ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.224 by root, Wed Apr 9 22:07:50 2008 UTC vs.
Revision 1.294 by root, Wed Jul 8 02:46:05 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 304
242#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 322# include <sys/select.h>
260# endif 323# endif
261#endif 324#endif
262 325
263#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
264# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
265#endif 335#endif
266 336
267#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 338# include <winsock.h>
269#endif 339#endif
279} 349}
280# endif 350# endif
281#endif 351#endif
282 352
283/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
284 360
285/* 361/*
286 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
325 401
326typedef ev_watcher *W; 402typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 403typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 404typedef ev_watcher_time *WT;
329 405
330#if EV_USE_MONOTONIC 406#define ev_active(w) ((W)(w))->active
407#define ev_at(w) ((WT)(w))->at
408
409#if EV_USE_REALTIME
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 410/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 411/* giving it a reasonably high chance of working on typical architetcures */
412static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
413#endif
414
415#if EV_USE_MONOTONIC
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 416static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 417#endif
335 418
336#ifdef _WIN32 419#ifdef _WIN32
337# include "ev_win32.c" 420# include "ev_win32.c"
346{ 429{
347 syserr_cb = cb; 430 syserr_cb = cb;
348} 431}
349 432
350static void noinline 433static void noinline
351syserr (const char *msg) 434ev_syserr (const char *msg)
352{ 435{
353 if (!msg) 436 if (!msg)
354 msg = "(libev) system error"; 437 msg = "(libev) system error";
355 438
356 if (syserr_cb) 439 if (syserr_cb)
402#define ev_malloc(size) ev_realloc (0, (size)) 485#define ev_malloc(size) ev_realloc (0, (size))
403#define ev_free(ptr) ev_realloc ((ptr), 0) 486#define ev_free(ptr) ev_realloc ((ptr), 0)
404 487
405/*****************************************************************************/ 488/*****************************************************************************/
406 489
490/* file descriptor info structure */
407typedef struct 491typedef struct
408{ 492{
409 WL head; 493 WL head;
410 unsigned char events; 494 unsigned char events; /* the events watched for */
495 unsigned char reify; /* flag set when this ANFD needs reification */
496 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
411 unsigned char reify; 497 unsigned char unused;
498#if EV_USE_EPOLL
499 unsigned int egen; /* generation counter to counter epoll bugs */
500#endif
412#if EV_SELECT_IS_WINSOCKET 501#if EV_SELECT_IS_WINSOCKET
413 SOCKET handle; 502 SOCKET handle;
414#endif 503#endif
415} ANFD; 504} ANFD;
416 505
506/* stores the pending event set for a given watcher */
417typedef struct 507typedef struct
418{ 508{
419 W w; 509 W w;
420 int events; 510 int events; /* the pending event set for the given watcher */
421} ANPENDING; 511} ANPENDING;
422 512
423#if EV_USE_INOTIFY 513#if EV_USE_INOTIFY
514/* hash table entry per inotify-id */
424typedef struct 515typedef struct
425{ 516{
426 WL head; 517 WL head;
427} ANFS; 518} ANFS;
519#endif
520
521/* Heap Entry */
522#if EV_HEAP_CACHE_AT
523 /* a heap element */
524 typedef struct {
525 ev_tstamp at;
526 WT w;
527 } ANHE;
528
529 #define ANHE_w(he) (he).w /* access watcher, read-write */
530 #define ANHE_at(he) (he).at /* access cached at, read-only */
531 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
532#else
533 /* a heap element */
534 typedef WT ANHE;
535
536 #define ANHE_w(he) (he)
537 #define ANHE_at(he) (he)->at
538 #define ANHE_at_cache(he)
428#endif 539#endif
429 540
430#if EV_MULTIPLICITY 541#if EV_MULTIPLICITY
431 542
432 struct ev_loop 543 struct ev_loop
453 564
454#endif 565#endif
455 566
456/*****************************************************************************/ 567/*****************************************************************************/
457 568
569#ifndef EV_HAVE_EV_TIME
458ev_tstamp 570ev_tstamp
459ev_time (void) 571ev_time (void)
460{ 572{
461#if EV_USE_REALTIME 573#if EV_USE_REALTIME
574 if (expect_true (have_realtime))
575 {
462 struct timespec ts; 576 struct timespec ts;
463 clock_gettime (CLOCK_REALTIME, &ts); 577 clock_gettime (CLOCK_REALTIME, &ts);
464 return ts.tv_sec + ts.tv_nsec * 1e-9; 578 return ts.tv_sec + ts.tv_nsec * 1e-9;
465#else 579 }
580#endif
581
466 struct timeval tv; 582 struct timeval tv;
467 gettimeofday (&tv, 0); 583 gettimeofday (&tv, 0);
468 return tv.tv_sec + tv.tv_usec * 1e-6; 584 return tv.tv_sec + tv.tv_usec * 1e-6;
469#endif
470} 585}
586#endif
471 587
472ev_tstamp inline_size 588inline_size ev_tstamp
473get_clock (void) 589get_clock (void)
474{ 590{
475#if EV_USE_MONOTONIC 591#if EV_USE_MONOTONIC
476 if (expect_true (have_monotonic)) 592 if (expect_true (have_monotonic))
477 { 593 {
510 struct timeval tv; 626 struct timeval tv;
511 627
512 tv.tv_sec = (time_t)delay; 628 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 629 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514 630
631 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
632 /* somehting not guaranteed by newer posix versions, but guaranteed */
633 /* by older ones */
515 select (0, 0, 0, 0, &tv); 634 select (0, 0, 0, 0, &tv);
516#endif 635#endif
517 } 636 }
518} 637}
519 638
520/*****************************************************************************/ 639/*****************************************************************************/
521 640
522int inline_size 641#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
642
643/* find a suitable new size for the given array, */
644/* hopefully by rounding to a ncie-to-malloc size */
645inline_size int
523array_nextsize (int elem, int cur, int cnt) 646array_nextsize (int elem, int cur, int cnt)
524{ 647{
525 int ncur = cur + 1; 648 int ncur = cur + 1;
526 649
527 do 650 do
528 ncur <<= 1; 651 ncur <<= 1;
529 while (cnt > ncur); 652 while (cnt > ncur);
530 653
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 654 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 655 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 656 {
534 ncur *= elem; 657 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 658 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 659 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 660 ncur /= elem;
538 } 661 }
539 662
540 return ncur; 663 return ncur;
544array_realloc (int elem, void *base, int *cur, int cnt) 667array_realloc (int elem, void *base, int *cur, int cnt)
545{ 668{
546 *cur = array_nextsize (elem, *cur, cnt); 669 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur); 670 return ev_realloc (base, elem * *cur);
548} 671}
672
673#define array_init_zero(base,count) \
674 memset ((void *)(base), 0, sizeof (*(base)) * (count))
549 675
550#define array_needsize(type,base,cur,cnt,init) \ 676#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \ 677 if (expect_false ((cnt) > (cur))) \
552 { \ 678 { \
553 int ocur_ = (cur); \ 679 int ocur_ = (cur); \
565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 691 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
566 } 692 }
567#endif 693#endif
568 694
569#define array_free(stem, idx) \ 695#define array_free(stem, idx) \
570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 696 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
571 697
572/*****************************************************************************/ 698/*****************************************************************************/
699
700/* dummy callback for pending events */
701static void noinline
702pendingcb (EV_P_ ev_prepare *w, int revents)
703{
704}
573 705
574void noinline 706void noinline
575ev_feed_event (EV_P_ void *w, int revents) 707ev_feed_event (EV_P_ void *w, int revents)
576{ 708{
577 W w_ = (W)w; 709 W w_ = (W)w;
586 pendings [pri][w_->pending - 1].w = w_; 718 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents; 719 pendings [pri][w_->pending - 1].events = revents;
588 } 720 }
589} 721}
590 722
591void inline_speed 723inline_speed void
724feed_reverse (EV_P_ W w)
725{
726 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
727 rfeeds [rfeedcnt++] = w;
728}
729
730inline_size void
731feed_reverse_done (EV_P_ int revents)
732{
733 do
734 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
735 while (rfeedcnt);
736}
737
738inline_speed void
592queue_events (EV_P_ W *events, int eventcnt, int type) 739queue_events (EV_P_ W *events, int eventcnt, int type)
593{ 740{
594 int i; 741 int i;
595 742
596 for (i = 0; i < eventcnt; ++i) 743 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type); 744 ev_feed_event (EV_A_ events [i], type);
598} 745}
599 746
600/*****************************************************************************/ 747/*****************************************************************************/
601 748
602void inline_size 749inline_speed void
603anfds_init (ANFD *base, int count)
604{
605 while (count--)
606 {
607 base->head = 0;
608 base->events = EV_NONE;
609 base->reify = 0;
610
611 ++base;
612 }
613}
614
615void inline_speed
616fd_event (EV_P_ int fd, int revents) 750fd_event (EV_P_ int fd, int revents)
617{ 751{
618 ANFD *anfd = anfds + fd; 752 ANFD *anfd = anfds + fd;
619 ev_io *w; 753 ev_io *w;
620 754
632{ 766{
633 if (fd >= 0 && fd < anfdmax) 767 if (fd >= 0 && fd < anfdmax)
634 fd_event (EV_A_ fd, revents); 768 fd_event (EV_A_ fd, revents);
635} 769}
636 770
637void inline_size 771/* make sure the external fd watch events are in-sync */
772/* with the kernel/libev internal state */
773inline_size void
638fd_reify (EV_P) 774fd_reify (EV_P)
639{ 775{
640 int i; 776 int i;
641 777
642 for (i = 0; i < fdchangecnt; ++i) 778 for (i = 0; i < fdchangecnt; ++i)
651 events |= (unsigned char)w->events; 787 events |= (unsigned char)w->events;
652 788
653#if EV_SELECT_IS_WINSOCKET 789#if EV_SELECT_IS_WINSOCKET
654 if (events) 790 if (events)
655 { 791 {
656 unsigned long argp; 792 unsigned long arg;
657 #ifdef EV_FD_TO_WIN32_HANDLE 793 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 794 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else 795 #else
660 anfd->handle = _get_osfhandle (fd); 796 anfd->handle = _get_osfhandle (fd);
661 #endif 797 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 798 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
663 } 799 }
664#endif 800#endif
665 801
666 { 802 {
667 unsigned char o_events = anfd->events; 803 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify; 804 unsigned char o_reify = anfd->reify;
669 805
670 anfd->reify = 0; 806 anfd->reify = 0;
671 anfd->events = events; 807 anfd->events = events;
672 808
673 if (o_events != events || o_reify & EV_IOFDSET) 809 if (o_events != events || o_reify & EV__IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events); 810 backend_modify (EV_A_ fd, o_events, events);
675 } 811 }
676 } 812 }
677 813
678 fdchangecnt = 0; 814 fdchangecnt = 0;
679} 815}
680 816
681void inline_size 817/* something about the given fd changed */
818inline_size void
682fd_change (EV_P_ int fd, int flags) 819fd_change (EV_P_ int fd, int flags)
683{ 820{
684 unsigned char reify = anfds [fd].reify; 821 unsigned char reify = anfds [fd].reify;
685 anfds [fd].reify |= flags; 822 anfds [fd].reify |= flags;
686 823
690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 827 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
691 fdchanges [fdchangecnt - 1] = fd; 828 fdchanges [fdchangecnt - 1] = fd;
692 } 829 }
693} 830}
694 831
695void inline_speed 832/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
833inline_speed void
696fd_kill (EV_P_ int fd) 834fd_kill (EV_P_ int fd)
697{ 835{
698 ev_io *w; 836 ev_io *w;
699 837
700 while ((w = (ev_io *)anfds [fd].head)) 838 while ((w = (ev_io *)anfds [fd].head))
702 ev_io_stop (EV_A_ w); 840 ev_io_stop (EV_A_ w);
703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 841 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
704 } 842 }
705} 843}
706 844
707int inline_size 845/* check whether the given fd is atcually valid, for error recovery */
846inline_size int
708fd_valid (int fd) 847fd_valid (int fd)
709{ 848{
710#ifdef _WIN32 849#ifdef _WIN32
711 return _get_osfhandle (fd) != -1; 850 return _get_osfhandle (fd) != -1;
712#else 851#else
720{ 859{
721 int fd; 860 int fd;
722 861
723 for (fd = 0; fd < anfdmax; ++fd) 862 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 863 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 864 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 865 fd_kill (EV_A_ fd);
727} 866}
728 867
729/* called on ENOMEM in select/poll to kill some fds and retry */ 868/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 869static void noinline
748 887
749 for (fd = 0; fd < anfdmax; ++fd) 888 for (fd = 0; fd < anfdmax; ++fd)
750 if (anfds [fd].events) 889 if (anfds [fd].events)
751 { 890 {
752 anfds [fd].events = 0; 891 anfds [fd].events = 0;
892 anfds [fd].emask = 0;
753 fd_change (EV_A_ fd, EV_IOFDSET | 1); 893 fd_change (EV_A_ fd, EV__IOFDSET | 1);
754 } 894 }
755} 895}
756 896
757/*****************************************************************************/ 897/*****************************************************************************/
758 898
759void inline_speed 899/*
760upheap (WT *heap, int k) 900 * the heap functions want a real array index. array index 0 uis guaranteed to not
761{ 901 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
762 WT w = heap [k]; 902 * the branching factor of the d-tree.
903 */
763 904
764 while (k) 905/*
765 { 906 * at the moment we allow libev the luxury of two heaps,
766 int p = (k - 1) >> 1; 907 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
908 * which is more cache-efficient.
909 * the difference is about 5% with 50000+ watchers.
910 */
911#if EV_USE_4HEAP
767 912
768 if (heap [p]->at <= w->at) 913#define DHEAP 4
914#define HEAP0 (DHEAP - 1) /* index of first element in heap */
915#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
916#define UPHEAP_DONE(p,k) ((p) == (k))
917
918/* away from the root */
919inline_speed void
920downheap (ANHE *heap, int N, int k)
921{
922 ANHE he = heap [k];
923 ANHE *E = heap + N + HEAP0;
924
925 for (;;)
926 {
927 ev_tstamp minat;
928 ANHE *minpos;
929 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
930
931 /* find minimum child */
932 if (expect_true (pos + DHEAP - 1 < E))
933 {
934 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
935 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
936 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
937 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
938 }
939 else if (pos < E)
940 {
941 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
942 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
943 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
944 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
945 }
946 else
769 break; 947 break;
770 948
949 if (ANHE_at (he) <= minat)
950 break;
951
952 heap [k] = *minpos;
953 ev_active (ANHE_w (*minpos)) = k;
954
955 k = minpos - heap;
956 }
957
958 heap [k] = he;
959 ev_active (ANHE_w (he)) = k;
960}
961
962#else /* 4HEAP */
963
964#define HEAP0 1
965#define HPARENT(k) ((k) >> 1)
966#define UPHEAP_DONE(p,k) (!(p))
967
968/* away from the root */
969inline_speed void
970downheap (ANHE *heap, int N, int k)
971{
972 ANHE he = heap [k];
973
974 for (;;)
975 {
976 int c = k << 1;
977
978 if (c > N + HEAP0 - 1)
979 break;
980
981 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
982 ? 1 : 0;
983
984 if (ANHE_at (he) <= ANHE_at (heap [c]))
985 break;
986
987 heap [k] = heap [c];
988 ev_active (ANHE_w (heap [k])) = k;
989
990 k = c;
991 }
992
993 heap [k] = he;
994 ev_active (ANHE_w (he)) = k;
995}
996#endif
997
998/* towards the root */
999inline_speed void
1000upheap (ANHE *heap, int k)
1001{
1002 ANHE he = heap [k];
1003
1004 for (;;)
1005 {
1006 int p = HPARENT (k);
1007
1008 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1009 break;
1010
771 heap [k] = heap [p]; 1011 heap [k] = heap [p];
772 ((W)heap [k])->active = k + 1; 1012 ev_active (ANHE_w (heap [k])) = k;
773 k = p; 1013 k = p;
774 } 1014 }
775 1015
776 heap [k] = w; 1016 heap [k] = he;
777 ((W)heap [k])->active = k + 1; 1017 ev_active (ANHE_w (he)) = k;
778} 1018}
779 1019
780void inline_speed 1020/* move an element suitably so it is in a correct place */
781downheap (WT *heap, int N, int k) 1021inline_size void
782{
783 WT w = heap [k];
784
785 for (;;)
786 {
787 int c = (k << 1) + 1;
788
789 if (c >= N)
790 break;
791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
798 heap [k] = heap [c];
799 ((W)heap [k])->active = k + 1;
800
801 k = c;
802 }
803
804 heap [k] = w;
805 ((W)heap [k])->active = k + 1;
806}
807
808void inline_size
809adjustheap (WT *heap, int N, int k) 1022adjustheap (ANHE *heap, int N, int k)
810{ 1023{
1024 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
811 upheap (heap, k); 1025 upheap (heap, k);
1026 else
812 downheap (heap, N, k); 1027 downheap (heap, N, k);
1028}
1029
1030/* rebuild the heap: this function is used only once and executed rarely */
1031inline_size void
1032reheap (ANHE *heap, int N)
1033{
1034 int i;
1035
1036 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1037 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1038 for (i = 0; i < N; ++i)
1039 upheap (heap, i + HEAP0);
813} 1040}
814 1041
815/*****************************************************************************/ 1042/*****************************************************************************/
816 1043
1044/* associate signal watchers to a signal signal */
817typedef struct 1045typedef struct
818{ 1046{
819 WL head; 1047 WL head;
820 EV_ATOMIC_T gotsig; 1048 EV_ATOMIC_T gotsig;
821} ANSIG; 1049} ANSIG;
823static ANSIG *signals; 1051static ANSIG *signals;
824static int signalmax; 1052static int signalmax;
825 1053
826static EV_ATOMIC_T gotsig; 1054static EV_ATOMIC_T gotsig;
827 1055
828void inline_size
829signals_init (ANSIG *base, int count)
830{
831 while (count--)
832 {
833 base->head = 0;
834 base->gotsig = 0;
835
836 ++base;
837 }
838}
839
840/*****************************************************************************/ 1056/*****************************************************************************/
841 1057
842void inline_speed 1058/* used to prepare libev internal fd's */
1059/* this is not fork-safe */
1060inline_speed void
843fd_intern (int fd) 1061fd_intern (int fd)
844{ 1062{
845#ifdef _WIN32 1063#ifdef _WIN32
846 int arg = 1; 1064 unsigned long arg = 1;
847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1065 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
848#else 1066#else
849 fcntl (fd, F_SETFD, FD_CLOEXEC); 1067 fcntl (fd, F_SETFD, FD_CLOEXEC);
850 fcntl (fd, F_SETFL, O_NONBLOCK); 1068 fcntl (fd, F_SETFL, O_NONBLOCK);
851#endif 1069#endif
852} 1070}
853 1071
854static void noinline 1072static void noinline
855evpipe_init (EV_P) 1073evpipe_init (EV_P)
856{ 1074{
857 if (!ev_is_active (&pipeev)) 1075 if (!ev_is_active (&pipe_w))
858 { 1076 {
859#if EV_USE_EVENTFD 1077#if EV_USE_EVENTFD
860 if ((evfd = eventfd (0, 0)) >= 0) 1078 if ((evfd = eventfd (0, 0)) >= 0)
861 { 1079 {
862 evpipe [0] = -1; 1080 evpipe [0] = -1;
863 fd_intern (evfd); 1081 fd_intern (evfd);
864 ev_io_set (&pipeev, evfd, EV_READ); 1082 ev_io_set (&pipe_w, evfd, EV_READ);
865 } 1083 }
866 else 1084 else
867#endif 1085#endif
868 { 1086 {
869 while (pipe (evpipe)) 1087 while (pipe (evpipe))
870 syserr ("(libev) error creating signal/async pipe"); 1088 ev_syserr ("(libev) error creating signal/async pipe");
871 1089
872 fd_intern (evpipe [0]); 1090 fd_intern (evpipe [0]);
873 fd_intern (evpipe [1]); 1091 fd_intern (evpipe [1]);
874 ev_io_set (&pipeev, evpipe [0], EV_READ); 1092 ev_io_set (&pipe_w, evpipe [0], EV_READ);
875 } 1093 }
876 1094
877 ev_io_start (EV_A_ &pipeev); 1095 ev_io_start (EV_A_ &pipe_w);
878 ev_unref (EV_A); /* watcher should not keep loop alive */ 1096 ev_unref (EV_A); /* watcher should not keep loop alive */
879 } 1097 }
880} 1098}
881 1099
882void inline_size 1100inline_size void
883evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1101evpipe_write (EV_P_ EV_ATOMIC_T *flag)
884{ 1102{
885 if (!*flag) 1103 if (!*flag)
886 { 1104 {
887 int old_errno = errno; /* save errno because write might clobber it */ 1105 int old_errno = errno; /* save errno because write might clobber it */
900 1118
901 errno = old_errno; 1119 errno = old_errno;
902 } 1120 }
903} 1121}
904 1122
1123/* called whenever the libev signal pipe */
1124/* got some events (signal, async) */
905static void 1125static void
906pipecb (EV_P_ ev_io *iow, int revents) 1126pipecb (EV_P_ ev_io *iow, int revents)
907{ 1127{
908#if EV_USE_EVENTFD 1128#if EV_USE_EVENTFD
909 if (evfd >= 0) 1129 if (evfd >= 0)
910 { 1130 {
911 uint64_t counter = 1; 1131 uint64_t counter;
912 read (evfd, &counter, sizeof (uint64_t)); 1132 read (evfd, &counter, sizeof (uint64_t));
913 } 1133 }
914 else 1134 else
915#endif 1135#endif
916 { 1136 {
965ev_feed_signal_event (EV_P_ int signum) 1185ev_feed_signal_event (EV_P_ int signum)
966{ 1186{
967 WL w; 1187 WL w;
968 1188
969#if EV_MULTIPLICITY 1189#if EV_MULTIPLICITY
970 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1190 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
971#endif 1191#endif
972 1192
973 --signum; 1193 --signum;
974 1194
975 if (signum < 0 || signum >= signalmax) 1195 if (signum < 0 || signum >= signalmax)
991 1211
992#ifndef WIFCONTINUED 1212#ifndef WIFCONTINUED
993# define WIFCONTINUED(status) 0 1213# define WIFCONTINUED(status) 0
994#endif 1214#endif
995 1215
996void inline_speed 1216/* handle a single child status event */
1217inline_speed void
997child_reap (EV_P_ int chain, int pid, int status) 1218child_reap (EV_P_ int chain, int pid, int status)
998{ 1219{
999 ev_child *w; 1220 ev_child *w;
1000 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1221 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1001 1222
1014 1235
1015#ifndef WCONTINUED 1236#ifndef WCONTINUED
1016# define WCONTINUED 0 1237# define WCONTINUED 0
1017#endif 1238#endif
1018 1239
1240/* called on sigchld etc., calls waitpid */
1019static void 1241static void
1020childcb (EV_P_ ev_signal *sw, int revents) 1242childcb (EV_P_ ev_signal *sw, int revents)
1021{ 1243{
1022 int pid, status; 1244 int pid, status;
1023 1245
1104 /* kqueue is borked on everything but netbsd apparently */ 1326 /* kqueue is borked on everything but netbsd apparently */
1105 /* it usually doesn't work correctly on anything but sockets and pipes */ 1327 /* it usually doesn't work correctly on anything but sockets and pipes */
1106 flags &= ~EVBACKEND_KQUEUE; 1328 flags &= ~EVBACKEND_KQUEUE;
1107#endif 1329#endif
1108#ifdef __APPLE__ 1330#ifdef __APPLE__
1109 // flags &= ~EVBACKEND_KQUEUE; for documentation 1331 /* only select works correctly on that "unix-certified" platform */
1110 flags &= ~EVBACKEND_POLL; 1332 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1333 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1111#endif 1334#endif
1112 1335
1113 return flags; 1336 return flags;
1114} 1337}
1115 1338
1135ev_loop_count (EV_P) 1358ev_loop_count (EV_P)
1136{ 1359{
1137 return loop_count; 1360 return loop_count;
1138} 1361}
1139 1362
1363unsigned int
1364ev_loop_depth (EV_P)
1365{
1366 return loop_depth;
1367}
1368
1140void 1369void
1141ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1370ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1142{ 1371{
1143 io_blocktime = interval; 1372 io_blocktime = interval;
1144} 1373}
1147ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1376ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1148{ 1377{
1149 timeout_blocktime = interval; 1378 timeout_blocktime = interval;
1150} 1379}
1151 1380
1381/* initialise a loop structure, must be zero-initialised */
1152static void noinline 1382static void noinline
1153loop_init (EV_P_ unsigned int flags) 1383loop_init (EV_P_ unsigned int flags)
1154{ 1384{
1155 if (!backend) 1385 if (!backend)
1156 { 1386 {
1387#if EV_USE_REALTIME
1388 if (!have_realtime)
1389 {
1390 struct timespec ts;
1391
1392 if (!clock_gettime (CLOCK_REALTIME, &ts))
1393 have_realtime = 1;
1394 }
1395#endif
1396
1157#if EV_USE_MONOTONIC 1397#if EV_USE_MONOTONIC
1398 if (!have_monotonic)
1158 { 1399 {
1159 struct timespec ts; 1400 struct timespec ts;
1401
1160 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1402 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1161 have_monotonic = 1; 1403 have_monotonic = 1;
1162 } 1404 }
1163#endif 1405#endif
1164 1406
1165 ev_rt_now = ev_time (); 1407 ev_rt_now = ev_time ();
1166 mn_now = get_clock (); 1408 mn_now = get_clock ();
1167 now_floor = mn_now; 1409 now_floor = mn_now;
1185 if (!(flags & EVFLAG_NOENV) 1427 if (!(flags & EVFLAG_NOENV)
1186 && !enable_secure () 1428 && !enable_secure ()
1187 && getenv ("LIBEV_FLAGS")) 1429 && getenv ("LIBEV_FLAGS"))
1188 flags = atoi (getenv ("LIBEV_FLAGS")); 1430 flags = atoi (getenv ("LIBEV_FLAGS"));
1189 1431
1190 if (!(flags & 0x0000ffffUL)) 1432 if (!(flags & 0x0000ffffU))
1191 flags |= ev_recommended_backends (); 1433 flags |= ev_recommended_backends ();
1192 1434
1193#if EV_USE_PORT 1435#if EV_USE_PORT
1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1436 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1195#endif 1437#endif
1204#endif 1446#endif
1205#if EV_USE_SELECT 1447#if EV_USE_SELECT
1206 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1448 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1207#endif 1449#endif
1208 1450
1451 ev_prepare_init (&pending_w, pendingcb);
1452
1209 ev_init (&pipeev, pipecb); 1453 ev_init (&pipe_w, pipecb);
1210 ev_set_priority (&pipeev, EV_MAXPRI); 1454 ev_set_priority (&pipe_w, EV_MAXPRI);
1211 } 1455 }
1212} 1456}
1213 1457
1458/* free up a loop structure */
1214static void noinline 1459static void noinline
1215loop_destroy (EV_P) 1460loop_destroy (EV_P)
1216{ 1461{
1217 int i; 1462 int i;
1218 1463
1219 if (ev_is_active (&pipeev)) 1464 if (ev_is_active (&pipe_w))
1220 { 1465 {
1221 ev_ref (EV_A); /* signal watcher */ 1466 ev_ref (EV_A); /* signal watcher */
1222 ev_io_stop (EV_A_ &pipeev); 1467 ev_io_stop (EV_A_ &pipe_w);
1223 1468
1224#if EV_USE_EVENTFD 1469#if EV_USE_EVENTFD
1225 if (evfd >= 0) 1470 if (evfd >= 0)
1226 close (evfd); 1471 close (evfd);
1227#endif 1472#endif
1266 } 1511 }
1267 1512
1268 ev_free (anfds); anfdmax = 0; 1513 ev_free (anfds); anfdmax = 0;
1269 1514
1270 /* have to use the microsoft-never-gets-it-right macro */ 1515 /* have to use the microsoft-never-gets-it-right macro */
1516 array_free (rfeed, EMPTY);
1271 array_free (fdchange, EMPTY); 1517 array_free (fdchange, EMPTY);
1272 array_free (timer, EMPTY); 1518 array_free (timer, EMPTY);
1273#if EV_PERIODIC_ENABLE 1519#if EV_PERIODIC_ENABLE
1274 array_free (periodic, EMPTY); 1520 array_free (periodic, EMPTY);
1275#endif 1521#endif
1283#endif 1529#endif
1284 1530
1285 backend = 0; 1531 backend = 0;
1286} 1532}
1287 1533
1534#if EV_USE_INOTIFY
1288void inline_size infy_fork (EV_P); 1535inline_size void infy_fork (EV_P);
1536#endif
1289 1537
1290void inline_size 1538inline_size void
1291loop_fork (EV_P) 1539loop_fork (EV_P)
1292{ 1540{
1293#if EV_USE_PORT 1541#if EV_USE_PORT
1294 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1542 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1295#endif 1543#endif
1301#endif 1549#endif
1302#if EV_USE_INOTIFY 1550#if EV_USE_INOTIFY
1303 infy_fork (EV_A); 1551 infy_fork (EV_A);
1304#endif 1552#endif
1305 1553
1306 if (ev_is_active (&pipeev)) 1554 if (ev_is_active (&pipe_w))
1307 { 1555 {
1308 /* this "locks" the handlers against writing to the pipe */ 1556 /* this "locks" the handlers against writing to the pipe */
1309 /* while we modify the fd vars */ 1557 /* while we modify the fd vars */
1310 gotsig = 1; 1558 gotsig = 1;
1311#if EV_ASYNC_ENABLE 1559#if EV_ASYNC_ENABLE
1312 gotasync = 1; 1560 gotasync = 1;
1313#endif 1561#endif
1314 1562
1315 ev_ref (EV_A); 1563 ev_ref (EV_A);
1316 ev_io_stop (EV_A_ &pipeev); 1564 ev_io_stop (EV_A_ &pipe_w);
1317 1565
1318#if EV_USE_EVENTFD 1566#if EV_USE_EVENTFD
1319 if (evfd >= 0) 1567 if (evfd >= 0)
1320 close (evfd); 1568 close (evfd);
1321#endif 1569#endif
1326 close (evpipe [1]); 1574 close (evpipe [1]);
1327 } 1575 }
1328 1576
1329 evpipe_init (EV_A); 1577 evpipe_init (EV_A);
1330 /* now iterate over everything, in case we missed something */ 1578 /* now iterate over everything, in case we missed something */
1331 pipecb (EV_A_ &pipeev, EV_READ); 1579 pipecb (EV_A_ &pipe_w, EV_READ);
1332 } 1580 }
1333 1581
1334 postfork = 0; 1582 postfork = 0;
1335} 1583}
1336 1584
1337#if EV_MULTIPLICITY 1585#if EV_MULTIPLICITY
1586
1338struct ev_loop * 1587struct ev_loop *
1339ev_loop_new (unsigned int flags) 1588ev_loop_new (unsigned int flags)
1340{ 1589{
1341 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1590 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1342 1591
1361ev_loop_fork (EV_P) 1610ev_loop_fork (EV_P)
1362{ 1611{
1363 postfork = 1; /* must be in line with ev_default_fork */ 1612 postfork = 1; /* must be in line with ev_default_fork */
1364} 1613}
1365 1614
1615#if EV_VERIFY
1616static void noinline
1617verify_watcher (EV_P_ W w)
1618{
1619 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1620
1621 if (w->pending)
1622 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1623}
1624
1625static void noinline
1626verify_heap (EV_P_ ANHE *heap, int N)
1627{
1628 int i;
1629
1630 for (i = HEAP0; i < N + HEAP0; ++i)
1631 {
1632 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1633 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1634 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1635
1636 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1637 }
1638}
1639
1640static void noinline
1641array_verify (EV_P_ W *ws, int cnt)
1642{
1643 while (cnt--)
1644 {
1645 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1646 verify_watcher (EV_A_ ws [cnt]);
1647 }
1648}
1649#endif
1650
1651void
1652ev_loop_verify (EV_P)
1653{
1654#if EV_VERIFY
1655 int i;
1656 WL w;
1657
1658 assert (activecnt >= -1);
1659
1660 assert (fdchangemax >= fdchangecnt);
1661 for (i = 0; i < fdchangecnt; ++i)
1662 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1663
1664 assert (anfdmax >= 0);
1665 for (i = 0; i < anfdmax; ++i)
1666 for (w = anfds [i].head; w; w = w->next)
1667 {
1668 verify_watcher (EV_A_ (W)w);
1669 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1670 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1671 }
1672
1673 assert (timermax >= timercnt);
1674 verify_heap (EV_A_ timers, timercnt);
1675
1676#if EV_PERIODIC_ENABLE
1677 assert (periodicmax >= periodiccnt);
1678 verify_heap (EV_A_ periodics, periodiccnt);
1679#endif
1680
1681 for (i = NUMPRI; i--; )
1682 {
1683 assert (pendingmax [i] >= pendingcnt [i]);
1684#if EV_IDLE_ENABLE
1685 assert (idleall >= 0);
1686 assert (idlemax [i] >= idlecnt [i]);
1687 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1688#endif
1689 }
1690
1691#if EV_FORK_ENABLE
1692 assert (forkmax >= forkcnt);
1693 array_verify (EV_A_ (W *)forks, forkcnt);
1694#endif
1695
1696#if EV_ASYNC_ENABLE
1697 assert (asyncmax >= asynccnt);
1698 array_verify (EV_A_ (W *)asyncs, asynccnt);
1699#endif
1700
1701 assert (preparemax >= preparecnt);
1702 array_verify (EV_A_ (W *)prepares, preparecnt);
1703
1704 assert (checkmax >= checkcnt);
1705 array_verify (EV_A_ (W *)checks, checkcnt);
1706
1707# if 0
1708 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1709 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1366#endif 1710# endif
1711#endif
1712}
1713
1714#endif /* multiplicity */
1367 1715
1368#if EV_MULTIPLICITY 1716#if EV_MULTIPLICITY
1369struct ev_loop * 1717struct ev_loop *
1370ev_default_loop_init (unsigned int flags) 1718ev_default_loop_init (unsigned int flags)
1371#else 1719#else
1404{ 1752{
1405#if EV_MULTIPLICITY 1753#if EV_MULTIPLICITY
1406 struct ev_loop *loop = ev_default_loop_ptr; 1754 struct ev_loop *loop = ev_default_loop_ptr;
1407#endif 1755#endif
1408 1756
1757 ev_default_loop_ptr = 0;
1758
1409#ifndef _WIN32 1759#ifndef _WIN32
1410 ev_ref (EV_A); /* child watcher */ 1760 ev_ref (EV_A); /* child watcher */
1411 ev_signal_stop (EV_A_ &childev); 1761 ev_signal_stop (EV_A_ &childev);
1412#endif 1762#endif
1413 1763
1419{ 1769{
1420#if EV_MULTIPLICITY 1770#if EV_MULTIPLICITY
1421 struct ev_loop *loop = ev_default_loop_ptr; 1771 struct ev_loop *loop = ev_default_loop_ptr;
1422#endif 1772#endif
1423 1773
1424 if (backend)
1425 postfork = 1; /* must be in line with ev_loop_fork */ 1774 postfork = 1; /* must be in line with ev_loop_fork */
1426} 1775}
1427 1776
1428/*****************************************************************************/ 1777/*****************************************************************************/
1429 1778
1430void 1779void
1431ev_invoke (EV_P_ void *w, int revents) 1780ev_invoke (EV_P_ void *w, int revents)
1432{ 1781{
1433 EV_CB_INVOKE ((W)w, revents); 1782 EV_CB_INVOKE ((W)w, revents);
1434} 1783}
1435 1784
1436void inline_speed 1785inline_speed void
1437call_pending (EV_P) 1786call_pending (EV_P)
1438{ 1787{
1439 int pri; 1788 int pri;
1440 1789
1441 for (pri = NUMPRI; pri--; ) 1790 for (pri = NUMPRI; pri--; )
1442 while (pendingcnt [pri]) 1791 while (pendingcnt [pri])
1443 { 1792 {
1444 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1793 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1445 1794
1446 if (expect_true (p->w))
1447 {
1448 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1795 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1796 /* ^ this is no longer true, as pending_w could be here */
1449 1797
1450 p->w->pending = 0; 1798 p->w->pending = 0;
1451 EV_CB_INVOKE (p->w, p->events); 1799 EV_CB_INVOKE (p->w, p->events);
1452 } 1800 EV_FREQUENT_CHECK;
1453 } 1801 }
1454} 1802}
1455 1803
1456void inline_size
1457timers_reify (EV_P)
1458{
1459 while (timercnt && ((WT)timers [0])->at <= mn_now)
1460 {
1461 ev_timer *w = (ev_timer *)timers [0];
1462
1463 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1464
1465 /* first reschedule or stop timer */
1466 if (w->repeat)
1467 {
1468 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1469
1470 ((WT)w)->at += w->repeat;
1471 if (((WT)w)->at < mn_now)
1472 ((WT)w)->at = mn_now;
1473
1474 downheap (timers, timercnt, 0);
1475 }
1476 else
1477 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1478
1479 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1480 }
1481}
1482
1483#if EV_PERIODIC_ENABLE
1484void inline_size
1485periodics_reify (EV_P)
1486{
1487 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1488 {
1489 ev_periodic *w = (ev_periodic *)periodics [0];
1490
1491 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1492
1493 /* first reschedule or stop timer */
1494 if (w->reschedule_cb)
1495 {
1496 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1497 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1498 downheap (periodics, periodiccnt, 0);
1499 }
1500 else if (w->interval)
1501 {
1502 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1503 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1504 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1505 downheap (periodics, periodiccnt, 0);
1506 }
1507 else
1508 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1509
1510 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1511 }
1512}
1513
1514static void noinline
1515periodics_reschedule (EV_P)
1516{
1517 int i;
1518
1519 /* adjust periodics after time jump */
1520 for (i = 0; i < periodiccnt; ++i)
1521 {
1522 ev_periodic *w = (ev_periodic *)periodics [i];
1523
1524 if (w->reschedule_cb)
1525 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1526 else if (w->interval)
1527 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1528 }
1529
1530 /* now rebuild the heap */
1531 for (i = periodiccnt >> 1; i--; )
1532 downheap (periodics, periodiccnt, i);
1533}
1534#endif
1535
1536#if EV_IDLE_ENABLE 1804#if EV_IDLE_ENABLE
1537void inline_size 1805/* make idle watchers pending. this handles the "call-idle */
1806/* only when higher priorities are idle" logic */
1807inline_size void
1538idle_reify (EV_P) 1808idle_reify (EV_P)
1539{ 1809{
1540 if (expect_false (idleall)) 1810 if (expect_false (idleall))
1541 { 1811 {
1542 int pri; 1812 int pri;
1554 } 1824 }
1555 } 1825 }
1556} 1826}
1557#endif 1827#endif
1558 1828
1559void inline_speed 1829/* make timers pending */
1830inline_size void
1831timers_reify (EV_P)
1832{
1833 EV_FREQUENT_CHECK;
1834
1835 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1836 {
1837 do
1838 {
1839 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1840
1841 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1842
1843 /* first reschedule or stop timer */
1844 if (w->repeat)
1845 {
1846 ev_at (w) += w->repeat;
1847 if (ev_at (w) < mn_now)
1848 ev_at (w) = mn_now;
1849
1850 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1851
1852 ANHE_at_cache (timers [HEAP0]);
1853 downheap (timers, timercnt, HEAP0);
1854 }
1855 else
1856 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1857
1858 EV_FREQUENT_CHECK;
1859 feed_reverse (EV_A_ (W)w);
1860 }
1861 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1862
1863 feed_reverse_done (EV_A_ EV_TIMEOUT);
1864 }
1865}
1866
1867#if EV_PERIODIC_ENABLE
1868/* make periodics pending */
1869inline_size void
1870periodics_reify (EV_P)
1871{
1872 EV_FREQUENT_CHECK;
1873
1874 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1875 {
1876 int feed_count = 0;
1877
1878 do
1879 {
1880 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1881
1882 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1883
1884 /* first reschedule or stop timer */
1885 if (w->reschedule_cb)
1886 {
1887 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1888
1889 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1890
1891 ANHE_at_cache (periodics [HEAP0]);
1892 downheap (periodics, periodiccnt, HEAP0);
1893 }
1894 else if (w->interval)
1895 {
1896 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1897 /* if next trigger time is not sufficiently in the future, put it there */
1898 /* this might happen because of floating point inexactness */
1899 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1900 {
1901 ev_at (w) += w->interval;
1902
1903 /* if interval is unreasonably low we might still have a time in the past */
1904 /* so correct this. this will make the periodic very inexact, but the user */
1905 /* has effectively asked to get triggered more often than possible */
1906 if (ev_at (w) < ev_rt_now)
1907 ev_at (w) = ev_rt_now;
1908 }
1909
1910 ANHE_at_cache (periodics [HEAP0]);
1911 downheap (periodics, periodiccnt, HEAP0);
1912 }
1913 else
1914 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1915
1916 EV_FREQUENT_CHECK;
1917 feed_reverse (EV_A_ (W)w);
1918 }
1919 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1920
1921 feed_reverse_done (EV_A_ EV_PERIODIC);
1922 }
1923}
1924
1925/* simply recalculate all periodics */
1926/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1927static void noinline
1928periodics_reschedule (EV_P)
1929{
1930 int i;
1931
1932 /* adjust periodics after time jump */
1933 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1934 {
1935 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1936
1937 if (w->reschedule_cb)
1938 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1939 else if (w->interval)
1940 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1941
1942 ANHE_at_cache (periodics [i]);
1943 }
1944
1945 reheap (periodics, periodiccnt);
1946}
1947#endif
1948
1949/* adjust all timers by a given offset */
1950static void noinline
1951timers_reschedule (EV_P_ ev_tstamp adjust)
1952{
1953 int i;
1954
1955 for (i = 0; i < timercnt; ++i)
1956 {
1957 ANHE *he = timers + i + HEAP0;
1958 ANHE_w (*he)->at += adjust;
1959 ANHE_at_cache (*he);
1960 }
1961}
1962
1963/* fetch new monotonic and realtime times from the kernel */
1964/* also detetc if there was a timejump, and act accordingly */
1965inline_speed void
1560time_update (EV_P_ ev_tstamp max_block) 1966time_update (EV_P_ ev_tstamp max_block)
1561{ 1967{
1562 int i;
1563
1564#if EV_USE_MONOTONIC 1968#if EV_USE_MONOTONIC
1565 if (expect_true (have_monotonic)) 1969 if (expect_true (have_monotonic))
1566 { 1970 {
1971 int i;
1567 ev_tstamp odiff = rtmn_diff; 1972 ev_tstamp odiff = rtmn_diff;
1568 1973
1569 mn_now = get_clock (); 1974 mn_now = get_clock ();
1570 1975
1571 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 1976 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1589 */ 1994 */
1590 for (i = 4; --i; ) 1995 for (i = 4; --i; )
1591 { 1996 {
1592 rtmn_diff = ev_rt_now - mn_now; 1997 rtmn_diff = ev_rt_now - mn_now;
1593 1998
1594 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1999 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1595 return; /* all is well */ 2000 return; /* all is well */
1596 2001
1597 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1598 mn_now = get_clock (); 2003 mn_now = get_clock ();
1599 now_floor = mn_now; 2004 now_floor = mn_now;
1600 } 2005 }
1601 2006
2007 /* no timer adjustment, as the monotonic clock doesn't jump */
2008 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1602# if EV_PERIODIC_ENABLE 2009# if EV_PERIODIC_ENABLE
1603 periodics_reschedule (EV_A); 2010 periodics_reschedule (EV_A);
1604# endif 2011# endif
1605 /* no timer adjustment, as the monotonic clock doesn't jump */
1606 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1607 } 2012 }
1608 else 2013 else
1609#endif 2014#endif
1610 { 2015 {
1611 ev_rt_now = ev_time (); 2016 ev_rt_now = ev_time ();
1612 2017
1613 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2018 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1614 { 2019 {
2020 /* adjust timers. this is easy, as the offset is the same for all of them */
2021 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1615#if EV_PERIODIC_ENABLE 2022#if EV_PERIODIC_ENABLE
1616 periodics_reschedule (EV_A); 2023 periodics_reschedule (EV_A);
1617#endif 2024#endif
1618 /* adjust timers. this is easy, as the offset is the same for all of them */
1619 for (i = 0; i < timercnt; ++i)
1620 ((WT)timers [i])->at += ev_rt_now - mn_now;
1621 } 2025 }
1622 2026
1623 mn_now = ev_rt_now; 2027 mn_now = ev_rt_now;
1624 } 2028 }
1625} 2029}
1626 2030
1627void 2031void
1628ev_ref (EV_P)
1629{
1630 ++activecnt;
1631}
1632
1633void
1634ev_unref (EV_P)
1635{
1636 --activecnt;
1637}
1638
1639static int loop_done;
1640
1641void
1642ev_loop (EV_P_ int flags) 2032ev_loop (EV_P_ int flags)
1643{ 2033{
2034 ++loop_depth;
2035
1644 loop_done = EVUNLOOP_CANCEL; 2036 loop_done = EVUNLOOP_CANCEL;
1645 2037
1646 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2038 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1647 2039
1648 do 2040 do
1649 { 2041 {
2042#if EV_VERIFY >= 2
2043 ev_loop_verify (EV_A);
2044#endif
2045
1650#ifndef _WIN32 2046#ifndef _WIN32
1651 if (expect_false (curpid)) /* penalise the forking check even more */ 2047 if (expect_false (curpid)) /* penalise the forking check even more */
1652 if (expect_false (getpid () != curpid)) 2048 if (expect_false (getpid () != curpid))
1653 { 2049 {
1654 curpid = getpid (); 2050 curpid = getpid ();
1671 { 2067 {
1672 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2068 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1673 call_pending (EV_A); 2069 call_pending (EV_A);
1674 } 2070 }
1675 2071
1676 if (expect_false (!activecnt))
1677 break;
1678
1679 /* we might have forked, so reify kernel state if necessary */ 2072 /* we might have forked, so reify kernel state if necessary */
1680 if (expect_false (postfork)) 2073 if (expect_false (postfork))
1681 loop_fork (EV_A); 2074 loop_fork (EV_A);
1682 2075
1683 /* update fd-related kernel structures */ 2076 /* update fd-related kernel structures */
1688 ev_tstamp waittime = 0.; 2081 ev_tstamp waittime = 0.;
1689 ev_tstamp sleeptime = 0.; 2082 ev_tstamp sleeptime = 0.;
1690 2083
1691 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2084 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1692 { 2085 {
2086 /* remember old timestamp for io_blocktime calculation */
2087 ev_tstamp prev_mn_now = mn_now;
2088
1693 /* update time to cancel out callback processing overhead */ 2089 /* update time to cancel out callback processing overhead */
1694 time_update (EV_A_ 1e100); 2090 time_update (EV_A_ 1e100);
1695 2091
1696 waittime = MAX_BLOCKTIME; 2092 waittime = MAX_BLOCKTIME;
1697 2093
1698 if (timercnt) 2094 if (timercnt)
1699 { 2095 {
1700 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2096 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1701 if (waittime > to) waittime = to; 2097 if (waittime > to) waittime = to;
1702 } 2098 }
1703 2099
1704#if EV_PERIODIC_ENABLE 2100#if EV_PERIODIC_ENABLE
1705 if (periodiccnt) 2101 if (periodiccnt)
1706 { 2102 {
1707 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2103 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1708 if (waittime > to) waittime = to; 2104 if (waittime > to) waittime = to;
1709 } 2105 }
1710#endif 2106#endif
1711 2107
2108 /* don't let timeouts decrease the waittime below timeout_blocktime */
1712 if (expect_false (waittime < timeout_blocktime)) 2109 if (expect_false (waittime < timeout_blocktime))
1713 waittime = timeout_blocktime; 2110 waittime = timeout_blocktime;
1714 2111
1715 sleeptime = waittime - backend_fudge; 2112 /* extra check because io_blocktime is commonly 0 */
1716
1717 if (expect_true (sleeptime > io_blocktime)) 2113 if (expect_false (io_blocktime))
1718 sleeptime = io_blocktime;
1719
1720 if (sleeptime)
1721 { 2114 {
2115 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2116
2117 if (sleeptime > waittime - backend_fudge)
2118 sleeptime = waittime - backend_fudge;
2119
2120 if (expect_true (sleeptime > 0.))
2121 {
1722 ev_sleep (sleeptime); 2122 ev_sleep (sleeptime);
1723 waittime -= sleeptime; 2123 waittime -= sleeptime;
2124 }
1724 } 2125 }
1725 } 2126 }
1726 2127
1727 ++loop_count; 2128 ++loop_count;
1728 backend_poll (EV_A_ waittime); 2129 backend_poll (EV_A_ waittime);
1754 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2155 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1755 )); 2156 ));
1756 2157
1757 if (loop_done == EVUNLOOP_ONE) 2158 if (loop_done == EVUNLOOP_ONE)
1758 loop_done = EVUNLOOP_CANCEL; 2159 loop_done = EVUNLOOP_CANCEL;
2160
2161 --loop_depth;
1759} 2162}
1760 2163
1761void 2164void
1762ev_unloop (EV_P_ int how) 2165ev_unloop (EV_P_ int how)
1763{ 2166{
1764 loop_done = how; 2167 loop_done = how;
1765} 2168}
1766 2169
2170void
2171ev_ref (EV_P)
2172{
2173 ++activecnt;
2174}
2175
2176void
2177ev_unref (EV_P)
2178{
2179 --activecnt;
2180}
2181
2182void
2183ev_now_update (EV_P)
2184{
2185 time_update (EV_A_ 1e100);
2186}
2187
2188void
2189ev_suspend (EV_P)
2190{
2191 ev_now_update (EV_A);
2192}
2193
2194void
2195ev_resume (EV_P)
2196{
2197 ev_tstamp mn_prev = mn_now;
2198
2199 ev_now_update (EV_A);
2200 timers_reschedule (EV_A_ mn_now - mn_prev);
2201#if EV_PERIODIC_ENABLE
2202 /* TODO: really do this? */
2203 periodics_reschedule (EV_A);
2204#endif
2205}
2206
1767/*****************************************************************************/ 2207/*****************************************************************************/
2208/* singly-linked list management, used when the expected list length is short */
1768 2209
1769void inline_size 2210inline_size void
1770wlist_add (WL *head, WL elem) 2211wlist_add (WL *head, WL elem)
1771{ 2212{
1772 elem->next = *head; 2213 elem->next = *head;
1773 *head = elem; 2214 *head = elem;
1774} 2215}
1775 2216
1776void inline_size 2217inline_size void
1777wlist_del (WL *head, WL elem) 2218wlist_del (WL *head, WL elem)
1778{ 2219{
1779 while (*head) 2220 while (*head)
1780 { 2221 {
1781 if (*head == elem) 2222 if (*head == elem)
1786 2227
1787 head = &(*head)->next; 2228 head = &(*head)->next;
1788 } 2229 }
1789} 2230}
1790 2231
1791void inline_speed 2232/* internal, faster, version of ev_clear_pending */
2233inline_speed void
1792clear_pending (EV_P_ W w) 2234clear_pending (EV_P_ W w)
1793{ 2235{
1794 if (w->pending) 2236 if (w->pending)
1795 { 2237 {
1796 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2238 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1797 w->pending = 0; 2239 w->pending = 0;
1798 } 2240 }
1799} 2241}
1800 2242
1801int 2243int
1805 int pending = w_->pending; 2247 int pending = w_->pending;
1806 2248
1807 if (expect_true (pending)) 2249 if (expect_true (pending))
1808 { 2250 {
1809 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2251 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2252 p->w = (W)&pending_w;
1810 w_->pending = 0; 2253 w_->pending = 0;
1811 p->w = 0;
1812 return p->events; 2254 return p->events;
1813 } 2255 }
1814 else 2256 else
1815 return 0; 2257 return 0;
1816} 2258}
1817 2259
1818void inline_size 2260inline_size void
1819pri_adjust (EV_P_ W w) 2261pri_adjust (EV_P_ W w)
1820{ 2262{
1821 int pri = w->priority; 2263 int pri = w->priority;
1822 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2264 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1823 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2265 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1824 w->priority = pri; 2266 w->priority = pri;
1825} 2267}
1826 2268
1827void inline_speed 2269inline_speed void
1828ev_start (EV_P_ W w, int active) 2270ev_start (EV_P_ W w, int active)
1829{ 2271{
1830 pri_adjust (EV_A_ w); 2272 pri_adjust (EV_A_ w);
1831 w->active = active; 2273 w->active = active;
1832 ev_ref (EV_A); 2274 ev_ref (EV_A);
1833} 2275}
1834 2276
1835void inline_size 2277inline_size void
1836ev_stop (EV_P_ W w) 2278ev_stop (EV_P_ W w)
1837{ 2279{
1838 ev_unref (EV_A); 2280 ev_unref (EV_A);
1839 w->active = 0; 2281 w->active = 0;
1840} 2282}
1847 int fd = w->fd; 2289 int fd = w->fd;
1848 2290
1849 if (expect_false (ev_is_active (w))) 2291 if (expect_false (ev_is_active (w)))
1850 return; 2292 return;
1851 2293
1852 assert (("ev_io_start called with negative fd", fd >= 0)); 2294 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2295 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2296
2297 EV_FREQUENT_CHECK;
1853 2298
1854 ev_start (EV_A_ (W)w, 1); 2299 ev_start (EV_A_ (W)w, 1);
1855 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2300 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1856 wlist_add (&anfds[fd].head, (WL)w); 2301 wlist_add (&anfds[fd].head, (WL)w);
1857 2302
1858 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2303 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1859 w->events &= ~EV_IOFDSET; 2304 w->events &= ~EV__IOFDSET;
2305
2306 EV_FREQUENT_CHECK;
1860} 2307}
1861 2308
1862void noinline 2309void noinline
1863ev_io_stop (EV_P_ ev_io *w) 2310ev_io_stop (EV_P_ ev_io *w)
1864{ 2311{
1865 clear_pending (EV_A_ (W)w); 2312 clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w))) 2313 if (expect_false (!ev_is_active (w)))
1867 return; 2314 return;
1868 2315
1869 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2316 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2317
2318 EV_FREQUENT_CHECK;
1870 2319
1871 wlist_del (&anfds[w->fd].head, (WL)w); 2320 wlist_del (&anfds[w->fd].head, (WL)w);
1872 ev_stop (EV_A_ (W)w); 2321 ev_stop (EV_A_ (W)w);
1873 2322
1874 fd_change (EV_A_ w->fd, 1); 2323 fd_change (EV_A_ w->fd, 1);
2324
2325 EV_FREQUENT_CHECK;
1875} 2326}
1876 2327
1877void noinline 2328void noinline
1878ev_timer_start (EV_P_ ev_timer *w) 2329ev_timer_start (EV_P_ ev_timer *w)
1879{ 2330{
1880 if (expect_false (ev_is_active (w))) 2331 if (expect_false (ev_is_active (w)))
1881 return; 2332 return;
1882 2333
1883 ((WT)w)->at += mn_now; 2334 ev_at (w) += mn_now;
1884 2335
1885 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2336 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1886 2337
2338 EV_FREQUENT_CHECK;
2339
2340 ++timercnt;
1887 ev_start (EV_A_ (W)w, ++timercnt); 2341 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1888 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2342 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1889 timers [timercnt - 1] = (WT)w; 2343 ANHE_w (timers [ev_active (w)]) = (WT)w;
1890 upheap (timers, timercnt - 1); 2344 ANHE_at_cache (timers [ev_active (w)]);
2345 upheap (timers, ev_active (w));
1891 2346
2347 EV_FREQUENT_CHECK;
2348
1892 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2349 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1893} 2350}
1894 2351
1895void noinline 2352void noinline
1896ev_timer_stop (EV_P_ ev_timer *w) 2353ev_timer_stop (EV_P_ ev_timer *w)
1897{ 2354{
1898 clear_pending (EV_A_ (W)w); 2355 clear_pending (EV_A_ (W)w);
1899 if (expect_false (!ev_is_active (w))) 2356 if (expect_false (!ev_is_active (w)))
1900 return; 2357 return;
1901 2358
1902 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2359 EV_FREQUENT_CHECK;
1903 2360
1904 { 2361 {
1905 int active = ((W)w)->active; 2362 int active = ev_active (w);
1906 2363
2364 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2365
2366 --timercnt;
2367
1907 if (expect_true (--active < --timercnt)) 2368 if (expect_true (active < timercnt + HEAP0))
1908 { 2369 {
1909 timers [active] = timers [timercnt]; 2370 timers [active] = timers [timercnt + HEAP0];
1910 adjustheap (timers, timercnt, active); 2371 adjustheap (timers, timercnt, active);
1911 } 2372 }
1912 } 2373 }
1913 2374
1914 ((WT)w)->at -= mn_now; 2375 EV_FREQUENT_CHECK;
2376
2377 ev_at (w) -= mn_now;
1915 2378
1916 ev_stop (EV_A_ (W)w); 2379 ev_stop (EV_A_ (W)w);
1917} 2380}
1918 2381
1919void noinline 2382void noinline
1920ev_timer_again (EV_P_ ev_timer *w) 2383ev_timer_again (EV_P_ ev_timer *w)
1921{ 2384{
2385 EV_FREQUENT_CHECK;
2386
1922 if (ev_is_active (w)) 2387 if (ev_is_active (w))
1923 { 2388 {
1924 if (w->repeat) 2389 if (w->repeat)
1925 { 2390 {
1926 ((WT)w)->at = mn_now + w->repeat; 2391 ev_at (w) = mn_now + w->repeat;
2392 ANHE_at_cache (timers [ev_active (w)]);
1927 adjustheap (timers, timercnt, ((W)w)->active - 1); 2393 adjustheap (timers, timercnt, ev_active (w));
1928 } 2394 }
1929 else 2395 else
1930 ev_timer_stop (EV_A_ w); 2396 ev_timer_stop (EV_A_ w);
1931 } 2397 }
1932 else if (w->repeat) 2398 else if (w->repeat)
1933 { 2399 {
1934 w->at = w->repeat; 2400 ev_at (w) = w->repeat;
1935 ev_timer_start (EV_A_ w); 2401 ev_timer_start (EV_A_ w);
1936 } 2402 }
2403
2404 EV_FREQUENT_CHECK;
1937} 2405}
1938 2406
1939#if EV_PERIODIC_ENABLE 2407#if EV_PERIODIC_ENABLE
1940void noinline 2408void noinline
1941ev_periodic_start (EV_P_ ev_periodic *w) 2409ev_periodic_start (EV_P_ ev_periodic *w)
1942{ 2410{
1943 if (expect_false (ev_is_active (w))) 2411 if (expect_false (ev_is_active (w)))
1944 return; 2412 return;
1945 2413
1946 if (w->reschedule_cb) 2414 if (w->reschedule_cb)
1947 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2415 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1948 else if (w->interval) 2416 else if (w->interval)
1949 { 2417 {
1950 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2418 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1951 /* this formula differs from the one in periodic_reify because we do not always round up */ 2419 /* this formula differs from the one in periodic_reify because we do not always round up */
1952 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2420 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1953 } 2421 }
1954 else 2422 else
1955 ((WT)w)->at = w->offset; 2423 ev_at (w) = w->offset;
1956 2424
2425 EV_FREQUENT_CHECK;
2426
2427 ++periodiccnt;
1957 ev_start (EV_A_ (W)w, ++periodiccnt); 2428 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1958 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2429 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1959 periodics [periodiccnt - 1] = (WT)w; 2430 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1960 upheap (periodics, periodiccnt - 1); 2431 ANHE_at_cache (periodics [ev_active (w)]);
2432 upheap (periodics, ev_active (w));
1961 2433
2434 EV_FREQUENT_CHECK;
2435
1962 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2436 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1963} 2437}
1964 2438
1965void noinline 2439void noinline
1966ev_periodic_stop (EV_P_ ev_periodic *w) 2440ev_periodic_stop (EV_P_ ev_periodic *w)
1967{ 2441{
1968 clear_pending (EV_A_ (W)w); 2442 clear_pending (EV_A_ (W)w);
1969 if (expect_false (!ev_is_active (w))) 2443 if (expect_false (!ev_is_active (w)))
1970 return; 2444 return;
1971 2445
1972 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2446 EV_FREQUENT_CHECK;
1973 2447
1974 { 2448 {
1975 int active = ((W)w)->active; 2449 int active = ev_active (w);
1976 2450
2451 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2452
2453 --periodiccnt;
2454
1977 if (expect_true (--active < --periodiccnt)) 2455 if (expect_true (active < periodiccnt + HEAP0))
1978 { 2456 {
1979 periodics [active] = periodics [periodiccnt]; 2457 periodics [active] = periodics [periodiccnt + HEAP0];
1980 adjustheap (periodics, periodiccnt, active); 2458 adjustheap (periodics, periodiccnt, active);
1981 } 2459 }
1982 } 2460 }
1983 2461
2462 EV_FREQUENT_CHECK;
2463
1984 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
1985} 2465}
1986 2466
1987void noinline 2467void noinline
1988ev_periodic_again (EV_P_ ev_periodic *w) 2468ev_periodic_again (EV_P_ ev_periodic *w)
1999 2479
2000void noinline 2480void noinline
2001ev_signal_start (EV_P_ ev_signal *w) 2481ev_signal_start (EV_P_ ev_signal *w)
2002{ 2482{
2003#if EV_MULTIPLICITY 2483#if EV_MULTIPLICITY
2004 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2484 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2005#endif 2485#endif
2006 if (expect_false (ev_is_active (w))) 2486 if (expect_false (ev_is_active (w)))
2007 return; 2487 return;
2008 2488
2009 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2489 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2010 2490
2011 evpipe_init (EV_A); 2491 evpipe_init (EV_A);
2492
2493 EV_FREQUENT_CHECK;
2012 2494
2013 { 2495 {
2014#ifndef _WIN32 2496#ifndef _WIN32
2015 sigset_t full, prev; 2497 sigset_t full, prev;
2016 sigfillset (&full); 2498 sigfillset (&full);
2017 sigprocmask (SIG_SETMASK, &full, &prev); 2499 sigprocmask (SIG_SETMASK, &full, &prev);
2018#endif 2500#endif
2019 2501
2020 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2502 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2021 2503
2022#ifndef _WIN32 2504#ifndef _WIN32
2023 sigprocmask (SIG_SETMASK, &prev, 0); 2505 sigprocmask (SIG_SETMASK, &prev, 0);
2024#endif 2506#endif
2025 } 2507 }
2037 sigfillset (&sa.sa_mask); 2519 sigfillset (&sa.sa_mask);
2038 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2520 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2039 sigaction (w->signum, &sa, 0); 2521 sigaction (w->signum, &sa, 0);
2040#endif 2522#endif
2041 } 2523 }
2524
2525 EV_FREQUENT_CHECK;
2042} 2526}
2043 2527
2044void noinline 2528void noinline
2045ev_signal_stop (EV_P_ ev_signal *w) 2529ev_signal_stop (EV_P_ ev_signal *w)
2046{ 2530{
2047 clear_pending (EV_A_ (W)w); 2531 clear_pending (EV_A_ (W)w);
2048 if (expect_false (!ev_is_active (w))) 2532 if (expect_false (!ev_is_active (w)))
2049 return; 2533 return;
2050 2534
2535 EV_FREQUENT_CHECK;
2536
2051 wlist_del (&signals [w->signum - 1].head, (WL)w); 2537 wlist_del (&signals [w->signum - 1].head, (WL)w);
2052 ev_stop (EV_A_ (W)w); 2538 ev_stop (EV_A_ (W)w);
2053 2539
2054 if (!signals [w->signum - 1].head) 2540 if (!signals [w->signum - 1].head)
2055 signal (w->signum, SIG_DFL); 2541 signal (w->signum, SIG_DFL);
2542
2543 EV_FREQUENT_CHECK;
2056} 2544}
2057 2545
2058void 2546void
2059ev_child_start (EV_P_ ev_child *w) 2547ev_child_start (EV_P_ ev_child *w)
2060{ 2548{
2061#if EV_MULTIPLICITY 2549#if EV_MULTIPLICITY
2062 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2550 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2063#endif 2551#endif
2064 if (expect_false (ev_is_active (w))) 2552 if (expect_false (ev_is_active (w)))
2065 return; 2553 return;
2066 2554
2555 EV_FREQUENT_CHECK;
2556
2067 ev_start (EV_A_ (W)w, 1); 2557 ev_start (EV_A_ (W)w, 1);
2068 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2558 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2559
2560 EV_FREQUENT_CHECK;
2069} 2561}
2070 2562
2071void 2563void
2072ev_child_stop (EV_P_ ev_child *w) 2564ev_child_stop (EV_P_ ev_child *w)
2073{ 2565{
2074 clear_pending (EV_A_ (W)w); 2566 clear_pending (EV_A_ (W)w);
2075 if (expect_false (!ev_is_active (w))) 2567 if (expect_false (!ev_is_active (w)))
2076 return; 2568 return;
2077 2569
2570 EV_FREQUENT_CHECK;
2571
2078 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2572 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2079 ev_stop (EV_A_ (W)w); 2573 ev_stop (EV_A_ (W)w);
2574
2575 EV_FREQUENT_CHECK;
2080} 2576}
2081 2577
2082#if EV_STAT_ENABLE 2578#if EV_STAT_ENABLE
2083 2579
2084# ifdef _WIN32 2580# ifdef _WIN32
2085# undef lstat 2581# undef lstat
2086# define lstat(a,b) _stati64 (a,b) 2582# define lstat(a,b) _stati64 (a,b)
2087# endif 2583# endif
2088 2584
2089#define DEF_STAT_INTERVAL 5.0074891 2585#define DEF_STAT_INTERVAL 5.0074891
2586#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2090#define MIN_STAT_INTERVAL 0.1074891 2587#define MIN_STAT_INTERVAL 0.1074891
2091 2588
2092static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2589static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2093 2590
2094#if EV_USE_INOTIFY 2591#if EV_USE_INOTIFY
2095# define EV_INOTIFY_BUFSIZE 8192 2592# define EV_INOTIFY_BUFSIZE 8192
2099{ 2596{
2100 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2597 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2101 2598
2102 if (w->wd < 0) 2599 if (w->wd < 0)
2103 { 2600 {
2601 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2104 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2602 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2105 2603
2106 /* monitor some parent directory for speedup hints */ 2604 /* monitor some parent directory for speedup hints */
2605 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2606 /* but an efficiency issue only */
2107 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2607 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2108 { 2608 {
2109 char path [4096]; 2609 char path [4096];
2110 strcpy (path, w->path); 2610 strcpy (path, w->path);
2111 2611
2114 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2614 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2115 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2615 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2116 2616
2117 char *pend = strrchr (path, '/'); 2617 char *pend = strrchr (path, '/');
2118 2618
2119 if (!pend) 2619 if (!pend || pend == path)
2120 break; /* whoops, no '/', complain to your admin */ 2620 break;
2121 2621
2122 *pend = 0; 2622 *pend = 0;
2123 w->wd = inotify_add_watch (fs_fd, path, mask); 2623 w->wd = inotify_add_watch (fs_fd, path, mask);
2124 } 2624 }
2125 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2625 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2126 } 2626 }
2127 } 2627 }
2128 else
2129 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2130 2628
2131 if (w->wd >= 0) 2629 if (w->wd >= 0)
2630 {
2132 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2631 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2632
2633 /* now local changes will be tracked by inotify, but remote changes won't */
2634 /* unless the filesystem it known to be local, we therefore still poll */
2635 /* also do poll on <2.6.25, but with normal frequency */
2636 struct statfs sfs;
2637
2638 if (fs_2625 && !statfs (w->path, &sfs))
2639 if (sfs.f_type == 0x1373 /* devfs */
2640 || sfs.f_type == 0xEF53 /* ext2/3 */
2641 || sfs.f_type == 0x3153464a /* jfs */
2642 || sfs.f_type == 0x52654973 /* reiser3 */
2643 || sfs.f_type == 0x01021994 /* tempfs */
2644 || sfs.f_type == 0x58465342 /* xfs */)
2645 return;
2646
2647 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2648 ev_timer_again (EV_A_ &w->timer);
2649 }
2133} 2650}
2134 2651
2135static void noinline 2652static void noinline
2136infy_del (EV_P_ ev_stat *w) 2653infy_del (EV_P_ ev_stat *w)
2137{ 2654{
2151 2668
2152static void noinline 2669static void noinline
2153infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2670infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2154{ 2671{
2155 if (slot < 0) 2672 if (slot < 0)
2156 /* overflow, need to check for all hahs slots */ 2673 /* overflow, need to check for all hash slots */
2157 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2674 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2158 infy_wd (EV_A_ slot, wd, ev); 2675 infy_wd (EV_A_ slot, wd, ev);
2159 else 2676 else
2160 { 2677 {
2161 WL w_; 2678 WL w_;
2167 2684
2168 if (w->wd == wd || wd == -1) 2685 if (w->wd == wd || wd == -1)
2169 { 2686 {
2170 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2687 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2171 { 2688 {
2689 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2172 w->wd = -1; 2690 w->wd = -1;
2173 infy_add (EV_A_ w); /* re-add, no matter what */ 2691 infy_add (EV_A_ w); /* re-add, no matter what */
2174 } 2692 }
2175 2693
2176 stat_timer_cb (EV_A_ &w->timer, 0); 2694 stat_timer_cb (EV_A_ &w->timer, 0);
2189 2707
2190 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2708 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2191 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2709 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2192} 2710}
2193 2711
2194void inline_size 2712inline_size void
2713check_2625 (EV_P)
2714{
2715 /* kernels < 2.6.25 are borked
2716 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2717 */
2718 struct utsname buf;
2719 int major, minor, micro;
2720
2721 if (uname (&buf))
2722 return;
2723
2724 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2725 return;
2726
2727 if (major < 2
2728 || (major == 2 && minor < 6)
2729 || (major == 2 && minor == 6 && micro < 25))
2730 return;
2731
2732 fs_2625 = 1;
2733}
2734
2735inline_size void
2195infy_init (EV_P) 2736infy_init (EV_P)
2196{ 2737{
2197 if (fs_fd != -2) 2738 if (fs_fd != -2)
2198 return; 2739 return;
2740
2741 fs_fd = -1;
2742
2743 check_2625 (EV_A);
2199 2744
2200 fs_fd = inotify_init (); 2745 fs_fd = inotify_init ();
2201 2746
2202 if (fs_fd >= 0) 2747 if (fs_fd >= 0)
2203 { 2748 {
2205 ev_set_priority (&fs_w, EV_MAXPRI); 2750 ev_set_priority (&fs_w, EV_MAXPRI);
2206 ev_io_start (EV_A_ &fs_w); 2751 ev_io_start (EV_A_ &fs_w);
2207 } 2752 }
2208} 2753}
2209 2754
2210void inline_size 2755inline_size void
2211infy_fork (EV_P) 2756infy_fork (EV_P)
2212{ 2757{
2213 int slot; 2758 int slot;
2214 2759
2215 if (fs_fd < 0) 2760 if (fs_fd < 0)
2231 w->wd = -1; 2776 w->wd = -1;
2232 2777
2233 if (fs_fd >= 0) 2778 if (fs_fd >= 0)
2234 infy_add (EV_A_ w); /* re-add, no matter what */ 2779 infy_add (EV_A_ w); /* re-add, no matter what */
2235 else 2780 else
2236 ev_timer_start (EV_A_ &w->timer); 2781 ev_timer_again (EV_A_ &w->timer);
2237 } 2782 }
2238
2239 } 2783 }
2240} 2784}
2241 2785
2786#endif
2787
2788#ifdef _WIN32
2789# define EV_LSTAT(p,b) _stati64 (p, b)
2790#else
2791# define EV_LSTAT(p,b) lstat (p, b)
2242#endif 2792#endif
2243 2793
2244void 2794void
2245ev_stat_stat (EV_P_ ev_stat *w) 2795ev_stat_stat (EV_P_ ev_stat *w)
2246{ 2796{
2273 || w->prev.st_atime != w->attr.st_atime 2823 || w->prev.st_atime != w->attr.st_atime
2274 || w->prev.st_mtime != w->attr.st_mtime 2824 || w->prev.st_mtime != w->attr.st_mtime
2275 || w->prev.st_ctime != w->attr.st_ctime 2825 || w->prev.st_ctime != w->attr.st_ctime
2276 ) { 2826 ) {
2277 #if EV_USE_INOTIFY 2827 #if EV_USE_INOTIFY
2828 if (fs_fd >= 0)
2829 {
2278 infy_del (EV_A_ w); 2830 infy_del (EV_A_ w);
2279 infy_add (EV_A_ w); 2831 infy_add (EV_A_ w);
2280 ev_stat_stat (EV_A_ w); /* avoid race... */ 2832 ev_stat_stat (EV_A_ w); /* avoid race... */
2833 }
2281 #endif 2834 #endif
2282 2835
2283 ev_feed_event (EV_A_ w, EV_STAT); 2836 ev_feed_event (EV_A_ w, EV_STAT);
2284 } 2837 }
2285} 2838}
2288ev_stat_start (EV_P_ ev_stat *w) 2841ev_stat_start (EV_P_ ev_stat *w)
2289{ 2842{
2290 if (expect_false (ev_is_active (w))) 2843 if (expect_false (ev_is_active (w)))
2291 return; 2844 return;
2292 2845
2293 /* since we use memcmp, we need to clear any padding data etc. */
2294 memset (&w->prev, 0, sizeof (ev_statdata));
2295 memset (&w->attr, 0, sizeof (ev_statdata));
2296
2297 ev_stat_stat (EV_A_ w); 2846 ev_stat_stat (EV_A_ w);
2298 2847
2848 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2299 if (w->interval < MIN_STAT_INTERVAL) 2849 w->interval = MIN_STAT_INTERVAL;
2300 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2301 2850
2302 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2851 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2303 ev_set_priority (&w->timer, ev_priority (w)); 2852 ev_set_priority (&w->timer, ev_priority (w));
2304 2853
2305#if EV_USE_INOTIFY 2854#if EV_USE_INOTIFY
2306 infy_init (EV_A); 2855 infy_init (EV_A);
2307 2856
2308 if (fs_fd >= 0) 2857 if (fs_fd >= 0)
2309 infy_add (EV_A_ w); 2858 infy_add (EV_A_ w);
2310 else 2859 else
2311#endif 2860#endif
2312 ev_timer_start (EV_A_ &w->timer); 2861 ev_timer_again (EV_A_ &w->timer);
2313 2862
2314 ev_start (EV_A_ (W)w, 1); 2863 ev_start (EV_A_ (W)w, 1);
2864
2865 EV_FREQUENT_CHECK;
2315} 2866}
2316 2867
2317void 2868void
2318ev_stat_stop (EV_P_ ev_stat *w) 2869ev_stat_stop (EV_P_ ev_stat *w)
2319{ 2870{
2320 clear_pending (EV_A_ (W)w); 2871 clear_pending (EV_A_ (W)w);
2321 if (expect_false (!ev_is_active (w))) 2872 if (expect_false (!ev_is_active (w)))
2322 return; 2873 return;
2323 2874
2875 EV_FREQUENT_CHECK;
2876
2324#if EV_USE_INOTIFY 2877#if EV_USE_INOTIFY
2325 infy_del (EV_A_ w); 2878 infy_del (EV_A_ w);
2326#endif 2879#endif
2327 ev_timer_stop (EV_A_ &w->timer); 2880 ev_timer_stop (EV_A_ &w->timer);
2328 2881
2329 ev_stop (EV_A_ (W)w); 2882 ev_stop (EV_A_ (W)w);
2883
2884 EV_FREQUENT_CHECK;
2330} 2885}
2331#endif 2886#endif
2332 2887
2333#if EV_IDLE_ENABLE 2888#if EV_IDLE_ENABLE
2334void 2889void
2336{ 2891{
2337 if (expect_false (ev_is_active (w))) 2892 if (expect_false (ev_is_active (w)))
2338 return; 2893 return;
2339 2894
2340 pri_adjust (EV_A_ (W)w); 2895 pri_adjust (EV_A_ (W)w);
2896
2897 EV_FREQUENT_CHECK;
2341 2898
2342 { 2899 {
2343 int active = ++idlecnt [ABSPRI (w)]; 2900 int active = ++idlecnt [ABSPRI (w)];
2344 2901
2345 ++idleall; 2902 ++idleall;
2346 ev_start (EV_A_ (W)w, active); 2903 ev_start (EV_A_ (W)w, active);
2347 2904
2348 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2905 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2349 idles [ABSPRI (w)][active - 1] = w; 2906 idles [ABSPRI (w)][active - 1] = w;
2350 } 2907 }
2908
2909 EV_FREQUENT_CHECK;
2351} 2910}
2352 2911
2353void 2912void
2354ev_idle_stop (EV_P_ ev_idle *w) 2913ev_idle_stop (EV_P_ ev_idle *w)
2355{ 2914{
2356 clear_pending (EV_A_ (W)w); 2915 clear_pending (EV_A_ (W)w);
2357 if (expect_false (!ev_is_active (w))) 2916 if (expect_false (!ev_is_active (w)))
2358 return; 2917 return;
2359 2918
2919 EV_FREQUENT_CHECK;
2920
2360 { 2921 {
2361 int active = ((W)w)->active; 2922 int active = ev_active (w);
2362 2923
2363 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2924 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2364 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2925 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2365 2926
2366 ev_stop (EV_A_ (W)w); 2927 ev_stop (EV_A_ (W)w);
2367 --idleall; 2928 --idleall;
2368 } 2929 }
2930
2931 EV_FREQUENT_CHECK;
2369} 2932}
2370#endif 2933#endif
2371 2934
2372void 2935void
2373ev_prepare_start (EV_P_ ev_prepare *w) 2936ev_prepare_start (EV_P_ ev_prepare *w)
2374{ 2937{
2375 if (expect_false (ev_is_active (w))) 2938 if (expect_false (ev_is_active (w)))
2376 return; 2939 return;
2940
2941 EV_FREQUENT_CHECK;
2377 2942
2378 ev_start (EV_A_ (W)w, ++preparecnt); 2943 ev_start (EV_A_ (W)w, ++preparecnt);
2379 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2944 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2380 prepares [preparecnt - 1] = w; 2945 prepares [preparecnt - 1] = w;
2946
2947 EV_FREQUENT_CHECK;
2381} 2948}
2382 2949
2383void 2950void
2384ev_prepare_stop (EV_P_ ev_prepare *w) 2951ev_prepare_stop (EV_P_ ev_prepare *w)
2385{ 2952{
2386 clear_pending (EV_A_ (W)w); 2953 clear_pending (EV_A_ (W)w);
2387 if (expect_false (!ev_is_active (w))) 2954 if (expect_false (!ev_is_active (w)))
2388 return; 2955 return;
2389 2956
2957 EV_FREQUENT_CHECK;
2958
2390 { 2959 {
2391 int active = ((W)w)->active; 2960 int active = ev_active (w);
2961
2392 prepares [active - 1] = prepares [--preparecnt]; 2962 prepares [active - 1] = prepares [--preparecnt];
2393 ((W)prepares [active - 1])->active = active; 2963 ev_active (prepares [active - 1]) = active;
2394 } 2964 }
2395 2965
2396 ev_stop (EV_A_ (W)w); 2966 ev_stop (EV_A_ (W)w);
2967
2968 EV_FREQUENT_CHECK;
2397} 2969}
2398 2970
2399void 2971void
2400ev_check_start (EV_P_ ev_check *w) 2972ev_check_start (EV_P_ ev_check *w)
2401{ 2973{
2402 if (expect_false (ev_is_active (w))) 2974 if (expect_false (ev_is_active (w)))
2403 return; 2975 return;
2976
2977 EV_FREQUENT_CHECK;
2404 2978
2405 ev_start (EV_A_ (W)w, ++checkcnt); 2979 ev_start (EV_A_ (W)w, ++checkcnt);
2406 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2980 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2407 checks [checkcnt - 1] = w; 2981 checks [checkcnt - 1] = w;
2982
2983 EV_FREQUENT_CHECK;
2408} 2984}
2409 2985
2410void 2986void
2411ev_check_stop (EV_P_ ev_check *w) 2987ev_check_stop (EV_P_ ev_check *w)
2412{ 2988{
2413 clear_pending (EV_A_ (W)w); 2989 clear_pending (EV_A_ (W)w);
2414 if (expect_false (!ev_is_active (w))) 2990 if (expect_false (!ev_is_active (w)))
2415 return; 2991 return;
2416 2992
2993 EV_FREQUENT_CHECK;
2994
2417 { 2995 {
2418 int active = ((W)w)->active; 2996 int active = ev_active (w);
2997
2419 checks [active - 1] = checks [--checkcnt]; 2998 checks [active - 1] = checks [--checkcnt];
2420 ((W)checks [active - 1])->active = active; 2999 ev_active (checks [active - 1]) = active;
2421 } 3000 }
2422 3001
2423 ev_stop (EV_A_ (W)w); 3002 ev_stop (EV_A_ (W)w);
3003
3004 EV_FREQUENT_CHECK;
2424} 3005}
2425 3006
2426#if EV_EMBED_ENABLE 3007#if EV_EMBED_ENABLE
2427void noinline 3008void noinline
2428ev_embed_sweep (EV_P_ ev_embed *w) 3009ev_embed_sweep (EV_P_ ev_embed *w)
2455 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3036 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2456 } 3037 }
2457 } 3038 }
2458} 3039}
2459 3040
3041static void
3042embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3043{
3044 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3045
3046 ev_embed_stop (EV_A_ w);
3047
3048 {
3049 struct ev_loop *loop = w->other;
3050
3051 ev_loop_fork (EV_A);
3052 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3053 }
3054
3055 ev_embed_start (EV_A_ w);
3056}
3057
2460#if 0 3058#if 0
2461static void 3059static void
2462embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3060embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2463{ 3061{
2464 ev_idle_stop (EV_A_ idle); 3062 ev_idle_stop (EV_A_ idle);
2471 if (expect_false (ev_is_active (w))) 3069 if (expect_false (ev_is_active (w)))
2472 return; 3070 return;
2473 3071
2474 { 3072 {
2475 struct ev_loop *loop = w->other; 3073 struct ev_loop *loop = w->other;
2476 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3074 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2477 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3075 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2478 } 3076 }
3077
3078 EV_FREQUENT_CHECK;
2479 3079
2480 ev_set_priority (&w->io, ev_priority (w)); 3080 ev_set_priority (&w->io, ev_priority (w));
2481 ev_io_start (EV_A_ &w->io); 3081 ev_io_start (EV_A_ &w->io);
2482 3082
2483 ev_prepare_init (&w->prepare, embed_prepare_cb); 3083 ev_prepare_init (&w->prepare, embed_prepare_cb);
2484 ev_set_priority (&w->prepare, EV_MINPRI); 3084 ev_set_priority (&w->prepare, EV_MINPRI);
2485 ev_prepare_start (EV_A_ &w->prepare); 3085 ev_prepare_start (EV_A_ &w->prepare);
2486 3086
3087 ev_fork_init (&w->fork, embed_fork_cb);
3088 ev_fork_start (EV_A_ &w->fork);
3089
2487 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3090 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2488 3091
2489 ev_start (EV_A_ (W)w, 1); 3092 ev_start (EV_A_ (W)w, 1);
3093
3094 EV_FREQUENT_CHECK;
2490} 3095}
2491 3096
2492void 3097void
2493ev_embed_stop (EV_P_ ev_embed *w) 3098ev_embed_stop (EV_P_ ev_embed *w)
2494{ 3099{
2495 clear_pending (EV_A_ (W)w); 3100 clear_pending (EV_A_ (W)w);
2496 if (expect_false (!ev_is_active (w))) 3101 if (expect_false (!ev_is_active (w)))
2497 return; 3102 return;
2498 3103
3104 EV_FREQUENT_CHECK;
3105
2499 ev_io_stop (EV_A_ &w->io); 3106 ev_io_stop (EV_A_ &w->io);
2500 ev_prepare_stop (EV_A_ &w->prepare); 3107 ev_prepare_stop (EV_A_ &w->prepare);
3108 ev_fork_stop (EV_A_ &w->fork);
2501 3109
2502 ev_stop (EV_A_ (W)w); 3110 EV_FREQUENT_CHECK;
2503} 3111}
2504#endif 3112#endif
2505 3113
2506#if EV_FORK_ENABLE 3114#if EV_FORK_ENABLE
2507void 3115void
2508ev_fork_start (EV_P_ ev_fork *w) 3116ev_fork_start (EV_P_ ev_fork *w)
2509{ 3117{
2510 if (expect_false (ev_is_active (w))) 3118 if (expect_false (ev_is_active (w)))
2511 return; 3119 return;
3120
3121 EV_FREQUENT_CHECK;
2512 3122
2513 ev_start (EV_A_ (W)w, ++forkcnt); 3123 ev_start (EV_A_ (W)w, ++forkcnt);
2514 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3124 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2515 forks [forkcnt - 1] = w; 3125 forks [forkcnt - 1] = w;
3126
3127 EV_FREQUENT_CHECK;
2516} 3128}
2517 3129
2518void 3130void
2519ev_fork_stop (EV_P_ ev_fork *w) 3131ev_fork_stop (EV_P_ ev_fork *w)
2520{ 3132{
2521 clear_pending (EV_A_ (W)w); 3133 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 3134 if (expect_false (!ev_is_active (w)))
2523 return; 3135 return;
2524 3136
3137 EV_FREQUENT_CHECK;
3138
2525 { 3139 {
2526 int active = ((W)w)->active; 3140 int active = ev_active (w);
3141
2527 forks [active - 1] = forks [--forkcnt]; 3142 forks [active - 1] = forks [--forkcnt];
2528 ((W)forks [active - 1])->active = active; 3143 ev_active (forks [active - 1]) = active;
2529 } 3144 }
2530 3145
2531 ev_stop (EV_A_ (W)w); 3146 ev_stop (EV_A_ (W)w);
3147
3148 EV_FREQUENT_CHECK;
2532} 3149}
2533#endif 3150#endif
2534 3151
2535#if EV_ASYNC_ENABLE 3152#if EV_ASYNC_ENABLE
2536void 3153void
2538{ 3155{
2539 if (expect_false (ev_is_active (w))) 3156 if (expect_false (ev_is_active (w)))
2540 return; 3157 return;
2541 3158
2542 evpipe_init (EV_A); 3159 evpipe_init (EV_A);
3160
3161 EV_FREQUENT_CHECK;
2543 3162
2544 ev_start (EV_A_ (W)w, ++asynccnt); 3163 ev_start (EV_A_ (W)w, ++asynccnt);
2545 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3164 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2546 asyncs [asynccnt - 1] = w; 3165 asyncs [asynccnt - 1] = w;
3166
3167 EV_FREQUENT_CHECK;
2547} 3168}
2548 3169
2549void 3170void
2550ev_async_stop (EV_P_ ev_async *w) 3171ev_async_stop (EV_P_ ev_async *w)
2551{ 3172{
2552 clear_pending (EV_A_ (W)w); 3173 clear_pending (EV_A_ (W)w);
2553 if (expect_false (!ev_is_active (w))) 3174 if (expect_false (!ev_is_active (w)))
2554 return; 3175 return;
2555 3176
3177 EV_FREQUENT_CHECK;
3178
2556 { 3179 {
2557 int active = ((W)w)->active; 3180 int active = ev_active (w);
3181
2558 asyncs [active - 1] = asyncs [--asynccnt]; 3182 asyncs [active - 1] = asyncs [--asynccnt];
2559 ((W)asyncs [active - 1])->active = active; 3183 ev_active (asyncs [active - 1]) = active;
2560 } 3184 }
2561 3185
2562 ev_stop (EV_A_ (W)w); 3186 ev_stop (EV_A_ (W)w);
3187
3188 EV_FREQUENT_CHECK;
2563} 3189}
2564 3190
2565void 3191void
2566ev_async_send (EV_P_ ev_async *w) 3192ev_async_send (EV_P_ ev_async *w)
2567{ 3193{
2584once_cb (EV_P_ struct ev_once *once, int revents) 3210once_cb (EV_P_ struct ev_once *once, int revents)
2585{ 3211{
2586 void (*cb)(int revents, void *arg) = once->cb; 3212 void (*cb)(int revents, void *arg) = once->cb;
2587 void *arg = once->arg; 3213 void *arg = once->arg;
2588 3214
2589 ev_io_stop (EV_A_ &once->io); 3215 ev_io_stop (EV_A_ &once->io);
2590 ev_timer_stop (EV_A_ &once->to); 3216 ev_timer_stop (EV_A_ &once->to);
2591 ev_free (once); 3217 ev_free (once);
2592 3218
2593 cb (revents, arg); 3219 cb (revents, arg);
2594} 3220}
2595 3221
2596static void 3222static void
2597once_cb_io (EV_P_ ev_io *w, int revents) 3223once_cb_io (EV_P_ ev_io *w, int revents)
2598{ 3224{
2599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3225 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3226
3227 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2600} 3228}
2601 3229
2602static void 3230static void
2603once_cb_to (EV_P_ ev_timer *w, int revents) 3231once_cb_to (EV_P_ ev_timer *w, int revents)
2604{ 3232{
2605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3233 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3234
3235 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2606} 3236}
2607 3237
2608void 3238void
2609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3239ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2610{ 3240{
2632 ev_timer_set (&once->to, timeout, 0.); 3262 ev_timer_set (&once->to, timeout, 0.);
2633 ev_timer_start (EV_A_ &once->to); 3263 ev_timer_start (EV_A_ &once->to);
2634 } 3264 }
2635} 3265}
2636 3266
3267/*****************************************************************************/
3268
3269#if EV_WALK_ENABLE
3270void
3271ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3272{
3273 int i, j;
3274 ev_watcher_list *wl, *wn;
3275
3276 if (types & (EV_IO | EV_EMBED))
3277 for (i = 0; i < anfdmax; ++i)
3278 for (wl = anfds [i].head; wl; )
3279 {
3280 wn = wl->next;
3281
3282#if EV_EMBED_ENABLE
3283 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3284 {
3285 if (types & EV_EMBED)
3286 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3287 }
3288 else
3289#endif
3290#if EV_USE_INOTIFY
3291 if (ev_cb ((ev_io *)wl) == infy_cb)
3292 ;
3293 else
3294#endif
3295 if ((ev_io *)wl != &pipe_w)
3296 if (types & EV_IO)
3297 cb (EV_A_ EV_IO, wl);
3298
3299 wl = wn;
3300 }
3301
3302 if (types & (EV_TIMER | EV_STAT))
3303 for (i = timercnt + HEAP0; i-- > HEAP0; )
3304#if EV_STAT_ENABLE
3305 /*TODO: timer is not always active*/
3306 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3307 {
3308 if (types & EV_STAT)
3309 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3310 }
3311 else
3312#endif
3313 if (types & EV_TIMER)
3314 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3315
3316#if EV_PERIODIC_ENABLE
3317 if (types & EV_PERIODIC)
3318 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3319 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3320#endif
3321
3322#if EV_IDLE_ENABLE
3323 if (types & EV_IDLE)
3324 for (j = NUMPRI; i--; )
3325 for (i = idlecnt [j]; i--; )
3326 cb (EV_A_ EV_IDLE, idles [j][i]);
3327#endif
3328
3329#if EV_FORK_ENABLE
3330 if (types & EV_FORK)
3331 for (i = forkcnt; i--; )
3332 if (ev_cb (forks [i]) != embed_fork_cb)
3333 cb (EV_A_ EV_FORK, forks [i]);
3334#endif
3335
3336#if EV_ASYNC_ENABLE
3337 if (types & EV_ASYNC)
3338 for (i = asynccnt; i--; )
3339 cb (EV_A_ EV_ASYNC, asyncs [i]);
3340#endif
3341
3342 if (types & EV_PREPARE)
3343 for (i = preparecnt; i--; )
3344#if EV_EMBED_ENABLE
3345 if (ev_cb (prepares [i]) != embed_prepare_cb)
3346#endif
3347 cb (EV_A_ EV_PREPARE, prepares [i]);
3348
3349 if (types & EV_CHECK)
3350 for (i = checkcnt; i--; )
3351 cb (EV_A_ EV_CHECK, checks [i]);
3352
3353 if (types & EV_SIGNAL)
3354 for (i = 0; i < signalmax; ++i)
3355 for (wl = signals [i].head; wl; )
3356 {
3357 wn = wl->next;
3358 cb (EV_A_ EV_SIGNAL, wl);
3359 wl = wn;
3360 }
3361
3362 if (types & EV_CHILD)
3363 for (i = EV_PID_HASHSIZE; i--; )
3364 for (wl = childs [i]; wl; )
3365 {
3366 wn = wl->next;
3367 cb (EV_A_ EV_CHILD, wl);
3368 wl = wn;
3369 }
3370/* EV_STAT 0x00001000 /* stat data changed */
3371/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3372}
3373#endif
3374
2637#if EV_MULTIPLICITY 3375#if EV_MULTIPLICITY
2638 #include "ev_wrap.h" 3376 #include "ev_wrap.h"
2639#endif 3377#endif
2640 3378
2641#ifdef __cplusplus 3379#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines