ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.223 by root, Sun Apr 6 14:34:50 2008 UTC vs.
Revision 1.259 by root, Mon Sep 8 13:14:23 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 243# define EV_USE_EVENTFD 1
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 265#endif
239 266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
279} 306}
280# endif 307# endif
281#endif 308#endif
282 309
283/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
284 317
285/* 318/*
286 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
325 358
326typedef ev_watcher *W; 359typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
329 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
330#if EV_USE_MONOTONIC 366#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 368/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 370#endif
360 perror (msg); 396 perror (msg);
361 abort (); 397 abort ();
362 } 398 }
363} 399}
364 400
401static void *
402ev_realloc_emul (void *ptr, long size)
403{
404 /* some systems, notably openbsd and darwin, fail to properly
405 * implement realloc (x, 0) (as required by both ansi c-98 and
406 * the single unix specification, so work around them here.
407 */
408
409 if (size)
410 return realloc (ptr, size);
411
412 free (ptr);
413 return 0;
414}
415
365static void *(*alloc)(void *ptr, long size); 416static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
366 417
367void 418void
368ev_set_allocator (void *(*cb)(void *ptr, long size)) 419ev_set_allocator (void *(*cb)(void *ptr, long size))
369{ 420{
370 alloc = cb; 421 alloc = cb;
371} 422}
372 423
373inline_speed void * 424inline_speed void *
374ev_realloc (void *ptr, long size) 425ev_realloc (void *ptr, long size)
375{ 426{
376 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 427 ptr = alloc (ptr, size);
377 428
378 if (!ptr && size) 429 if (!ptr && size)
379 { 430 {
380 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 431 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
381 abort (); 432 abort ();
404 W w; 455 W w;
405 int events; 456 int events;
406} ANPENDING; 457} ANPENDING;
407 458
408#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
409typedef struct 461typedef struct
410{ 462{
411 WL head; 463 WL head;
412} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
413#endif 483#endif
414 484
415#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
416 486
417 struct ev_loop 487 struct ev_loop
495 struct timeval tv; 565 struct timeval tv;
496 566
497 tv.tv_sec = (time_t)delay; 567 tv.tv_sec = (time_t)delay;
498 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 568 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
499 569
570 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
571 /* somehting nto guaranteed by newer posix versions, but guaranteed */
572 /* by older ones */
500 select (0, 0, 0, 0, &tv); 573 select (0, 0, 0, 0, &tv);
501#endif 574#endif
502 } 575 }
503} 576}
504 577
505/*****************************************************************************/ 578/*****************************************************************************/
579
580#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
506 581
507int inline_size 582int inline_size
508array_nextsize (int elem, int cur, int cnt) 583array_nextsize (int elem, int cur, int cnt)
509{ 584{
510 int ncur = cur + 1; 585 int ncur = cur + 1;
511 586
512 do 587 do
513 ncur <<= 1; 588 ncur <<= 1;
514 while (cnt > ncur); 589 while (cnt > ncur);
515 590
516 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 591 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
517 if (elem * ncur > 4096) 592 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
518 { 593 {
519 ncur *= elem; 594 ncur *= elem;
520 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 595 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
521 ncur = ncur - sizeof (void *) * 4; 596 ncur = ncur - sizeof (void *) * 4;
522 ncur /= elem; 597 ncur /= elem;
523 } 598 }
524 599
525 return ncur; 600 return ncur;
636 events |= (unsigned char)w->events; 711 events |= (unsigned char)w->events;
637 712
638#if EV_SELECT_IS_WINSOCKET 713#if EV_SELECT_IS_WINSOCKET
639 if (events) 714 if (events)
640 { 715 {
641 unsigned long argp; 716 unsigned long arg;
642 #ifdef EV_FD_TO_WIN32_HANDLE 717 #ifdef EV_FD_TO_WIN32_HANDLE
643 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 718 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
644 #else 719 #else
645 anfd->handle = _get_osfhandle (fd); 720 anfd->handle = _get_osfhandle (fd);
646 #endif 721 #endif
647 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 722 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
648 } 723 }
649#endif 724#endif
650 725
651 { 726 {
652 unsigned char o_events = anfd->events; 727 unsigned char o_events = anfd->events;
705{ 780{
706 int fd; 781 int fd;
707 782
708 for (fd = 0; fd < anfdmax; ++fd) 783 for (fd = 0; fd < anfdmax; ++fd)
709 if (anfds [fd].events) 784 if (anfds [fd].events)
710 if (!fd_valid (fd) == -1 && errno == EBADF) 785 if (!fd_valid (fd) && errno == EBADF)
711 fd_kill (EV_A_ fd); 786 fd_kill (EV_A_ fd);
712} 787}
713 788
714/* called on ENOMEM in select/poll to kill some fds and retry */ 789/* called on ENOMEM in select/poll to kill some fds and retry */
715static void noinline 790static void noinline
739 } 814 }
740} 815}
741 816
742/*****************************************************************************/ 817/*****************************************************************************/
743 818
819/*
820 * the heap functions want a real array index. array index 0 uis guaranteed to not
821 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
822 * the branching factor of the d-tree.
823 */
824
825/*
826 * at the moment we allow libev the luxury of two heaps,
827 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
828 * which is more cache-efficient.
829 * the difference is about 5% with 50000+ watchers.
830 */
831#if EV_USE_4HEAP
832
833#define DHEAP 4
834#define HEAP0 (DHEAP - 1) /* index of first element in heap */
835#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
836#define UPHEAP_DONE(p,k) ((p) == (k))
837
838/* away from the root */
744void inline_speed 839void inline_speed
745upheap (WT *heap, int k) 840downheap (ANHE *heap, int N, int k)
746{ 841{
747 WT w = heap [k]; 842 ANHE he = heap [k];
843 ANHE *E = heap + N + HEAP0;
748 844
749 while (k) 845 for (;;)
750 { 846 {
751 int p = (k - 1) >> 1; 847 ev_tstamp minat;
848 ANHE *minpos;
849 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
752 850
753 if (heap [p]->at <= w->at) 851 /* find minimum child */
852 if (expect_true (pos + DHEAP - 1 < E))
853 {
854 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else if (pos < E)
860 {
861 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
862 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
863 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
864 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
865 }
866 else
754 break; 867 break;
755 868
869 if (ANHE_at (he) <= minat)
870 break;
871
872 heap [k] = *minpos;
873 ev_active (ANHE_w (*minpos)) = k;
874
875 k = minpos - heap;
876 }
877
878 heap [k] = he;
879 ev_active (ANHE_w (he)) = k;
880}
881
882#else /* 4HEAP */
883
884#define HEAP0 1
885#define HPARENT(k) ((k) >> 1)
886#define UPHEAP_DONE(p,k) (!(p))
887
888/* away from the root */
889void inline_speed
890downheap (ANHE *heap, int N, int k)
891{
892 ANHE he = heap [k];
893
894 for (;;)
895 {
896 int c = k << 1;
897
898 if (c > N + HEAP0 - 1)
899 break;
900
901 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
902 ? 1 : 0;
903
904 if (ANHE_at (he) <= ANHE_at (heap [c]))
905 break;
906
907 heap [k] = heap [c];
908 ev_active (ANHE_w (heap [k])) = k;
909
910 k = c;
911 }
912
913 heap [k] = he;
914 ev_active (ANHE_w (he)) = k;
915}
916#endif
917
918/* towards the root */
919void inline_speed
920upheap (ANHE *heap, int k)
921{
922 ANHE he = heap [k];
923
924 for (;;)
925 {
926 int p = HPARENT (k);
927
928 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
929 break;
930
756 heap [k] = heap [p]; 931 heap [k] = heap [p];
757 ((W)heap [k])->active = k + 1; 932 ev_active (ANHE_w (heap [k])) = k;
758 k = p; 933 k = p;
759 } 934 }
760 935
761 heap [k] = w; 936 heap [k] = he;
762 ((W)heap [k])->active = k + 1; 937 ev_active (ANHE_w (he)) = k;
763}
764
765void inline_speed
766downheap (WT *heap, int N, int k)
767{
768 WT w = heap [k];
769
770 for (;;)
771 {
772 int c = (k << 1) + 1;
773
774 if (c >= N)
775 break;
776
777 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
778 ? 1 : 0;
779
780 if (w->at <= heap [c]->at)
781 break;
782
783 heap [k] = heap [c];
784 ((W)heap [k])->active = k + 1;
785
786 k = c;
787 }
788
789 heap [k] = w;
790 ((W)heap [k])->active = k + 1;
791} 938}
792 939
793void inline_size 940void inline_size
794adjustheap (WT *heap, int N, int k) 941adjustheap (ANHE *heap, int N, int k)
795{ 942{
943 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
796 upheap (heap, k); 944 upheap (heap, k);
945 else
797 downheap (heap, N, k); 946 downheap (heap, N, k);
947}
948
949/* rebuild the heap: this function is used only once and executed rarely */
950void inline_size
951reheap (ANHE *heap, int N)
952{
953 int i;
954
955 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
956 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
957 for (i = 0; i < N; ++i)
958 upheap (heap, i + HEAP0);
798} 959}
799 960
800/*****************************************************************************/ 961/*****************************************************************************/
801 962
802typedef struct 963typedef struct
826 987
827void inline_speed 988void inline_speed
828fd_intern (int fd) 989fd_intern (int fd)
829{ 990{
830#ifdef _WIN32 991#ifdef _WIN32
831 int arg = 1; 992 unsigned long arg = 1;
832 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 993 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
833#else 994#else
834 fcntl (fd, F_SETFD, FD_CLOEXEC); 995 fcntl (fd, F_SETFD, FD_CLOEXEC);
835 fcntl (fd, F_SETFL, O_NONBLOCK); 996 fcntl (fd, F_SETFL, O_NONBLOCK);
836#endif 997#endif
891pipecb (EV_P_ ev_io *iow, int revents) 1052pipecb (EV_P_ ev_io *iow, int revents)
892{ 1053{
893#if EV_USE_EVENTFD 1054#if EV_USE_EVENTFD
894 if (evfd >= 0) 1055 if (evfd >= 0)
895 { 1056 {
896 uint64_t counter = 1; 1057 uint64_t counter;
897 read (evfd, &counter, sizeof (uint64_t)); 1058 read (evfd, &counter, sizeof (uint64_t));
898 } 1059 }
899 else 1060 else
900#endif 1061#endif
901 { 1062 {
1170 if (!(flags & EVFLAG_NOENV) 1331 if (!(flags & EVFLAG_NOENV)
1171 && !enable_secure () 1332 && !enable_secure ()
1172 && getenv ("LIBEV_FLAGS")) 1333 && getenv ("LIBEV_FLAGS"))
1173 flags = atoi (getenv ("LIBEV_FLAGS")); 1334 flags = atoi (getenv ("LIBEV_FLAGS"));
1174 1335
1175 if (!(flags & 0x0000ffffUL)) 1336 if (!(flags & 0x0000ffffU))
1176 flags |= ev_recommended_backends (); 1337 flags |= ev_recommended_backends ();
1177 1338
1178#if EV_USE_PORT 1339#if EV_USE_PORT
1179 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1340 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1180#endif 1341#endif
1268#endif 1429#endif
1269 1430
1270 backend = 0; 1431 backend = 0;
1271} 1432}
1272 1433
1434#if EV_USE_INOTIFY
1273void inline_size infy_fork (EV_P); 1435void inline_size infy_fork (EV_P);
1436#endif
1274 1437
1275void inline_size 1438void inline_size
1276loop_fork (EV_P) 1439loop_fork (EV_P)
1277{ 1440{
1278#if EV_USE_PORT 1441#if EV_USE_PORT
1318 1481
1319 postfork = 0; 1482 postfork = 0;
1320} 1483}
1321 1484
1322#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1486
1323struct ev_loop * 1487struct ev_loop *
1324ev_loop_new (unsigned int flags) 1488ev_loop_new (unsigned int flags)
1325{ 1489{
1326 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1490 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1327 1491
1346ev_loop_fork (EV_P) 1510ev_loop_fork (EV_P)
1347{ 1511{
1348 postfork = 1; /* must be in line with ev_default_fork */ 1512 postfork = 1; /* must be in line with ev_default_fork */
1349} 1513}
1350 1514
1515#if EV_VERIFY
1516static void noinline
1517verify_watcher (EV_P_ W w)
1518{
1519 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1520
1521 if (w->pending)
1522 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1523}
1524
1525static void noinline
1526verify_heap (EV_P_ ANHE *heap, int N)
1527{
1528 int i;
1529
1530 for (i = HEAP0; i < N + HEAP0; ++i)
1531 {
1532 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1533 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1534 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1535
1536 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1537 }
1538}
1539
1540static void noinline
1541array_verify (EV_P_ W *ws, int cnt)
1542{
1543 while (cnt--)
1544 {
1545 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1546 verify_watcher (EV_A_ ws [cnt]);
1547 }
1548}
1549#endif
1550
1551void
1552ev_loop_verify (EV_P)
1553{
1554#if EV_VERIFY
1555 int i;
1556 WL w;
1557
1558 assert (activecnt >= -1);
1559
1560 assert (fdchangemax >= fdchangecnt);
1561 for (i = 0; i < fdchangecnt; ++i)
1562 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1563
1564 assert (anfdmax >= 0);
1565 for (i = 0; i < anfdmax; ++i)
1566 for (w = anfds [i].head; w; w = w->next)
1567 {
1568 verify_watcher (EV_A_ (W)w);
1569 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1570 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1571 }
1572
1573 assert (timermax >= timercnt);
1574 verify_heap (EV_A_ timers, timercnt);
1575
1576#if EV_PERIODIC_ENABLE
1577 assert (periodicmax >= periodiccnt);
1578 verify_heap (EV_A_ periodics, periodiccnt);
1579#endif
1580
1581 for (i = NUMPRI; i--; )
1582 {
1583 assert (pendingmax [i] >= pendingcnt [i]);
1584#if EV_IDLE_ENABLE
1585 assert (idleall >= 0);
1586 assert (idlemax [i] >= idlecnt [i]);
1587 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1588#endif
1589 }
1590
1591#if EV_FORK_ENABLE
1592 assert (forkmax >= forkcnt);
1593 array_verify (EV_A_ (W *)forks, forkcnt);
1594#endif
1595
1596#if EV_ASYNC_ENABLE
1597 assert (asyncmax >= asynccnt);
1598 array_verify (EV_A_ (W *)asyncs, asynccnt);
1599#endif
1600
1601 assert (preparemax >= preparecnt);
1602 array_verify (EV_A_ (W *)prepares, preparecnt);
1603
1604 assert (checkmax >= checkcnt);
1605 array_verify (EV_A_ (W *)checks, checkcnt);
1606
1607# if 0
1608 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1609 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1351#endif 1610# endif
1611#endif
1612}
1613
1614#endif /* multiplicity */
1352 1615
1353#if EV_MULTIPLICITY 1616#if EV_MULTIPLICITY
1354struct ev_loop * 1617struct ev_loop *
1355ev_default_loop_init (unsigned int flags) 1618ev_default_loop_init (unsigned int flags)
1356#else 1619#else
1432 { 1695 {
1433 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1696 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1434 1697
1435 p->w->pending = 0; 1698 p->w->pending = 0;
1436 EV_CB_INVOKE (p->w, p->events); 1699 EV_CB_INVOKE (p->w, p->events);
1700 EV_FREQUENT_CHECK;
1437 } 1701 }
1438 } 1702 }
1439} 1703}
1440
1441void inline_size
1442timers_reify (EV_P)
1443{
1444 while (timercnt && ((WT)timers [0])->at <= mn_now)
1445 {
1446 ev_timer *w = (ev_timer *)timers [0];
1447
1448 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1449
1450 /* first reschedule or stop timer */
1451 if (w->repeat)
1452 {
1453 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1454
1455 ((WT)w)->at += w->repeat;
1456 if (((WT)w)->at < mn_now)
1457 ((WT)w)->at = mn_now;
1458
1459 downheap (timers, timercnt, 0);
1460 }
1461 else
1462 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1463
1464 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1465 }
1466}
1467
1468#if EV_PERIODIC_ENABLE
1469void inline_size
1470periodics_reify (EV_P)
1471{
1472 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1473 {
1474 ev_periodic *w = (ev_periodic *)periodics [0];
1475
1476 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1477
1478 /* first reschedule or stop timer */
1479 if (w->reschedule_cb)
1480 {
1481 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1482 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1483 downheap (periodics, periodiccnt, 0);
1484 }
1485 else if (w->interval)
1486 {
1487 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1488 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1489 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1490 downheap (periodics, periodiccnt, 0);
1491 }
1492 else
1493 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1494
1495 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1496 }
1497}
1498
1499static void noinline
1500periodics_reschedule (EV_P)
1501{
1502 int i;
1503
1504 /* adjust periodics after time jump */
1505 for (i = 0; i < periodiccnt; ++i)
1506 {
1507 ev_periodic *w = (ev_periodic *)periodics [i];
1508
1509 if (w->reschedule_cb)
1510 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1511 else if (w->interval)
1512 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1513 }
1514
1515 /* now rebuild the heap */
1516 for (i = periodiccnt >> 1; i--; )
1517 downheap (periodics, periodiccnt, i);
1518}
1519#endif
1520 1704
1521#if EV_IDLE_ENABLE 1705#if EV_IDLE_ENABLE
1522void inline_size 1706void inline_size
1523idle_reify (EV_P) 1707idle_reify (EV_P)
1524{ 1708{
1536 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1720 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1537 break; 1721 break;
1538 } 1722 }
1539 } 1723 }
1540 } 1724 }
1725}
1726#endif
1727
1728void inline_size
1729timers_reify (EV_P)
1730{
1731 EV_FREQUENT_CHECK;
1732
1733 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1734 {
1735 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1736
1737 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1738
1739 /* first reschedule or stop timer */
1740 if (w->repeat)
1741 {
1742 ev_at (w) += w->repeat;
1743 if (ev_at (w) < mn_now)
1744 ev_at (w) = mn_now;
1745
1746 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1747
1748 ANHE_at_cache (timers [HEAP0]);
1749 downheap (timers, timercnt, HEAP0);
1750 }
1751 else
1752 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1753
1754 EV_FREQUENT_CHECK;
1755 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1756 }
1757}
1758
1759#if EV_PERIODIC_ENABLE
1760void inline_size
1761periodics_reify (EV_P)
1762{
1763 EV_FREQUENT_CHECK;
1764
1765 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1766 {
1767 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1768
1769 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1770
1771 /* first reschedule or stop timer */
1772 if (w->reschedule_cb)
1773 {
1774 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1775
1776 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1777
1778 ANHE_at_cache (periodics [HEAP0]);
1779 downheap (periodics, periodiccnt, HEAP0);
1780 }
1781 else if (w->interval)
1782 {
1783 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1784 /* if next trigger time is not sufficiently in the future, put it there */
1785 /* this might happen because of floating point inexactness */
1786 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1787 {
1788 ev_at (w) += w->interval;
1789
1790 /* if interval is unreasonably low we might still have a time in the past */
1791 /* so correct this. this will make the periodic very inexact, but the user */
1792 /* has effectively asked to get triggered more often than possible */
1793 if (ev_at (w) < ev_rt_now)
1794 ev_at (w) = ev_rt_now;
1795 }
1796
1797 ANHE_at_cache (periodics [HEAP0]);
1798 downheap (periodics, periodiccnt, HEAP0);
1799 }
1800 else
1801 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1802
1803 EV_FREQUENT_CHECK;
1804 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1805 }
1806}
1807
1808static void noinline
1809periodics_reschedule (EV_P)
1810{
1811 int i;
1812
1813 /* adjust periodics after time jump */
1814 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1815 {
1816 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1817
1818 if (w->reschedule_cb)
1819 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1820 else if (w->interval)
1821 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1822
1823 ANHE_at_cache (periodics [i]);
1824 }
1825
1826 reheap (periodics, periodiccnt);
1541} 1827}
1542#endif 1828#endif
1543 1829
1544void inline_speed 1830void inline_speed
1545time_update (EV_P_ ev_tstamp max_block) 1831time_update (EV_P_ ev_tstamp max_block)
1574 */ 1860 */
1575 for (i = 4; --i; ) 1861 for (i = 4; --i; )
1576 { 1862 {
1577 rtmn_diff = ev_rt_now - mn_now; 1863 rtmn_diff = ev_rt_now - mn_now;
1578 1864
1579 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1865 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1580 return; /* all is well */ 1866 return; /* all is well */
1581 1867
1582 ev_rt_now = ev_time (); 1868 ev_rt_now = ev_time ();
1583 mn_now = get_clock (); 1869 mn_now = get_clock ();
1584 now_floor = mn_now; 1870 now_floor = mn_now;
1600#if EV_PERIODIC_ENABLE 1886#if EV_PERIODIC_ENABLE
1601 periodics_reschedule (EV_A); 1887 periodics_reschedule (EV_A);
1602#endif 1888#endif
1603 /* adjust timers. this is easy, as the offset is the same for all of them */ 1889 /* adjust timers. this is easy, as the offset is the same for all of them */
1604 for (i = 0; i < timercnt; ++i) 1890 for (i = 0; i < timercnt; ++i)
1891 {
1892 ANHE *he = timers + i + HEAP0;
1605 ((WT)timers [i])->at += ev_rt_now - mn_now; 1893 ANHE_w (*he)->at += ev_rt_now - mn_now;
1894 ANHE_at_cache (*he);
1895 }
1606 } 1896 }
1607 1897
1608 mn_now = ev_rt_now; 1898 mn_now = ev_rt_now;
1609 } 1899 }
1610} 1900}
1630 1920
1631 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1921 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1632 1922
1633 do 1923 do
1634 { 1924 {
1925#if EV_VERIFY >= 2
1926 ev_loop_verify (EV_A);
1927#endif
1928
1635#ifndef _WIN32 1929#ifndef _WIN32
1636 if (expect_false (curpid)) /* penalise the forking check even more */ 1930 if (expect_false (curpid)) /* penalise the forking check even more */
1637 if (expect_false (getpid () != curpid)) 1931 if (expect_false (getpid () != curpid))
1638 { 1932 {
1639 curpid = getpid (); 1933 curpid = getpid ();
1680 1974
1681 waittime = MAX_BLOCKTIME; 1975 waittime = MAX_BLOCKTIME;
1682 1976
1683 if (timercnt) 1977 if (timercnt)
1684 { 1978 {
1685 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1979 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1686 if (waittime > to) waittime = to; 1980 if (waittime > to) waittime = to;
1687 } 1981 }
1688 1982
1689#if EV_PERIODIC_ENABLE 1983#if EV_PERIODIC_ENABLE
1690 if (periodiccnt) 1984 if (periodiccnt)
1691 { 1985 {
1692 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1986 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1693 if (waittime > to) waittime = to; 1987 if (waittime > to) waittime = to;
1694 } 1988 }
1695#endif 1989#endif
1696 1990
1697 if (expect_false (waittime < timeout_blocktime)) 1991 if (expect_false (waittime < timeout_blocktime))
1834 if (expect_false (ev_is_active (w))) 2128 if (expect_false (ev_is_active (w)))
1835 return; 2129 return;
1836 2130
1837 assert (("ev_io_start called with negative fd", fd >= 0)); 2131 assert (("ev_io_start called with negative fd", fd >= 0));
1838 2132
2133 EV_FREQUENT_CHECK;
2134
1839 ev_start (EV_A_ (W)w, 1); 2135 ev_start (EV_A_ (W)w, 1);
1840 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2136 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1841 wlist_add (&anfds[fd].head, (WL)w); 2137 wlist_add (&anfds[fd].head, (WL)w);
1842 2138
1843 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2139 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1844 w->events &= ~EV_IOFDSET; 2140 w->events &= ~EV_IOFDSET;
2141
2142 EV_FREQUENT_CHECK;
1845} 2143}
1846 2144
1847void noinline 2145void noinline
1848ev_io_stop (EV_P_ ev_io *w) 2146ev_io_stop (EV_P_ ev_io *w)
1849{ 2147{
1850 clear_pending (EV_A_ (W)w); 2148 clear_pending (EV_A_ (W)w);
1851 if (expect_false (!ev_is_active (w))) 2149 if (expect_false (!ev_is_active (w)))
1852 return; 2150 return;
1853 2151
1854 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2152 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2153
2154 EV_FREQUENT_CHECK;
1855 2155
1856 wlist_del (&anfds[w->fd].head, (WL)w); 2156 wlist_del (&anfds[w->fd].head, (WL)w);
1857 ev_stop (EV_A_ (W)w); 2157 ev_stop (EV_A_ (W)w);
1858 2158
1859 fd_change (EV_A_ w->fd, 1); 2159 fd_change (EV_A_ w->fd, 1);
2160
2161 EV_FREQUENT_CHECK;
1860} 2162}
1861 2163
1862void noinline 2164void noinline
1863ev_timer_start (EV_P_ ev_timer *w) 2165ev_timer_start (EV_P_ ev_timer *w)
1864{ 2166{
1865 if (expect_false (ev_is_active (w))) 2167 if (expect_false (ev_is_active (w)))
1866 return; 2168 return;
1867 2169
1868 ((WT)w)->at += mn_now; 2170 ev_at (w) += mn_now;
1869 2171
1870 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2172 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1871 2173
2174 EV_FREQUENT_CHECK;
2175
2176 ++timercnt;
1872 ev_start (EV_A_ (W)w, ++timercnt); 2177 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1873 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2178 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1874 timers [timercnt - 1] = (WT)w; 2179 ANHE_w (timers [ev_active (w)]) = (WT)w;
1875 upheap (timers, timercnt - 1); 2180 ANHE_at_cache (timers [ev_active (w)]);
2181 upheap (timers, ev_active (w));
1876 2182
2183 EV_FREQUENT_CHECK;
2184
1877 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2185 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1878} 2186}
1879 2187
1880void noinline 2188void noinline
1881ev_timer_stop (EV_P_ ev_timer *w) 2189ev_timer_stop (EV_P_ ev_timer *w)
1882{ 2190{
1883 clear_pending (EV_A_ (W)w); 2191 clear_pending (EV_A_ (W)w);
1884 if (expect_false (!ev_is_active (w))) 2192 if (expect_false (!ev_is_active (w)))
1885 return; 2193 return;
1886 2194
1887 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2195 EV_FREQUENT_CHECK;
1888 2196
1889 { 2197 {
1890 int active = ((W)w)->active; 2198 int active = ev_active (w);
1891 2199
2200 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2201
2202 --timercnt;
2203
1892 if (expect_true (--active < --timercnt)) 2204 if (expect_true (active < timercnt + HEAP0))
1893 { 2205 {
1894 timers [active] = timers [timercnt]; 2206 timers [active] = timers [timercnt + HEAP0];
1895 adjustheap (timers, timercnt, active); 2207 adjustheap (timers, timercnt, active);
1896 } 2208 }
1897 } 2209 }
1898 2210
1899 ((WT)w)->at -= mn_now; 2211 EV_FREQUENT_CHECK;
2212
2213 ev_at (w) -= mn_now;
1900 2214
1901 ev_stop (EV_A_ (W)w); 2215 ev_stop (EV_A_ (W)w);
1902} 2216}
1903 2217
1904void noinline 2218void noinline
1905ev_timer_again (EV_P_ ev_timer *w) 2219ev_timer_again (EV_P_ ev_timer *w)
1906{ 2220{
2221 EV_FREQUENT_CHECK;
2222
1907 if (ev_is_active (w)) 2223 if (ev_is_active (w))
1908 { 2224 {
1909 if (w->repeat) 2225 if (w->repeat)
1910 { 2226 {
1911 ((WT)w)->at = mn_now + w->repeat; 2227 ev_at (w) = mn_now + w->repeat;
2228 ANHE_at_cache (timers [ev_active (w)]);
1912 adjustheap (timers, timercnt, ((W)w)->active - 1); 2229 adjustheap (timers, timercnt, ev_active (w));
1913 } 2230 }
1914 else 2231 else
1915 ev_timer_stop (EV_A_ w); 2232 ev_timer_stop (EV_A_ w);
1916 } 2233 }
1917 else if (w->repeat) 2234 else if (w->repeat)
1918 { 2235 {
1919 w->at = w->repeat; 2236 ev_at (w) = w->repeat;
1920 ev_timer_start (EV_A_ w); 2237 ev_timer_start (EV_A_ w);
1921 } 2238 }
2239
2240 EV_FREQUENT_CHECK;
1922} 2241}
1923 2242
1924#if EV_PERIODIC_ENABLE 2243#if EV_PERIODIC_ENABLE
1925void noinline 2244void noinline
1926ev_periodic_start (EV_P_ ev_periodic *w) 2245ev_periodic_start (EV_P_ ev_periodic *w)
1927{ 2246{
1928 if (expect_false (ev_is_active (w))) 2247 if (expect_false (ev_is_active (w)))
1929 return; 2248 return;
1930 2249
1931 if (w->reschedule_cb) 2250 if (w->reschedule_cb)
1932 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2251 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1933 else if (w->interval) 2252 else if (w->interval)
1934 { 2253 {
1935 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2254 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1936 /* this formula differs from the one in periodic_reify because we do not always round up */ 2255 /* this formula differs from the one in periodic_reify because we do not always round up */
1937 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2256 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1938 } 2257 }
1939 else 2258 else
1940 ((WT)w)->at = w->offset; 2259 ev_at (w) = w->offset;
1941 2260
2261 EV_FREQUENT_CHECK;
2262
2263 ++periodiccnt;
1942 ev_start (EV_A_ (W)w, ++periodiccnt); 2264 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1943 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2265 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1944 periodics [periodiccnt - 1] = (WT)w; 2266 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1945 upheap (periodics, periodiccnt - 1); 2267 ANHE_at_cache (periodics [ev_active (w)]);
2268 upheap (periodics, ev_active (w));
1946 2269
2270 EV_FREQUENT_CHECK;
2271
1947 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2272 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1948} 2273}
1949 2274
1950void noinline 2275void noinline
1951ev_periodic_stop (EV_P_ ev_periodic *w) 2276ev_periodic_stop (EV_P_ ev_periodic *w)
1952{ 2277{
1953 clear_pending (EV_A_ (W)w); 2278 clear_pending (EV_A_ (W)w);
1954 if (expect_false (!ev_is_active (w))) 2279 if (expect_false (!ev_is_active (w)))
1955 return; 2280 return;
1956 2281
1957 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2282 EV_FREQUENT_CHECK;
1958 2283
1959 { 2284 {
1960 int active = ((W)w)->active; 2285 int active = ev_active (w);
1961 2286
2287 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2288
2289 --periodiccnt;
2290
1962 if (expect_true (--active < --periodiccnt)) 2291 if (expect_true (active < periodiccnt + HEAP0))
1963 { 2292 {
1964 periodics [active] = periodics [periodiccnt]; 2293 periodics [active] = periodics [periodiccnt + HEAP0];
1965 adjustheap (periodics, periodiccnt, active); 2294 adjustheap (periodics, periodiccnt, active);
1966 } 2295 }
1967 } 2296 }
1968 2297
2298 EV_FREQUENT_CHECK;
2299
1969 ev_stop (EV_A_ (W)w); 2300 ev_stop (EV_A_ (W)w);
1970} 2301}
1971 2302
1972void noinline 2303void noinline
1973ev_periodic_again (EV_P_ ev_periodic *w) 2304ev_periodic_again (EV_P_ ev_periodic *w)
1992 return; 2323 return;
1993 2324
1994 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1995 2326
1996 evpipe_init (EV_A); 2327 evpipe_init (EV_A);
2328
2329 EV_FREQUENT_CHECK;
1997 2330
1998 { 2331 {
1999#ifndef _WIN32 2332#ifndef _WIN32
2000 sigset_t full, prev; 2333 sigset_t full, prev;
2001 sigfillset (&full); 2334 sigfillset (&full);
2022 sigfillset (&sa.sa_mask); 2355 sigfillset (&sa.sa_mask);
2023 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2356 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2024 sigaction (w->signum, &sa, 0); 2357 sigaction (w->signum, &sa, 0);
2025#endif 2358#endif
2026 } 2359 }
2360
2361 EV_FREQUENT_CHECK;
2027} 2362}
2028 2363
2029void noinline 2364void noinline
2030ev_signal_stop (EV_P_ ev_signal *w) 2365ev_signal_stop (EV_P_ ev_signal *w)
2031{ 2366{
2032 clear_pending (EV_A_ (W)w); 2367 clear_pending (EV_A_ (W)w);
2033 if (expect_false (!ev_is_active (w))) 2368 if (expect_false (!ev_is_active (w)))
2034 return; 2369 return;
2035 2370
2371 EV_FREQUENT_CHECK;
2372
2036 wlist_del (&signals [w->signum - 1].head, (WL)w); 2373 wlist_del (&signals [w->signum - 1].head, (WL)w);
2037 ev_stop (EV_A_ (W)w); 2374 ev_stop (EV_A_ (W)w);
2038 2375
2039 if (!signals [w->signum - 1].head) 2376 if (!signals [w->signum - 1].head)
2040 signal (w->signum, SIG_DFL); 2377 signal (w->signum, SIG_DFL);
2378
2379 EV_FREQUENT_CHECK;
2041} 2380}
2042 2381
2043void 2382void
2044ev_child_start (EV_P_ ev_child *w) 2383ev_child_start (EV_P_ ev_child *w)
2045{ 2384{
2047 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2386 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2048#endif 2387#endif
2049 if (expect_false (ev_is_active (w))) 2388 if (expect_false (ev_is_active (w)))
2050 return; 2389 return;
2051 2390
2391 EV_FREQUENT_CHECK;
2392
2052 ev_start (EV_A_ (W)w, 1); 2393 ev_start (EV_A_ (W)w, 1);
2053 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2394 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2395
2396 EV_FREQUENT_CHECK;
2054} 2397}
2055 2398
2056void 2399void
2057ev_child_stop (EV_P_ ev_child *w) 2400ev_child_stop (EV_P_ ev_child *w)
2058{ 2401{
2059 clear_pending (EV_A_ (W)w); 2402 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2403 if (expect_false (!ev_is_active (w)))
2061 return; 2404 return;
2062 2405
2406 EV_FREQUENT_CHECK;
2407
2063 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2408 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2064 ev_stop (EV_A_ (W)w); 2409 ev_stop (EV_A_ (W)w);
2410
2411 EV_FREQUENT_CHECK;
2065} 2412}
2066 2413
2067#if EV_STAT_ENABLE 2414#if EV_STAT_ENABLE
2068 2415
2069# ifdef _WIN32 2416# ifdef _WIN32
2087 if (w->wd < 0) 2434 if (w->wd < 0)
2088 { 2435 {
2089 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2436 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2090 2437
2091 /* monitor some parent directory for speedup hints */ 2438 /* monitor some parent directory for speedup hints */
2439 /* note that exceeding the hardcoded limit is not a correctness issue, */
2440 /* but an efficiency issue only */
2092 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2441 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2093 { 2442 {
2094 char path [4096]; 2443 char path [4096];
2095 strcpy (path, w->path); 2444 strcpy (path, w->path);
2096 2445
2222 } 2571 }
2223 2572
2224 } 2573 }
2225} 2574}
2226 2575
2576#endif
2577
2578#ifdef _WIN32
2579# define EV_LSTAT(p,b) _stati64 (p, b)
2580#else
2581# define EV_LSTAT(p,b) lstat (p, b)
2227#endif 2582#endif
2228 2583
2229void 2584void
2230ev_stat_stat (EV_P_ ev_stat *w) 2585ev_stat_stat (EV_P_ ev_stat *w)
2231{ 2586{
2295 else 2650 else
2296#endif 2651#endif
2297 ev_timer_start (EV_A_ &w->timer); 2652 ev_timer_start (EV_A_ &w->timer);
2298 2653
2299 ev_start (EV_A_ (W)w, 1); 2654 ev_start (EV_A_ (W)w, 1);
2655
2656 EV_FREQUENT_CHECK;
2300} 2657}
2301 2658
2302void 2659void
2303ev_stat_stop (EV_P_ ev_stat *w) 2660ev_stat_stop (EV_P_ ev_stat *w)
2304{ 2661{
2305 clear_pending (EV_A_ (W)w); 2662 clear_pending (EV_A_ (W)w);
2306 if (expect_false (!ev_is_active (w))) 2663 if (expect_false (!ev_is_active (w)))
2307 return; 2664 return;
2308 2665
2666 EV_FREQUENT_CHECK;
2667
2309#if EV_USE_INOTIFY 2668#if EV_USE_INOTIFY
2310 infy_del (EV_A_ w); 2669 infy_del (EV_A_ w);
2311#endif 2670#endif
2312 ev_timer_stop (EV_A_ &w->timer); 2671 ev_timer_stop (EV_A_ &w->timer);
2313 2672
2314 ev_stop (EV_A_ (W)w); 2673 ev_stop (EV_A_ (W)w);
2674
2675 EV_FREQUENT_CHECK;
2315} 2676}
2316#endif 2677#endif
2317 2678
2318#if EV_IDLE_ENABLE 2679#if EV_IDLE_ENABLE
2319void 2680void
2321{ 2682{
2322 if (expect_false (ev_is_active (w))) 2683 if (expect_false (ev_is_active (w)))
2323 return; 2684 return;
2324 2685
2325 pri_adjust (EV_A_ (W)w); 2686 pri_adjust (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2326 2689
2327 { 2690 {
2328 int active = ++idlecnt [ABSPRI (w)]; 2691 int active = ++idlecnt [ABSPRI (w)];
2329 2692
2330 ++idleall; 2693 ++idleall;
2331 ev_start (EV_A_ (W)w, active); 2694 ev_start (EV_A_ (W)w, active);
2332 2695
2333 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2696 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2334 idles [ABSPRI (w)][active - 1] = w; 2697 idles [ABSPRI (w)][active - 1] = w;
2335 } 2698 }
2699
2700 EV_FREQUENT_CHECK;
2336} 2701}
2337 2702
2338void 2703void
2339ev_idle_stop (EV_P_ ev_idle *w) 2704ev_idle_stop (EV_P_ ev_idle *w)
2340{ 2705{
2341 clear_pending (EV_A_ (W)w); 2706 clear_pending (EV_A_ (W)w);
2342 if (expect_false (!ev_is_active (w))) 2707 if (expect_false (!ev_is_active (w)))
2343 return; 2708 return;
2344 2709
2710 EV_FREQUENT_CHECK;
2711
2345 { 2712 {
2346 int active = ((W)w)->active; 2713 int active = ev_active (w);
2347 2714
2348 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2715 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2349 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2716 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2350 2717
2351 ev_stop (EV_A_ (W)w); 2718 ev_stop (EV_A_ (W)w);
2352 --idleall; 2719 --idleall;
2353 } 2720 }
2721
2722 EV_FREQUENT_CHECK;
2354} 2723}
2355#endif 2724#endif
2356 2725
2357void 2726void
2358ev_prepare_start (EV_P_ ev_prepare *w) 2727ev_prepare_start (EV_P_ ev_prepare *w)
2359{ 2728{
2360 if (expect_false (ev_is_active (w))) 2729 if (expect_false (ev_is_active (w)))
2361 return; 2730 return;
2731
2732 EV_FREQUENT_CHECK;
2362 2733
2363 ev_start (EV_A_ (W)w, ++preparecnt); 2734 ev_start (EV_A_ (W)w, ++preparecnt);
2364 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2735 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2365 prepares [preparecnt - 1] = w; 2736 prepares [preparecnt - 1] = w;
2737
2738 EV_FREQUENT_CHECK;
2366} 2739}
2367 2740
2368void 2741void
2369ev_prepare_stop (EV_P_ ev_prepare *w) 2742ev_prepare_stop (EV_P_ ev_prepare *w)
2370{ 2743{
2371 clear_pending (EV_A_ (W)w); 2744 clear_pending (EV_A_ (W)w);
2372 if (expect_false (!ev_is_active (w))) 2745 if (expect_false (!ev_is_active (w)))
2373 return; 2746 return;
2374 2747
2748 EV_FREQUENT_CHECK;
2749
2375 { 2750 {
2376 int active = ((W)w)->active; 2751 int active = ev_active (w);
2752
2377 prepares [active - 1] = prepares [--preparecnt]; 2753 prepares [active - 1] = prepares [--preparecnt];
2378 ((W)prepares [active - 1])->active = active; 2754 ev_active (prepares [active - 1]) = active;
2379 } 2755 }
2380 2756
2381 ev_stop (EV_A_ (W)w); 2757 ev_stop (EV_A_ (W)w);
2758
2759 EV_FREQUENT_CHECK;
2382} 2760}
2383 2761
2384void 2762void
2385ev_check_start (EV_P_ ev_check *w) 2763ev_check_start (EV_P_ ev_check *w)
2386{ 2764{
2387 if (expect_false (ev_is_active (w))) 2765 if (expect_false (ev_is_active (w)))
2388 return; 2766 return;
2767
2768 EV_FREQUENT_CHECK;
2389 2769
2390 ev_start (EV_A_ (W)w, ++checkcnt); 2770 ev_start (EV_A_ (W)w, ++checkcnt);
2391 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2771 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2392 checks [checkcnt - 1] = w; 2772 checks [checkcnt - 1] = w;
2773
2774 EV_FREQUENT_CHECK;
2393} 2775}
2394 2776
2395void 2777void
2396ev_check_stop (EV_P_ ev_check *w) 2778ev_check_stop (EV_P_ ev_check *w)
2397{ 2779{
2398 clear_pending (EV_A_ (W)w); 2780 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 2781 if (expect_false (!ev_is_active (w)))
2400 return; 2782 return;
2401 2783
2784 EV_FREQUENT_CHECK;
2785
2402 { 2786 {
2403 int active = ((W)w)->active; 2787 int active = ev_active (w);
2788
2404 checks [active - 1] = checks [--checkcnt]; 2789 checks [active - 1] = checks [--checkcnt];
2405 ((W)checks [active - 1])->active = active; 2790 ev_active (checks [active - 1]) = active;
2406 } 2791 }
2407 2792
2408 ev_stop (EV_A_ (W)w); 2793 ev_stop (EV_A_ (W)w);
2794
2795 EV_FREQUENT_CHECK;
2409} 2796}
2410 2797
2411#if EV_EMBED_ENABLE 2798#if EV_EMBED_ENABLE
2412void noinline 2799void noinline
2413ev_embed_sweep (EV_P_ ev_embed *w) 2800ev_embed_sweep (EV_P_ ev_embed *w)
2460 struct ev_loop *loop = w->other; 2847 struct ev_loop *loop = w->other;
2461 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2848 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2462 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2849 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2463 } 2850 }
2464 2851
2852 EV_FREQUENT_CHECK;
2853
2465 ev_set_priority (&w->io, ev_priority (w)); 2854 ev_set_priority (&w->io, ev_priority (w));
2466 ev_io_start (EV_A_ &w->io); 2855 ev_io_start (EV_A_ &w->io);
2467 2856
2468 ev_prepare_init (&w->prepare, embed_prepare_cb); 2857 ev_prepare_init (&w->prepare, embed_prepare_cb);
2469 ev_set_priority (&w->prepare, EV_MINPRI); 2858 ev_set_priority (&w->prepare, EV_MINPRI);
2470 ev_prepare_start (EV_A_ &w->prepare); 2859 ev_prepare_start (EV_A_ &w->prepare);
2471 2860
2472 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2861 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2473 2862
2474 ev_start (EV_A_ (W)w, 1); 2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2475} 2866}
2476 2867
2477void 2868void
2478ev_embed_stop (EV_P_ ev_embed *w) 2869ev_embed_stop (EV_P_ ev_embed *w)
2479{ 2870{
2480 clear_pending (EV_A_ (W)w); 2871 clear_pending (EV_A_ (W)w);
2481 if (expect_false (!ev_is_active (w))) 2872 if (expect_false (!ev_is_active (w)))
2482 return; 2873 return;
2483 2874
2875 EV_FREQUENT_CHECK;
2876
2484 ev_io_stop (EV_A_ &w->io); 2877 ev_io_stop (EV_A_ &w->io);
2485 ev_prepare_stop (EV_A_ &w->prepare); 2878 ev_prepare_stop (EV_A_ &w->prepare);
2486 2879
2487 ev_stop (EV_A_ (W)w); 2880 ev_stop (EV_A_ (W)w);
2881
2882 EV_FREQUENT_CHECK;
2488} 2883}
2489#endif 2884#endif
2490 2885
2491#if EV_FORK_ENABLE 2886#if EV_FORK_ENABLE
2492void 2887void
2493ev_fork_start (EV_P_ ev_fork *w) 2888ev_fork_start (EV_P_ ev_fork *w)
2494{ 2889{
2495 if (expect_false (ev_is_active (w))) 2890 if (expect_false (ev_is_active (w)))
2496 return; 2891 return;
2892
2893 EV_FREQUENT_CHECK;
2497 2894
2498 ev_start (EV_A_ (W)w, ++forkcnt); 2895 ev_start (EV_A_ (W)w, ++forkcnt);
2499 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2896 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2500 forks [forkcnt - 1] = w; 2897 forks [forkcnt - 1] = w;
2898
2899 EV_FREQUENT_CHECK;
2501} 2900}
2502 2901
2503void 2902void
2504ev_fork_stop (EV_P_ ev_fork *w) 2903ev_fork_stop (EV_P_ ev_fork *w)
2505{ 2904{
2506 clear_pending (EV_A_ (W)w); 2905 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 2906 if (expect_false (!ev_is_active (w)))
2508 return; 2907 return;
2509 2908
2909 EV_FREQUENT_CHECK;
2910
2510 { 2911 {
2511 int active = ((W)w)->active; 2912 int active = ev_active (w);
2913
2512 forks [active - 1] = forks [--forkcnt]; 2914 forks [active - 1] = forks [--forkcnt];
2513 ((W)forks [active - 1])->active = active; 2915 ev_active (forks [active - 1]) = active;
2514 } 2916 }
2515 2917
2516 ev_stop (EV_A_ (W)w); 2918 ev_stop (EV_A_ (W)w);
2919
2920 EV_FREQUENT_CHECK;
2517} 2921}
2518#endif 2922#endif
2519 2923
2520#if EV_ASYNC_ENABLE 2924#if EV_ASYNC_ENABLE
2521void 2925void
2523{ 2927{
2524 if (expect_false (ev_is_active (w))) 2928 if (expect_false (ev_is_active (w)))
2525 return; 2929 return;
2526 2930
2527 evpipe_init (EV_A); 2931 evpipe_init (EV_A);
2932
2933 EV_FREQUENT_CHECK;
2528 2934
2529 ev_start (EV_A_ (W)w, ++asynccnt); 2935 ev_start (EV_A_ (W)w, ++asynccnt);
2530 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2936 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2531 asyncs [asynccnt - 1] = w; 2937 asyncs [asynccnt - 1] = w;
2938
2939 EV_FREQUENT_CHECK;
2532} 2940}
2533 2941
2534void 2942void
2535ev_async_stop (EV_P_ ev_async *w) 2943ev_async_stop (EV_P_ ev_async *w)
2536{ 2944{
2537 clear_pending (EV_A_ (W)w); 2945 clear_pending (EV_A_ (W)w);
2538 if (expect_false (!ev_is_active (w))) 2946 if (expect_false (!ev_is_active (w)))
2539 return; 2947 return;
2540 2948
2949 EV_FREQUENT_CHECK;
2950
2541 { 2951 {
2542 int active = ((W)w)->active; 2952 int active = ev_active (w);
2953
2543 asyncs [active - 1] = asyncs [--asynccnt]; 2954 asyncs [active - 1] = asyncs [--asynccnt];
2544 ((W)asyncs [active - 1])->active = active; 2955 ev_active (asyncs [active - 1]) = active;
2545 } 2956 }
2546 2957
2547 ev_stop (EV_A_ (W)w); 2958 ev_stop (EV_A_ (W)w);
2959
2960 EV_FREQUENT_CHECK;
2548} 2961}
2549 2962
2550void 2963void
2551ev_async_send (EV_P_ ev_async *w) 2964ev_async_send (EV_P_ ev_async *w)
2552{ 2965{
2569once_cb (EV_P_ struct ev_once *once, int revents) 2982once_cb (EV_P_ struct ev_once *once, int revents)
2570{ 2983{
2571 void (*cb)(int revents, void *arg) = once->cb; 2984 void (*cb)(int revents, void *arg) = once->cb;
2572 void *arg = once->arg; 2985 void *arg = once->arg;
2573 2986
2574 ev_io_stop (EV_A_ &once->io); 2987 ev_io_stop (EV_A_ &once->io);
2575 ev_timer_stop (EV_A_ &once->to); 2988 ev_timer_stop (EV_A_ &once->to);
2576 ev_free (once); 2989 ev_free (once);
2577 2990
2578 cb (revents, arg); 2991 cb (revents, arg);
2579} 2992}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines