ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.224 by root, Wed Apr 9 22:07:50 2008 UTC vs.
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 259
242#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
279} 297}
280# endif 298# endif
281#endif 299#endif
282 300
283/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
284 308
285/* 309/*
286 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
325 349
326typedef ev_watcher *W; 350typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
329 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
330#if EV_USE_MONOTONIC 357#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 359/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 361#endif
419 W w; 446 W w;
420 int events; 447 int events;
421} ANPENDING; 448} ANPENDING;
422 449
423#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
424typedef struct 452typedef struct
425{ 453{
426 WL head; 454 WL head;
427} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
428#endif 474#endif
429 475
430#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
431 477
432 struct ev_loop 478 struct ev_loop
517 } 563 }
518} 564}
519 565
520/*****************************************************************************/ 566/*****************************************************************************/
521 567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
522int inline_size 570int inline_size
523array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
524{ 572{
525 int ncur = cur + 1; 573 int ncur = cur + 1;
526 574
527 do 575 do
528 ncur <<= 1; 576 ncur <<= 1;
529 while (cnt > ncur); 577 while (cnt > ncur);
530 578
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 581 {
534 ncur *= elem; 582 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 585 ncur /= elem;
538 } 586 }
539 587
540 return ncur; 588 return ncur;
754 } 802 }
755} 803}
756 804
757/*****************************************************************************/ 805/*****************************************************************************/
758 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
759void inline_speed 827void inline_speed
760upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
761{ 829{
762 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
763 832
764 while (k) 833 for (;;)
765 { 834 {
766 int p = (k - 1) >> 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
767 838
768 if (heap [p]->at <= w->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
769 break; 855 break;
770 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
771 heap [k] = heap [p]; 919 heap [k] = heap [p];
772 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (heap [k])) = k;
773 k = p; 921 k = p;
774 } 922 }
775 923
776 heap [k] = w; 924 heap [k] = he;
777 ((W)heap [k])->active = k + 1; 925 ev_active (ANHE_w (he)) = k;
778}
779
780void inline_speed
781downheap (WT *heap, int N, int k)
782{
783 WT w = heap [k];
784
785 for (;;)
786 {
787 int c = (k << 1) + 1;
788
789 if (c >= N)
790 break;
791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
798 heap [k] = heap [c];
799 ((W)heap [k])->active = k + 1;
800
801 k = c;
802 }
803
804 heap [k] = w;
805 ((W)heap [k])->active = k + 1;
806} 926}
807 927
808void inline_size 928void inline_size
809adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
810{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
811 upheap (heap, k); 932 upheap (heap, k);
933 else
812 downheap (heap, N, k); 934 downheap (heap, N, k);
813} 935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0);
946}
947
948#if EV_VERIFY
949static void
950checkheap (ANHE *heap, int N)
951{
952 int i;
953
954 for (i = HEAP0; i < N + HEAP0; ++i)
955 {
956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
959 }
960}
961#endif
814 962
815/*****************************************************************************/ 963/*****************************************************************************/
816 964
817typedef struct 965typedef struct
818{ 966{
906pipecb (EV_P_ ev_io *iow, int revents) 1054pipecb (EV_P_ ev_io *iow, int revents)
907{ 1055{
908#if EV_USE_EVENTFD 1056#if EV_USE_EVENTFD
909 if (evfd >= 0) 1057 if (evfd >= 0)
910 { 1058 {
911 uint64_t counter = 1; 1059 uint64_t counter;
912 read (evfd, &counter, sizeof (uint64_t)); 1060 read (evfd, &counter, sizeof (uint64_t));
913 } 1061 }
914 else 1062 else
915#endif 1063#endif
916 { 1064 {
1185 if (!(flags & EVFLAG_NOENV) 1333 if (!(flags & EVFLAG_NOENV)
1186 && !enable_secure () 1334 && !enable_secure ()
1187 && getenv ("LIBEV_FLAGS")) 1335 && getenv ("LIBEV_FLAGS"))
1188 flags = atoi (getenv ("LIBEV_FLAGS")); 1336 flags = atoi (getenv ("LIBEV_FLAGS"));
1189 1337
1190 if (!(flags & 0x0000ffffUL)) 1338 if (!(flags & 0x0000ffffU))
1191 flags |= ev_recommended_backends (); 1339 flags |= ev_recommended_backends ();
1192 1340
1193#if EV_USE_PORT 1341#if EV_USE_PORT
1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1342 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1195#endif 1343#endif
1283#endif 1431#endif
1284 1432
1285 backend = 0; 1433 backend = 0;
1286} 1434}
1287 1435
1436#if EV_USE_INOTIFY
1288void inline_size infy_fork (EV_P); 1437void inline_size infy_fork (EV_P);
1438#endif
1289 1439
1290void inline_size 1440void inline_size
1291loop_fork (EV_P) 1441loop_fork (EV_P)
1292{ 1442{
1293#if EV_USE_PORT 1443#if EV_USE_PORT
1333 1483
1334 postfork = 0; 1484 postfork = 0;
1335} 1485}
1336 1486
1337#if EV_MULTIPLICITY 1487#if EV_MULTIPLICITY
1488
1338struct ev_loop * 1489struct ev_loop *
1339ev_loop_new (unsigned int flags) 1490ev_loop_new (unsigned int flags)
1340{ 1491{
1341 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1342 1493
1361ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
1362{ 1513{
1363 postfork = 1; /* must be in line with ev_default_fork */ 1514 postfork = 1; /* must be in line with ev_default_fork */
1364} 1515}
1365 1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1366#endif 1524#endif
1525
1526void
1527ev_loop_verify (EV_P)
1528{
1529#if EV_VERIFY
1530 int i;
1531
1532 checkheap (timers, timercnt);
1533#if EV_PERIODIC_ENABLE
1534 checkheap (periodics, periodiccnt);
1535#endif
1536
1537#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; )
1539 array_check ((W **)idles [i], idlecnt [i]);
1540#endif
1541#if EV_FORK_ENABLE
1542 array_check ((W **)forks, forkcnt);
1543#endif
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif
1550}
1551
1552#endif /* multiplicity */
1367 1553
1368#if EV_MULTIPLICITY 1554#if EV_MULTIPLICITY
1369struct ev_loop * 1555struct ev_loop *
1370ev_default_loop_init (unsigned int flags) 1556ev_default_loop_init (unsigned int flags)
1371#else 1557#else
1447 { 1633 {
1448 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1449 1635
1450 p->w->pending = 0; 1636 p->w->pending = 0;
1451 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK;
1452 } 1639 }
1453 } 1640 }
1454} 1641}
1455
1456void inline_size
1457timers_reify (EV_P)
1458{
1459 while (timercnt && ((WT)timers [0])->at <= mn_now)
1460 {
1461 ev_timer *w = (ev_timer *)timers [0];
1462
1463 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1464
1465 /* first reschedule or stop timer */
1466 if (w->repeat)
1467 {
1468 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1469
1470 ((WT)w)->at += w->repeat;
1471 if (((WT)w)->at < mn_now)
1472 ((WT)w)->at = mn_now;
1473
1474 downheap (timers, timercnt, 0);
1475 }
1476 else
1477 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1478
1479 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1480 }
1481}
1482
1483#if EV_PERIODIC_ENABLE
1484void inline_size
1485periodics_reify (EV_P)
1486{
1487 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1488 {
1489 ev_periodic *w = (ev_periodic *)periodics [0];
1490
1491 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1492
1493 /* first reschedule or stop timer */
1494 if (w->reschedule_cb)
1495 {
1496 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1497 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1498 downheap (periodics, periodiccnt, 0);
1499 }
1500 else if (w->interval)
1501 {
1502 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1503 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1504 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1505 downheap (periodics, periodiccnt, 0);
1506 }
1507 else
1508 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1509
1510 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1511 }
1512}
1513
1514static void noinline
1515periodics_reschedule (EV_P)
1516{
1517 int i;
1518
1519 /* adjust periodics after time jump */
1520 for (i = 0; i < periodiccnt; ++i)
1521 {
1522 ev_periodic *w = (ev_periodic *)periodics [i];
1523
1524 if (w->reschedule_cb)
1525 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1526 else if (w->interval)
1527 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1528 }
1529
1530 /* now rebuild the heap */
1531 for (i = periodiccnt >> 1; i--; )
1532 downheap (periodics, periodiccnt, i);
1533}
1534#endif
1535 1642
1536#if EV_IDLE_ENABLE 1643#if EV_IDLE_ENABLE
1537void inline_size 1644void inline_size
1538idle_reify (EV_P) 1645idle_reify (EV_P)
1539{ 1646{
1551 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1658 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1552 break; 1659 break;
1553 } 1660 }
1554 } 1661 }
1555 } 1662 }
1663}
1664#endif
1665
1666void inline_size
1667timers_reify (EV_P)
1668{
1669 EV_FREQUENT_CHECK;
1670
1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1672 {
1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1674
1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1676
1677 /* first reschedule or stop timer */
1678 if (w->repeat)
1679 {
1680 ev_at (w) += w->repeat;
1681 if (ev_at (w) < mn_now)
1682 ev_at (w) = mn_now;
1683
1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1685
1686 ANHE_at_cache (timers [HEAP0]);
1687 downheap (timers, timercnt, HEAP0);
1688 }
1689 else
1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1691
1692 EV_FREQUENT_CHECK;
1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1694 }
1695}
1696
1697#if EV_PERIODIC_ENABLE
1698void inline_size
1699periodics_reify (EV_P)
1700{
1701 EV_FREQUENT_CHECK;
1702
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1706
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0);
1718 }
1719 else if (w->interval)
1720 {
1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1725 {
1726 ev_at (w) += w->interval;
1727
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1736 downheap (periodics, periodiccnt, HEAP0);
1737 }
1738 else
1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1743 }
1744}
1745
1746static void noinline
1747periodics_reschedule (EV_P)
1748{
1749 int i;
1750
1751 /* adjust periodics after time jump */
1752 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1753 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1755
1756 if (w->reschedule_cb)
1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1758 else if (w->interval)
1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1760
1761 ANHE_at_cache (periodics [i]);
1762 }
1763
1764 reheap (periodics, periodiccnt);
1556} 1765}
1557#endif 1766#endif
1558 1767
1559void inline_speed 1768void inline_speed
1560time_update (EV_P_ ev_tstamp max_block) 1769time_update (EV_P_ ev_tstamp max_block)
1589 */ 1798 */
1590 for (i = 4; --i; ) 1799 for (i = 4; --i; )
1591 { 1800 {
1592 rtmn_diff = ev_rt_now - mn_now; 1801 rtmn_diff = ev_rt_now - mn_now;
1593 1802
1594 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1803 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1595 return; /* all is well */ 1804 return; /* all is well */
1596 1805
1597 ev_rt_now = ev_time (); 1806 ev_rt_now = ev_time ();
1598 mn_now = get_clock (); 1807 mn_now = get_clock ();
1599 now_floor = mn_now; 1808 now_floor = mn_now;
1615#if EV_PERIODIC_ENABLE 1824#if EV_PERIODIC_ENABLE
1616 periodics_reschedule (EV_A); 1825 periodics_reschedule (EV_A);
1617#endif 1826#endif
1618 /* adjust timers. this is easy, as the offset is the same for all of them */ 1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1619 for (i = 0; i < timercnt; ++i) 1828 for (i = 0; i < timercnt; ++i)
1829 {
1830 ANHE *he = timers + i + HEAP0;
1620 ((WT)timers [i])->at += ev_rt_now - mn_now; 1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
1832 ANHE_at_cache (*he);
1833 }
1621 } 1834 }
1622 1835
1623 mn_now = ev_rt_now; 1836 mn_now = ev_rt_now;
1624 } 1837 }
1625} 1838}
1645 1858
1646 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1647 1860
1648 do 1861 do
1649 { 1862 {
1863#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A);
1865#endif
1866
1650#ifndef _WIN32 1867#ifndef _WIN32
1651 if (expect_false (curpid)) /* penalise the forking check even more */ 1868 if (expect_false (curpid)) /* penalise the forking check even more */
1652 if (expect_false (getpid () != curpid)) 1869 if (expect_false (getpid () != curpid))
1653 { 1870 {
1654 curpid = getpid (); 1871 curpid = getpid ();
1695 1912
1696 waittime = MAX_BLOCKTIME; 1913 waittime = MAX_BLOCKTIME;
1697 1914
1698 if (timercnt) 1915 if (timercnt)
1699 { 1916 {
1700 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1917 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1701 if (waittime > to) waittime = to; 1918 if (waittime > to) waittime = to;
1702 } 1919 }
1703 1920
1704#if EV_PERIODIC_ENABLE 1921#if EV_PERIODIC_ENABLE
1705 if (periodiccnt) 1922 if (periodiccnt)
1706 { 1923 {
1707 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1924 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1708 if (waittime > to) waittime = to; 1925 if (waittime > to) waittime = to;
1709 } 1926 }
1710#endif 1927#endif
1711 1928
1712 if (expect_false (waittime < timeout_blocktime)) 1929 if (expect_false (waittime < timeout_blocktime))
1849 if (expect_false (ev_is_active (w))) 2066 if (expect_false (ev_is_active (w)))
1850 return; 2067 return;
1851 2068
1852 assert (("ev_io_start called with negative fd", fd >= 0)); 2069 assert (("ev_io_start called with negative fd", fd >= 0));
1853 2070
2071 EV_FREQUENT_CHECK;
2072
1854 ev_start (EV_A_ (W)w, 1); 2073 ev_start (EV_A_ (W)w, 1);
1855 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1856 wlist_add (&anfds[fd].head, (WL)w); 2075 wlist_add (&anfds[fd].head, (WL)w);
1857 2076
1858 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1859 w->events &= ~EV_IOFDSET; 2078 w->events &= ~EV_IOFDSET;
2079
2080 EV_FREQUENT_CHECK;
1860} 2081}
1861 2082
1862void noinline 2083void noinline
1863ev_io_stop (EV_P_ ev_io *w) 2084ev_io_stop (EV_P_ ev_io *w)
1864{ 2085{
1865 clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w))) 2087 if (expect_false (!ev_is_active (w)))
1867 return; 2088 return;
1868 2089
1869 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2091
2092 EV_FREQUENT_CHECK;
1870 2093
1871 wlist_del (&anfds[w->fd].head, (WL)w); 2094 wlist_del (&anfds[w->fd].head, (WL)w);
1872 ev_stop (EV_A_ (W)w); 2095 ev_stop (EV_A_ (W)w);
1873 2096
1874 fd_change (EV_A_ w->fd, 1); 2097 fd_change (EV_A_ w->fd, 1);
2098
2099 EV_FREQUENT_CHECK;
1875} 2100}
1876 2101
1877void noinline 2102void noinline
1878ev_timer_start (EV_P_ ev_timer *w) 2103ev_timer_start (EV_P_ ev_timer *w)
1879{ 2104{
1880 if (expect_false (ev_is_active (w))) 2105 if (expect_false (ev_is_active (w)))
1881 return; 2106 return;
1882 2107
1883 ((WT)w)->at += mn_now; 2108 ev_at (w) += mn_now;
1884 2109
1885 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1886 2111
2112 EV_FREQUENT_CHECK;
2113
2114 ++timercnt;
1887 ev_start (EV_A_ (W)w, ++timercnt); 2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1888 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2116 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1889 timers [timercnt - 1] = (WT)w; 2117 ANHE_w (timers [ev_active (w)]) = (WT)w;
1890 upheap (timers, timercnt - 1); 2118 ANHE_at_cache (timers [ev_active (w)]);
2119 upheap (timers, ev_active (w));
1891 2120
2121 EV_FREQUENT_CHECK;
2122
1892 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1893} 2124}
1894 2125
1895void noinline 2126void noinline
1896ev_timer_stop (EV_P_ ev_timer *w) 2127ev_timer_stop (EV_P_ ev_timer *w)
1897{ 2128{
1898 clear_pending (EV_A_ (W)w); 2129 clear_pending (EV_A_ (W)w);
1899 if (expect_false (!ev_is_active (w))) 2130 if (expect_false (!ev_is_active (w)))
1900 return; 2131 return;
1901 2132
1902 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2133 EV_FREQUENT_CHECK;
1903 2134
1904 { 2135 {
1905 int active = ((W)w)->active; 2136 int active = ev_active (w);
1906 2137
2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2139
2140 --timercnt;
2141
1907 if (expect_true (--active < --timercnt)) 2142 if (expect_true (active < timercnt + HEAP0))
1908 { 2143 {
1909 timers [active] = timers [timercnt]; 2144 timers [active] = timers [timercnt + HEAP0];
1910 adjustheap (timers, timercnt, active); 2145 adjustheap (timers, timercnt, active);
1911 } 2146 }
1912 } 2147 }
1913 2148
1914 ((WT)w)->at -= mn_now; 2149 EV_FREQUENT_CHECK;
2150
2151 ev_at (w) -= mn_now;
1915 2152
1916 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1917} 2154}
1918 2155
1919void noinline 2156void noinline
1920ev_timer_again (EV_P_ ev_timer *w) 2157ev_timer_again (EV_P_ ev_timer *w)
1921{ 2158{
2159 EV_FREQUENT_CHECK;
2160
1922 if (ev_is_active (w)) 2161 if (ev_is_active (w))
1923 { 2162 {
1924 if (w->repeat) 2163 if (w->repeat)
1925 { 2164 {
1926 ((WT)w)->at = mn_now + w->repeat; 2165 ev_at (w) = mn_now + w->repeat;
2166 ANHE_at_cache (timers [ev_active (w)]);
1927 adjustheap (timers, timercnt, ((W)w)->active - 1); 2167 adjustheap (timers, timercnt, ev_active (w));
1928 } 2168 }
1929 else 2169 else
1930 ev_timer_stop (EV_A_ w); 2170 ev_timer_stop (EV_A_ w);
1931 } 2171 }
1932 else if (w->repeat) 2172 else if (w->repeat)
1933 { 2173 {
1934 w->at = w->repeat; 2174 ev_at (w) = w->repeat;
1935 ev_timer_start (EV_A_ w); 2175 ev_timer_start (EV_A_ w);
1936 } 2176 }
2177
2178 EV_FREQUENT_CHECK;
1937} 2179}
1938 2180
1939#if EV_PERIODIC_ENABLE 2181#if EV_PERIODIC_ENABLE
1940void noinline 2182void noinline
1941ev_periodic_start (EV_P_ ev_periodic *w) 2183ev_periodic_start (EV_P_ ev_periodic *w)
1942{ 2184{
1943 if (expect_false (ev_is_active (w))) 2185 if (expect_false (ev_is_active (w)))
1944 return; 2186 return;
1945 2187
1946 if (w->reschedule_cb) 2188 if (w->reschedule_cb)
1947 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2189 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1948 else if (w->interval) 2190 else if (w->interval)
1949 { 2191 {
1950 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2192 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1951 /* this formula differs from the one in periodic_reify because we do not always round up */ 2193 /* this formula differs from the one in periodic_reify because we do not always round up */
1952 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1953 } 2195 }
1954 else 2196 else
1955 ((WT)w)->at = w->offset; 2197 ev_at (w) = w->offset;
1956 2198
2199 EV_FREQUENT_CHECK;
2200
2201 ++periodiccnt;
1957 ev_start (EV_A_ (W)w, ++periodiccnt); 2202 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1958 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2203 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1959 periodics [periodiccnt - 1] = (WT)w; 2204 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1960 upheap (periodics, periodiccnt - 1); 2205 ANHE_at_cache (periodics [ev_active (w)]);
2206 upheap (periodics, ev_active (w));
1961 2207
2208 EV_FREQUENT_CHECK;
2209
1962 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1963} 2211}
1964 2212
1965void noinline 2213void noinline
1966ev_periodic_stop (EV_P_ ev_periodic *w) 2214ev_periodic_stop (EV_P_ ev_periodic *w)
1967{ 2215{
1968 clear_pending (EV_A_ (W)w); 2216 clear_pending (EV_A_ (W)w);
1969 if (expect_false (!ev_is_active (w))) 2217 if (expect_false (!ev_is_active (w)))
1970 return; 2218 return;
1971 2219
1972 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2220 EV_FREQUENT_CHECK;
1973 2221
1974 { 2222 {
1975 int active = ((W)w)->active; 2223 int active = ev_active (w);
1976 2224
2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2226
2227 --periodiccnt;
2228
1977 if (expect_true (--active < --periodiccnt)) 2229 if (expect_true (active < periodiccnt + HEAP0))
1978 { 2230 {
1979 periodics [active] = periodics [periodiccnt]; 2231 periodics [active] = periodics [periodiccnt + HEAP0];
1980 adjustheap (periodics, periodiccnt, active); 2232 adjustheap (periodics, periodiccnt, active);
1981 } 2233 }
1982 } 2234 }
1983 2235
2236 EV_FREQUENT_CHECK;
2237
1984 ev_stop (EV_A_ (W)w); 2238 ev_stop (EV_A_ (W)w);
1985} 2239}
1986 2240
1987void noinline 2241void noinline
1988ev_periodic_again (EV_P_ ev_periodic *w) 2242ev_periodic_again (EV_P_ ev_periodic *w)
2007 return; 2261 return;
2008 2262
2009 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2010 2264
2011 evpipe_init (EV_A); 2265 evpipe_init (EV_A);
2266
2267 EV_FREQUENT_CHECK;
2012 2268
2013 { 2269 {
2014#ifndef _WIN32 2270#ifndef _WIN32
2015 sigset_t full, prev; 2271 sigset_t full, prev;
2016 sigfillset (&full); 2272 sigfillset (&full);
2037 sigfillset (&sa.sa_mask); 2293 sigfillset (&sa.sa_mask);
2038 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2039 sigaction (w->signum, &sa, 0); 2295 sigaction (w->signum, &sa, 0);
2040#endif 2296#endif
2041 } 2297 }
2298
2299 EV_FREQUENT_CHECK;
2042} 2300}
2043 2301
2044void noinline 2302void noinline
2045ev_signal_stop (EV_P_ ev_signal *w) 2303ev_signal_stop (EV_P_ ev_signal *w)
2046{ 2304{
2047 clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
2048 if (expect_false (!ev_is_active (w))) 2306 if (expect_false (!ev_is_active (w)))
2049 return; 2307 return;
2050 2308
2309 EV_FREQUENT_CHECK;
2310
2051 wlist_del (&signals [w->signum - 1].head, (WL)w); 2311 wlist_del (&signals [w->signum - 1].head, (WL)w);
2052 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
2053 2313
2054 if (!signals [w->signum - 1].head) 2314 if (!signals [w->signum - 1].head)
2055 signal (w->signum, SIG_DFL); 2315 signal (w->signum, SIG_DFL);
2316
2317 EV_FREQUENT_CHECK;
2056} 2318}
2057 2319
2058void 2320void
2059ev_child_start (EV_P_ ev_child *w) 2321ev_child_start (EV_P_ ev_child *w)
2060{ 2322{
2062 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2063#endif 2325#endif
2064 if (expect_false (ev_is_active (w))) 2326 if (expect_false (ev_is_active (w)))
2065 return; 2327 return;
2066 2328
2329 EV_FREQUENT_CHECK;
2330
2067 ev_start (EV_A_ (W)w, 1); 2331 ev_start (EV_A_ (W)w, 1);
2068 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2333
2334 EV_FREQUENT_CHECK;
2069} 2335}
2070 2336
2071void 2337void
2072ev_child_stop (EV_P_ ev_child *w) 2338ev_child_stop (EV_P_ ev_child *w)
2073{ 2339{
2074 clear_pending (EV_A_ (W)w); 2340 clear_pending (EV_A_ (W)w);
2075 if (expect_false (!ev_is_active (w))) 2341 if (expect_false (!ev_is_active (w)))
2076 return; 2342 return;
2077 2343
2344 EV_FREQUENT_CHECK;
2345
2078 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2079 ev_stop (EV_A_ (W)w); 2347 ev_stop (EV_A_ (W)w);
2348
2349 EV_FREQUENT_CHECK;
2080} 2350}
2081 2351
2082#if EV_STAT_ENABLE 2352#if EV_STAT_ENABLE
2083 2353
2084# ifdef _WIN32 2354# ifdef _WIN32
2102 if (w->wd < 0) 2372 if (w->wd < 0)
2103 { 2373 {
2104 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2374 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2105 2375
2106 /* monitor some parent directory for speedup hints */ 2376 /* monitor some parent directory for speedup hints */
2377 /* note that exceeding the hardcoded limit is not a correctness issue, */
2378 /* but an efficiency issue only */
2107 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2379 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2108 { 2380 {
2109 char path [4096]; 2381 char path [4096];
2110 strcpy (path, w->path); 2382 strcpy (path, w->path);
2111 2383
2310 else 2582 else
2311#endif 2583#endif
2312 ev_timer_start (EV_A_ &w->timer); 2584 ev_timer_start (EV_A_ &w->timer);
2313 2585
2314 ev_start (EV_A_ (W)w, 1); 2586 ev_start (EV_A_ (W)w, 1);
2587
2588 EV_FREQUENT_CHECK;
2315} 2589}
2316 2590
2317void 2591void
2318ev_stat_stop (EV_P_ ev_stat *w) 2592ev_stat_stop (EV_P_ ev_stat *w)
2319{ 2593{
2320 clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
2321 if (expect_false (!ev_is_active (w))) 2595 if (expect_false (!ev_is_active (w)))
2322 return; 2596 return;
2323 2597
2598 EV_FREQUENT_CHECK;
2599
2324#if EV_USE_INOTIFY 2600#if EV_USE_INOTIFY
2325 infy_del (EV_A_ w); 2601 infy_del (EV_A_ w);
2326#endif 2602#endif
2327 ev_timer_stop (EV_A_ &w->timer); 2603 ev_timer_stop (EV_A_ &w->timer);
2328 2604
2329 ev_stop (EV_A_ (W)w); 2605 ev_stop (EV_A_ (W)w);
2606
2607 EV_FREQUENT_CHECK;
2330} 2608}
2331#endif 2609#endif
2332 2610
2333#if EV_IDLE_ENABLE 2611#if EV_IDLE_ENABLE
2334void 2612void
2336{ 2614{
2337 if (expect_false (ev_is_active (w))) 2615 if (expect_false (ev_is_active (w)))
2338 return; 2616 return;
2339 2617
2340 pri_adjust (EV_A_ (W)w); 2618 pri_adjust (EV_A_ (W)w);
2619
2620 EV_FREQUENT_CHECK;
2341 2621
2342 { 2622 {
2343 int active = ++idlecnt [ABSPRI (w)]; 2623 int active = ++idlecnt [ABSPRI (w)];
2344 2624
2345 ++idleall; 2625 ++idleall;
2346 ev_start (EV_A_ (W)w, active); 2626 ev_start (EV_A_ (W)w, active);
2347 2627
2348 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2628 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2349 idles [ABSPRI (w)][active - 1] = w; 2629 idles [ABSPRI (w)][active - 1] = w;
2350 } 2630 }
2631
2632 EV_FREQUENT_CHECK;
2351} 2633}
2352 2634
2353void 2635void
2354ev_idle_stop (EV_P_ ev_idle *w) 2636ev_idle_stop (EV_P_ ev_idle *w)
2355{ 2637{
2356 clear_pending (EV_A_ (W)w); 2638 clear_pending (EV_A_ (W)w);
2357 if (expect_false (!ev_is_active (w))) 2639 if (expect_false (!ev_is_active (w)))
2358 return; 2640 return;
2359 2641
2642 EV_FREQUENT_CHECK;
2643
2360 { 2644 {
2361 int active = ((W)w)->active; 2645 int active = ev_active (w);
2362 2646
2363 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2647 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2364 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2648 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2365 2649
2366 ev_stop (EV_A_ (W)w); 2650 ev_stop (EV_A_ (W)w);
2367 --idleall; 2651 --idleall;
2368 } 2652 }
2653
2654 EV_FREQUENT_CHECK;
2369} 2655}
2370#endif 2656#endif
2371 2657
2372void 2658void
2373ev_prepare_start (EV_P_ ev_prepare *w) 2659ev_prepare_start (EV_P_ ev_prepare *w)
2374{ 2660{
2375 if (expect_false (ev_is_active (w))) 2661 if (expect_false (ev_is_active (w)))
2376 return; 2662 return;
2663
2664 EV_FREQUENT_CHECK;
2377 2665
2378 ev_start (EV_A_ (W)w, ++preparecnt); 2666 ev_start (EV_A_ (W)w, ++preparecnt);
2379 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2667 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2380 prepares [preparecnt - 1] = w; 2668 prepares [preparecnt - 1] = w;
2669
2670 EV_FREQUENT_CHECK;
2381} 2671}
2382 2672
2383void 2673void
2384ev_prepare_stop (EV_P_ ev_prepare *w) 2674ev_prepare_stop (EV_P_ ev_prepare *w)
2385{ 2675{
2386 clear_pending (EV_A_ (W)w); 2676 clear_pending (EV_A_ (W)w);
2387 if (expect_false (!ev_is_active (w))) 2677 if (expect_false (!ev_is_active (w)))
2388 return; 2678 return;
2389 2679
2680 EV_FREQUENT_CHECK;
2681
2390 { 2682 {
2391 int active = ((W)w)->active; 2683 int active = ev_active (w);
2684
2392 prepares [active - 1] = prepares [--preparecnt]; 2685 prepares [active - 1] = prepares [--preparecnt];
2393 ((W)prepares [active - 1])->active = active; 2686 ev_active (prepares [active - 1]) = active;
2394 } 2687 }
2395 2688
2396 ev_stop (EV_A_ (W)w); 2689 ev_stop (EV_A_ (W)w);
2690
2691 EV_FREQUENT_CHECK;
2397} 2692}
2398 2693
2399void 2694void
2400ev_check_start (EV_P_ ev_check *w) 2695ev_check_start (EV_P_ ev_check *w)
2401{ 2696{
2402 if (expect_false (ev_is_active (w))) 2697 if (expect_false (ev_is_active (w)))
2403 return; 2698 return;
2699
2700 EV_FREQUENT_CHECK;
2404 2701
2405 ev_start (EV_A_ (W)w, ++checkcnt); 2702 ev_start (EV_A_ (W)w, ++checkcnt);
2406 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2703 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2407 checks [checkcnt - 1] = w; 2704 checks [checkcnt - 1] = w;
2705
2706 EV_FREQUENT_CHECK;
2408} 2707}
2409 2708
2410void 2709void
2411ev_check_stop (EV_P_ ev_check *w) 2710ev_check_stop (EV_P_ ev_check *w)
2412{ 2711{
2413 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2414 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2415 return; 2714 return;
2416 2715
2716 EV_FREQUENT_CHECK;
2717
2417 { 2718 {
2418 int active = ((W)w)->active; 2719 int active = ev_active (w);
2720
2419 checks [active - 1] = checks [--checkcnt]; 2721 checks [active - 1] = checks [--checkcnt];
2420 ((W)checks [active - 1])->active = active; 2722 ev_active (checks [active - 1]) = active;
2421 } 2723 }
2422 2724
2423 ev_stop (EV_A_ (W)w); 2725 ev_stop (EV_A_ (W)w);
2726
2727 EV_FREQUENT_CHECK;
2424} 2728}
2425 2729
2426#if EV_EMBED_ENABLE 2730#if EV_EMBED_ENABLE
2427void noinline 2731void noinline
2428ev_embed_sweep (EV_P_ ev_embed *w) 2732ev_embed_sweep (EV_P_ ev_embed *w)
2475 struct ev_loop *loop = w->other; 2779 struct ev_loop *loop = w->other;
2476 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2477 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2478 } 2782 }
2479 2783
2784 EV_FREQUENT_CHECK;
2785
2480 ev_set_priority (&w->io, ev_priority (w)); 2786 ev_set_priority (&w->io, ev_priority (w));
2481 ev_io_start (EV_A_ &w->io); 2787 ev_io_start (EV_A_ &w->io);
2482 2788
2483 ev_prepare_init (&w->prepare, embed_prepare_cb); 2789 ev_prepare_init (&w->prepare, embed_prepare_cb);
2484 ev_set_priority (&w->prepare, EV_MINPRI); 2790 ev_set_priority (&w->prepare, EV_MINPRI);
2485 ev_prepare_start (EV_A_ &w->prepare); 2791 ev_prepare_start (EV_A_ &w->prepare);
2486 2792
2487 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2488 2794
2489 ev_start (EV_A_ (W)w, 1); 2795 ev_start (EV_A_ (W)w, 1);
2796
2797 EV_FREQUENT_CHECK;
2490} 2798}
2491 2799
2492void 2800void
2493ev_embed_stop (EV_P_ ev_embed *w) 2801ev_embed_stop (EV_P_ ev_embed *w)
2494{ 2802{
2495 clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
2496 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
2497 return; 2805 return;
2498 2806
2807 EV_FREQUENT_CHECK;
2808
2499 ev_io_stop (EV_A_ &w->io); 2809 ev_io_stop (EV_A_ &w->io);
2500 ev_prepare_stop (EV_A_ &w->prepare); 2810 ev_prepare_stop (EV_A_ &w->prepare);
2501 2811
2502 ev_stop (EV_A_ (W)w); 2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2503} 2815}
2504#endif 2816#endif
2505 2817
2506#if EV_FORK_ENABLE 2818#if EV_FORK_ENABLE
2507void 2819void
2508ev_fork_start (EV_P_ ev_fork *w) 2820ev_fork_start (EV_P_ ev_fork *w)
2509{ 2821{
2510 if (expect_false (ev_is_active (w))) 2822 if (expect_false (ev_is_active (w)))
2511 return; 2823 return;
2824
2825 EV_FREQUENT_CHECK;
2512 2826
2513 ev_start (EV_A_ (W)w, ++forkcnt); 2827 ev_start (EV_A_ (W)w, ++forkcnt);
2514 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2828 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2515 forks [forkcnt - 1] = w; 2829 forks [forkcnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2516} 2832}
2517 2833
2518void 2834void
2519ev_fork_stop (EV_P_ ev_fork *w) 2835ev_fork_stop (EV_P_ ev_fork *w)
2520{ 2836{
2521 clear_pending (EV_A_ (W)w); 2837 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 2838 if (expect_false (!ev_is_active (w)))
2523 return; 2839 return;
2524 2840
2841 EV_FREQUENT_CHECK;
2842
2525 { 2843 {
2526 int active = ((W)w)->active; 2844 int active = ev_active (w);
2845
2527 forks [active - 1] = forks [--forkcnt]; 2846 forks [active - 1] = forks [--forkcnt];
2528 ((W)forks [active - 1])->active = active; 2847 ev_active (forks [active - 1]) = active;
2529 } 2848 }
2530 2849
2531 ev_stop (EV_A_ (W)w); 2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2532} 2853}
2533#endif 2854#endif
2534 2855
2535#if EV_ASYNC_ENABLE 2856#if EV_ASYNC_ENABLE
2536void 2857void
2538{ 2859{
2539 if (expect_false (ev_is_active (w))) 2860 if (expect_false (ev_is_active (w)))
2540 return; 2861 return;
2541 2862
2542 evpipe_init (EV_A); 2863 evpipe_init (EV_A);
2864
2865 EV_FREQUENT_CHECK;
2543 2866
2544 ev_start (EV_A_ (W)w, ++asynccnt); 2867 ev_start (EV_A_ (W)w, ++asynccnt);
2545 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2868 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2546 asyncs [asynccnt - 1] = w; 2869 asyncs [asynccnt - 1] = w;
2870
2871 EV_FREQUENT_CHECK;
2547} 2872}
2548 2873
2549void 2874void
2550ev_async_stop (EV_P_ ev_async *w) 2875ev_async_stop (EV_P_ ev_async *w)
2551{ 2876{
2552 clear_pending (EV_A_ (W)w); 2877 clear_pending (EV_A_ (W)w);
2553 if (expect_false (!ev_is_active (w))) 2878 if (expect_false (!ev_is_active (w)))
2554 return; 2879 return;
2555 2880
2881 EV_FREQUENT_CHECK;
2882
2556 { 2883 {
2557 int active = ((W)w)->active; 2884 int active = ev_active (w);
2885
2558 asyncs [active - 1] = asyncs [--asynccnt]; 2886 asyncs [active - 1] = asyncs [--asynccnt];
2559 ((W)asyncs [active - 1])->active = active; 2887 ev_active (asyncs [active - 1]) = active;
2560 } 2888 }
2561 2889
2562 ev_stop (EV_A_ (W)w); 2890 ev_stop (EV_A_ (W)w);
2891
2892 EV_FREQUENT_CHECK;
2563} 2893}
2564 2894
2565void 2895void
2566ev_async_send (EV_P_ ev_async *w) 2896ev_async_send (EV_P_ ev_async *w)
2567{ 2897{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines