 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2473 3028
2474 ev_start (EV_A_ (W)w, 1); 3029 ev_start (EV_A_ (W)w, 1);
3030
3031 EV_FREQUENT_CHECK;
2475} 3032}
2476 3033
2477void 3034void
2478ev_embed_stop (EV_P_ ev_embed *w) 3035ev_embed_stop (EV_P_ ev_embed *w)
2479{ 3036{
2480 clear_pending (EV_A_ (W)w); 3037 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 3038 if (expect_false (!ev_is_active (w)))
2482 return; 3039 return;
2483 3040
3041 EV_FREQUENT_CHECK;
3042
2484 ev_io_stop (EV_A_ &w->io); 3043 ev_io_stop (EV_A_ &w->io);
2485 ev_prepare_stop (EV_A_ &w->prepare); 3044 ev_prepare_stop (EV_A_ &w->prepare);
3045 ev_fork_stop (EV_A_ &w->fork);
2486 3046
2487 ev_stop (EV_A_ (W)w); 3047 EV_FREQUENT_CHECK;
2488} 3048}
2489#endif 3049#endif
2490 3050
2491#if EV_FORK_ENABLE 3051#if EV_FORK_ENABLE
2492void 3052void
2493ev_fork_start (EV_P_ ev_fork *w) 3053ev_fork_start (EV_P_ ev_fork *w)
2494{ 3054{
2495 if (expect_false (ev_is_active (w))) 3055 if (expect_false (ev_is_active (w)))
2496 return; 3056 return;
3057
3058 EV_FREQUENT_CHECK;
2497 3059
2498 ev_start (EV_A_ (W)w, ++forkcnt); 3060 ev_start (EV_A_ (W)w, ++forkcnt);
2499 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3061 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2500 forks [forkcnt - 1] = w; 3062 forks [forkcnt - 1] = w;
3063
3064 EV_FREQUENT_CHECK;
2501} 3065}
2502 3066
2503void 3067void
2504ev_fork_stop (EV_P_ ev_fork *w) 3068ev_fork_stop (EV_P_ ev_fork *w)
2505{ 3069{
2506 clear_pending (EV_A_ (W)w); 3070 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 3071 if (expect_false (!ev_is_active (w)))
2508 return; 3072 return;
2509 3073
3074 EV_FREQUENT_CHECK;
3075
2510 { 3076 {
2511 int active = ((W)w)->active; 3077 int active = ev_active (w);
3078
2512 forks [active - 1] = forks [--forkcnt]; 3079 forks [active - 1] = forks [--forkcnt];
2513 ((W)forks [active - 1])->active = active; 3080 ev_active (forks [active - 1]) = active;
2514 } 3081 }
2515 3082
2516 ev_stop (EV_A_ (W)w); 3083 ev_stop (EV_A_ (W)w);
3084
3085 EV_FREQUENT_CHECK;
2517} 3086}
2518#endif 3087#endif
2519 3088
2520#if EV_ASYNC_ENABLE 3089#if EV_ASYNC_ENABLE
2521void 3090void
2523{ 3092{
2524 if (expect_false (ev_is_active (w))) 3093 if (expect_false (ev_is_active (w)))
2525 return; 3094 return;
2526 3095
2527 evpipe_init (EV_A); 3096 evpipe_init (EV_A);
3097
3098 EV_FREQUENT_CHECK;
2528 3099
2529 ev_start (EV_A_ (W)w, ++asynccnt); 3100 ev_start (EV_A_ (W)w, ++asynccnt);
2530 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3101 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2531 asyncs [asynccnt - 1] = w; 3102 asyncs [asynccnt - 1] = w;
3103
3104 EV_FREQUENT_CHECK;
2532} 3105}
2533 3106
2534void 3107void
2535ev_async_stop (EV_P_ ev_async *w) 3108ev_async_stop (EV_P_ ev_async *w)
2536{ 3109{
2537 clear_pending (EV_A_ (W)w); 3110 clear_pending (EV_A_ (W)w);
2538 if (expect_false (!ev_is_active (w))) 3111 if (expect_false (!ev_is_active (w)))
2539 return; 3112 return;
2540 3113
3114 EV_FREQUENT_CHECK;
3115
2541 { 3116 {
2542 int active = ((W)w)->active; 3117 int active = ev_active (w);
3118
2543 asyncs [active - 1] = asyncs [--asynccnt]; 3119 asyncs [active - 1] = asyncs [--asynccnt];
2544 ((W)asyncs [active - 1])->active = active; 3120 ev_active (asyncs [active - 1]) = active;
2545 } 3121 }
2546 3122
2547 ev_stop (EV_A_ (W)w); 3123 ev_stop (EV_A_ (W)w);
3124
3125 EV_FREQUENT_CHECK;
2548} 3126}
2549 3127
2550void 3128void
2551ev_async_send (EV_P_ ev_async *w) 3129ev_async_send (EV_P_ ev_async *w)
2552{ 3130{
2569once_cb (EV_P_ struct ev_once *once, int revents) 3147once_cb (EV_P_ struct ev_once *once, int revents)
2570{ 3148{
2571 void (*cb)(int revents, void *arg) = once->cb; 3149 void (*cb)(int revents, void *arg) = once->cb;
2572 void *arg = once->arg; 3150 void *arg = once->arg;
2573 3151
2574 ev_io_stop (EV_A_ &once->io); 3152 ev_io_stop (EV_A_ &once->io);
2575 ev_timer_stop (EV_A_ &once->to); 3153 ev_timer_stop (EV_A_ &once->to);
2576 ev_free (once); 3154 ev_free (once);
2577 3155
2578 cb (revents, arg); 3156 cb (revents, arg);
2579} 3157}
2580 3158
2581static void 3159static void
2582once_cb_io (EV_P_ ev_io *w, int revents) 3160once_cb_io (EV_P_ ev_io *w, int revents)
2583{ 3161{
2584 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3162 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3163
3164 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2585} 3165}
2586 3166
2587static void 3167static void
2588once_cb_to (EV_P_ ev_timer *w, int revents) 3168once_cb_to (EV_P_ ev_timer *w, int revents)
2589{ 3169{
2590 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3170 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3171
3172 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2591} 3173}
2592 3174
2593void 3175void
2594ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3176ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2595{ 3177{
2617 ev_timer_set (&once->to, timeout, 0.); 3199 ev_timer_set (&once->to, timeout, 0.);
2618 ev_timer_start (EV_A_ &once->to); 3200 ev_timer_start (EV_A_ &once->to);
2619 } 3201 }
2620} 3202}
2621 3203
3204/*****************************************************************************/
3205
3206#if 0
3207void
3208ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3209{
3210 int i, j;
3211 ev_watcher_list *wl, *wn;
3212
3213 if (types & (EV_IO | EV_EMBED))
3214 for (i = 0; i < anfdmax; ++i)
3215 for (wl = anfds [i].head; wl; )
3216 {
3217 wn = wl->next;
3218
3219#if EV_EMBED_ENABLE
3220 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3221 {
3222 if (types & EV_EMBED)
3223 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3224 }
3225 else
3226#endif
3227#if EV_USE_INOTIFY
3228 if (ev_cb ((ev_io *)wl) == infy_cb)
3229 ;
3230 else
3231#endif
3232 if ((ev_io *)wl != &pipeev)
3233 if (types & EV_IO)
3234 cb (EV_A_ EV_IO, wl);
3235
3236 wl = wn;
3237 }
3238
3239 if (types & (EV_TIMER | EV_STAT))
3240 for (i = timercnt + HEAP0; i-- > HEAP0; )
3241#if EV_STAT_ENABLE
3242 /*TODO: timer is not always active*/
3243 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3244 {
3245 if (types & EV_STAT)
3246 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3247 }
3248 else
3249#endif
3250 if (types & EV_TIMER)
3251 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3252
3253#if EV_PERIODIC_ENABLE
3254 if (types & EV_PERIODIC)
3255 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3256 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3257#endif
3258
3259#if EV_IDLE_ENABLE
3260 if (types & EV_IDLE)
3261 for (j = NUMPRI; i--; )
3262 for (i = idlecnt [j]; i--; )
3263 cb (EV_A_ EV_IDLE, idles [j][i]);
3264#endif
3265
3266#if EV_FORK_ENABLE
3267 if (types & EV_FORK)
3268 for (i = forkcnt; i--; )
3269 if (ev_cb (forks [i]) != embed_fork_cb)
3270 cb (EV_A_ EV_FORK, forks [i]);
3271#endif
3272
3273#if EV_ASYNC_ENABLE
3274 if (types & EV_ASYNC)
3275 for (i = asynccnt; i--; )
3276 cb (EV_A_ EV_ASYNC, asyncs [i]);
3277#endif
3278
3279 if (types & EV_PREPARE)
3280 for (i = preparecnt; i--; )
3281#if EV_EMBED_ENABLE
3282 if (ev_cb (prepares [i]) != embed_prepare_cb)
3283#endif
3284 cb (EV_A_ EV_PREPARE, prepares [i]);
3285
3286 if (types & EV_CHECK)
3287 for (i = checkcnt; i--; )
3288 cb (EV_A_ EV_CHECK, checks [i]);
3289
3290 if (types & EV_SIGNAL)
3291 for (i = 0; i < signalmax; ++i)
3292 for (wl = signals [i].head; wl; )
3293 {
3294 wn = wl->next;
3295 cb (EV_A_ EV_SIGNAL, wl);
3296 wl = wn;
3297 }
3298
3299 if (types & EV_CHILD)
3300 for (i = EV_PID_HASHSIZE; i--; )
3301 for (wl = childs [i]; wl; )
3302 {
3303 wn = wl->next;
3304 cb (EV_A_ EV_CHILD, wl);
3305 wl = wn;
3306 }
3307/* EV_STAT 0x00001000 /* stat data changed */
3308/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3309}
3310#endif
3311
2622#if EV_MULTIPLICITY 3312#if EV_MULTIPLICITY
2623 #include "ev_wrap.h" 3313 #include "ev_wrap.h"
2624#endif 3314#endif
2625 3315
2626#ifdef __cplusplus 3316#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines