ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.224 by root, Wed Apr 9 22:07:50 2008 UTC vs.
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
325 333
326typedef ev_watcher *W; 334typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
329 337
338#define ev_active(w) ((W)(w))->active
339#define ev_at(w) ((WT)(w))->at
340
330#if EV_USE_MONOTONIC 341#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 343/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 344static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 345#endif
419 W w; 430 W w;
420 int events; 431 int events;
421} ANPENDING; 432} ANPENDING;
422 433
423#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
424typedef struct 436typedef struct
425{ 437{
426 WL head; 438 WL head;
427} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
428#endif 458#endif
429 459
430#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
431 461
432 struct ev_loop 462 struct ev_loop
517 } 547 }
518} 548}
519 549
520/*****************************************************************************/ 550/*****************************************************************************/
521 551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
522int inline_size 554int inline_size
523array_nextsize (int elem, int cur, int cnt) 555array_nextsize (int elem, int cur, int cnt)
524{ 556{
525 int ncur = cur + 1; 557 int ncur = cur + 1;
526 558
527 do 559 do
528 ncur <<= 1; 560 ncur <<= 1;
529 while (cnt > ncur); 561 while (cnt > ncur);
530 562
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 565 {
534 ncur *= elem; 566 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 568 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 569 ncur /= elem;
538 } 570 }
539 571
540 return ncur; 572 return ncur;
754 } 786 }
755} 787}
756 788
757/*****************************************************************************/ 789/*****************************************************************************/
758 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808
809/* towards the root */
759void inline_speed 810void inline_speed
760upheap (WT *heap, int k) 811upheap (ANHE *heap, int k)
761{ 812{
762 WT w = heap [k]; 813 ANHE he = heap [k];
763 814
764 while (k) 815 for (;;)
765 { 816 {
766 int p = (k - 1) >> 1; 817 int p = HPARENT (k);
767 818
768 if (heap [p]->at <= w->at) 819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
769 break; 820 break;
770 821
771 heap [k] = heap [p]; 822 heap [k] = heap [p];
772 ((W)heap [k])->active = k + 1; 823 ev_active (ANHE_w (heap [k])) = k;
773 k = p; 824 k = p;
774 } 825 }
775 826
776 heap [k] = w; 827 heap [k] = he;
777 ((W)heap [k])->active = k + 1; 828 ev_active (ANHE_w (he)) = k;
778} 829}
779 830
831/* away from the root */
780void inline_speed 832void inline_speed
781downheap (WT *heap, int N, int k) 833downheap (ANHE *heap, int N, int k)
782{ 834{
783 WT w = heap [k]; 835 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0;
784 837
785 for (;;) 838 for (;;)
786 { 839 {
787 int c = (k << 1) + 1; 840 ev_tstamp minat;
841 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
788 843
789 if (c >= N) 844 // find minimum child
845 if (expect_true (pos + DHEAP - 1 < E))
846 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else if (pos < E)
853 {
854 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else
790 break; 860 break;
791 861
862 if (ANHE_at (he) <= minat)
863 break;
864
865 heap [k] = *minpos;
866 ev_active (ANHE_w (*minpos)) = k;
867
868 k = minpos - heap;
869 }
870
871 heap [k] = he;
872 ev_active (ANHE_w (he)) = k;
873}
874
875#else // 4HEAP
876
877#define HEAP0 1
878#define HPARENT(k) ((k) >> 1)
879
880/* towards the root */
881void inline_speed
882upheap (ANHE *heap, int k)
883{
884 ANHE he = heap [k];
885
886 for (;;)
887 {
888 int p = HPARENT (k);
889
890 /* maybe we could use a dummy element at heap [0]? */
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break;
893
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
908
909 for (;;)
910 {
911 int c = k << 1;
912
913 if (c > N)
914 break;
915
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
793 ? 1 : 0; 917 ? 1 : 0;
794 918
795 if (w->at <= heap [c]->at) 919 if (ANHE_at (he) <= ANHE_at (heap [c]))
796 break; 920 break;
797 921
798 heap [k] = heap [c]; 922 heap [k] = heap [c];
799 ((W)heap [k])->active = k + 1; 923 ev_active (ANHE_w (heap [k])) = k;
800 924
801 k = c; 925 k = c;
802 } 926 }
803 927
804 heap [k] = w; 928 heap [k] = he;
805 ((W)heap [k])->active = k + 1; 929 ev_active (ANHE_w (he)) = k;
806} 930}
931#endif
807 932
808void inline_size 933void inline_size
809adjustheap (WT *heap, int N, int k) 934adjustheap (ANHE *heap, int N, int k)
810{ 935{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
811 upheap (heap, k); 937 upheap (heap, k);
938 else
812 downheap (heap, N, k); 939 downheap (heap, N, k);
813} 940}
814 941
815/*****************************************************************************/ 942/*****************************************************************************/
816 943
817typedef struct 944typedef struct
906pipecb (EV_P_ ev_io *iow, int revents) 1033pipecb (EV_P_ ev_io *iow, int revents)
907{ 1034{
908#if EV_USE_EVENTFD 1035#if EV_USE_EVENTFD
909 if (evfd >= 0) 1036 if (evfd >= 0)
910 { 1037 {
911 uint64_t counter = 1; 1038 uint64_t counter;
912 read (evfd, &counter, sizeof (uint64_t)); 1039 read (evfd, &counter, sizeof (uint64_t));
913 } 1040 }
914 else 1041 else
915#endif 1042#endif
916 { 1043 {
1185 if (!(flags & EVFLAG_NOENV) 1312 if (!(flags & EVFLAG_NOENV)
1186 && !enable_secure () 1313 && !enable_secure ()
1187 && getenv ("LIBEV_FLAGS")) 1314 && getenv ("LIBEV_FLAGS"))
1188 flags = atoi (getenv ("LIBEV_FLAGS")); 1315 flags = atoi (getenv ("LIBEV_FLAGS"));
1189 1316
1190 if (!(flags & 0x0000ffffUL)) 1317 if (!(flags & 0x0000ffffU))
1191 flags |= ev_recommended_backends (); 1318 flags |= ev_recommended_backends ();
1192 1319
1193#if EV_USE_PORT 1320#if EV_USE_PORT
1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1321 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1195#endif 1322#endif
1283#endif 1410#endif
1284 1411
1285 backend = 0; 1412 backend = 0;
1286} 1413}
1287 1414
1415#if EV_USE_INOTIFY
1288void inline_size infy_fork (EV_P); 1416void inline_size infy_fork (EV_P);
1417#endif
1289 1418
1290void inline_size 1419void inline_size
1291loop_fork (EV_P) 1420loop_fork (EV_P)
1292{ 1421{
1293#if EV_USE_PORT 1422#if EV_USE_PORT
1360void 1489void
1361ev_loop_fork (EV_P) 1490ev_loop_fork (EV_P)
1362{ 1491{
1363 postfork = 1; /* must be in line with ev_default_fork */ 1492 postfork = 1; /* must be in line with ev_default_fork */
1364} 1493}
1365
1366#endif 1494#endif
1367 1495
1368#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
1369struct ev_loop * 1497struct ev_loop *
1370ev_default_loop_init (unsigned int flags) 1498ev_default_loop_init (unsigned int flags)
1451 EV_CB_INVOKE (p->w, p->events); 1579 EV_CB_INVOKE (p->w, p->events);
1452 } 1580 }
1453 } 1581 }
1454} 1582}
1455 1583
1456void inline_size
1457timers_reify (EV_P)
1458{
1459 while (timercnt && ((WT)timers [0])->at <= mn_now)
1460 {
1461 ev_timer *w = (ev_timer *)timers [0];
1462
1463 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1464
1465 /* first reschedule or stop timer */
1466 if (w->repeat)
1467 {
1468 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1469
1470 ((WT)w)->at += w->repeat;
1471 if (((WT)w)->at < mn_now)
1472 ((WT)w)->at = mn_now;
1473
1474 downheap (timers, timercnt, 0);
1475 }
1476 else
1477 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1478
1479 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1480 }
1481}
1482
1483#if EV_PERIODIC_ENABLE
1484void inline_size
1485periodics_reify (EV_P)
1486{
1487 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1488 {
1489 ev_periodic *w = (ev_periodic *)periodics [0];
1490
1491 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1492
1493 /* first reschedule or stop timer */
1494 if (w->reschedule_cb)
1495 {
1496 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1497 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1498 downheap (periodics, periodiccnt, 0);
1499 }
1500 else if (w->interval)
1501 {
1502 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1503 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1504 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1505 downheap (periodics, periodiccnt, 0);
1506 }
1507 else
1508 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1509
1510 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1511 }
1512}
1513
1514static void noinline
1515periodics_reschedule (EV_P)
1516{
1517 int i;
1518
1519 /* adjust periodics after time jump */
1520 for (i = 0; i < periodiccnt; ++i)
1521 {
1522 ev_periodic *w = (ev_periodic *)periodics [i];
1523
1524 if (w->reschedule_cb)
1525 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1526 else if (w->interval)
1527 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1528 }
1529
1530 /* now rebuild the heap */
1531 for (i = periodiccnt >> 1; i--; )
1532 downheap (periodics, periodiccnt, i);
1533}
1534#endif
1535
1536#if EV_IDLE_ENABLE 1584#if EV_IDLE_ENABLE
1537void inline_size 1585void inline_size
1538idle_reify (EV_P) 1586idle_reify (EV_P)
1539{ 1587{
1540 if (expect_false (idleall)) 1588 if (expect_false (idleall))
1551 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1599 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1552 break; 1600 break;
1553 } 1601 }
1554 } 1602 }
1555 } 1603 }
1604}
1605#endif
1606
1607void inline_size
1608timers_reify (EV_P)
1609{
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 {
1619 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now;
1622
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624
1625 ANHE_at_set (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0);
1627 }
1628 else
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1632 }
1633}
1634
1635#if EV_PERIODIC_ENABLE
1636void inline_size
1637periodics_reify (EV_P)
1638{
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1642
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651
1652 ANHE_at_set (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0);
1654 }
1655 else if (w->interval)
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1678 }
1679}
1680
1681static void noinline
1682periodics_reschedule (EV_P)
1683{
1684 int i;
1685
1686 /* adjust periodics after time jump */
1687 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1688 {
1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1690
1691 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695
1696 ANHE_at_set (periodics [i]);
1697 }
1698
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1701 for (i = 0; i < periodiccnt; ++i)
1702 upheap (periodics, i + HEAP0);
1556} 1703}
1557#endif 1704#endif
1558 1705
1559void inline_speed 1706void inline_speed
1560time_update (EV_P_ ev_tstamp max_block) 1707time_update (EV_P_ ev_tstamp max_block)
1589 */ 1736 */
1590 for (i = 4; --i; ) 1737 for (i = 4; --i; )
1591 { 1738 {
1592 rtmn_diff = ev_rt_now - mn_now; 1739 rtmn_diff = ev_rt_now - mn_now;
1593 1740
1594 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1741 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1595 return; /* all is well */ 1742 return; /* all is well */
1596 1743
1597 ev_rt_now = ev_time (); 1744 ev_rt_now = ev_time ();
1598 mn_now = get_clock (); 1745 mn_now = get_clock ();
1599 now_floor = mn_now; 1746 now_floor = mn_now;
1615#if EV_PERIODIC_ENABLE 1762#if EV_PERIODIC_ENABLE
1616 periodics_reschedule (EV_A); 1763 periodics_reschedule (EV_A);
1617#endif 1764#endif
1618 /* adjust timers. this is easy, as the offset is the same for all of them */ 1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1619 for (i = 0; i < timercnt; ++i) 1766 for (i = 0; i < timercnt; ++i)
1767 {
1768 ANHE *he = timers + i + HEAP0;
1620 ((WT)timers [i])->at += ev_rt_now - mn_now; 1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1621 } 1772 }
1622 1773
1623 mn_now = ev_rt_now; 1774 mn_now = ev_rt_now;
1624 } 1775 }
1625} 1776}
1695 1846
1696 waittime = MAX_BLOCKTIME; 1847 waittime = MAX_BLOCKTIME;
1697 1848
1698 if (timercnt) 1849 if (timercnt)
1699 { 1850 {
1700 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1701 if (waittime > to) waittime = to; 1852 if (waittime > to) waittime = to;
1702 } 1853 }
1703 1854
1704#if EV_PERIODIC_ENABLE 1855#if EV_PERIODIC_ENABLE
1705 if (periodiccnt) 1856 if (periodiccnt)
1706 { 1857 {
1707 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1708 if (waittime > to) waittime = to; 1859 if (waittime > to) waittime = to;
1709 } 1860 }
1710#endif 1861#endif
1711 1862
1712 if (expect_false (waittime < timeout_blocktime)) 1863 if (expect_false (waittime < timeout_blocktime))
1864{ 2015{
1865 clear_pending (EV_A_ (W)w); 2016 clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w))) 2017 if (expect_false (!ev_is_active (w)))
1867 return; 2018 return;
1868 2019
1869 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1870 2021
1871 wlist_del (&anfds[w->fd].head, (WL)w); 2022 wlist_del (&anfds[w->fd].head, (WL)w);
1872 ev_stop (EV_A_ (W)w); 2023 ev_stop (EV_A_ (W)w);
1873 2024
1874 fd_change (EV_A_ w->fd, 1); 2025 fd_change (EV_A_ w->fd, 1);
1878ev_timer_start (EV_P_ ev_timer *w) 2029ev_timer_start (EV_P_ ev_timer *w)
1879{ 2030{
1880 if (expect_false (ev_is_active (w))) 2031 if (expect_false (ev_is_active (w)))
1881 return; 2032 return;
1882 2033
1883 ((WT)w)->at += mn_now; 2034 ev_at (w) += mn_now;
1884 2035
1885 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1886 2037
1887 ev_start (EV_A_ (W)w, ++timercnt); 2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1888 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1889 timers [timercnt - 1] = (WT)w; 2040 ANHE_w (timers [ev_active (w)]) = (WT)w;
1890 upheap (timers, timercnt - 1); 2041 ANHE_at_set (timers [ev_active (w)]);
2042 upheap (timers, ev_active (w));
1891 2043
1892 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1893} 2045}
1894 2046
1895void noinline 2047void noinline
1896ev_timer_stop (EV_P_ ev_timer *w) 2048ev_timer_stop (EV_P_ ev_timer *w)
1897{ 2049{
1898 clear_pending (EV_A_ (W)w); 2050 clear_pending (EV_A_ (W)w);
1899 if (expect_false (!ev_is_active (w))) 2051 if (expect_false (!ev_is_active (w)))
1900 return; 2052 return;
1901 2053
1902 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1903
1904 { 2054 {
1905 int active = ((W)w)->active; 2055 int active = ev_active (w);
1906 2056
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058
1907 if (expect_true (--active < --timercnt)) 2059 if (expect_true (active < timercnt + HEAP0 - 1))
1908 { 2060 {
1909 timers [active] = timers [timercnt]; 2061 timers [active] = timers [timercnt + HEAP0 - 1];
1910 adjustheap (timers, timercnt, active); 2062 adjustheap (timers, timercnt, active);
1911 } 2063 }
2064
2065 --timercnt;
1912 } 2066 }
1913 2067
1914 ((WT)w)->at -= mn_now; 2068 ev_at (w) -= mn_now;
1915 2069
1916 ev_stop (EV_A_ (W)w); 2070 ev_stop (EV_A_ (W)w);
1917} 2071}
1918 2072
1919void noinline 2073void noinline
1921{ 2075{
1922 if (ev_is_active (w)) 2076 if (ev_is_active (w))
1923 { 2077 {
1924 if (w->repeat) 2078 if (w->repeat)
1925 { 2079 {
1926 ((WT)w)->at = mn_now + w->repeat; 2080 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]);
1927 adjustheap (timers, timercnt, ((W)w)->active - 1); 2082 adjustheap (timers, timercnt, ev_active (w));
1928 } 2083 }
1929 else 2084 else
1930 ev_timer_stop (EV_A_ w); 2085 ev_timer_stop (EV_A_ w);
1931 } 2086 }
1932 else if (w->repeat) 2087 else if (w->repeat)
1933 { 2088 {
1934 w->at = w->repeat; 2089 ev_at (w) = w->repeat;
1935 ev_timer_start (EV_A_ w); 2090 ev_timer_start (EV_A_ w);
1936 } 2091 }
1937} 2092}
1938 2093
1939#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1942{ 2097{
1943 if (expect_false (ev_is_active (w))) 2098 if (expect_false (ev_is_active (w)))
1944 return; 2099 return;
1945 2100
1946 if (w->reschedule_cb) 2101 if (w->reschedule_cb)
1947 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2102 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1948 else if (w->interval) 2103 else if (w->interval)
1949 { 2104 {
1950 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2105 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1951 /* this formula differs from the one in periodic_reify because we do not always round up */ 2106 /* this formula differs from the one in periodic_reify because we do not always round up */
1952 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1953 } 2108 }
1954 else 2109 else
1955 ((WT)w)->at = w->offset; 2110 ev_at (w) = w->offset;
1956 2111
1957 ev_start (EV_A_ (W)w, ++periodiccnt); 2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1958 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1959 periodics [periodiccnt - 1] = (WT)w; 2114 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1960 upheap (periodics, periodiccnt - 1); 2115 ANHE_at_set (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w));
1961 2117
1962 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1963} 2119}
1964 2120
1965void noinline 2121void noinline
1966ev_periodic_stop (EV_P_ ev_periodic *w) 2122ev_periodic_stop (EV_P_ ev_periodic *w)
1967{ 2123{
1968 clear_pending (EV_A_ (W)w); 2124 clear_pending (EV_A_ (W)w);
1969 if (expect_false (!ev_is_active (w))) 2125 if (expect_false (!ev_is_active (w)))
1970 return; 2126 return;
1971 2127
1972 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1973
1974 { 2128 {
1975 int active = ((W)w)->active; 2129 int active = ev_active (w);
1976 2130
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132
1977 if (expect_true (--active < --periodiccnt)) 2133 if (expect_true (active < periodiccnt + HEAP0 - 1))
1978 { 2134 {
1979 periodics [active] = periodics [periodiccnt]; 2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1980 adjustheap (periodics, periodiccnt, active); 2136 adjustheap (periodics, periodiccnt, active);
1981 } 2137 }
2138
2139 --periodiccnt;
1982 } 2140 }
1983 2141
1984 ev_stop (EV_A_ (W)w); 2142 ev_stop (EV_A_ (W)w);
1985} 2143}
1986 2144
2102 if (w->wd < 0) 2260 if (w->wd < 0)
2103 { 2261 {
2104 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2105 2263
2106 /* monitor some parent directory for speedup hints */ 2264 /* monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */
2266 /* but an efficiency issue only */
2107 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2108 { 2268 {
2109 char path [4096]; 2269 char path [4096];
2110 strcpy (path, w->path); 2270 strcpy (path, w->path);
2111 2271
2356 clear_pending (EV_A_ (W)w); 2516 clear_pending (EV_A_ (W)w);
2357 if (expect_false (!ev_is_active (w))) 2517 if (expect_false (!ev_is_active (w)))
2358 return; 2518 return;
2359 2519
2360 { 2520 {
2361 int active = ((W)w)->active; 2521 int active = ev_active (w);
2362 2522
2363 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2364 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2524 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2365 2525
2366 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
2367 --idleall; 2527 --idleall;
2368 } 2528 }
2369} 2529}
2386 clear_pending (EV_A_ (W)w); 2546 clear_pending (EV_A_ (W)w);
2387 if (expect_false (!ev_is_active (w))) 2547 if (expect_false (!ev_is_active (w)))
2388 return; 2548 return;
2389 2549
2390 { 2550 {
2391 int active = ((W)w)->active; 2551 int active = ev_active (w);
2552
2392 prepares [active - 1] = prepares [--preparecnt]; 2553 prepares [active - 1] = prepares [--preparecnt];
2393 ((W)prepares [active - 1])->active = active; 2554 ev_active (prepares [active - 1]) = active;
2394 } 2555 }
2395 2556
2396 ev_stop (EV_A_ (W)w); 2557 ev_stop (EV_A_ (W)w);
2397} 2558}
2398 2559
2413 clear_pending (EV_A_ (W)w); 2574 clear_pending (EV_A_ (W)w);
2414 if (expect_false (!ev_is_active (w))) 2575 if (expect_false (!ev_is_active (w)))
2415 return; 2576 return;
2416 2577
2417 { 2578 {
2418 int active = ((W)w)->active; 2579 int active = ev_active (w);
2580
2419 checks [active - 1] = checks [--checkcnt]; 2581 checks [active - 1] = checks [--checkcnt];
2420 ((W)checks [active - 1])->active = active; 2582 ev_active (checks [active - 1]) = active;
2421 } 2583 }
2422 2584
2423 ev_stop (EV_A_ (W)w); 2585 ev_stop (EV_A_ (W)w);
2424} 2586}
2425 2587
2521 clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
2523 return; 2685 return;
2524 2686
2525 { 2687 {
2526 int active = ((W)w)->active; 2688 int active = ev_active (w);
2689
2527 forks [active - 1] = forks [--forkcnt]; 2690 forks [active - 1] = forks [--forkcnt];
2528 ((W)forks [active - 1])->active = active; 2691 ev_active (forks [active - 1]) = active;
2529 } 2692 }
2530 2693
2531 ev_stop (EV_A_ (W)w); 2694 ev_stop (EV_A_ (W)w);
2532} 2695}
2533#endif 2696#endif
2552 clear_pending (EV_A_ (W)w); 2715 clear_pending (EV_A_ (W)w);
2553 if (expect_false (!ev_is_active (w))) 2716 if (expect_false (!ev_is_active (w)))
2554 return; 2717 return;
2555 2718
2556 { 2719 {
2557 int active = ((W)w)->active; 2720 int active = ev_active (w);
2721
2558 asyncs [active - 1] = asyncs [--asynccnt]; 2722 asyncs [active - 1] = asyncs [--asynccnt];
2559 ((W)asyncs [active - 1])->active = active; 2723 ev_active (asyncs [active - 1]) = active;
2560 } 2724 }
2561 2725
2562 ev_stop (EV_A_ (W)w); 2726 ev_stop (EV_A_ (W)w);
2563} 2727}
2564 2728

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines