ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.224 by root, Wed Apr 9 22:07:50 2008 UTC vs.
Revision 1.267 by root, Mon Oct 27 11:08:29 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
238#endif 247#endif
239 248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 286# include <sys/select.h>
260# endif 287# endif
261#endif 288#endif
262 289
263#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
264# include <sys/inotify.h> 292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
265#endif 298#endif
266 299
267#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 301# include <winsock.h>
269#endif 302#endif
279} 312}
280# endif 313# endif
281#endif 314#endif
282 315
283/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
284 323
285/* 324/*
286 * This is used to avoid floating point rounding problems. 325 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 326 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 327 * to ensure progress, time-wise, even when rounding
325 364
326typedef ev_watcher *W; 365typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
329 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
330#if EV_USE_MONOTONIC 372#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 374/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 376#endif
407typedef struct 449typedef struct
408{ 450{
409 WL head; 451 WL head;
410 unsigned char events; 452 unsigned char events;
411 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char egen; /* generation counter to counter epoll bugs */
412#if EV_SELECT_IS_WINSOCKET 456#if EV_SELECT_IS_WINSOCKET
413 SOCKET handle; 457 SOCKET handle;
414#endif 458#endif
415} ANFD; 459} ANFD;
416 460
419 W w; 463 W w;
420 int events; 464 int events;
421} ANPENDING; 465} ANPENDING;
422 466
423#if EV_USE_INOTIFY 467#if EV_USE_INOTIFY
468/* hash table entry per inotify-id */
424typedef struct 469typedef struct
425{ 470{
426 WL head; 471 WL head;
427} ANFS; 472} ANFS;
473#endif
474
475/* Heap Entry */
476#if EV_HEAP_CACHE_AT
477 typedef struct {
478 ev_tstamp at;
479 WT w;
480 } ANHE;
481
482 #define ANHE_w(he) (he).w /* access watcher, read-write */
483 #define ANHE_at(he) (he).at /* access cached at, read-only */
484 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
485#else
486 typedef WT ANHE;
487
488 #define ANHE_w(he) (he)
489 #define ANHE_at(he) (he)->at
490 #define ANHE_at_cache(he)
428#endif 491#endif
429 492
430#if EV_MULTIPLICITY 493#if EV_MULTIPLICITY
431 494
432 struct ev_loop 495 struct ev_loop
510 struct timeval tv; 573 struct timeval tv;
511 574
512 tv.tv_sec = (time_t)delay; 575 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 576 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514 577
578 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
579 /* somehting nto guaranteed by newer posix versions, but guaranteed */
580 /* by older ones */
515 select (0, 0, 0, 0, &tv); 581 select (0, 0, 0, 0, &tv);
516#endif 582#endif
517 } 583 }
518} 584}
519 585
520/*****************************************************************************/ 586/*****************************************************************************/
587
588#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
521 589
522int inline_size 590int inline_size
523array_nextsize (int elem, int cur, int cnt) 591array_nextsize (int elem, int cur, int cnt)
524{ 592{
525 int ncur = cur + 1; 593 int ncur = cur + 1;
526 594
527 do 595 do
528 ncur <<= 1; 596 ncur <<= 1;
529 while (cnt > ncur); 597 while (cnt > ncur);
530 598
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 599 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 600 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 601 {
534 ncur *= elem; 602 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 603 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 604 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 605 ncur /= elem;
538 } 606 }
539 607
540 return ncur; 608 return ncur;
544array_realloc (int elem, void *base, int *cur, int cnt) 612array_realloc (int elem, void *base, int *cur, int cnt)
545{ 613{
546 *cur = array_nextsize (elem, *cur, cnt); 614 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur); 615 return ev_realloc (base, elem * *cur);
548} 616}
617
618#define array_init_zero(base,count) \
619 memset ((void *)(base), 0, sizeof (*(base)) * (count))
549 620
550#define array_needsize(type,base,cur,cnt,init) \ 621#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \ 622 if (expect_false ((cnt) > (cur))) \
552 { \ 623 { \
553 int ocur_ = (cur); \ 624 int ocur_ = (cur); \
597 ev_feed_event (EV_A_ events [i], type); 668 ev_feed_event (EV_A_ events [i], type);
598} 669}
599 670
600/*****************************************************************************/ 671/*****************************************************************************/
601 672
602void inline_size
603anfds_init (ANFD *base, int count)
604{
605 while (count--)
606 {
607 base->head = 0;
608 base->events = EV_NONE;
609 base->reify = 0;
610
611 ++base;
612 }
613}
614
615void inline_speed 673void inline_speed
616fd_event (EV_P_ int fd, int revents) 674fd_event (EV_P_ int fd, int revents)
617{ 675{
618 ANFD *anfd = anfds + fd; 676 ANFD *anfd = anfds + fd;
619 ev_io *w; 677 ev_io *w;
651 events |= (unsigned char)w->events; 709 events |= (unsigned char)w->events;
652 710
653#if EV_SELECT_IS_WINSOCKET 711#if EV_SELECT_IS_WINSOCKET
654 if (events) 712 if (events)
655 { 713 {
656 unsigned long argp; 714 unsigned long arg;
657 #ifdef EV_FD_TO_WIN32_HANDLE 715 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 716 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else 717 #else
660 anfd->handle = _get_osfhandle (fd); 718 anfd->handle = _get_osfhandle (fd);
661 #endif 719 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 720 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
663 } 721 }
664#endif 722#endif
665 723
666 { 724 {
667 unsigned char o_events = anfd->events; 725 unsigned char o_events = anfd->events;
720{ 778{
721 int fd; 779 int fd;
722 780
723 for (fd = 0; fd < anfdmax; ++fd) 781 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 782 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 783 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 784 fd_kill (EV_A_ fd);
727} 785}
728 786
729/* called on ENOMEM in select/poll to kill some fds and retry */ 787/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 788static void noinline
754 } 812 }
755} 813}
756 814
757/*****************************************************************************/ 815/*****************************************************************************/
758 816
817/*
818 * the heap functions want a real array index. array index 0 uis guaranteed to not
819 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
820 * the branching factor of the d-tree.
821 */
822
823/*
824 * at the moment we allow libev the luxury of two heaps,
825 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
826 * which is more cache-efficient.
827 * the difference is about 5% with 50000+ watchers.
828 */
829#if EV_USE_4HEAP
830
831#define DHEAP 4
832#define HEAP0 (DHEAP - 1) /* index of first element in heap */
833#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
834#define UPHEAP_DONE(p,k) ((p) == (k))
835
836/* away from the root */
759void inline_speed 837void inline_speed
760upheap (WT *heap, int k) 838downheap (ANHE *heap, int N, int k)
761{ 839{
762 WT w = heap [k]; 840 ANHE he = heap [k];
841 ANHE *E = heap + N + HEAP0;
763 842
764 while (k) 843 for (;;)
765 { 844 {
766 int p = (k - 1) >> 1; 845 ev_tstamp minat;
846 ANHE *minpos;
847 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
767 848
768 if (heap [p]->at <= w->at) 849 /* find minimum child */
850 if (expect_true (pos + DHEAP - 1 < E))
851 {
852 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
854 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
855 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
856 }
857 else if (pos < E)
858 {
859 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
860 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
861 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
862 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
863 }
864 else
769 break; 865 break;
770 866
867 if (ANHE_at (he) <= minat)
868 break;
869
870 heap [k] = *minpos;
871 ev_active (ANHE_w (*minpos)) = k;
872
873 k = minpos - heap;
874 }
875
876 heap [k] = he;
877 ev_active (ANHE_w (he)) = k;
878}
879
880#else /* 4HEAP */
881
882#define HEAP0 1
883#define HPARENT(k) ((k) >> 1)
884#define UPHEAP_DONE(p,k) (!(p))
885
886/* away from the root */
887void inline_speed
888downheap (ANHE *heap, int N, int k)
889{
890 ANHE he = heap [k];
891
892 for (;;)
893 {
894 int c = k << 1;
895
896 if (c > N + HEAP0 - 1)
897 break;
898
899 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
900 ? 1 : 0;
901
902 if (ANHE_at (he) <= ANHE_at (heap [c]))
903 break;
904
905 heap [k] = heap [c];
906 ev_active (ANHE_w (heap [k])) = k;
907
908 k = c;
909 }
910
911 heap [k] = he;
912 ev_active (ANHE_w (he)) = k;
913}
914#endif
915
916/* towards the root */
917void inline_speed
918upheap (ANHE *heap, int k)
919{
920 ANHE he = heap [k];
921
922 for (;;)
923 {
924 int p = HPARENT (k);
925
926 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
927 break;
928
771 heap [k] = heap [p]; 929 heap [k] = heap [p];
772 ((W)heap [k])->active = k + 1; 930 ev_active (ANHE_w (heap [k])) = k;
773 k = p; 931 k = p;
774 } 932 }
775 933
776 heap [k] = w; 934 heap [k] = he;
777 ((W)heap [k])->active = k + 1; 935 ev_active (ANHE_w (he)) = k;
778}
779
780void inline_speed
781downheap (WT *heap, int N, int k)
782{
783 WT w = heap [k];
784
785 for (;;)
786 {
787 int c = (k << 1) + 1;
788
789 if (c >= N)
790 break;
791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
798 heap [k] = heap [c];
799 ((W)heap [k])->active = k + 1;
800
801 k = c;
802 }
803
804 heap [k] = w;
805 ((W)heap [k])->active = k + 1;
806} 936}
807 937
808void inline_size 938void inline_size
809adjustheap (WT *heap, int N, int k) 939adjustheap (ANHE *heap, int N, int k)
810{ 940{
941 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
811 upheap (heap, k); 942 upheap (heap, k);
943 else
812 downheap (heap, N, k); 944 downheap (heap, N, k);
945}
946
947/* rebuild the heap: this function is used only once and executed rarely */
948void inline_size
949reheap (ANHE *heap, int N)
950{
951 int i;
952
953 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
954 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
955 for (i = 0; i < N; ++i)
956 upheap (heap, i + HEAP0);
813} 957}
814 958
815/*****************************************************************************/ 959/*****************************************************************************/
816 960
817typedef struct 961typedef struct
823static ANSIG *signals; 967static ANSIG *signals;
824static int signalmax; 968static int signalmax;
825 969
826static EV_ATOMIC_T gotsig; 970static EV_ATOMIC_T gotsig;
827 971
828void inline_size
829signals_init (ANSIG *base, int count)
830{
831 while (count--)
832 {
833 base->head = 0;
834 base->gotsig = 0;
835
836 ++base;
837 }
838}
839
840/*****************************************************************************/ 972/*****************************************************************************/
841 973
842void inline_speed 974void inline_speed
843fd_intern (int fd) 975fd_intern (int fd)
844{ 976{
845#ifdef _WIN32 977#ifdef _WIN32
846 int arg = 1; 978 unsigned long arg = 1;
847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 979 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
848#else 980#else
849 fcntl (fd, F_SETFD, FD_CLOEXEC); 981 fcntl (fd, F_SETFD, FD_CLOEXEC);
850 fcntl (fd, F_SETFL, O_NONBLOCK); 982 fcntl (fd, F_SETFL, O_NONBLOCK);
851#endif 983#endif
906pipecb (EV_P_ ev_io *iow, int revents) 1038pipecb (EV_P_ ev_io *iow, int revents)
907{ 1039{
908#if EV_USE_EVENTFD 1040#if EV_USE_EVENTFD
909 if (evfd >= 0) 1041 if (evfd >= 0)
910 { 1042 {
911 uint64_t counter = 1; 1043 uint64_t counter;
912 read (evfd, &counter, sizeof (uint64_t)); 1044 read (evfd, &counter, sizeof (uint64_t));
913 } 1045 }
914 else 1046 else
915#endif 1047#endif
916 { 1048 {
1185 if (!(flags & EVFLAG_NOENV) 1317 if (!(flags & EVFLAG_NOENV)
1186 && !enable_secure () 1318 && !enable_secure ()
1187 && getenv ("LIBEV_FLAGS")) 1319 && getenv ("LIBEV_FLAGS"))
1188 flags = atoi (getenv ("LIBEV_FLAGS")); 1320 flags = atoi (getenv ("LIBEV_FLAGS"));
1189 1321
1190 if (!(flags & 0x0000ffffUL)) 1322 if (!(flags & 0x0000ffffU))
1191 flags |= ev_recommended_backends (); 1323 flags |= ev_recommended_backends ();
1192 1324
1193#if EV_USE_PORT 1325#if EV_USE_PORT
1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1326 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1195#endif 1327#endif
1283#endif 1415#endif
1284 1416
1285 backend = 0; 1417 backend = 0;
1286} 1418}
1287 1419
1420#if EV_USE_INOTIFY
1288void inline_size infy_fork (EV_P); 1421void inline_size infy_fork (EV_P);
1422#endif
1289 1423
1290void inline_size 1424void inline_size
1291loop_fork (EV_P) 1425loop_fork (EV_P)
1292{ 1426{
1293#if EV_USE_PORT 1427#if EV_USE_PORT
1333 1467
1334 postfork = 0; 1468 postfork = 0;
1335} 1469}
1336 1470
1337#if EV_MULTIPLICITY 1471#if EV_MULTIPLICITY
1472
1338struct ev_loop * 1473struct ev_loop *
1339ev_loop_new (unsigned int flags) 1474ev_loop_new (unsigned int flags)
1340{ 1475{
1341 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1476 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1342 1477
1361ev_loop_fork (EV_P) 1496ev_loop_fork (EV_P)
1362{ 1497{
1363 postfork = 1; /* must be in line with ev_default_fork */ 1498 postfork = 1; /* must be in line with ev_default_fork */
1364} 1499}
1365 1500
1501#if EV_VERIFY
1502static void noinline
1503verify_watcher (EV_P_ W w)
1504{
1505 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1506
1507 if (w->pending)
1508 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1509}
1510
1511static void noinline
1512verify_heap (EV_P_ ANHE *heap, int N)
1513{
1514 int i;
1515
1516 for (i = HEAP0; i < N + HEAP0; ++i)
1517 {
1518 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1519 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1520 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1521
1522 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1523 }
1524}
1525
1526static void noinline
1527array_verify (EV_P_ W *ws, int cnt)
1528{
1529 while (cnt--)
1530 {
1531 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1532 verify_watcher (EV_A_ ws [cnt]);
1533 }
1534}
1535#endif
1536
1537void
1538ev_loop_verify (EV_P)
1539{
1540#if EV_VERIFY
1541 int i;
1542 WL w;
1543
1544 assert (activecnt >= -1);
1545
1546 assert (fdchangemax >= fdchangecnt);
1547 for (i = 0; i < fdchangecnt; ++i)
1548 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1549
1550 assert (anfdmax >= 0);
1551 for (i = 0; i < anfdmax; ++i)
1552 for (w = anfds [i].head; w; w = w->next)
1553 {
1554 verify_watcher (EV_A_ (W)w);
1555 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1556 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1557 }
1558
1559 assert (timermax >= timercnt);
1560 verify_heap (EV_A_ timers, timercnt);
1561
1562#if EV_PERIODIC_ENABLE
1563 assert (periodicmax >= periodiccnt);
1564 verify_heap (EV_A_ periodics, periodiccnt);
1565#endif
1566
1567 for (i = NUMPRI; i--; )
1568 {
1569 assert (pendingmax [i] >= pendingcnt [i]);
1570#if EV_IDLE_ENABLE
1571 assert (idleall >= 0);
1572 assert (idlemax [i] >= idlecnt [i]);
1573 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1574#endif
1575 }
1576
1577#if EV_FORK_ENABLE
1578 assert (forkmax >= forkcnt);
1579 array_verify (EV_A_ (W *)forks, forkcnt);
1580#endif
1581
1582#if EV_ASYNC_ENABLE
1583 assert (asyncmax >= asynccnt);
1584 array_verify (EV_A_ (W *)asyncs, asynccnt);
1585#endif
1586
1587 assert (preparemax >= preparecnt);
1588 array_verify (EV_A_ (W *)prepares, preparecnt);
1589
1590 assert (checkmax >= checkcnt);
1591 array_verify (EV_A_ (W *)checks, checkcnt);
1592
1593# if 0
1594 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1595 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1366#endif 1596# endif
1597#endif
1598}
1599
1600#endif /* multiplicity */
1367 1601
1368#if EV_MULTIPLICITY 1602#if EV_MULTIPLICITY
1369struct ev_loop * 1603struct ev_loop *
1370ev_default_loop_init (unsigned int flags) 1604ev_default_loop_init (unsigned int flags)
1371#else 1605#else
1404{ 1638{
1405#if EV_MULTIPLICITY 1639#if EV_MULTIPLICITY
1406 struct ev_loop *loop = ev_default_loop_ptr; 1640 struct ev_loop *loop = ev_default_loop_ptr;
1407#endif 1641#endif
1408 1642
1643 ev_default_loop_ptr = 0;
1644
1409#ifndef _WIN32 1645#ifndef _WIN32
1410 ev_ref (EV_A); /* child watcher */ 1646 ev_ref (EV_A); /* child watcher */
1411 ev_signal_stop (EV_A_ &childev); 1647 ev_signal_stop (EV_A_ &childev);
1412#endif 1648#endif
1413 1649
1447 { 1683 {
1448 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1684 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1449 1685
1450 p->w->pending = 0; 1686 p->w->pending = 0;
1451 EV_CB_INVOKE (p->w, p->events); 1687 EV_CB_INVOKE (p->w, p->events);
1688 EV_FREQUENT_CHECK;
1452 } 1689 }
1453 } 1690 }
1454} 1691}
1455
1456void inline_size
1457timers_reify (EV_P)
1458{
1459 while (timercnt && ((WT)timers [0])->at <= mn_now)
1460 {
1461 ev_timer *w = (ev_timer *)timers [0];
1462
1463 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1464
1465 /* first reschedule or stop timer */
1466 if (w->repeat)
1467 {
1468 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1469
1470 ((WT)w)->at += w->repeat;
1471 if (((WT)w)->at < mn_now)
1472 ((WT)w)->at = mn_now;
1473
1474 downheap (timers, timercnt, 0);
1475 }
1476 else
1477 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1478
1479 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1480 }
1481}
1482
1483#if EV_PERIODIC_ENABLE
1484void inline_size
1485periodics_reify (EV_P)
1486{
1487 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1488 {
1489 ev_periodic *w = (ev_periodic *)periodics [0];
1490
1491 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1492
1493 /* first reschedule or stop timer */
1494 if (w->reschedule_cb)
1495 {
1496 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1497 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1498 downheap (periodics, periodiccnt, 0);
1499 }
1500 else if (w->interval)
1501 {
1502 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1503 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1504 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1505 downheap (periodics, periodiccnt, 0);
1506 }
1507 else
1508 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1509
1510 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1511 }
1512}
1513
1514static void noinline
1515periodics_reschedule (EV_P)
1516{
1517 int i;
1518
1519 /* adjust periodics after time jump */
1520 for (i = 0; i < periodiccnt; ++i)
1521 {
1522 ev_periodic *w = (ev_periodic *)periodics [i];
1523
1524 if (w->reschedule_cb)
1525 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1526 else if (w->interval)
1527 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1528 }
1529
1530 /* now rebuild the heap */
1531 for (i = periodiccnt >> 1; i--; )
1532 downheap (periodics, periodiccnt, i);
1533}
1534#endif
1535 1692
1536#if EV_IDLE_ENABLE 1693#if EV_IDLE_ENABLE
1537void inline_size 1694void inline_size
1538idle_reify (EV_P) 1695idle_reify (EV_P)
1539{ 1696{
1551 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1708 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1552 break; 1709 break;
1553 } 1710 }
1554 } 1711 }
1555 } 1712 }
1713}
1714#endif
1715
1716void inline_size
1717timers_reify (EV_P)
1718{
1719 EV_FREQUENT_CHECK;
1720
1721 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1722 {
1723 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1724
1725 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1726
1727 /* first reschedule or stop timer */
1728 if (w->repeat)
1729 {
1730 ev_at (w) += w->repeat;
1731 if (ev_at (w) < mn_now)
1732 ev_at (w) = mn_now;
1733
1734 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1735
1736 ANHE_at_cache (timers [HEAP0]);
1737 downheap (timers, timercnt, HEAP0);
1738 }
1739 else
1740 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1741
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1744 }
1745}
1746
1747#if EV_PERIODIC_ENABLE
1748void inline_size
1749periodics_reify (EV_P)
1750{
1751 EV_FREQUENT_CHECK;
1752
1753 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1754 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1756
1757 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1758
1759 /* first reschedule or stop timer */
1760 if (w->reschedule_cb)
1761 {
1762 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1763
1764 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1765
1766 ANHE_at_cache (periodics [HEAP0]);
1767 downheap (periodics, periodiccnt, HEAP0);
1768 }
1769 else if (w->interval)
1770 {
1771 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1772 /* if next trigger time is not sufficiently in the future, put it there */
1773 /* this might happen because of floating point inexactness */
1774 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1775 {
1776 ev_at (w) += w->interval;
1777
1778 /* if interval is unreasonably low we might still have a time in the past */
1779 /* so correct this. this will make the periodic very inexact, but the user */
1780 /* has effectively asked to get triggered more often than possible */
1781 if (ev_at (w) < ev_rt_now)
1782 ev_at (w) = ev_rt_now;
1783 }
1784
1785 ANHE_at_cache (periodics [HEAP0]);
1786 downheap (periodics, periodiccnt, HEAP0);
1787 }
1788 else
1789 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1790
1791 EV_FREQUENT_CHECK;
1792 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1793 }
1794}
1795
1796static void noinline
1797periodics_reschedule (EV_P)
1798{
1799 int i;
1800
1801 /* adjust periodics after time jump */
1802 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1803 {
1804 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1805
1806 if (w->reschedule_cb)
1807 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1808 else if (w->interval)
1809 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1810
1811 ANHE_at_cache (periodics [i]);
1812 }
1813
1814 reheap (periodics, periodiccnt);
1556} 1815}
1557#endif 1816#endif
1558 1817
1559void inline_speed 1818void inline_speed
1560time_update (EV_P_ ev_tstamp max_block) 1819time_update (EV_P_ ev_tstamp max_block)
1589 */ 1848 */
1590 for (i = 4; --i; ) 1849 for (i = 4; --i; )
1591 { 1850 {
1592 rtmn_diff = ev_rt_now - mn_now; 1851 rtmn_diff = ev_rt_now - mn_now;
1593 1852
1594 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1853 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1595 return; /* all is well */ 1854 return; /* all is well */
1596 1855
1597 ev_rt_now = ev_time (); 1856 ev_rt_now = ev_time ();
1598 mn_now = get_clock (); 1857 mn_now = get_clock ();
1599 now_floor = mn_now; 1858 now_floor = mn_now;
1615#if EV_PERIODIC_ENABLE 1874#if EV_PERIODIC_ENABLE
1616 periodics_reschedule (EV_A); 1875 periodics_reschedule (EV_A);
1617#endif 1876#endif
1618 /* adjust timers. this is easy, as the offset is the same for all of them */ 1877 /* adjust timers. this is easy, as the offset is the same for all of them */
1619 for (i = 0; i < timercnt; ++i) 1878 for (i = 0; i < timercnt; ++i)
1879 {
1880 ANHE *he = timers + i + HEAP0;
1620 ((WT)timers [i])->at += ev_rt_now - mn_now; 1881 ANHE_w (*he)->at += ev_rt_now - mn_now;
1882 ANHE_at_cache (*he);
1883 }
1621 } 1884 }
1622 1885
1623 mn_now = ev_rt_now; 1886 mn_now = ev_rt_now;
1624 } 1887 }
1625} 1888}
1634ev_unref (EV_P) 1897ev_unref (EV_P)
1635{ 1898{
1636 --activecnt; 1899 --activecnt;
1637} 1900}
1638 1901
1902void
1903ev_now_update (EV_P)
1904{
1905 time_update (EV_A_ 1e100);
1906}
1907
1639static int loop_done; 1908static int loop_done;
1640 1909
1641void 1910void
1642ev_loop (EV_P_ int flags) 1911ev_loop (EV_P_ int flags)
1643{ 1912{
1645 1914
1646 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1915 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1647 1916
1648 do 1917 do
1649 { 1918 {
1919#if EV_VERIFY >= 2
1920 ev_loop_verify (EV_A);
1921#endif
1922
1650#ifndef _WIN32 1923#ifndef _WIN32
1651 if (expect_false (curpid)) /* penalise the forking check even more */ 1924 if (expect_false (curpid)) /* penalise the forking check even more */
1652 if (expect_false (getpid () != curpid)) 1925 if (expect_false (getpid () != curpid))
1653 { 1926 {
1654 curpid = getpid (); 1927 curpid = getpid ();
1695 1968
1696 waittime = MAX_BLOCKTIME; 1969 waittime = MAX_BLOCKTIME;
1697 1970
1698 if (timercnt) 1971 if (timercnt)
1699 { 1972 {
1700 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1973 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1701 if (waittime > to) waittime = to; 1974 if (waittime > to) waittime = to;
1702 } 1975 }
1703 1976
1704#if EV_PERIODIC_ENABLE 1977#if EV_PERIODIC_ENABLE
1705 if (periodiccnt) 1978 if (periodiccnt)
1706 { 1979 {
1707 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1980 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1708 if (waittime > to) waittime = to; 1981 if (waittime > to) waittime = to;
1709 } 1982 }
1710#endif 1983#endif
1711 1984
1712 if (expect_false (waittime < timeout_blocktime)) 1985 if (expect_false (waittime < timeout_blocktime))
1848 2121
1849 if (expect_false (ev_is_active (w))) 2122 if (expect_false (ev_is_active (w)))
1850 return; 2123 return;
1851 2124
1852 assert (("ev_io_start called with negative fd", fd >= 0)); 2125 assert (("ev_io_start called with negative fd", fd >= 0));
2126 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2127
2128 EV_FREQUENT_CHECK;
1853 2129
1854 ev_start (EV_A_ (W)w, 1); 2130 ev_start (EV_A_ (W)w, 1);
1855 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2131 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1856 wlist_add (&anfds[fd].head, (WL)w); 2132 wlist_add (&anfds[fd].head, (WL)w);
1857 2133
1858 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2134 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1859 w->events &= ~EV_IOFDSET; 2135 w->events &= ~EV_IOFDSET;
2136
2137 EV_FREQUENT_CHECK;
1860} 2138}
1861 2139
1862void noinline 2140void noinline
1863ev_io_stop (EV_P_ ev_io *w) 2141ev_io_stop (EV_P_ ev_io *w)
1864{ 2142{
1865 clear_pending (EV_A_ (W)w); 2143 clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w))) 2144 if (expect_false (!ev_is_active (w)))
1867 return; 2145 return;
1868 2146
1869 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2147 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2148
2149 EV_FREQUENT_CHECK;
1870 2150
1871 wlist_del (&anfds[w->fd].head, (WL)w); 2151 wlist_del (&anfds[w->fd].head, (WL)w);
1872 ev_stop (EV_A_ (W)w); 2152 ev_stop (EV_A_ (W)w);
1873 2153
1874 fd_change (EV_A_ w->fd, 1); 2154 fd_change (EV_A_ w->fd, 1);
2155
2156 EV_FREQUENT_CHECK;
1875} 2157}
1876 2158
1877void noinline 2159void noinline
1878ev_timer_start (EV_P_ ev_timer *w) 2160ev_timer_start (EV_P_ ev_timer *w)
1879{ 2161{
1880 if (expect_false (ev_is_active (w))) 2162 if (expect_false (ev_is_active (w)))
1881 return; 2163 return;
1882 2164
1883 ((WT)w)->at += mn_now; 2165 ev_at (w) += mn_now;
1884 2166
1885 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2167 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1886 2168
2169 EV_FREQUENT_CHECK;
2170
2171 ++timercnt;
1887 ev_start (EV_A_ (W)w, ++timercnt); 2172 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1888 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2173 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1889 timers [timercnt - 1] = (WT)w; 2174 ANHE_w (timers [ev_active (w)]) = (WT)w;
1890 upheap (timers, timercnt - 1); 2175 ANHE_at_cache (timers [ev_active (w)]);
2176 upheap (timers, ev_active (w));
1891 2177
2178 EV_FREQUENT_CHECK;
2179
1892 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2180 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1893} 2181}
1894 2182
1895void noinline 2183void noinline
1896ev_timer_stop (EV_P_ ev_timer *w) 2184ev_timer_stop (EV_P_ ev_timer *w)
1897{ 2185{
1898 clear_pending (EV_A_ (W)w); 2186 clear_pending (EV_A_ (W)w);
1899 if (expect_false (!ev_is_active (w))) 2187 if (expect_false (!ev_is_active (w)))
1900 return; 2188 return;
1901 2189
1902 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2190 EV_FREQUENT_CHECK;
1903 2191
1904 { 2192 {
1905 int active = ((W)w)->active; 2193 int active = ev_active (w);
1906 2194
2195 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2196
2197 --timercnt;
2198
1907 if (expect_true (--active < --timercnt)) 2199 if (expect_true (active < timercnt + HEAP0))
1908 { 2200 {
1909 timers [active] = timers [timercnt]; 2201 timers [active] = timers [timercnt + HEAP0];
1910 adjustheap (timers, timercnt, active); 2202 adjustheap (timers, timercnt, active);
1911 } 2203 }
1912 } 2204 }
1913 2205
1914 ((WT)w)->at -= mn_now; 2206 EV_FREQUENT_CHECK;
2207
2208 ev_at (w) -= mn_now;
1915 2209
1916 ev_stop (EV_A_ (W)w); 2210 ev_stop (EV_A_ (W)w);
1917} 2211}
1918 2212
1919void noinline 2213void noinline
1920ev_timer_again (EV_P_ ev_timer *w) 2214ev_timer_again (EV_P_ ev_timer *w)
1921{ 2215{
2216 EV_FREQUENT_CHECK;
2217
1922 if (ev_is_active (w)) 2218 if (ev_is_active (w))
1923 { 2219 {
1924 if (w->repeat) 2220 if (w->repeat)
1925 { 2221 {
1926 ((WT)w)->at = mn_now + w->repeat; 2222 ev_at (w) = mn_now + w->repeat;
2223 ANHE_at_cache (timers [ev_active (w)]);
1927 adjustheap (timers, timercnt, ((W)w)->active - 1); 2224 adjustheap (timers, timercnt, ev_active (w));
1928 } 2225 }
1929 else 2226 else
1930 ev_timer_stop (EV_A_ w); 2227 ev_timer_stop (EV_A_ w);
1931 } 2228 }
1932 else if (w->repeat) 2229 else if (w->repeat)
1933 { 2230 {
1934 w->at = w->repeat; 2231 ev_at (w) = w->repeat;
1935 ev_timer_start (EV_A_ w); 2232 ev_timer_start (EV_A_ w);
1936 } 2233 }
2234
2235 EV_FREQUENT_CHECK;
1937} 2236}
1938 2237
1939#if EV_PERIODIC_ENABLE 2238#if EV_PERIODIC_ENABLE
1940void noinline 2239void noinline
1941ev_periodic_start (EV_P_ ev_periodic *w) 2240ev_periodic_start (EV_P_ ev_periodic *w)
1942{ 2241{
1943 if (expect_false (ev_is_active (w))) 2242 if (expect_false (ev_is_active (w)))
1944 return; 2243 return;
1945 2244
1946 if (w->reschedule_cb) 2245 if (w->reschedule_cb)
1947 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2246 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1948 else if (w->interval) 2247 else if (w->interval)
1949 { 2248 {
1950 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2249 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1951 /* this formula differs from the one in periodic_reify because we do not always round up */ 2250 /* this formula differs from the one in periodic_reify because we do not always round up */
1952 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2251 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1953 } 2252 }
1954 else 2253 else
1955 ((WT)w)->at = w->offset; 2254 ev_at (w) = w->offset;
1956 2255
2256 EV_FREQUENT_CHECK;
2257
2258 ++periodiccnt;
1957 ev_start (EV_A_ (W)w, ++periodiccnt); 2259 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1958 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2260 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1959 periodics [periodiccnt - 1] = (WT)w; 2261 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1960 upheap (periodics, periodiccnt - 1); 2262 ANHE_at_cache (periodics [ev_active (w)]);
2263 upheap (periodics, ev_active (w));
1961 2264
2265 EV_FREQUENT_CHECK;
2266
1962 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2267 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1963} 2268}
1964 2269
1965void noinline 2270void noinline
1966ev_periodic_stop (EV_P_ ev_periodic *w) 2271ev_periodic_stop (EV_P_ ev_periodic *w)
1967{ 2272{
1968 clear_pending (EV_A_ (W)w); 2273 clear_pending (EV_A_ (W)w);
1969 if (expect_false (!ev_is_active (w))) 2274 if (expect_false (!ev_is_active (w)))
1970 return; 2275 return;
1971 2276
1972 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2277 EV_FREQUENT_CHECK;
1973 2278
1974 { 2279 {
1975 int active = ((W)w)->active; 2280 int active = ev_active (w);
1976 2281
2282 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2283
2284 --periodiccnt;
2285
1977 if (expect_true (--active < --periodiccnt)) 2286 if (expect_true (active < periodiccnt + HEAP0))
1978 { 2287 {
1979 periodics [active] = periodics [periodiccnt]; 2288 periodics [active] = periodics [periodiccnt + HEAP0];
1980 adjustheap (periodics, periodiccnt, active); 2289 adjustheap (periodics, periodiccnt, active);
1981 } 2290 }
1982 } 2291 }
1983 2292
2293 EV_FREQUENT_CHECK;
2294
1984 ev_stop (EV_A_ (W)w); 2295 ev_stop (EV_A_ (W)w);
1985} 2296}
1986 2297
1987void noinline 2298void noinline
1988ev_periodic_again (EV_P_ ev_periodic *w) 2299ev_periodic_again (EV_P_ ev_periodic *w)
2007 return; 2318 return;
2008 2319
2009 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2320 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2010 2321
2011 evpipe_init (EV_A); 2322 evpipe_init (EV_A);
2323
2324 EV_FREQUENT_CHECK;
2012 2325
2013 { 2326 {
2014#ifndef _WIN32 2327#ifndef _WIN32
2015 sigset_t full, prev; 2328 sigset_t full, prev;
2016 sigfillset (&full); 2329 sigfillset (&full);
2017 sigprocmask (SIG_SETMASK, &full, &prev); 2330 sigprocmask (SIG_SETMASK, &full, &prev);
2018#endif 2331#endif
2019 2332
2020 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2333 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2021 2334
2022#ifndef _WIN32 2335#ifndef _WIN32
2023 sigprocmask (SIG_SETMASK, &prev, 0); 2336 sigprocmask (SIG_SETMASK, &prev, 0);
2024#endif 2337#endif
2025 } 2338 }
2037 sigfillset (&sa.sa_mask); 2350 sigfillset (&sa.sa_mask);
2038 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2351 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2039 sigaction (w->signum, &sa, 0); 2352 sigaction (w->signum, &sa, 0);
2040#endif 2353#endif
2041 } 2354 }
2355
2356 EV_FREQUENT_CHECK;
2042} 2357}
2043 2358
2044void noinline 2359void noinline
2045ev_signal_stop (EV_P_ ev_signal *w) 2360ev_signal_stop (EV_P_ ev_signal *w)
2046{ 2361{
2047 clear_pending (EV_A_ (W)w); 2362 clear_pending (EV_A_ (W)w);
2048 if (expect_false (!ev_is_active (w))) 2363 if (expect_false (!ev_is_active (w)))
2049 return; 2364 return;
2050 2365
2366 EV_FREQUENT_CHECK;
2367
2051 wlist_del (&signals [w->signum - 1].head, (WL)w); 2368 wlist_del (&signals [w->signum - 1].head, (WL)w);
2052 ev_stop (EV_A_ (W)w); 2369 ev_stop (EV_A_ (W)w);
2053 2370
2054 if (!signals [w->signum - 1].head) 2371 if (!signals [w->signum - 1].head)
2055 signal (w->signum, SIG_DFL); 2372 signal (w->signum, SIG_DFL);
2373
2374 EV_FREQUENT_CHECK;
2056} 2375}
2057 2376
2058void 2377void
2059ev_child_start (EV_P_ ev_child *w) 2378ev_child_start (EV_P_ ev_child *w)
2060{ 2379{
2062 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2381 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2063#endif 2382#endif
2064 if (expect_false (ev_is_active (w))) 2383 if (expect_false (ev_is_active (w)))
2065 return; 2384 return;
2066 2385
2386 EV_FREQUENT_CHECK;
2387
2067 ev_start (EV_A_ (W)w, 1); 2388 ev_start (EV_A_ (W)w, 1);
2068 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2389 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2390
2391 EV_FREQUENT_CHECK;
2069} 2392}
2070 2393
2071void 2394void
2072ev_child_stop (EV_P_ ev_child *w) 2395ev_child_stop (EV_P_ ev_child *w)
2073{ 2396{
2074 clear_pending (EV_A_ (W)w); 2397 clear_pending (EV_A_ (W)w);
2075 if (expect_false (!ev_is_active (w))) 2398 if (expect_false (!ev_is_active (w)))
2076 return; 2399 return;
2077 2400
2401 EV_FREQUENT_CHECK;
2402
2078 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2403 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2079 ev_stop (EV_A_ (W)w); 2404 ev_stop (EV_A_ (W)w);
2405
2406 EV_FREQUENT_CHECK;
2080} 2407}
2081 2408
2082#if EV_STAT_ENABLE 2409#if EV_STAT_ENABLE
2083 2410
2084# ifdef _WIN32 2411# ifdef _WIN32
2102 if (w->wd < 0) 2429 if (w->wd < 0)
2103 { 2430 {
2104 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2431 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2105 2432
2106 /* monitor some parent directory for speedup hints */ 2433 /* monitor some parent directory for speedup hints */
2434 /* note that exceeding the hardcoded limit is not a correctness issue, */
2435 /* but an efficiency issue only */
2107 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2436 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2108 { 2437 {
2109 char path [4096]; 2438 char path [4096];
2110 strcpy (path, w->path); 2439 strcpy (path, w->path);
2111 2440
2151 2480
2152static void noinline 2481static void noinline
2153infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2482infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2154{ 2483{
2155 if (slot < 0) 2484 if (slot < 0)
2156 /* overflow, need to check for all hahs slots */ 2485 /* overflow, need to check for all hash slots */
2157 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2486 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2158 infy_wd (EV_A_ slot, wd, ev); 2487 infy_wd (EV_A_ slot, wd, ev);
2159 else 2488 else
2160 { 2489 {
2161 WL w_; 2490 WL w_;
2195infy_init (EV_P) 2524infy_init (EV_P)
2196{ 2525{
2197 if (fs_fd != -2) 2526 if (fs_fd != -2)
2198 return; 2527 return;
2199 2528
2529 /* kernels < 2.6.25 are borked
2530 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2531 */
2532 {
2533 struct utsname buf;
2534 int major, minor, micro;
2535
2536 fs_fd = -1;
2537
2538 if (uname (&buf))
2539 return;
2540
2541 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2542 return;
2543
2544 if (major < 2
2545 || (major == 2 && minor < 6)
2546 || (major == 2 && minor == 6 && micro < 25))
2547 return;
2548 }
2549
2200 fs_fd = inotify_init (); 2550 fs_fd = inotify_init ();
2201 2551
2202 if (fs_fd >= 0) 2552 if (fs_fd >= 0)
2203 { 2553 {
2204 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2554 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2233 if (fs_fd >= 0) 2583 if (fs_fd >= 0)
2234 infy_add (EV_A_ w); /* re-add, no matter what */ 2584 infy_add (EV_A_ w); /* re-add, no matter what */
2235 else 2585 else
2236 ev_timer_start (EV_A_ &w->timer); 2586 ev_timer_start (EV_A_ &w->timer);
2237 } 2587 }
2238
2239 } 2588 }
2240} 2589}
2241 2590
2591#endif
2592
2593#ifdef _WIN32
2594# define EV_LSTAT(p,b) _stati64 (p, b)
2595#else
2596# define EV_LSTAT(p,b) lstat (p, b)
2242#endif 2597#endif
2243 2598
2244void 2599void
2245ev_stat_stat (EV_P_ ev_stat *w) 2600ev_stat_stat (EV_P_ ev_stat *w)
2246{ 2601{
2273 || w->prev.st_atime != w->attr.st_atime 2628 || w->prev.st_atime != w->attr.st_atime
2274 || w->prev.st_mtime != w->attr.st_mtime 2629 || w->prev.st_mtime != w->attr.st_mtime
2275 || w->prev.st_ctime != w->attr.st_ctime 2630 || w->prev.st_ctime != w->attr.st_ctime
2276 ) { 2631 ) {
2277 #if EV_USE_INOTIFY 2632 #if EV_USE_INOTIFY
2633 if (fs_fd >= 0)
2634 {
2278 infy_del (EV_A_ w); 2635 infy_del (EV_A_ w);
2279 infy_add (EV_A_ w); 2636 infy_add (EV_A_ w);
2280 ev_stat_stat (EV_A_ w); /* avoid race... */ 2637 ev_stat_stat (EV_A_ w); /* avoid race... */
2638 }
2281 #endif 2639 #endif
2282 2640
2283 ev_feed_event (EV_A_ w, EV_STAT); 2641 ev_feed_event (EV_A_ w, EV_STAT);
2284 } 2642 }
2285} 2643}
2310 else 2668 else
2311#endif 2669#endif
2312 ev_timer_start (EV_A_ &w->timer); 2670 ev_timer_start (EV_A_ &w->timer);
2313 2671
2314 ev_start (EV_A_ (W)w, 1); 2672 ev_start (EV_A_ (W)w, 1);
2673
2674 EV_FREQUENT_CHECK;
2315} 2675}
2316 2676
2317void 2677void
2318ev_stat_stop (EV_P_ ev_stat *w) 2678ev_stat_stop (EV_P_ ev_stat *w)
2319{ 2679{
2320 clear_pending (EV_A_ (W)w); 2680 clear_pending (EV_A_ (W)w);
2321 if (expect_false (!ev_is_active (w))) 2681 if (expect_false (!ev_is_active (w)))
2322 return; 2682 return;
2323 2683
2684 EV_FREQUENT_CHECK;
2685
2324#if EV_USE_INOTIFY 2686#if EV_USE_INOTIFY
2325 infy_del (EV_A_ w); 2687 infy_del (EV_A_ w);
2326#endif 2688#endif
2327 ev_timer_stop (EV_A_ &w->timer); 2689 ev_timer_stop (EV_A_ &w->timer);
2328 2690
2329 ev_stop (EV_A_ (W)w); 2691 ev_stop (EV_A_ (W)w);
2692
2693 EV_FREQUENT_CHECK;
2330} 2694}
2331#endif 2695#endif
2332 2696
2333#if EV_IDLE_ENABLE 2697#if EV_IDLE_ENABLE
2334void 2698void
2336{ 2700{
2337 if (expect_false (ev_is_active (w))) 2701 if (expect_false (ev_is_active (w)))
2338 return; 2702 return;
2339 2703
2340 pri_adjust (EV_A_ (W)w); 2704 pri_adjust (EV_A_ (W)w);
2705
2706 EV_FREQUENT_CHECK;
2341 2707
2342 { 2708 {
2343 int active = ++idlecnt [ABSPRI (w)]; 2709 int active = ++idlecnt [ABSPRI (w)];
2344 2710
2345 ++idleall; 2711 ++idleall;
2346 ev_start (EV_A_ (W)w, active); 2712 ev_start (EV_A_ (W)w, active);
2347 2713
2348 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2714 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2349 idles [ABSPRI (w)][active - 1] = w; 2715 idles [ABSPRI (w)][active - 1] = w;
2350 } 2716 }
2717
2718 EV_FREQUENT_CHECK;
2351} 2719}
2352 2720
2353void 2721void
2354ev_idle_stop (EV_P_ ev_idle *w) 2722ev_idle_stop (EV_P_ ev_idle *w)
2355{ 2723{
2356 clear_pending (EV_A_ (W)w); 2724 clear_pending (EV_A_ (W)w);
2357 if (expect_false (!ev_is_active (w))) 2725 if (expect_false (!ev_is_active (w)))
2358 return; 2726 return;
2359 2727
2728 EV_FREQUENT_CHECK;
2729
2360 { 2730 {
2361 int active = ((W)w)->active; 2731 int active = ev_active (w);
2362 2732
2363 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2733 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2364 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2734 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2365 2735
2366 ev_stop (EV_A_ (W)w); 2736 ev_stop (EV_A_ (W)w);
2367 --idleall; 2737 --idleall;
2368 } 2738 }
2739
2740 EV_FREQUENT_CHECK;
2369} 2741}
2370#endif 2742#endif
2371 2743
2372void 2744void
2373ev_prepare_start (EV_P_ ev_prepare *w) 2745ev_prepare_start (EV_P_ ev_prepare *w)
2374{ 2746{
2375 if (expect_false (ev_is_active (w))) 2747 if (expect_false (ev_is_active (w)))
2376 return; 2748 return;
2749
2750 EV_FREQUENT_CHECK;
2377 2751
2378 ev_start (EV_A_ (W)w, ++preparecnt); 2752 ev_start (EV_A_ (W)w, ++preparecnt);
2379 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2753 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2380 prepares [preparecnt - 1] = w; 2754 prepares [preparecnt - 1] = w;
2755
2756 EV_FREQUENT_CHECK;
2381} 2757}
2382 2758
2383void 2759void
2384ev_prepare_stop (EV_P_ ev_prepare *w) 2760ev_prepare_stop (EV_P_ ev_prepare *w)
2385{ 2761{
2386 clear_pending (EV_A_ (W)w); 2762 clear_pending (EV_A_ (W)w);
2387 if (expect_false (!ev_is_active (w))) 2763 if (expect_false (!ev_is_active (w)))
2388 return; 2764 return;
2389 2765
2766 EV_FREQUENT_CHECK;
2767
2390 { 2768 {
2391 int active = ((W)w)->active; 2769 int active = ev_active (w);
2770
2392 prepares [active - 1] = prepares [--preparecnt]; 2771 prepares [active - 1] = prepares [--preparecnt];
2393 ((W)prepares [active - 1])->active = active; 2772 ev_active (prepares [active - 1]) = active;
2394 } 2773 }
2395 2774
2396 ev_stop (EV_A_ (W)w); 2775 ev_stop (EV_A_ (W)w);
2776
2777 EV_FREQUENT_CHECK;
2397} 2778}
2398 2779
2399void 2780void
2400ev_check_start (EV_P_ ev_check *w) 2781ev_check_start (EV_P_ ev_check *w)
2401{ 2782{
2402 if (expect_false (ev_is_active (w))) 2783 if (expect_false (ev_is_active (w)))
2403 return; 2784 return;
2785
2786 EV_FREQUENT_CHECK;
2404 2787
2405 ev_start (EV_A_ (W)w, ++checkcnt); 2788 ev_start (EV_A_ (W)w, ++checkcnt);
2406 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2789 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2407 checks [checkcnt - 1] = w; 2790 checks [checkcnt - 1] = w;
2791
2792 EV_FREQUENT_CHECK;
2408} 2793}
2409 2794
2410void 2795void
2411ev_check_stop (EV_P_ ev_check *w) 2796ev_check_stop (EV_P_ ev_check *w)
2412{ 2797{
2413 clear_pending (EV_A_ (W)w); 2798 clear_pending (EV_A_ (W)w);
2414 if (expect_false (!ev_is_active (w))) 2799 if (expect_false (!ev_is_active (w)))
2415 return; 2800 return;
2416 2801
2802 EV_FREQUENT_CHECK;
2803
2417 { 2804 {
2418 int active = ((W)w)->active; 2805 int active = ev_active (w);
2806
2419 checks [active - 1] = checks [--checkcnt]; 2807 checks [active - 1] = checks [--checkcnt];
2420 ((W)checks [active - 1])->active = active; 2808 ev_active (checks [active - 1]) = active;
2421 } 2809 }
2422 2810
2423 ev_stop (EV_A_ (W)w); 2811 ev_stop (EV_A_ (W)w);
2812
2813 EV_FREQUENT_CHECK;
2424} 2814}
2425 2815
2426#if EV_EMBED_ENABLE 2816#if EV_EMBED_ENABLE
2427void noinline 2817void noinline
2428ev_embed_sweep (EV_P_ ev_embed *w) 2818ev_embed_sweep (EV_P_ ev_embed *w)
2455 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2845 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2456 } 2846 }
2457 } 2847 }
2458} 2848}
2459 2849
2850static void
2851embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2852{
2853 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2854
2855 {
2856 struct ev_loop *loop = w->other;
2857
2858 ev_loop_fork (EV_A);
2859 }
2860}
2861
2460#if 0 2862#if 0
2461static void 2863static void
2462embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2864embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2463{ 2865{
2464 ev_idle_stop (EV_A_ idle); 2866 ev_idle_stop (EV_A_ idle);
2475 struct ev_loop *loop = w->other; 2877 struct ev_loop *loop = w->other;
2476 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2878 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2477 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2879 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2478 } 2880 }
2479 2881
2882 EV_FREQUENT_CHECK;
2883
2480 ev_set_priority (&w->io, ev_priority (w)); 2884 ev_set_priority (&w->io, ev_priority (w));
2481 ev_io_start (EV_A_ &w->io); 2885 ev_io_start (EV_A_ &w->io);
2482 2886
2483 ev_prepare_init (&w->prepare, embed_prepare_cb); 2887 ev_prepare_init (&w->prepare, embed_prepare_cb);
2484 ev_set_priority (&w->prepare, EV_MINPRI); 2888 ev_set_priority (&w->prepare, EV_MINPRI);
2485 ev_prepare_start (EV_A_ &w->prepare); 2889 ev_prepare_start (EV_A_ &w->prepare);
2486 2890
2891 ev_fork_init (&w->fork, embed_fork_cb);
2892 ev_fork_start (EV_A_ &w->fork);
2893
2487 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2894 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2488 2895
2489 ev_start (EV_A_ (W)w, 1); 2896 ev_start (EV_A_ (W)w, 1);
2897
2898 EV_FREQUENT_CHECK;
2490} 2899}
2491 2900
2492void 2901void
2493ev_embed_stop (EV_P_ ev_embed *w) 2902ev_embed_stop (EV_P_ ev_embed *w)
2494{ 2903{
2495 clear_pending (EV_A_ (W)w); 2904 clear_pending (EV_A_ (W)w);
2496 if (expect_false (!ev_is_active (w))) 2905 if (expect_false (!ev_is_active (w)))
2497 return; 2906 return;
2498 2907
2908 EV_FREQUENT_CHECK;
2909
2499 ev_io_stop (EV_A_ &w->io); 2910 ev_io_stop (EV_A_ &w->io);
2500 ev_prepare_stop (EV_A_ &w->prepare); 2911 ev_prepare_stop (EV_A_ &w->prepare);
2912 ev_fork_stop (EV_A_ &w->fork);
2501 2913
2502 ev_stop (EV_A_ (W)w); 2914 EV_FREQUENT_CHECK;
2503} 2915}
2504#endif 2916#endif
2505 2917
2506#if EV_FORK_ENABLE 2918#if EV_FORK_ENABLE
2507void 2919void
2508ev_fork_start (EV_P_ ev_fork *w) 2920ev_fork_start (EV_P_ ev_fork *w)
2509{ 2921{
2510 if (expect_false (ev_is_active (w))) 2922 if (expect_false (ev_is_active (w)))
2511 return; 2923 return;
2924
2925 EV_FREQUENT_CHECK;
2512 2926
2513 ev_start (EV_A_ (W)w, ++forkcnt); 2927 ev_start (EV_A_ (W)w, ++forkcnt);
2514 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2928 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2515 forks [forkcnt - 1] = w; 2929 forks [forkcnt - 1] = w;
2930
2931 EV_FREQUENT_CHECK;
2516} 2932}
2517 2933
2518void 2934void
2519ev_fork_stop (EV_P_ ev_fork *w) 2935ev_fork_stop (EV_P_ ev_fork *w)
2520{ 2936{
2521 clear_pending (EV_A_ (W)w); 2937 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 2938 if (expect_false (!ev_is_active (w)))
2523 return; 2939 return;
2524 2940
2941 EV_FREQUENT_CHECK;
2942
2525 { 2943 {
2526 int active = ((W)w)->active; 2944 int active = ev_active (w);
2945
2527 forks [active - 1] = forks [--forkcnt]; 2946 forks [active - 1] = forks [--forkcnt];
2528 ((W)forks [active - 1])->active = active; 2947 ev_active (forks [active - 1]) = active;
2529 } 2948 }
2530 2949
2531 ev_stop (EV_A_ (W)w); 2950 ev_stop (EV_A_ (W)w);
2951
2952 EV_FREQUENT_CHECK;
2532} 2953}
2533#endif 2954#endif
2534 2955
2535#if EV_ASYNC_ENABLE 2956#if EV_ASYNC_ENABLE
2536void 2957void
2538{ 2959{
2539 if (expect_false (ev_is_active (w))) 2960 if (expect_false (ev_is_active (w)))
2540 return; 2961 return;
2541 2962
2542 evpipe_init (EV_A); 2963 evpipe_init (EV_A);
2964
2965 EV_FREQUENT_CHECK;
2543 2966
2544 ev_start (EV_A_ (W)w, ++asynccnt); 2967 ev_start (EV_A_ (W)w, ++asynccnt);
2545 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2968 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2546 asyncs [asynccnt - 1] = w; 2969 asyncs [asynccnt - 1] = w;
2970
2971 EV_FREQUENT_CHECK;
2547} 2972}
2548 2973
2549void 2974void
2550ev_async_stop (EV_P_ ev_async *w) 2975ev_async_stop (EV_P_ ev_async *w)
2551{ 2976{
2552 clear_pending (EV_A_ (W)w); 2977 clear_pending (EV_A_ (W)w);
2553 if (expect_false (!ev_is_active (w))) 2978 if (expect_false (!ev_is_active (w)))
2554 return; 2979 return;
2555 2980
2981 EV_FREQUENT_CHECK;
2982
2556 { 2983 {
2557 int active = ((W)w)->active; 2984 int active = ev_active (w);
2985
2558 asyncs [active - 1] = asyncs [--asynccnt]; 2986 asyncs [active - 1] = asyncs [--asynccnt];
2559 ((W)asyncs [active - 1])->active = active; 2987 ev_active (asyncs [active - 1]) = active;
2560 } 2988 }
2561 2989
2562 ev_stop (EV_A_ (W)w); 2990 ev_stop (EV_A_ (W)w);
2991
2992 EV_FREQUENT_CHECK;
2563} 2993}
2564 2994
2565void 2995void
2566ev_async_send (EV_P_ ev_async *w) 2996ev_async_send (EV_P_ ev_async *w)
2567{ 2997{
2584once_cb (EV_P_ struct ev_once *once, int revents) 3014once_cb (EV_P_ struct ev_once *once, int revents)
2585{ 3015{
2586 void (*cb)(int revents, void *arg) = once->cb; 3016 void (*cb)(int revents, void *arg) = once->cb;
2587 void *arg = once->arg; 3017 void *arg = once->arg;
2588 3018
2589 ev_io_stop (EV_A_ &once->io); 3019 ev_io_stop (EV_A_ &once->io);
2590 ev_timer_stop (EV_A_ &once->to); 3020 ev_timer_stop (EV_A_ &once->to);
2591 ev_free (once); 3021 ev_free (once);
2592 3022
2593 cb (revents, arg); 3023 cb (revents, arg);
2594} 3024}
2595 3025
2596static void 3026static void
2597once_cb_io (EV_P_ ev_io *w, int revents) 3027once_cb_io (EV_P_ ev_io *w, int revents)
2598{ 3028{
2599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3029 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3030
3031 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2600} 3032}
2601 3033
2602static void 3034static void
2603once_cb_to (EV_P_ ev_timer *w, int revents) 3035once_cb_to (EV_P_ ev_timer *w, int revents)
2604{ 3036{
2605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3037 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3038
3039 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2606} 3040}
2607 3041
2608void 3042void
2609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3043ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2610{ 3044{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines