ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.224 by root, Wed Apr 9 22:07:50 2008 UTC vs.
Revision 1.303 by root, Sun Jul 19 01:36:34 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
136#include <fcntl.h> 158#include <fcntl.h>
154#ifndef _WIN32 176#ifndef _WIN32
155# include <sys/time.h> 177# include <sys/time.h>
156# include <sys/wait.h> 178# include <sys/wait.h>
157# include <unistd.h> 179# include <unistd.h>
158#else 180#else
181# include <io.h>
159# define WIN32_LEAN_AND_MEAN 182# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 183# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 184# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 185# define EV_SELECT_IS_WINSOCKET 1
163# endif 186# endif
164#endif 187#endif
165 188
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 189/* this block tries to deduce configuration from header-defined symbols and defaults */
167 190
191#ifndef EV_USE_CLOCK_SYSCALL
192# if __linux && __GLIBC__ >= 2
193# define EV_USE_CLOCK_SYSCALL 1
194# else
195# define EV_USE_CLOCK_SYSCALL 0
196# endif
197#endif
198
168#ifndef EV_USE_MONOTONIC 199#ifndef EV_USE_MONOTONIC
200# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
201# define EV_USE_MONOTONIC 1
202# else
169# define EV_USE_MONOTONIC 0 203# define EV_USE_MONOTONIC 0
204# endif
170#endif 205#endif
171 206
172#ifndef EV_USE_REALTIME 207#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 208# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 209#endif
175 210
176#ifndef EV_USE_NANOSLEEP 211#ifndef EV_USE_NANOSLEEP
212# if _POSIX_C_SOURCE >= 199309L
213# define EV_USE_NANOSLEEP 1
214# else
177# define EV_USE_NANOSLEEP 0 215# define EV_USE_NANOSLEEP 0
216# endif
178#endif 217#endif
179 218
180#ifndef EV_USE_SELECT 219#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 220# define EV_USE_SELECT 1
182#endif 221#endif
235# else 274# else
236# define EV_USE_EVENTFD 0 275# define EV_USE_EVENTFD 0
237# endif 276# endif
238#endif 277#endif
239 278
279#ifndef EV_USE_SIGNALFD
280# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 9))
281# define EV_USE_SIGNALFD 1
282# else
283# define EV_USE_SIGNALFD 0
284# endif
285#endif
286
287#if 0 /* debugging */
288# define EV_VERIFY 3
289# define EV_USE_4HEAP 1
290# define EV_HEAP_CACHE_AT 1
291#endif
292
293#ifndef EV_VERIFY
294# define EV_VERIFY !EV_MINIMAL
295#endif
296
297#ifndef EV_USE_4HEAP
298# define EV_USE_4HEAP !EV_MINIMAL
299#endif
300
301#ifndef EV_HEAP_CACHE_AT
302# define EV_HEAP_CACHE_AT !EV_MINIMAL
303#endif
304
305/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
306/* which makes programs even slower. might work on other unices, too. */
307#if EV_USE_CLOCK_SYSCALL
308# include <syscall.h>
309# ifdef SYS_clock_gettime
310# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
311# undef EV_USE_MONOTONIC
312# define EV_USE_MONOTONIC 1
313# else
314# undef EV_USE_CLOCK_SYSCALL
315# define EV_USE_CLOCK_SYSCALL 0
316# endif
317#endif
318
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 319/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 320
242#ifndef CLOCK_MONOTONIC 321#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 322# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 323# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 338# include <sys/select.h>
260# endif 339# endif
261#endif 340#endif
262 341
263#if EV_USE_INOTIFY 342#if EV_USE_INOTIFY
343# include <sys/utsname.h>
344# include <sys/statfs.h>
264# include <sys/inotify.h> 345# include <sys/inotify.h>
346/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
347# ifndef IN_DONT_FOLLOW
348# undef EV_USE_INOTIFY
349# define EV_USE_INOTIFY 0
350# endif
265#endif 351#endif
266 352
267#if EV_SELECT_IS_WINSOCKET 353#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 354# include <winsock.h>
269#endif 355#endif
270 356
271#if EV_USE_EVENTFD 357#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 358/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 359# include <stdint.h>
360# ifndef EFD_NONBLOCK
361# define EFD_NONBLOCK O_NONBLOCK
362# endif
363# ifndef EFD_CLOEXEC
364# define EFD_CLOEXEC O_CLOEXEC
365# endif
274# ifdef __cplusplus 366# ifdef __cplusplus
275extern "C" { 367extern "C" {
276# endif 368# endif
277int eventfd (unsigned int initval, int flags); 369int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus 370# ifdef __cplusplus
279} 371}
280# endif 372# endif
281#endif 373#endif
282 374
375#if EV_USE_SIGNALFD
376# include <sys/signalfd.h>
377#endif
378
283/**/ 379/**/
380
381#if EV_VERIFY >= 3
382# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
383#else
384# define EV_FREQUENT_CHECK do { } while (0)
385#endif
284 386
285/* 387/*
286 * This is used to avoid floating point rounding problems. 388 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 389 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 390 * to ensure progress, time-wise, even when rounding
315# define inline_speed static noinline 417# define inline_speed static noinline
316#else 418#else
317# define inline_speed static inline 419# define inline_speed static inline
318#endif 420#endif
319 421
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 422#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
423
424#if EV_MINPRI == EV_MAXPRI
425# define ABSPRI(w) (((W)w), 0)
426#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 427# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
428#endif
322 429
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 430#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 431#define EMPTY2(a,b) /* used to suppress some warnings */
325 432
326typedef ev_watcher *W; 433typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 434typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 435typedef ev_watcher_time *WT;
329 436
330#if EV_USE_MONOTONIC 437#define ev_active(w) ((W)(w))->active
438#define ev_at(w) ((WT)(w))->at
439
440#if EV_USE_REALTIME
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 441/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 442/* giving it a reasonably high chance of working on typical architetcures */
443static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
444#endif
445
446#if EV_USE_MONOTONIC
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 447static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 448#endif
335 449
336#ifdef _WIN32 450#ifdef _WIN32
337# include "ev_win32.c" 451# include "ev_win32.c"
346{ 460{
347 syserr_cb = cb; 461 syserr_cb = cb;
348} 462}
349 463
350static void noinline 464static void noinline
351syserr (const char *msg) 465ev_syserr (const char *msg)
352{ 466{
353 if (!msg) 467 if (!msg)
354 msg = "(libev) system error"; 468 msg = "(libev) system error";
355 469
356 if (syserr_cb) 470 if (syserr_cb)
402#define ev_malloc(size) ev_realloc (0, (size)) 516#define ev_malloc(size) ev_realloc (0, (size))
403#define ev_free(ptr) ev_realloc ((ptr), 0) 517#define ev_free(ptr) ev_realloc ((ptr), 0)
404 518
405/*****************************************************************************/ 519/*****************************************************************************/
406 520
521/* set in reify when reification needed */
522#define EV_ANFD_REIFY 1
523
524/* file descriptor info structure */
407typedef struct 525typedef struct
408{ 526{
409 WL head; 527 WL head;
410 unsigned char events; 528 unsigned char events; /* the events watched for */
529 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
530 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
411 unsigned char reify; 531 unsigned char unused;
532#if EV_USE_EPOLL
533 unsigned int egen; /* generation counter to counter epoll bugs */
534#endif
412#if EV_SELECT_IS_WINSOCKET 535#if EV_SELECT_IS_WINSOCKET
413 SOCKET handle; 536 SOCKET handle;
414#endif 537#endif
415} ANFD; 538} ANFD;
416 539
540/* stores the pending event set for a given watcher */
417typedef struct 541typedef struct
418{ 542{
419 W w; 543 W w;
420 int events; 544 int events; /* the pending event set for the given watcher */
421} ANPENDING; 545} ANPENDING;
422 546
423#if EV_USE_INOTIFY 547#if EV_USE_INOTIFY
548/* hash table entry per inotify-id */
424typedef struct 549typedef struct
425{ 550{
426 WL head; 551 WL head;
427} ANFS; 552} ANFS;
553#endif
554
555/* Heap Entry */
556#if EV_HEAP_CACHE_AT
557 /* a heap element */
558 typedef struct {
559 ev_tstamp at;
560 WT w;
561 } ANHE;
562
563 #define ANHE_w(he) (he).w /* access watcher, read-write */
564 #define ANHE_at(he) (he).at /* access cached at, read-only */
565 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
566#else
567 /* a heap element */
568 typedef WT ANHE;
569
570 #define ANHE_w(he) (he)
571 #define ANHE_at(he) (he)->at
572 #define ANHE_at_cache(he)
428#endif 573#endif
429 574
430#if EV_MULTIPLICITY 575#if EV_MULTIPLICITY
431 576
432 struct ev_loop 577 struct ev_loop
451 596
452 static int ev_default_loop_ptr; 597 static int ev_default_loop_ptr;
453 598
454#endif 599#endif
455 600
601#if EV_MINIMAL < 2
602# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
603# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
604# define EV_INVOKE_PENDING invoke_cb (EV_A)
605#else
606# define EV_RELEASE_CB (void)0
607# define EV_ACQUIRE_CB (void)0
608# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
609#endif
610
611#define EVUNLOOP_RECURSE 0x80
612
456/*****************************************************************************/ 613/*****************************************************************************/
457 614
615#ifndef EV_HAVE_EV_TIME
458ev_tstamp 616ev_tstamp
459ev_time (void) 617ev_time (void)
460{ 618{
461#if EV_USE_REALTIME 619#if EV_USE_REALTIME
620 if (expect_true (have_realtime))
621 {
462 struct timespec ts; 622 struct timespec ts;
463 clock_gettime (CLOCK_REALTIME, &ts); 623 clock_gettime (CLOCK_REALTIME, &ts);
464 return ts.tv_sec + ts.tv_nsec * 1e-9; 624 return ts.tv_sec + ts.tv_nsec * 1e-9;
465#else 625 }
626#endif
627
466 struct timeval tv; 628 struct timeval tv;
467 gettimeofday (&tv, 0); 629 gettimeofday (&tv, 0);
468 return tv.tv_sec + tv.tv_usec * 1e-6; 630 return tv.tv_sec + tv.tv_usec * 1e-6;
469#endif
470} 631}
632#endif
471 633
472ev_tstamp inline_size 634inline_size ev_tstamp
473get_clock (void) 635get_clock (void)
474{ 636{
475#if EV_USE_MONOTONIC 637#if EV_USE_MONOTONIC
476 if (expect_true (have_monotonic)) 638 if (expect_true (have_monotonic))
477 { 639 {
510 struct timeval tv; 672 struct timeval tv;
511 673
512 tv.tv_sec = (time_t)delay; 674 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 675 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514 676
677 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
678 /* something not guaranteed by newer posix versions, but guaranteed */
679 /* by older ones */
515 select (0, 0, 0, 0, &tv); 680 select (0, 0, 0, 0, &tv);
516#endif 681#endif
517 } 682 }
518} 683}
519 684
520/*****************************************************************************/ 685/*****************************************************************************/
521 686
522int inline_size 687#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
688
689/* find a suitable new size for the given array, */
690/* hopefully by rounding to a ncie-to-malloc size */
691inline_size int
523array_nextsize (int elem, int cur, int cnt) 692array_nextsize (int elem, int cur, int cnt)
524{ 693{
525 int ncur = cur + 1; 694 int ncur = cur + 1;
526 695
527 do 696 do
528 ncur <<= 1; 697 ncur <<= 1;
529 while (cnt > ncur); 698 while (cnt > ncur);
530 699
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 700 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 701 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 702 {
534 ncur *= elem; 703 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 704 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 705 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 706 ncur /= elem;
538 } 707 }
539 708
540 return ncur; 709 return ncur;
544array_realloc (int elem, void *base, int *cur, int cnt) 713array_realloc (int elem, void *base, int *cur, int cnt)
545{ 714{
546 *cur = array_nextsize (elem, *cur, cnt); 715 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur); 716 return ev_realloc (base, elem * *cur);
548} 717}
718
719#define array_init_zero(base,count) \
720 memset ((void *)(base), 0, sizeof (*(base)) * (count))
549 721
550#define array_needsize(type,base,cur,cnt,init) \ 722#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \ 723 if (expect_false ((cnt) > (cur))) \
552 { \ 724 { \
553 int ocur_ = (cur); \ 725 int ocur_ = (cur); \
565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 737 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
566 } 738 }
567#endif 739#endif
568 740
569#define array_free(stem, idx) \ 741#define array_free(stem, idx) \
570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 742 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
571 743
572/*****************************************************************************/ 744/*****************************************************************************/
745
746/* dummy callback for pending events */
747static void noinline
748pendingcb (EV_P_ ev_prepare *w, int revents)
749{
750}
573 751
574void noinline 752void noinline
575ev_feed_event (EV_P_ void *w, int revents) 753ev_feed_event (EV_P_ void *w, int revents)
576{ 754{
577 W w_ = (W)w; 755 W w_ = (W)w;
586 pendings [pri][w_->pending - 1].w = w_; 764 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents; 765 pendings [pri][w_->pending - 1].events = revents;
588 } 766 }
589} 767}
590 768
591void inline_speed 769inline_speed void
770feed_reverse (EV_P_ W w)
771{
772 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
773 rfeeds [rfeedcnt++] = w;
774}
775
776inline_size void
777feed_reverse_done (EV_P_ int revents)
778{
779 do
780 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
781 while (rfeedcnt);
782}
783
784inline_speed void
592queue_events (EV_P_ W *events, int eventcnt, int type) 785queue_events (EV_P_ W *events, int eventcnt, int type)
593{ 786{
594 int i; 787 int i;
595 788
596 for (i = 0; i < eventcnt; ++i) 789 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type); 790 ev_feed_event (EV_A_ events [i], type);
598} 791}
599 792
600/*****************************************************************************/ 793/*****************************************************************************/
601 794
602void inline_size 795inline_speed void
603anfds_init (ANFD *base, int count)
604{
605 while (count--)
606 {
607 base->head = 0;
608 base->events = EV_NONE;
609 base->reify = 0;
610
611 ++base;
612 }
613}
614
615void inline_speed
616fd_event (EV_P_ int fd, int revents) 796fd_event_nc (EV_P_ int fd, int revents)
617{ 797{
618 ANFD *anfd = anfds + fd; 798 ANFD *anfd = anfds + fd;
619 ev_io *w; 799 ev_io *w;
620 800
621 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 801 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
625 if (ev) 805 if (ev)
626 ev_feed_event (EV_A_ (W)w, ev); 806 ev_feed_event (EV_A_ (W)w, ev);
627 } 807 }
628} 808}
629 809
810/* do not submit kernel events for fds that have reify set */
811/* because that means they changed while we were polling for new events */
812inline_speed void
813fd_event (EV_P_ int fd, int revents)
814{
815 ANFD *anfd = anfds + fd;
816
817 if (expect_true (!anfd->reify))
818 fd_event_nc (EV_A_ fd, revents);
819}
820
630void 821void
631ev_feed_fd_event (EV_P_ int fd, int revents) 822ev_feed_fd_event (EV_P_ int fd, int revents)
632{ 823{
633 if (fd >= 0 && fd < anfdmax) 824 if (fd >= 0 && fd < anfdmax)
634 fd_event (EV_A_ fd, revents); 825 fd_event_nc (EV_A_ fd, revents);
635} 826}
636 827
637void inline_size 828/* make sure the external fd watch events are in-sync */
829/* with the kernel/libev internal state */
830inline_size void
638fd_reify (EV_P) 831fd_reify (EV_P)
639{ 832{
640 int i; 833 int i;
641 834
642 for (i = 0; i < fdchangecnt; ++i) 835 for (i = 0; i < fdchangecnt; ++i)
651 events |= (unsigned char)w->events; 844 events |= (unsigned char)w->events;
652 845
653#if EV_SELECT_IS_WINSOCKET 846#if EV_SELECT_IS_WINSOCKET
654 if (events) 847 if (events)
655 { 848 {
656 unsigned long argp; 849 unsigned long arg;
657 #ifdef EV_FD_TO_WIN32_HANDLE 850 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 851 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else 852 #else
660 anfd->handle = _get_osfhandle (fd); 853 anfd->handle = _get_osfhandle (fd);
661 #endif 854 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 855 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
663 } 856 }
664#endif 857#endif
665 858
666 { 859 {
667 unsigned char o_events = anfd->events; 860 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify; 861 unsigned char o_reify = anfd->reify;
669 862
670 anfd->reify = 0; 863 anfd->reify = 0;
671 anfd->events = events; 864 anfd->events = events;
672 865
673 if (o_events != events || o_reify & EV_IOFDSET) 866 if (o_events != events || o_reify & EV__IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events); 867 backend_modify (EV_A_ fd, o_events, events);
675 } 868 }
676 } 869 }
677 870
678 fdchangecnt = 0; 871 fdchangecnt = 0;
679} 872}
680 873
681void inline_size 874/* something about the given fd changed */
875inline_size void
682fd_change (EV_P_ int fd, int flags) 876fd_change (EV_P_ int fd, int flags)
683{ 877{
684 unsigned char reify = anfds [fd].reify; 878 unsigned char reify = anfds [fd].reify;
685 anfds [fd].reify |= flags; 879 anfds [fd].reify |= flags;
686 880
690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 884 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
691 fdchanges [fdchangecnt - 1] = fd; 885 fdchanges [fdchangecnt - 1] = fd;
692 } 886 }
693} 887}
694 888
695void inline_speed 889/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
890inline_speed void
696fd_kill (EV_P_ int fd) 891fd_kill (EV_P_ int fd)
697{ 892{
698 ev_io *w; 893 ev_io *w;
699 894
700 while ((w = (ev_io *)anfds [fd].head)) 895 while ((w = (ev_io *)anfds [fd].head))
702 ev_io_stop (EV_A_ w); 897 ev_io_stop (EV_A_ w);
703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 898 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
704 } 899 }
705} 900}
706 901
707int inline_size 902/* check whether the given fd is atcually valid, for error recovery */
903inline_size int
708fd_valid (int fd) 904fd_valid (int fd)
709{ 905{
710#ifdef _WIN32 906#ifdef _WIN32
711 return _get_osfhandle (fd) != -1; 907 return _get_osfhandle (fd) != -1;
712#else 908#else
720{ 916{
721 int fd; 917 int fd;
722 918
723 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 920 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 921 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 922 fd_kill (EV_A_ fd);
727} 923}
728 924
729/* called on ENOMEM in select/poll to kill some fds and retry */ 925/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 926static void noinline
748 944
749 for (fd = 0; fd < anfdmax; ++fd) 945 for (fd = 0; fd < anfdmax; ++fd)
750 if (anfds [fd].events) 946 if (anfds [fd].events)
751 { 947 {
752 anfds [fd].events = 0; 948 anfds [fd].events = 0;
949 anfds [fd].emask = 0;
753 fd_change (EV_A_ fd, EV_IOFDSET | 1); 950 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
754 } 951 }
755} 952}
756 953
757/*****************************************************************************/ 954/*****************************************************************************/
758 955
759void inline_speed 956/*
760upheap (WT *heap, int k) 957 * the heap functions want a real array index. array index 0 uis guaranteed to not
761{ 958 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
762 WT w = heap [k]; 959 * the branching factor of the d-tree.
960 */
763 961
764 while (k) 962/*
765 { 963 * at the moment we allow libev the luxury of two heaps,
766 int p = (k - 1) >> 1; 964 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
965 * which is more cache-efficient.
966 * the difference is about 5% with 50000+ watchers.
967 */
968#if EV_USE_4HEAP
767 969
768 if (heap [p]->at <= w->at) 970#define DHEAP 4
971#define HEAP0 (DHEAP - 1) /* index of first element in heap */
972#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
973#define UPHEAP_DONE(p,k) ((p) == (k))
974
975/* away from the root */
976inline_speed void
977downheap (ANHE *heap, int N, int k)
978{
979 ANHE he = heap [k];
980 ANHE *E = heap + N + HEAP0;
981
982 for (;;)
983 {
984 ev_tstamp minat;
985 ANHE *minpos;
986 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
987
988 /* find minimum child */
989 if (expect_true (pos + DHEAP - 1 < E))
990 {
991 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
992 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
993 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
994 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
995 }
996 else if (pos < E)
997 {
998 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
999 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1000 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1001 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1002 }
1003 else
769 break; 1004 break;
770 1005
1006 if (ANHE_at (he) <= minat)
1007 break;
1008
1009 heap [k] = *minpos;
1010 ev_active (ANHE_w (*minpos)) = k;
1011
1012 k = minpos - heap;
1013 }
1014
1015 heap [k] = he;
1016 ev_active (ANHE_w (he)) = k;
1017}
1018
1019#else /* 4HEAP */
1020
1021#define HEAP0 1
1022#define HPARENT(k) ((k) >> 1)
1023#define UPHEAP_DONE(p,k) (!(p))
1024
1025/* away from the root */
1026inline_speed void
1027downheap (ANHE *heap, int N, int k)
1028{
1029 ANHE he = heap [k];
1030
1031 for (;;)
1032 {
1033 int c = k << 1;
1034
1035 if (c > N + HEAP0 - 1)
1036 break;
1037
1038 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1039 ? 1 : 0;
1040
1041 if (ANHE_at (he) <= ANHE_at (heap [c]))
1042 break;
1043
1044 heap [k] = heap [c];
1045 ev_active (ANHE_w (heap [k])) = k;
1046
1047 k = c;
1048 }
1049
1050 heap [k] = he;
1051 ev_active (ANHE_w (he)) = k;
1052}
1053#endif
1054
1055/* towards the root */
1056inline_speed void
1057upheap (ANHE *heap, int k)
1058{
1059 ANHE he = heap [k];
1060
1061 for (;;)
1062 {
1063 int p = HPARENT (k);
1064
1065 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1066 break;
1067
771 heap [k] = heap [p]; 1068 heap [k] = heap [p];
772 ((W)heap [k])->active = k + 1; 1069 ev_active (ANHE_w (heap [k])) = k;
773 k = p; 1070 k = p;
774 } 1071 }
775 1072
776 heap [k] = w; 1073 heap [k] = he;
777 ((W)heap [k])->active = k + 1; 1074 ev_active (ANHE_w (he)) = k;
778} 1075}
779 1076
780void inline_speed 1077/* move an element suitably so it is in a correct place */
781downheap (WT *heap, int N, int k) 1078inline_size void
782{
783 WT w = heap [k];
784
785 for (;;)
786 {
787 int c = (k << 1) + 1;
788
789 if (c >= N)
790 break;
791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
798 heap [k] = heap [c];
799 ((W)heap [k])->active = k + 1;
800
801 k = c;
802 }
803
804 heap [k] = w;
805 ((W)heap [k])->active = k + 1;
806}
807
808void inline_size
809adjustheap (WT *heap, int N, int k) 1079adjustheap (ANHE *heap, int N, int k)
810{ 1080{
1081 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
811 upheap (heap, k); 1082 upheap (heap, k);
1083 else
812 downheap (heap, N, k); 1084 downheap (heap, N, k);
1085}
1086
1087/* rebuild the heap: this function is used only once and executed rarely */
1088inline_size void
1089reheap (ANHE *heap, int N)
1090{
1091 int i;
1092
1093 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1094 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1095 for (i = 0; i < N; ++i)
1096 upheap (heap, i + HEAP0);
813} 1097}
814 1098
815/*****************************************************************************/ 1099/*****************************************************************************/
816 1100
1101/* associate signal watchers to a signal signal */
817typedef struct 1102typedef struct
818{ 1103{
819 WL head; 1104 WL head;
820 EV_ATOMIC_T gotsig; 1105 EV_ATOMIC_T gotsig;
821} ANSIG; 1106} ANSIG;
823static ANSIG *signals; 1108static ANSIG *signals;
824static int signalmax; 1109static int signalmax;
825 1110
826static EV_ATOMIC_T gotsig; 1111static EV_ATOMIC_T gotsig;
827 1112
828void inline_size
829signals_init (ANSIG *base, int count)
830{
831 while (count--)
832 {
833 base->head = 0;
834 base->gotsig = 0;
835
836 ++base;
837 }
838}
839
840/*****************************************************************************/ 1113/*****************************************************************************/
841 1114
842void inline_speed 1115/* used to prepare libev internal fd's */
1116/* this is not fork-safe */
1117inline_speed void
843fd_intern (int fd) 1118fd_intern (int fd)
844{ 1119{
845#ifdef _WIN32 1120#ifdef _WIN32
846 int arg = 1; 1121 unsigned long arg = 1;
847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1122 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
848#else 1123#else
849 fcntl (fd, F_SETFD, FD_CLOEXEC); 1124 fcntl (fd, F_SETFD, FD_CLOEXEC);
850 fcntl (fd, F_SETFL, O_NONBLOCK); 1125 fcntl (fd, F_SETFL, O_NONBLOCK);
851#endif 1126#endif
852} 1127}
853 1128
854static void noinline 1129static void noinline
855evpipe_init (EV_P) 1130evpipe_init (EV_P)
856{ 1131{
857 if (!ev_is_active (&pipeev)) 1132 if (!ev_is_active (&pipe_w))
858 { 1133 {
859#if EV_USE_EVENTFD 1134#if EV_USE_EVENTFD
1135 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1136 if (evfd < 0 && errno == EINVAL)
860 if ((evfd = eventfd (0, 0)) >= 0) 1137 evfd = eventfd (0, 0);
1138
1139 if (evfd >= 0)
861 { 1140 {
862 evpipe [0] = -1; 1141 evpipe [0] = -1;
863 fd_intern (evfd); 1142 fd_intern (evfd); /* doing it twice doesn't hurt */
864 ev_io_set (&pipeev, evfd, EV_READ); 1143 ev_io_set (&pipe_w, evfd, EV_READ);
865 } 1144 }
866 else 1145 else
867#endif 1146#endif
868 { 1147 {
869 while (pipe (evpipe)) 1148 while (pipe (evpipe))
870 syserr ("(libev) error creating signal/async pipe"); 1149 ev_syserr ("(libev) error creating signal/async pipe");
871 1150
872 fd_intern (evpipe [0]); 1151 fd_intern (evpipe [0]);
873 fd_intern (evpipe [1]); 1152 fd_intern (evpipe [1]);
874 ev_io_set (&pipeev, evpipe [0], EV_READ); 1153 ev_io_set (&pipe_w, evpipe [0], EV_READ);
875 } 1154 }
876 1155
877 ev_io_start (EV_A_ &pipeev); 1156 ev_io_start (EV_A_ &pipe_w);
878 ev_unref (EV_A); /* watcher should not keep loop alive */ 1157 ev_unref (EV_A); /* watcher should not keep loop alive */
879 } 1158 }
880} 1159}
881 1160
882void inline_size 1161inline_size void
883evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1162evpipe_write (EV_P_ EV_ATOMIC_T *flag)
884{ 1163{
885 if (!*flag) 1164 if (!*flag)
886 { 1165 {
887 int old_errno = errno; /* save errno because write might clobber it */ 1166 int old_errno = errno; /* save errno because write might clobber it */
900 1179
901 errno = old_errno; 1180 errno = old_errno;
902 } 1181 }
903} 1182}
904 1183
1184/* called whenever the libev signal pipe */
1185/* got some events (signal, async) */
905static void 1186static void
906pipecb (EV_P_ ev_io *iow, int revents) 1187pipecb (EV_P_ ev_io *iow, int revents)
907{ 1188{
908#if EV_USE_EVENTFD 1189#if EV_USE_EVENTFD
909 if (evfd >= 0) 1190 if (evfd >= 0)
910 { 1191 {
911 uint64_t counter = 1; 1192 uint64_t counter;
912 read (evfd, &counter, sizeof (uint64_t)); 1193 read (evfd, &counter, sizeof (uint64_t));
913 } 1194 }
914 else 1195 else
915#endif 1196#endif
916 { 1197 {
965ev_feed_signal_event (EV_P_ int signum) 1246ev_feed_signal_event (EV_P_ int signum)
966{ 1247{
967 WL w; 1248 WL w;
968 1249
969#if EV_MULTIPLICITY 1250#if EV_MULTIPLICITY
970 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1251 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
971#endif 1252#endif
972 1253
973 --signum; 1254 --signum;
974 1255
975 if (signum < 0 || signum >= signalmax) 1256 if (signum < 0 || signum >= signalmax)
979 1260
980 for (w = signals [signum].head; w; w = w->next) 1261 for (w = signals [signum].head; w; w = w->next)
981 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1262 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
982} 1263}
983 1264
1265#if EV_USE_SIGNALFD
1266static void
1267sigfdcb (EV_P_ ev_io *iow, int revents)
1268{
1269 struct signalfd_siginfo si[4], *sip;
1270
1271 for (;;)
1272 {
1273 ssize_t res = read (sigfd, si, sizeof (si));
1274
1275 /* not ISO-C, as res might be -1, but works with SuS */
1276 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1277 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1278
1279 if (res < (ssize_t)sizeof (si))
1280 break;
1281 }
1282}
1283#endif
1284
984/*****************************************************************************/ 1285/*****************************************************************************/
985 1286
986static WL childs [EV_PID_HASHSIZE]; 1287static WL childs [EV_PID_HASHSIZE];
987 1288
988#ifndef _WIN32 1289#ifndef _WIN32
991 1292
992#ifndef WIFCONTINUED 1293#ifndef WIFCONTINUED
993# define WIFCONTINUED(status) 0 1294# define WIFCONTINUED(status) 0
994#endif 1295#endif
995 1296
996void inline_speed 1297/* handle a single child status event */
1298inline_speed void
997child_reap (EV_P_ int chain, int pid, int status) 1299child_reap (EV_P_ int chain, int pid, int status)
998{ 1300{
999 ev_child *w; 1301 ev_child *w;
1000 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1302 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1001 1303
1014 1316
1015#ifndef WCONTINUED 1317#ifndef WCONTINUED
1016# define WCONTINUED 0 1318# define WCONTINUED 0
1017#endif 1319#endif
1018 1320
1321/* called on sigchld etc., calls waitpid */
1019static void 1322static void
1020childcb (EV_P_ ev_signal *sw, int revents) 1323childcb (EV_P_ ev_signal *sw, int revents)
1021{ 1324{
1022 int pid, status; 1325 int pid, status;
1023 1326
1104 /* kqueue is borked on everything but netbsd apparently */ 1407 /* kqueue is borked on everything but netbsd apparently */
1105 /* it usually doesn't work correctly on anything but sockets and pipes */ 1408 /* it usually doesn't work correctly on anything but sockets and pipes */
1106 flags &= ~EVBACKEND_KQUEUE; 1409 flags &= ~EVBACKEND_KQUEUE;
1107#endif 1410#endif
1108#ifdef __APPLE__ 1411#ifdef __APPLE__
1109 // flags &= ~EVBACKEND_KQUEUE; for documentation 1412 /* only select works correctly on that "unix-certified" platform */
1110 flags &= ~EVBACKEND_POLL; 1413 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1414 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1111#endif 1415#endif
1112 1416
1113 return flags; 1417 return flags;
1114} 1418}
1115 1419
1129ev_backend (EV_P) 1433ev_backend (EV_P)
1130{ 1434{
1131 return backend; 1435 return backend;
1132} 1436}
1133 1437
1438#if EV_MINIMAL < 2
1134unsigned int 1439unsigned int
1135ev_loop_count (EV_P) 1440ev_loop_count (EV_P)
1136{ 1441{
1137 return loop_count; 1442 return loop_count;
1138} 1443}
1139 1444
1445unsigned int
1446ev_loop_depth (EV_P)
1447{
1448 return loop_depth;
1449}
1450
1140void 1451void
1141ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1452ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1142{ 1453{
1143 io_blocktime = interval; 1454 io_blocktime = interval;
1144} 1455}
1147ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1458ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1148{ 1459{
1149 timeout_blocktime = interval; 1460 timeout_blocktime = interval;
1150} 1461}
1151 1462
1463void
1464ev_set_userdata (EV_P_ void *data)
1465{
1466 userdata = data;
1467}
1468
1469void *
1470ev_userdata (EV_P)
1471{
1472 return userdata;
1473}
1474
1475void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1476{
1477 invoke_cb = invoke_pending_cb;
1478}
1479
1480void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1481{
1482 release_cb = release;
1483 acquire_cb = acquire;
1484}
1485#endif
1486
1487/* initialise a loop structure, must be zero-initialised */
1152static void noinline 1488static void noinline
1153loop_init (EV_P_ unsigned int flags) 1489loop_init (EV_P_ unsigned int flags)
1154{ 1490{
1155 if (!backend) 1491 if (!backend)
1156 { 1492 {
1493#if EV_USE_REALTIME
1494 if (!have_realtime)
1495 {
1496 struct timespec ts;
1497
1498 if (!clock_gettime (CLOCK_REALTIME, &ts))
1499 have_realtime = 1;
1500 }
1501#endif
1502
1157#if EV_USE_MONOTONIC 1503#if EV_USE_MONOTONIC
1504 if (!have_monotonic)
1158 { 1505 {
1159 struct timespec ts; 1506 struct timespec ts;
1507
1160 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1508 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1161 have_monotonic = 1; 1509 have_monotonic = 1;
1162 } 1510 }
1163#endif 1511#endif
1164 1512
1165 ev_rt_now = ev_time (); 1513 ev_rt_now = ev_time ();
1166 mn_now = get_clock (); 1514 mn_now = get_clock ();
1167 now_floor = mn_now; 1515 now_floor = mn_now;
1168 rtmn_diff = ev_rt_now - mn_now; 1516 rtmn_diff = ev_rt_now - mn_now;
1517#if EV_MINIMAL < 2
1518 invoke_cb = ev_invoke_pending;
1519#endif
1169 1520
1170 io_blocktime = 0.; 1521 io_blocktime = 0.;
1171 timeout_blocktime = 0.; 1522 timeout_blocktime = 0.;
1172 backend = 0; 1523 backend = 0;
1173 backend_fd = -1; 1524 backend_fd = -1;
1174 gotasync = 0; 1525 gotasync = 0;
1175#if EV_USE_INOTIFY 1526#if EV_USE_INOTIFY
1176 fs_fd = -2; 1527 fs_fd = -2;
1177#endif 1528#endif
1529#if EV_USE_SIGNALFD
1530 sigfd = -2;
1531#endif
1178 1532
1179 /* pid check not overridable via env */ 1533 /* pid check not overridable via env */
1180#ifndef _WIN32 1534#ifndef _WIN32
1181 if (flags & EVFLAG_FORKCHECK) 1535 if (flags & EVFLAG_FORKCHECK)
1182 curpid = getpid (); 1536 curpid = getpid ();
1185 if (!(flags & EVFLAG_NOENV) 1539 if (!(flags & EVFLAG_NOENV)
1186 && !enable_secure () 1540 && !enable_secure ()
1187 && getenv ("LIBEV_FLAGS")) 1541 && getenv ("LIBEV_FLAGS"))
1188 flags = atoi (getenv ("LIBEV_FLAGS")); 1542 flags = atoi (getenv ("LIBEV_FLAGS"));
1189 1543
1190 if (!(flags & 0x0000ffffUL)) 1544 if (!(flags & 0x0000ffffU))
1191 flags |= ev_recommended_backends (); 1545 flags |= ev_recommended_backends ();
1192 1546
1193#if EV_USE_PORT 1547#if EV_USE_PORT
1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1548 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1195#endif 1549#endif
1204#endif 1558#endif
1205#if EV_USE_SELECT 1559#if EV_USE_SELECT
1206 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1560 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1207#endif 1561#endif
1208 1562
1563 ev_prepare_init (&pending_w, pendingcb);
1564
1209 ev_init (&pipeev, pipecb); 1565 ev_init (&pipe_w, pipecb);
1210 ev_set_priority (&pipeev, EV_MAXPRI); 1566 ev_set_priority (&pipe_w, EV_MAXPRI);
1211 } 1567 }
1212} 1568}
1213 1569
1570/* free up a loop structure */
1214static void noinline 1571static void noinline
1215loop_destroy (EV_P) 1572loop_destroy (EV_P)
1216{ 1573{
1217 int i; 1574 int i;
1218 1575
1219 if (ev_is_active (&pipeev)) 1576 if (ev_is_active (&pipe_w))
1220 { 1577 {
1221 ev_ref (EV_A); /* signal watcher */ 1578 /*ev_ref (EV_A);*/
1222 ev_io_stop (EV_A_ &pipeev); 1579 /*ev_io_stop (EV_A_ &pipe_w);*/
1223 1580
1224#if EV_USE_EVENTFD 1581#if EV_USE_EVENTFD
1225 if (evfd >= 0) 1582 if (evfd >= 0)
1226 close (evfd); 1583 close (evfd);
1227#endif 1584#endif
1231 close (evpipe [0]); 1588 close (evpipe [0]);
1232 close (evpipe [1]); 1589 close (evpipe [1]);
1233 } 1590 }
1234 } 1591 }
1235 1592
1593#if EV_USE_SIGNALFD
1594 if (ev_is_active (&sigfd_w))
1595 {
1596 /*ev_ref (EV_A);*/
1597 /*ev_io_stop (EV_A_ &sigfd_w);*/
1598
1599 close (sigfd);
1600 }
1601#endif
1602
1236#if EV_USE_INOTIFY 1603#if EV_USE_INOTIFY
1237 if (fs_fd >= 0) 1604 if (fs_fd >= 0)
1238 close (fs_fd); 1605 close (fs_fd);
1239#endif 1606#endif
1240 1607
1266 } 1633 }
1267 1634
1268 ev_free (anfds); anfdmax = 0; 1635 ev_free (anfds); anfdmax = 0;
1269 1636
1270 /* have to use the microsoft-never-gets-it-right macro */ 1637 /* have to use the microsoft-never-gets-it-right macro */
1638 array_free (rfeed, EMPTY);
1271 array_free (fdchange, EMPTY); 1639 array_free (fdchange, EMPTY);
1272 array_free (timer, EMPTY); 1640 array_free (timer, EMPTY);
1273#if EV_PERIODIC_ENABLE 1641#if EV_PERIODIC_ENABLE
1274 array_free (periodic, EMPTY); 1642 array_free (periodic, EMPTY);
1275#endif 1643#endif
1283#endif 1651#endif
1284 1652
1285 backend = 0; 1653 backend = 0;
1286} 1654}
1287 1655
1656#if EV_USE_INOTIFY
1288void inline_size infy_fork (EV_P); 1657inline_size void infy_fork (EV_P);
1658#endif
1289 1659
1290void inline_size 1660inline_size void
1291loop_fork (EV_P) 1661loop_fork (EV_P)
1292{ 1662{
1293#if EV_USE_PORT 1663#if EV_USE_PORT
1294 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1664 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1295#endif 1665#endif
1301#endif 1671#endif
1302#if EV_USE_INOTIFY 1672#if EV_USE_INOTIFY
1303 infy_fork (EV_A); 1673 infy_fork (EV_A);
1304#endif 1674#endif
1305 1675
1306 if (ev_is_active (&pipeev)) 1676 if (ev_is_active (&pipe_w))
1307 { 1677 {
1308 /* this "locks" the handlers against writing to the pipe */ 1678 /* this "locks" the handlers against writing to the pipe */
1309 /* while we modify the fd vars */ 1679 /* while we modify the fd vars */
1310 gotsig = 1; 1680 gotsig = 1;
1311#if EV_ASYNC_ENABLE 1681#if EV_ASYNC_ENABLE
1312 gotasync = 1; 1682 gotasync = 1;
1313#endif 1683#endif
1314 1684
1315 ev_ref (EV_A); 1685 ev_ref (EV_A);
1316 ev_io_stop (EV_A_ &pipeev); 1686 ev_io_stop (EV_A_ &pipe_w);
1317 1687
1318#if EV_USE_EVENTFD 1688#if EV_USE_EVENTFD
1319 if (evfd >= 0) 1689 if (evfd >= 0)
1320 close (evfd); 1690 close (evfd);
1321#endif 1691#endif
1326 close (evpipe [1]); 1696 close (evpipe [1]);
1327 } 1697 }
1328 1698
1329 evpipe_init (EV_A); 1699 evpipe_init (EV_A);
1330 /* now iterate over everything, in case we missed something */ 1700 /* now iterate over everything, in case we missed something */
1331 pipecb (EV_A_ &pipeev, EV_READ); 1701 pipecb (EV_A_ &pipe_w, EV_READ);
1332 } 1702 }
1333 1703
1334 postfork = 0; 1704 postfork = 0;
1335} 1705}
1336 1706
1337#if EV_MULTIPLICITY 1707#if EV_MULTIPLICITY
1708
1338struct ev_loop * 1709struct ev_loop *
1339ev_loop_new (unsigned int flags) 1710ev_loop_new (unsigned int flags)
1340{ 1711{
1341 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1712 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1342 1713
1343 memset (loop, 0, sizeof (struct ev_loop)); 1714 memset (loop, 0, sizeof (struct ev_loop));
1344
1345 loop_init (EV_A_ flags); 1715 loop_init (EV_A_ flags);
1346 1716
1347 if (ev_backend (EV_A)) 1717 if (ev_backend (EV_A))
1348 return loop; 1718 return loop;
1349 1719
1360void 1730void
1361ev_loop_fork (EV_P) 1731ev_loop_fork (EV_P)
1362{ 1732{
1363 postfork = 1; /* must be in line with ev_default_fork */ 1733 postfork = 1; /* must be in line with ev_default_fork */
1364} 1734}
1735#endif /* multiplicity */
1365 1736
1737#if EV_VERIFY
1738static void noinline
1739verify_watcher (EV_P_ W w)
1740{
1741 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1742
1743 if (w->pending)
1744 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1745}
1746
1747static void noinline
1748verify_heap (EV_P_ ANHE *heap, int N)
1749{
1750 int i;
1751
1752 for (i = HEAP0; i < N + HEAP0; ++i)
1753 {
1754 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1755 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1756 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1757
1758 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1759 }
1760}
1761
1762static void noinline
1763array_verify (EV_P_ W *ws, int cnt)
1764{
1765 while (cnt--)
1766 {
1767 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1768 verify_watcher (EV_A_ ws [cnt]);
1769 }
1770}
1771#endif
1772
1773#if EV_MINIMAL < 2
1774void
1775ev_loop_verify (EV_P)
1776{
1777#if EV_VERIFY
1778 int i;
1779 WL w;
1780
1781 assert (activecnt >= -1);
1782
1783 assert (fdchangemax >= fdchangecnt);
1784 for (i = 0; i < fdchangecnt; ++i)
1785 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1786
1787 assert (anfdmax >= 0);
1788 for (i = 0; i < anfdmax; ++i)
1789 for (w = anfds [i].head; w; w = w->next)
1790 {
1791 verify_watcher (EV_A_ (W)w);
1792 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1793 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1794 }
1795
1796 assert (timermax >= timercnt);
1797 verify_heap (EV_A_ timers, timercnt);
1798
1799#if EV_PERIODIC_ENABLE
1800 assert (periodicmax >= periodiccnt);
1801 verify_heap (EV_A_ periodics, periodiccnt);
1802#endif
1803
1804 for (i = NUMPRI; i--; )
1805 {
1806 assert (pendingmax [i] >= pendingcnt [i]);
1807#if EV_IDLE_ENABLE
1808 assert (idleall >= 0);
1809 assert (idlemax [i] >= idlecnt [i]);
1810 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1811#endif
1812 }
1813
1814#if EV_FORK_ENABLE
1815 assert (forkmax >= forkcnt);
1816 array_verify (EV_A_ (W *)forks, forkcnt);
1817#endif
1818
1819#if EV_ASYNC_ENABLE
1820 assert (asyncmax >= asynccnt);
1821 array_verify (EV_A_ (W *)asyncs, asynccnt);
1822#endif
1823
1824 assert (preparemax >= preparecnt);
1825 array_verify (EV_A_ (W *)prepares, preparecnt);
1826
1827 assert (checkmax >= checkcnt);
1828 array_verify (EV_A_ (W *)checks, checkcnt);
1829
1830# if 0
1831 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1832 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1833# endif
1834#endif
1835}
1366#endif 1836#endif
1367 1837
1368#if EV_MULTIPLICITY 1838#if EV_MULTIPLICITY
1369struct ev_loop * 1839struct ev_loop *
1370ev_default_loop_init (unsigned int flags) 1840ev_default_loop_init (unsigned int flags)
1404{ 1874{
1405#if EV_MULTIPLICITY 1875#if EV_MULTIPLICITY
1406 struct ev_loop *loop = ev_default_loop_ptr; 1876 struct ev_loop *loop = ev_default_loop_ptr;
1407#endif 1877#endif
1408 1878
1879 ev_default_loop_ptr = 0;
1880
1409#ifndef _WIN32 1881#ifndef _WIN32
1410 ev_ref (EV_A); /* child watcher */ 1882 ev_ref (EV_A); /* child watcher */
1411 ev_signal_stop (EV_A_ &childev); 1883 ev_signal_stop (EV_A_ &childev);
1412#endif 1884#endif
1413 1885
1419{ 1891{
1420#if EV_MULTIPLICITY 1892#if EV_MULTIPLICITY
1421 struct ev_loop *loop = ev_default_loop_ptr; 1893 struct ev_loop *loop = ev_default_loop_ptr;
1422#endif 1894#endif
1423 1895
1424 if (backend)
1425 postfork = 1; /* must be in line with ev_loop_fork */ 1896 postfork = 1; /* must be in line with ev_loop_fork */
1426} 1897}
1427 1898
1428/*****************************************************************************/ 1899/*****************************************************************************/
1429 1900
1430void 1901void
1431ev_invoke (EV_P_ void *w, int revents) 1902ev_invoke (EV_P_ void *w, int revents)
1432{ 1903{
1433 EV_CB_INVOKE ((W)w, revents); 1904 EV_CB_INVOKE ((W)w, revents);
1434} 1905}
1435 1906
1436void inline_speed 1907unsigned int
1437call_pending (EV_P) 1908ev_pending_count (EV_P)
1909{
1910 int pri;
1911 unsigned int count = 0;
1912
1913 for (pri = NUMPRI; pri--; )
1914 count += pendingcnt [pri];
1915
1916 return count;
1917}
1918
1919void noinline
1920ev_invoke_pending (EV_P)
1438{ 1921{
1439 int pri; 1922 int pri;
1440 1923
1441 for (pri = NUMPRI; pri--; ) 1924 for (pri = NUMPRI; pri--; )
1442 while (pendingcnt [pri]) 1925 while (pendingcnt [pri])
1443 { 1926 {
1444 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1927 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1445 1928
1446 if (expect_true (p->w))
1447 {
1448 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1929 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1930 /* ^ this is no longer true, as pending_w could be here */
1449 1931
1450 p->w->pending = 0; 1932 p->w->pending = 0;
1451 EV_CB_INVOKE (p->w, p->events); 1933 EV_CB_INVOKE (p->w, p->events);
1452 } 1934 EV_FREQUENT_CHECK;
1453 } 1935 }
1454} 1936}
1455 1937
1456void inline_size
1457timers_reify (EV_P)
1458{
1459 while (timercnt && ((WT)timers [0])->at <= mn_now)
1460 {
1461 ev_timer *w = (ev_timer *)timers [0];
1462
1463 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1464
1465 /* first reschedule or stop timer */
1466 if (w->repeat)
1467 {
1468 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1469
1470 ((WT)w)->at += w->repeat;
1471 if (((WT)w)->at < mn_now)
1472 ((WT)w)->at = mn_now;
1473
1474 downheap (timers, timercnt, 0);
1475 }
1476 else
1477 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1478
1479 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1480 }
1481}
1482
1483#if EV_PERIODIC_ENABLE
1484void inline_size
1485periodics_reify (EV_P)
1486{
1487 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1488 {
1489 ev_periodic *w = (ev_periodic *)periodics [0];
1490
1491 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1492
1493 /* first reschedule or stop timer */
1494 if (w->reschedule_cb)
1495 {
1496 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1497 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1498 downheap (periodics, periodiccnt, 0);
1499 }
1500 else if (w->interval)
1501 {
1502 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1503 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1504 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1505 downheap (periodics, periodiccnt, 0);
1506 }
1507 else
1508 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1509
1510 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1511 }
1512}
1513
1514static void noinline
1515periodics_reschedule (EV_P)
1516{
1517 int i;
1518
1519 /* adjust periodics after time jump */
1520 for (i = 0; i < periodiccnt; ++i)
1521 {
1522 ev_periodic *w = (ev_periodic *)periodics [i];
1523
1524 if (w->reschedule_cb)
1525 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1526 else if (w->interval)
1527 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1528 }
1529
1530 /* now rebuild the heap */
1531 for (i = periodiccnt >> 1; i--; )
1532 downheap (periodics, periodiccnt, i);
1533}
1534#endif
1535
1536#if EV_IDLE_ENABLE 1938#if EV_IDLE_ENABLE
1537void inline_size 1939/* make idle watchers pending. this handles the "call-idle */
1940/* only when higher priorities are idle" logic */
1941inline_size void
1538idle_reify (EV_P) 1942idle_reify (EV_P)
1539{ 1943{
1540 if (expect_false (idleall)) 1944 if (expect_false (idleall))
1541 { 1945 {
1542 int pri; 1946 int pri;
1554 } 1958 }
1555 } 1959 }
1556} 1960}
1557#endif 1961#endif
1558 1962
1559void inline_speed 1963/* make timers pending */
1964inline_size void
1965timers_reify (EV_P)
1966{
1967 EV_FREQUENT_CHECK;
1968
1969 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1970 {
1971 do
1972 {
1973 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1974
1975 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1976
1977 /* first reschedule or stop timer */
1978 if (w->repeat)
1979 {
1980 ev_at (w) += w->repeat;
1981 if (ev_at (w) < mn_now)
1982 ev_at (w) = mn_now;
1983
1984 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1985
1986 ANHE_at_cache (timers [HEAP0]);
1987 downheap (timers, timercnt, HEAP0);
1988 }
1989 else
1990 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1991
1992 EV_FREQUENT_CHECK;
1993 feed_reverse (EV_A_ (W)w);
1994 }
1995 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1996
1997 feed_reverse_done (EV_A_ EV_TIMEOUT);
1998 }
1999}
2000
2001#if EV_PERIODIC_ENABLE
2002/* make periodics pending */
2003inline_size void
2004periodics_reify (EV_P)
2005{
2006 EV_FREQUENT_CHECK;
2007
2008 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2009 {
2010 int feed_count = 0;
2011
2012 do
2013 {
2014 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2015
2016 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2017
2018 /* first reschedule or stop timer */
2019 if (w->reschedule_cb)
2020 {
2021 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2022
2023 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2024
2025 ANHE_at_cache (periodics [HEAP0]);
2026 downheap (periodics, periodiccnt, HEAP0);
2027 }
2028 else if (w->interval)
2029 {
2030 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2031 /* if next trigger time is not sufficiently in the future, put it there */
2032 /* this might happen because of floating point inexactness */
2033 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2034 {
2035 ev_at (w) += w->interval;
2036
2037 /* if interval is unreasonably low we might still have a time in the past */
2038 /* so correct this. this will make the periodic very inexact, but the user */
2039 /* has effectively asked to get triggered more often than possible */
2040 if (ev_at (w) < ev_rt_now)
2041 ev_at (w) = ev_rt_now;
2042 }
2043
2044 ANHE_at_cache (periodics [HEAP0]);
2045 downheap (periodics, periodiccnt, HEAP0);
2046 }
2047 else
2048 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2049
2050 EV_FREQUENT_CHECK;
2051 feed_reverse (EV_A_ (W)w);
2052 }
2053 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2054
2055 feed_reverse_done (EV_A_ EV_PERIODIC);
2056 }
2057}
2058
2059/* simply recalculate all periodics */
2060/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2061static void noinline
2062periodics_reschedule (EV_P)
2063{
2064 int i;
2065
2066 /* adjust periodics after time jump */
2067 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2068 {
2069 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2070
2071 if (w->reschedule_cb)
2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2073 else if (w->interval)
2074 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2075
2076 ANHE_at_cache (periodics [i]);
2077 }
2078
2079 reheap (periodics, periodiccnt);
2080}
2081#endif
2082
2083/* adjust all timers by a given offset */
2084static void noinline
2085timers_reschedule (EV_P_ ev_tstamp adjust)
2086{
2087 int i;
2088
2089 for (i = 0; i < timercnt; ++i)
2090 {
2091 ANHE *he = timers + i + HEAP0;
2092 ANHE_w (*he)->at += adjust;
2093 ANHE_at_cache (*he);
2094 }
2095}
2096
2097/* fetch new monotonic and realtime times from the kernel */
2098/* also detetc if there was a timejump, and act accordingly */
2099inline_speed void
1560time_update (EV_P_ ev_tstamp max_block) 2100time_update (EV_P_ ev_tstamp max_block)
1561{ 2101{
1562 int i;
1563
1564#if EV_USE_MONOTONIC 2102#if EV_USE_MONOTONIC
1565 if (expect_true (have_monotonic)) 2103 if (expect_true (have_monotonic))
1566 { 2104 {
2105 int i;
1567 ev_tstamp odiff = rtmn_diff; 2106 ev_tstamp odiff = rtmn_diff;
1568 2107
1569 mn_now = get_clock (); 2108 mn_now = get_clock ();
1570 2109
1571 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2110 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1589 */ 2128 */
1590 for (i = 4; --i; ) 2129 for (i = 4; --i; )
1591 { 2130 {
1592 rtmn_diff = ev_rt_now - mn_now; 2131 rtmn_diff = ev_rt_now - mn_now;
1593 2132
1594 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2133 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1595 return; /* all is well */ 2134 return; /* all is well */
1596 2135
1597 ev_rt_now = ev_time (); 2136 ev_rt_now = ev_time ();
1598 mn_now = get_clock (); 2137 mn_now = get_clock ();
1599 now_floor = mn_now; 2138 now_floor = mn_now;
1600 } 2139 }
1601 2140
2141 /* no timer adjustment, as the monotonic clock doesn't jump */
2142 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1602# if EV_PERIODIC_ENABLE 2143# if EV_PERIODIC_ENABLE
1603 periodics_reschedule (EV_A); 2144 periodics_reschedule (EV_A);
1604# endif 2145# endif
1605 /* no timer adjustment, as the monotonic clock doesn't jump */
1606 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1607 } 2146 }
1608 else 2147 else
1609#endif 2148#endif
1610 { 2149 {
1611 ev_rt_now = ev_time (); 2150 ev_rt_now = ev_time ();
1612 2151
1613 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2152 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1614 { 2153 {
2154 /* adjust timers. this is easy, as the offset is the same for all of them */
2155 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1615#if EV_PERIODIC_ENABLE 2156#if EV_PERIODIC_ENABLE
1616 periodics_reschedule (EV_A); 2157 periodics_reschedule (EV_A);
1617#endif 2158#endif
1618 /* adjust timers. this is easy, as the offset is the same for all of them */
1619 for (i = 0; i < timercnt; ++i)
1620 ((WT)timers [i])->at += ev_rt_now - mn_now;
1621 } 2159 }
1622 2160
1623 mn_now = ev_rt_now; 2161 mn_now = ev_rt_now;
1624 } 2162 }
1625} 2163}
1626 2164
1627void 2165void
1628ev_ref (EV_P)
1629{
1630 ++activecnt;
1631}
1632
1633void
1634ev_unref (EV_P)
1635{
1636 --activecnt;
1637}
1638
1639static int loop_done;
1640
1641void
1642ev_loop (EV_P_ int flags) 2166ev_loop (EV_P_ int flags)
1643{ 2167{
2168#if EV_MINIMAL < 2
2169 ++loop_depth;
2170#endif
2171
2172 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2173
1644 loop_done = EVUNLOOP_CANCEL; 2174 loop_done = EVUNLOOP_CANCEL;
1645 2175
1646 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2176 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1647 2177
1648 do 2178 do
1649 { 2179 {
2180#if EV_VERIFY >= 2
2181 ev_loop_verify (EV_A);
2182#endif
2183
1650#ifndef _WIN32 2184#ifndef _WIN32
1651 if (expect_false (curpid)) /* penalise the forking check even more */ 2185 if (expect_false (curpid)) /* penalise the forking check even more */
1652 if (expect_false (getpid () != curpid)) 2186 if (expect_false (getpid () != curpid))
1653 { 2187 {
1654 curpid = getpid (); 2188 curpid = getpid ();
1660 /* we might have forked, so queue fork handlers */ 2194 /* we might have forked, so queue fork handlers */
1661 if (expect_false (postfork)) 2195 if (expect_false (postfork))
1662 if (forkcnt) 2196 if (forkcnt)
1663 { 2197 {
1664 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2198 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1665 call_pending (EV_A); 2199 EV_INVOKE_PENDING;
1666 } 2200 }
1667#endif 2201#endif
1668 2202
1669 /* queue prepare watchers (and execute them) */ 2203 /* queue prepare watchers (and execute them) */
1670 if (expect_false (preparecnt)) 2204 if (expect_false (preparecnt))
1671 { 2205 {
1672 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2206 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1673 call_pending (EV_A); 2207 EV_INVOKE_PENDING;
1674 } 2208 }
1675 2209
1676 if (expect_false (!activecnt)) 2210 if (expect_false (loop_done))
1677 break; 2211 break;
1678 2212
1679 /* we might have forked, so reify kernel state if necessary */ 2213 /* we might have forked, so reify kernel state if necessary */
1680 if (expect_false (postfork)) 2214 if (expect_false (postfork))
1681 loop_fork (EV_A); 2215 loop_fork (EV_A);
1688 ev_tstamp waittime = 0.; 2222 ev_tstamp waittime = 0.;
1689 ev_tstamp sleeptime = 0.; 2223 ev_tstamp sleeptime = 0.;
1690 2224
1691 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2225 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1692 { 2226 {
2227 /* remember old timestamp for io_blocktime calculation */
2228 ev_tstamp prev_mn_now = mn_now;
2229
1693 /* update time to cancel out callback processing overhead */ 2230 /* update time to cancel out callback processing overhead */
1694 time_update (EV_A_ 1e100); 2231 time_update (EV_A_ 1e100);
1695 2232
1696 waittime = MAX_BLOCKTIME; 2233 waittime = MAX_BLOCKTIME;
1697 2234
1698 if (timercnt) 2235 if (timercnt)
1699 { 2236 {
1700 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2237 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1701 if (waittime > to) waittime = to; 2238 if (waittime > to) waittime = to;
1702 } 2239 }
1703 2240
1704#if EV_PERIODIC_ENABLE 2241#if EV_PERIODIC_ENABLE
1705 if (periodiccnt) 2242 if (periodiccnt)
1706 { 2243 {
1707 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2244 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1708 if (waittime > to) waittime = to; 2245 if (waittime > to) waittime = to;
1709 } 2246 }
1710#endif 2247#endif
1711 2248
2249 /* don't let timeouts decrease the waittime below timeout_blocktime */
1712 if (expect_false (waittime < timeout_blocktime)) 2250 if (expect_false (waittime < timeout_blocktime))
1713 waittime = timeout_blocktime; 2251 waittime = timeout_blocktime;
1714 2252
1715 sleeptime = waittime - backend_fudge; 2253 /* extra check because io_blocktime is commonly 0 */
1716
1717 if (expect_true (sleeptime > io_blocktime)) 2254 if (expect_false (io_blocktime))
1718 sleeptime = io_blocktime;
1719
1720 if (sleeptime)
1721 { 2255 {
2256 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2257
2258 if (sleeptime > waittime - backend_fudge)
2259 sleeptime = waittime - backend_fudge;
2260
2261 if (expect_true (sleeptime > 0.))
2262 {
1722 ev_sleep (sleeptime); 2263 ev_sleep (sleeptime);
1723 waittime -= sleeptime; 2264 waittime -= sleeptime;
2265 }
1724 } 2266 }
1725 } 2267 }
1726 2268
2269#if EV_MINIMAL < 2
1727 ++loop_count; 2270 ++loop_count;
2271#endif
2272 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1728 backend_poll (EV_A_ waittime); 2273 backend_poll (EV_A_ waittime);
2274 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1729 2275
1730 /* update ev_rt_now, do magic */ 2276 /* update ev_rt_now, do magic */
1731 time_update (EV_A_ waittime + sleeptime); 2277 time_update (EV_A_ waittime + sleeptime);
1732 } 2278 }
1733 2279
1744 2290
1745 /* queue check watchers, to be executed first */ 2291 /* queue check watchers, to be executed first */
1746 if (expect_false (checkcnt)) 2292 if (expect_false (checkcnt))
1747 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2293 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1748 2294
1749 call_pending (EV_A); 2295 EV_INVOKE_PENDING;
1750 } 2296 }
1751 while (expect_true ( 2297 while (expect_true (
1752 activecnt 2298 activecnt
1753 && !loop_done 2299 && !loop_done
1754 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2300 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1755 )); 2301 ));
1756 2302
1757 if (loop_done == EVUNLOOP_ONE) 2303 if (loop_done == EVUNLOOP_ONE)
1758 loop_done = EVUNLOOP_CANCEL; 2304 loop_done = EVUNLOOP_CANCEL;
2305
2306#if EV_MINIMAL < 2
2307 --loop_depth;
2308#endif
1759} 2309}
1760 2310
1761void 2311void
1762ev_unloop (EV_P_ int how) 2312ev_unloop (EV_P_ int how)
1763{ 2313{
1764 loop_done = how; 2314 loop_done = how;
1765} 2315}
1766 2316
2317void
2318ev_ref (EV_P)
2319{
2320 ++activecnt;
2321}
2322
2323void
2324ev_unref (EV_P)
2325{
2326 --activecnt;
2327}
2328
2329void
2330ev_now_update (EV_P)
2331{
2332 time_update (EV_A_ 1e100);
2333}
2334
2335void
2336ev_suspend (EV_P)
2337{
2338 ev_now_update (EV_A);
2339}
2340
2341void
2342ev_resume (EV_P)
2343{
2344 ev_tstamp mn_prev = mn_now;
2345
2346 ev_now_update (EV_A);
2347 timers_reschedule (EV_A_ mn_now - mn_prev);
2348#if EV_PERIODIC_ENABLE
2349 /* TODO: really do this? */
2350 periodics_reschedule (EV_A);
2351#endif
2352}
2353
1767/*****************************************************************************/ 2354/*****************************************************************************/
2355/* singly-linked list management, used when the expected list length is short */
1768 2356
1769void inline_size 2357inline_size void
1770wlist_add (WL *head, WL elem) 2358wlist_add (WL *head, WL elem)
1771{ 2359{
1772 elem->next = *head; 2360 elem->next = *head;
1773 *head = elem; 2361 *head = elem;
1774} 2362}
1775 2363
1776void inline_size 2364inline_size void
1777wlist_del (WL *head, WL elem) 2365wlist_del (WL *head, WL elem)
1778{ 2366{
1779 while (*head) 2367 while (*head)
1780 { 2368 {
1781 if (*head == elem) 2369 if (*head == elem)
1786 2374
1787 head = &(*head)->next; 2375 head = &(*head)->next;
1788 } 2376 }
1789} 2377}
1790 2378
1791void inline_speed 2379/* internal, faster, version of ev_clear_pending */
2380inline_speed void
1792clear_pending (EV_P_ W w) 2381clear_pending (EV_P_ W w)
1793{ 2382{
1794 if (w->pending) 2383 if (w->pending)
1795 { 2384 {
1796 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2385 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1797 w->pending = 0; 2386 w->pending = 0;
1798 } 2387 }
1799} 2388}
1800 2389
1801int 2390int
1805 int pending = w_->pending; 2394 int pending = w_->pending;
1806 2395
1807 if (expect_true (pending)) 2396 if (expect_true (pending))
1808 { 2397 {
1809 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2398 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2399 p->w = (W)&pending_w;
1810 w_->pending = 0; 2400 w_->pending = 0;
1811 p->w = 0;
1812 return p->events; 2401 return p->events;
1813 } 2402 }
1814 else 2403 else
1815 return 0; 2404 return 0;
1816} 2405}
1817 2406
1818void inline_size 2407inline_size void
1819pri_adjust (EV_P_ W w) 2408pri_adjust (EV_P_ W w)
1820{ 2409{
1821 int pri = w->priority; 2410 int pri = ev_priority (w);
1822 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2411 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1823 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2412 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1824 w->priority = pri; 2413 ev_set_priority (w, pri);
1825} 2414}
1826 2415
1827void inline_speed 2416inline_speed void
1828ev_start (EV_P_ W w, int active) 2417ev_start (EV_P_ W w, int active)
1829{ 2418{
1830 pri_adjust (EV_A_ w); 2419 pri_adjust (EV_A_ w);
1831 w->active = active; 2420 w->active = active;
1832 ev_ref (EV_A); 2421 ev_ref (EV_A);
1833} 2422}
1834 2423
1835void inline_size 2424inline_size void
1836ev_stop (EV_P_ W w) 2425ev_stop (EV_P_ W w)
1837{ 2426{
1838 ev_unref (EV_A); 2427 ev_unref (EV_A);
1839 w->active = 0; 2428 w->active = 0;
1840} 2429}
1847 int fd = w->fd; 2436 int fd = w->fd;
1848 2437
1849 if (expect_false (ev_is_active (w))) 2438 if (expect_false (ev_is_active (w)))
1850 return; 2439 return;
1851 2440
1852 assert (("ev_io_start called with negative fd", fd >= 0)); 2441 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2442 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2443
2444 EV_FREQUENT_CHECK;
1853 2445
1854 ev_start (EV_A_ (W)w, 1); 2446 ev_start (EV_A_ (W)w, 1);
1855 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2447 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1856 wlist_add (&anfds[fd].head, (WL)w); 2448 wlist_add (&anfds[fd].head, (WL)w);
1857 2449
1858 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2450 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1859 w->events &= ~EV_IOFDSET; 2451 w->events &= ~EV__IOFDSET;
2452
2453 EV_FREQUENT_CHECK;
1860} 2454}
1861 2455
1862void noinline 2456void noinline
1863ev_io_stop (EV_P_ ev_io *w) 2457ev_io_stop (EV_P_ ev_io *w)
1864{ 2458{
1865 clear_pending (EV_A_ (W)w); 2459 clear_pending (EV_A_ (W)w);
1866 if (expect_false (!ev_is_active (w))) 2460 if (expect_false (!ev_is_active (w)))
1867 return; 2461 return;
1868 2462
1869 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2463 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2464
2465 EV_FREQUENT_CHECK;
1870 2466
1871 wlist_del (&anfds[w->fd].head, (WL)w); 2467 wlist_del (&anfds[w->fd].head, (WL)w);
1872 ev_stop (EV_A_ (W)w); 2468 ev_stop (EV_A_ (W)w);
1873 2469
1874 fd_change (EV_A_ w->fd, 1); 2470 fd_change (EV_A_ w->fd, 1);
2471
2472 EV_FREQUENT_CHECK;
1875} 2473}
1876 2474
1877void noinline 2475void noinline
1878ev_timer_start (EV_P_ ev_timer *w) 2476ev_timer_start (EV_P_ ev_timer *w)
1879{ 2477{
1880 if (expect_false (ev_is_active (w))) 2478 if (expect_false (ev_is_active (w)))
1881 return; 2479 return;
1882 2480
1883 ((WT)w)->at += mn_now; 2481 ev_at (w) += mn_now;
1884 2482
1885 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2483 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1886 2484
2485 EV_FREQUENT_CHECK;
2486
2487 ++timercnt;
1887 ev_start (EV_A_ (W)w, ++timercnt); 2488 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1888 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2489 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1889 timers [timercnt - 1] = (WT)w; 2490 ANHE_w (timers [ev_active (w)]) = (WT)w;
1890 upheap (timers, timercnt - 1); 2491 ANHE_at_cache (timers [ev_active (w)]);
2492 upheap (timers, ev_active (w));
1891 2493
2494 EV_FREQUENT_CHECK;
2495
1892 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2496 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1893} 2497}
1894 2498
1895void noinline 2499void noinline
1896ev_timer_stop (EV_P_ ev_timer *w) 2500ev_timer_stop (EV_P_ ev_timer *w)
1897{ 2501{
1898 clear_pending (EV_A_ (W)w); 2502 clear_pending (EV_A_ (W)w);
1899 if (expect_false (!ev_is_active (w))) 2503 if (expect_false (!ev_is_active (w)))
1900 return; 2504 return;
1901 2505
1902 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2506 EV_FREQUENT_CHECK;
1903 2507
1904 { 2508 {
1905 int active = ((W)w)->active; 2509 int active = ev_active (w);
1906 2510
2511 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2512
2513 --timercnt;
2514
1907 if (expect_true (--active < --timercnt)) 2515 if (expect_true (active < timercnt + HEAP0))
1908 { 2516 {
1909 timers [active] = timers [timercnt]; 2517 timers [active] = timers [timercnt + HEAP0];
1910 adjustheap (timers, timercnt, active); 2518 adjustheap (timers, timercnt, active);
1911 } 2519 }
1912 } 2520 }
1913 2521
1914 ((WT)w)->at -= mn_now; 2522 EV_FREQUENT_CHECK;
2523
2524 ev_at (w) -= mn_now;
1915 2525
1916 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
1917} 2527}
1918 2528
1919void noinline 2529void noinline
1920ev_timer_again (EV_P_ ev_timer *w) 2530ev_timer_again (EV_P_ ev_timer *w)
1921{ 2531{
2532 EV_FREQUENT_CHECK;
2533
1922 if (ev_is_active (w)) 2534 if (ev_is_active (w))
1923 { 2535 {
1924 if (w->repeat) 2536 if (w->repeat)
1925 { 2537 {
1926 ((WT)w)->at = mn_now + w->repeat; 2538 ev_at (w) = mn_now + w->repeat;
2539 ANHE_at_cache (timers [ev_active (w)]);
1927 adjustheap (timers, timercnt, ((W)w)->active - 1); 2540 adjustheap (timers, timercnt, ev_active (w));
1928 } 2541 }
1929 else 2542 else
1930 ev_timer_stop (EV_A_ w); 2543 ev_timer_stop (EV_A_ w);
1931 } 2544 }
1932 else if (w->repeat) 2545 else if (w->repeat)
1933 { 2546 {
1934 w->at = w->repeat; 2547 ev_at (w) = w->repeat;
1935 ev_timer_start (EV_A_ w); 2548 ev_timer_start (EV_A_ w);
1936 } 2549 }
2550
2551 EV_FREQUENT_CHECK;
2552}
2553
2554ev_tstamp
2555ev_timer_remaining (EV_P_ ev_timer *w)
2556{
2557 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1937} 2558}
1938 2559
1939#if EV_PERIODIC_ENABLE 2560#if EV_PERIODIC_ENABLE
1940void noinline 2561void noinline
1941ev_periodic_start (EV_P_ ev_periodic *w) 2562ev_periodic_start (EV_P_ ev_periodic *w)
1942{ 2563{
1943 if (expect_false (ev_is_active (w))) 2564 if (expect_false (ev_is_active (w)))
1944 return; 2565 return;
1945 2566
1946 if (w->reschedule_cb) 2567 if (w->reschedule_cb)
1947 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2568 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1948 else if (w->interval) 2569 else if (w->interval)
1949 { 2570 {
1950 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2571 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1951 /* this formula differs from the one in periodic_reify because we do not always round up */ 2572 /* this formula differs from the one in periodic_reify because we do not always round up */
1952 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2573 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1953 } 2574 }
1954 else 2575 else
1955 ((WT)w)->at = w->offset; 2576 ev_at (w) = w->offset;
1956 2577
2578 EV_FREQUENT_CHECK;
2579
2580 ++periodiccnt;
1957 ev_start (EV_A_ (W)w, ++periodiccnt); 2581 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1958 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2582 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1959 periodics [periodiccnt - 1] = (WT)w; 2583 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1960 upheap (periodics, periodiccnt - 1); 2584 ANHE_at_cache (periodics [ev_active (w)]);
2585 upheap (periodics, ev_active (w));
1961 2586
2587 EV_FREQUENT_CHECK;
2588
1962 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2589 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1963} 2590}
1964 2591
1965void noinline 2592void noinline
1966ev_periodic_stop (EV_P_ ev_periodic *w) 2593ev_periodic_stop (EV_P_ ev_periodic *w)
1967{ 2594{
1968 clear_pending (EV_A_ (W)w); 2595 clear_pending (EV_A_ (W)w);
1969 if (expect_false (!ev_is_active (w))) 2596 if (expect_false (!ev_is_active (w)))
1970 return; 2597 return;
1971 2598
1972 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2599 EV_FREQUENT_CHECK;
1973 2600
1974 { 2601 {
1975 int active = ((W)w)->active; 2602 int active = ev_active (w);
1976 2603
2604 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2605
2606 --periodiccnt;
2607
1977 if (expect_true (--active < --periodiccnt)) 2608 if (expect_true (active < periodiccnt + HEAP0))
1978 { 2609 {
1979 periodics [active] = periodics [periodiccnt]; 2610 periodics [active] = periodics [periodiccnt + HEAP0];
1980 adjustheap (periodics, periodiccnt, active); 2611 adjustheap (periodics, periodiccnt, active);
1981 } 2612 }
1982 } 2613 }
1983 2614
2615 EV_FREQUENT_CHECK;
2616
1984 ev_stop (EV_A_ (W)w); 2617 ev_stop (EV_A_ (W)w);
1985} 2618}
1986 2619
1987void noinline 2620void noinline
1988ev_periodic_again (EV_P_ ev_periodic *w) 2621ev_periodic_again (EV_P_ ev_periodic *w)
1999 2632
2000void noinline 2633void noinline
2001ev_signal_start (EV_P_ ev_signal *w) 2634ev_signal_start (EV_P_ ev_signal *w)
2002{ 2635{
2003#if EV_MULTIPLICITY 2636#if EV_MULTIPLICITY
2004 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2637 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2005#endif 2638#endif
2006 if (expect_false (ev_is_active (w))) 2639 if (expect_false (ev_is_active (w)))
2007 return; 2640 return;
2008 2641
2009 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2642 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2010 2643
2644 EV_FREQUENT_CHECK;
2645
2646#if EV_USE_SIGNALFD
2647 if (sigfd == -2)
2648 {
2649 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2650 if (sigfd < 0 && errno == EINVAL)
2651 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2652
2653 if (sigfd >= 0)
2654 {
2655 fd_intern (sigfd); /* doing it twice will not hurt */
2656
2657 sigemptyset (&sigfd_set);
2658
2659 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2660 ev_set_priority (&sigfd_w, EV_MAXPRI);
2661 ev_io_start (EV_A_ &sigfd_w);
2662 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2663 }
2664 }
2665
2666 if (sigfd >= 0)
2667 {
2668 /* TODO: check .head */
2669 sigaddset (&sigfd_set, w->signum);
2670 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2671
2672 signalfd (sigfd, &sigfd_set, 0);
2673 }
2674 else
2675#endif
2011 evpipe_init (EV_A); 2676 evpipe_init (EV_A);
2012 2677
2013 { 2678 {
2014#ifndef _WIN32 2679#ifndef _WIN32
2015 sigset_t full, prev; 2680 sigset_t full, prev;
2016 sigfillset (&full); 2681 sigfillset (&full);
2017 sigprocmask (SIG_SETMASK, &full, &prev); 2682 sigprocmask (SIG_SETMASK, &full, &prev);
2018#endif 2683#endif
2019 2684
2020 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2685 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2021 2686
2022#ifndef _WIN32 2687#ifndef _WIN32
2688 if (sigfd < 0)/*TODO*/
2689 sigdelset (&prev, w->signum);
2023 sigprocmask (SIG_SETMASK, &prev, 0); 2690 sigprocmask (SIG_SETMASK, &prev, 0);
2024#endif 2691#endif
2025 } 2692 }
2026 2693
2027 ev_start (EV_A_ (W)w, 1); 2694 ev_start (EV_A_ (W)w, 1);
2030 if (!((WL)w)->next) 2697 if (!((WL)w)->next)
2031 { 2698 {
2032#if _WIN32 2699#if _WIN32
2033 signal (w->signum, ev_sighandler); 2700 signal (w->signum, ev_sighandler);
2034#else 2701#else
2702 if (sigfd < 0) /*TODO*/
2703 {
2035 struct sigaction sa; 2704 struct sigaction sa = { };
2036 sa.sa_handler = ev_sighandler; 2705 sa.sa_handler = ev_sighandler;
2037 sigfillset (&sa.sa_mask); 2706 sigfillset (&sa.sa_mask);
2038 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2707 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2039 sigaction (w->signum, &sa, 0); 2708 sigaction (w->signum, &sa, 0);
2709 }
2040#endif 2710#endif
2041 } 2711 }
2712
2713 EV_FREQUENT_CHECK;
2042} 2714}
2043 2715
2044void noinline 2716void noinline
2045ev_signal_stop (EV_P_ ev_signal *w) 2717ev_signal_stop (EV_P_ ev_signal *w)
2046{ 2718{
2047 clear_pending (EV_A_ (W)w); 2719 clear_pending (EV_A_ (W)w);
2048 if (expect_false (!ev_is_active (w))) 2720 if (expect_false (!ev_is_active (w)))
2049 return; 2721 return;
2050 2722
2723 EV_FREQUENT_CHECK;
2724
2051 wlist_del (&signals [w->signum - 1].head, (WL)w); 2725 wlist_del (&signals [w->signum - 1].head, (WL)w);
2052 ev_stop (EV_A_ (W)w); 2726 ev_stop (EV_A_ (W)w);
2053 2727
2054 if (!signals [w->signum - 1].head) 2728 if (!signals [w->signum - 1].head)
2729#if EV_USE_SIGNALFD
2730 if (sigfd >= 0)
2731 {
2732 sigprocmask (SIG_UNBLOCK, &sigfd_set, 0);//D
2733 sigdelset (&sigfd_set, w->signum);
2734 signalfd (sigfd, &sigfd_set, 0);
2735 sigprocmask (SIG_BLOCK, &sigfd_set, 0);//D
2736 /*TODO: maybe unblock signal? */
2737 }
2738 else
2739#endif
2055 signal (w->signum, SIG_DFL); 2740 signal (w->signum, SIG_DFL);
2741
2742 EV_FREQUENT_CHECK;
2056} 2743}
2057 2744
2058void 2745void
2059ev_child_start (EV_P_ ev_child *w) 2746ev_child_start (EV_P_ ev_child *w)
2060{ 2747{
2061#if EV_MULTIPLICITY 2748#if EV_MULTIPLICITY
2062 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2749 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2063#endif 2750#endif
2064 if (expect_false (ev_is_active (w))) 2751 if (expect_false (ev_is_active (w)))
2065 return; 2752 return;
2066 2753
2754 EV_FREQUENT_CHECK;
2755
2067 ev_start (EV_A_ (W)w, 1); 2756 ev_start (EV_A_ (W)w, 1);
2068 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2757 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2758
2759 EV_FREQUENT_CHECK;
2069} 2760}
2070 2761
2071void 2762void
2072ev_child_stop (EV_P_ ev_child *w) 2763ev_child_stop (EV_P_ ev_child *w)
2073{ 2764{
2074 clear_pending (EV_A_ (W)w); 2765 clear_pending (EV_A_ (W)w);
2075 if (expect_false (!ev_is_active (w))) 2766 if (expect_false (!ev_is_active (w)))
2076 return; 2767 return;
2077 2768
2769 EV_FREQUENT_CHECK;
2770
2078 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2771 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2079 ev_stop (EV_A_ (W)w); 2772 ev_stop (EV_A_ (W)w);
2773
2774 EV_FREQUENT_CHECK;
2080} 2775}
2081 2776
2082#if EV_STAT_ENABLE 2777#if EV_STAT_ENABLE
2083 2778
2084# ifdef _WIN32 2779# ifdef _WIN32
2085# undef lstat 2780# undef lstat
2086# define lstat(a,b) _stati64 (a,b) 2781# define lstat(a,b) _stati64 (a,b)
2087# endif 2782# endif
2088 2783
2089#define DEF_STAT_INTERVAL 5.0074891 2784#define DEF_STAT_INTERVAL 5.0074891
2785#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2090#define MIN_STAT_INTERVAL 0.1074891 2786#define MIN_STAT_INTERVAL 0.1074891
2091 2787
2092static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2788static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2093 2789
2094#if EV_USE_INOTIFY 2790#if EV_USE_INOTIFY
2095# define EV_INOTIFY_BUFSIZE 8192 2791# define EV_INOTIFY_BUFSIZE 8192
2099{ 2795{
2100 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2796 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2101 2797
2102 if (w->wd < 0) 2798 if (w->wd < 0)
2103 { 2799 {
2800 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2104 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2801 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2105 2802
2106 /* monitor some parent directory for speedup hints */ 2803 /* monitor some parent directory for speedup hints */
2804 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2805 /* but an efficiency issue only */
2107 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2806 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2108 { 2807 {
2109 char path [4096]; 2808 char path [4096];
2110 strcpy (path, w->path); 2809 strcpy (path, w->path);
2111 2810
2114 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2813 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2115 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2814 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2116 2815
2117 char *pend = strrchr (path, '/'); 2816 char *pend = strrchr (path, '/');
2118 2817
2119 if (!pend) 2818 if (!pend || pend == path)
2120 break; /* whoops, no '/', complain to your admin */ 2819 break;
2121 2820
2122 *pend = 0; 2821 *pend = 0;
2123 w->wd = inotify_add_watch (fs_fd, path, mask); 2822 w->wd = inotify_add_watch (fs_fd, path, mask);
2124 } 2823 }
2125 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2824 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2126 } 2825 }
2127 } 2826 }
2128 else
2129 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2130 2827
2131 if (w->wd >= 0) 2828 if (w->wd >= 0)
2829 {
2132 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2830 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2831
2832 /* now local changes will be tracked by inotify, but remote changes won't */
2833 /* unless the filesystem it known to be local, we therefore still poll */
2834 /* also do poll on <2.6.25, but with normal frequency */
2835 struct statfs sfs;
2836
2837 if (fs_2625 && !statfs (w->path, &sfs))
2838 if (sfs.f_type == 0x1373 /* devfs */
2839 || sfs.f_type == 0xEF53 /* ext2/3 */
2840 || sfs.f_type == 0x3153464a /* jfs */
2841 || sfs.f_type == 0x52654973 /* reiser3 */
2842 || sfs.f_type == 0x01021994 /* tempfs */
2843 || sfs.f_type == 0x58465342 /* xfs */)
2844 return;
2845
2846 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2847 ev_timer_again (EV_A_ &w->timer);
2848 }
2133} 2849}
2134 2850
2135static void noinline 2851static void noinline
2136infy_del (EV_P_ ev_stat *w) 2852infy_del (EV_P_ ev_stat *w)
2137{ 2853{
2151 2867
2152static void noinline 2868static void noinline
2153infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2869infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2154{ 2870{
2155 if (slot < 0) 2871 if (slot < 0)
2156 /* overflow, need to check for all hahs slots */ 2872 /* overflow, need to check for all hash slots */
2157 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2873 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2158 infy_wd (EV_A_ slot, wd, ev); 2874 infy_wd (EV_A_ slot, wd, ev);
2159 else 2875 else
2160 { 2876 {
2161 WL w_; 2877 WL w_;
2167 2883
2168 if (w->wd == wd || wd == -1) 2884 if (w->wd == wd || wd == -1)
2169 { 2885 {
2170 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2886 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2171 { 2887 {
2888 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2172 w->wd = -1; 2889 w->wd = -1;
2173 infy_add (EV_A_ w); /* re-add, no matter what */ 2890 infy_add (EV_A_ w); /* re-add, no matter what */
2174 } 2891 }
2175 2892
2176 stat_timer_cb (EV_A_ &w->timer, 0); 2893 stat_timer_cb (EV_A_ &w->timer, 0);
2189 2906
2190 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2907 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2191 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2908 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2192} 2909}
2193 2910
2194void inline_size 2911inline_size void
2912check_2625 (EV_P)
2913{
2914 /* kernels < 2.6.25 are borked
2915 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2916 */
2917 struct utsname buf;
2918 int major, minor, micro;
2919
2920 if (uname (&buf))
2921 return;
2922
2923 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2924 return;
2925
2926 if (major < 2
2927 || (major == 2 && minor < 6)
2928 || (major == 2 && minor == 6 && micro < 25))
2929 return;
2930
2931 fs_2625 = 1;
2932}
2933
2934inline_size void
2195infy_init (EV_P) 2935infy_init (EV_P)
2196{ 2936{
2197 if (fs_fd != -2) 2937 if (fs_fd != -2)
2198 return; 2938 return;
2939
2940 fs_fd = -1;
2941
2942 check_2625 (EV_A);
2199 2943
2200 fs_fd = inotify_init (); 2944 fs_fd = inotify_init ();
2201 2945
2202 if (fs_fd >= 0) 2946 if (fs_fd >= 0)
2203 { 2947 {
2205 ev_set_priority (&fs_w, EV_MAXPRI); 2949 ev_set_priority (&fs_w, EV_MAXPRI);
2206 ev_io_start (EV_A_ &fs_w); 2950 ev_io_start (EV_A_ &fs_w);
2207 } 2951 }
2208} 2952}
2209 2953
2210void inline_size 2954inline_size void
2211infy_fork (EV_P) 2955infy_fork (EV_P)
2212{ 2956{
2213 int slot; 2957 int slot;
2214 2958
2215 if (fs_fd < 0) 2959 if (fs_fd < 0)
2231 w->wd = -1; 2975 w->wd = -1;
2232 2976
2233 if (fs_fd >= 0) 2977 if (fs_fd >= 0)
2234 infy_add (EV_A_ w); /* re-add, no matter what */ 2978 infy_add (EV_A_ w); /* re-add, no matter what */
2235 else 2979 else
2236 ev_timer_start (EV_A_ &w->timer); 2980 ev_timer_again (EV_A_ &w->timer);
2237 } 2981 }
2238
2239 } 2982 }
2240} 2983}
2241 2984
2985#endif
2986
2987#ifdef _WIN32
2988# define EV_LSTAT(p,b) _stati64 (p, b)
2989#else
2990# define EV_LSTAT(p,b) lstat (p, b)
2242#endif 2991#endif
2243 2992
2244void 2993void
2245ev_stat_stat (EV_P_ ev_stat *w) 2994ev_stat_stat (EV_P_ ev_stat *w)
2246{ 2995{
2273 || w->prev.st_atime != w->attr.st_atime 3022 || w->prev.st_atime != w->attr.st_atime
2274 || w->prev.st_mtime != w->attr.st_mtime 3023 || w->prev.st_mtime != w->attr.st_mtime
2275 || w->prev.st_ctime != w->attr.st_ctime 3024 || w->prev.st_ctime != w->attr.st_ctime
2276 ) { 3025 ) {
2277 #if EV_USE_INOTIFY 3026 #if EV_USE_INOTIFY
3027 if (fs_fd >= 0)
3028 {
2278 infy_del (EV_A_ w); 3029 infy_del (EV_A_ w);
2279 infy_add (EV_A_ w); 3030 infy_add (EV_A_ w);
2280 ev_stat_stat (EV_A_ w); /* avoid race... */ 3031 ev_stat_stat (EV_A_ w); /* avoid race... */
3032 }
2281 #endif 3033 #endif
2282 3034
2283 ev_feed_event (EV_A_ w, EV_STAT); 3035 ev_feed_event (EV_A_ w, EV_STAT);
2284 } 3036 }
2285} 3037}
2288ev_stat_start (EV_P_ ev_stat *w) 3040ev_stat_start (EV_P_ ev_stat *w)
2289{ 3041{
2290 if (expect_false (ev_is_active (w))) 3042 if (expect_false (ev_is_active (w)))
2291 return; 3043 return;
2292 3044
2293 /* since we use memcmp, we need to clear any padding data etc. */
2294 memset (&w->prev, 0, sizeof (ev_statdata));
2295 memset (&w->attr, 0, sizeof (ev_statdata));
2296
2297 ev_stat_stat (EV_A_ w); 3045 ev_stat_stat (EV_A_ w);
2298 3046
3047 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2299 if (w->interval < MIN_STAT_INTERVAL) 3048 w->interval = MIN_STAT_INTERVAL;
2300 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2301 3049
2302 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3050 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2303 ev_set_priority (&w->timer, ev_priority (w)); 3051 ev_set_priority (&w->timer, ev_priority (w));
2304 3052
2305#if EV_USE_INOTIFY 3053#if EV_USE_INOTIFY
2306 infy_init (EV_A); 3054 infy_init (EV_A);
2307 3055
2308 if (fs_fd >= 0) 3056 if (fs_fd >= 0)
2309 infy_add (EV_A_ w); 3057 infy_add (EV_A_ w);
2310 else 3058 else
2311#endif 3059#endif
2312 ev_timer_start (EV_A_ &w->timer); 3060 ev_timer_again (EV_A_ &w->timer);
2313 3061
2314 ev_start (EV_A_ (W)w, 1); 3062 ev_start (EV_A_ (W)w, 1);
3063
3064 EV_FREQUENT_CHECK;
2315} 3065}
2316 3066
2317void 3067void
2318ev_stat_stop (EV_P_ ev_stat *w) 3068ev_stat_stop (EV_P_ ev_stat *w)
2319{ 3069{
2320 clear_pending (EV_A_ (W)w); 3070 clear_pending (EV_A_ (W)w);
2321 if (expect_false (!ev_is_active (w))) 3071 if (expect_false (!ev_is_active (w)))
2322 return; 3072 return;
2323 3073
3074 EV_FREQUENT_CHECK;
3075
2324#if EV_USE_INOTIFY 3076#if EV_USE_INOTIFY
2325 infy_del (EV_A_ w); 3077 infy_del (EV_A_ w);
2326#endif 3078#endif
2327 ev_timer_stop (EV_A_ &w->timer); 3079 ev_timer_stop (EV_A_ &w->timer);
2328 3080
2329 ev_stop (EV_A_ (W)w); 3081 ev_stop (EV_A_ (W)w);
3082
3083 EV_FREQUENT_CHECK;
2330} 3084}
2331#endif 3085#endif
2332 3086
2333#if EV_IDLE_ENABLE 3087#if EV_IDLE_ENABLE
2334void 3088void
2336{ 3090{
2337 if (expect_false (ev_is_active (w))) 3091 if (expect_false (ev_is_active (w)))
2338 return; 3092 return;
2339 3093
2340 pri_adjust (EV_A_ (W)w); 3094 pri_adjust (EV_A_ (W)w);
3095
3096 EV_FREQUENT_CHECK;
2341 3097
2342 { 3098 {
2343 int active = ++idlecnt [ABSPRI (w)]; 3099 int active = ++idlecnt [ABSPRI (w)];
2344 3100
2345 ++idleall; 3101 ++idleall;
2346 ev_start (EV_A_ (W)w, active); 3102 ev_start (EV_A_ (W)w, active);
2347 3103
2348 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3104 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2349 idles [ABSPRI (w)][active - 1] = w; 3105 idles [ABSPRI (w)][active - 1] = w;
2350 } 3106 }
3107
3108 EV_FREQUENT_CHECK;
2351} 3109}
2352 3110
2353void 3111void
2354ev_idle_stop (EV_P_ ev_idle *w) 3112ev_idle_stop (EV_P_ ev_idle *w)
2355{ 3113{
2356 clear_pending (EV_A_ (W)w); 3114 clear_pending (EV_A_ (W)w);
2357 if (expect_false (!ev_is_active (w))) 3115 if (expect_false (!ev_is_active (w)))
2358 return; 3116 return;
2359 3117
3118 EV_FREQUENT_CHECK;
3119
2360 { 3120 {
2361 int active = ((W)w)->active; 3121 int active = ev_active (w);
2362 3122
2363 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3123 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2364 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3124 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2365 3125
2366 ev_stop (EV_A_ (W)w); 3126 ev_stop (EV_A_ (W)w);
2367 --idleall; 3127 --idleall;
2368 } 3128 }
3129
3130 EV_FREQUENT_CHECK;
2369} 3131}
2370#endif 3132#endif
2371 3133
2372void 3134void
2373ev_prepare_start (EV_P_ ev_prepare *w) 3135ev_prepare_start (EV_P_ ev_prepare *w)
2374{ 3136{
2375 if (expect_false (ev_is_active (w))) 3137 if (expect_false (ev_is_active (w)))
2376 return; 3138 return;
3139
3140 EV_FREQUENT_CHECK;
2377 3141
2378 ev_start (EV_A_ (W)w, ++preparecnt); 3142 ev_start (EV_A_ (W)w, ++preparecnt);
2379 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3143 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2380 prepares [preparecnt - 1] = w; 3144 prepares [preparecnt - 1] = w;
3145
3146 EV_FREQUENT_CHECK;
2381} 3147}
2382 3148
2383void 3149void
2384ev_prepare_stop (EV_P_ ev_prepare *w) 3150ev_prepare_stop (EV_P_ ev_prepare *w)
2385{ 3151{
2386 clear_pending (EV_A_ (W)w); 3152 clear_pending (EV_A_ (W)w);
2387 if (expect_false (!ev_is_active (w))) 3153 if (expect_false (!ev_is_active (w)))
2388 return; 3154 return;
2389 3155
3156 EV_FREQUENT_CHECK;
3157
2390 { 3158 {
2391 int active = ((W)w)->active; 3159 int active = ev_active (w);
3160
2392 prepares [active - 1] = prepares [--preparecnt]; 3161 prepares [active - 1] = prepares [--preparecnt];
2393 ((W)prepares [active - 1])->active = active; 3162 ev_active (prepares [active - 1]) = active;
2394 } 3163 }
2395 3164
2396 ev_stop (EV_A_ (W)w); 3165 ev_stop (EV_A_ (W)w);
3166
3167 EV_FREQUENT_CHECK;
2397} 3168}
2398 3169
2399void 3170void
2400ev_check_start (EV_P_ ev_check *w) 3171ev_check_start (EV_P_ ev_check *w)
2401{ 3172{
2402 if (expect_false (ev_is_active (w))) 3173 if (expect_false (ev_is_active (w)))
2403 return; 3174 return;
3175
3176 EV_FREQUENT_CHECK;
2404 3177
2405 ev_start (EV_A_ (W)w, ++checkcnt); 3178 ev_start (EV_A_ (W)w, ++checkcnt);
2406 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3179 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2407 checks [checkcnt - 1] = w; 3180 checks [checkcnt - 1] = w;
3181
3182 EV_FREQUENT_CHECK;
2408} 3183}
2409 3184
2410void 3185void
2411ev_check_stop (EV_P_ ev_check *w) 3186ev_check_stop (EV_P_ ev_check *w)
2412{ 3187{
2413 clear_pending (EV_A_ (W)w); 3188 clear_pending (EV_A_ (W)w);
2414 if (expect_false (!ev_is_active (w))) 3189 if (expect_false (!ev_is_active (w)))
2415 return; 3190 return;
2416 3191
3192 EV_FREQUENT_CHECK;
3193
2417 { 3194 {
2418 int active = ((W)w)->active; 3195 int active = ev_active (w);
3196
2419 checks [active - 1] = checks [--checkcnt]; 3197 checks [active - 1] = checks [--checkcnt];
2420 ((W)checks [active - 1])->active = active; 3198 ev_active (checks [active - 1]) = active;
2421 } 3199 }
2422 3200
2423 ev_stop (EV_A_ (W)w); 3201 ev_stop (EV_A_ (W)w);
3202
3203 EV_FREQUENT_CHECK;
2424} 3204}
2425 3205
2426#if EV_EMBED_ENABLE 3206#if EV_EMBED_ENABLE
2427void noinline 3207void noinline
2428ev_embed_sweep (EV_P_ ev_embed *w) 3208ev_embed_sweep (EV_P_ ev_embed *w)
2455 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3235 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2456 } 3236 }
2457 } 3237 }
2458} 3238}
2459 3239
3240static void
3241embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3242{
3243 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3244
3245 ev_embed_stop (EV_A_ w);
3246
3247 {
3248 struct ev_loop *loop = w->other;
3249
3250 ev_loop_fork (EV_A);
3251 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3252 }
3253
3254 ev_embed_start (EV_A_ w);
3255}
3256
2460#if 0 3257#if 0
2461static void 3258static void
2462embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3259embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2463{ 3260{
2464 ev_idle_stop (EV_A_ idle); 3261 ev_idle_stop (EV_A_ idle);
2471 if (expect_false (ev_is_active (w))) 3268 if (expect_false (ev_is_active (w)))
2472 return; 3269 return;
2473 3270
2474 { 3271 {
2475 struct ev_loop *loop = w->other; 3272 struct ev_loop *loop = w->other;
2476 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3273 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2477 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3274 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2478 } 3275 }
3276
3277 EV_FREQUENT_CHECK;
2479 3278
2480 ev_set_priority (&w->io, ev_priority (w)); 3279 ev_set_priority (&w->io, ev_priority (w));
2481 ev_io_start (EV_A_ &w->io); 3280 ev_io_start (EV_A_ &w->io);
2482 3281
2483 ev_prepare_init (&w->prepare, embed_prepare_cb); 3282 ev_prepare_init (&w->prepare, embed_prepare_cb);
2484 ev_set_priority (&w->prepare, EV_MINPRI); 3283 ev_set_priority (&w->prepare, EV_MINPRI);
2485 ev_prepare_start (EV_A_ &w->prepare); 3284 ev_prepare_start (EV_A_ &w->prepare);
2486 3285
3286 ev_fork_init (&w->fork, embed_fork_cb);
3287 ev_fork_start (EV_A_ &w->fork);
3288
2487 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3289 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2488 3290
2489 ev_start (EV_A_ (W)w, 1); 3291 ev_start (EV_A_ (W)w, 1);
3292
3293 EV_FREQUENT_CHECK;
2490} 3294}
2491 3295
2492void 3296void
2493ev_embed_stop (EV_P_ ev_embed *w) 3297ev_embed_stop (EV_P_ ev_embed *w)
2494{ 3298{
2495 clear_pending (EV_A_ (W)w); 3299 clear_pending (EV_A_ (W)w);
2496 if (expect_false (!ev_is_active (w))) 3300 if (expect_false (!ev_is_active (w)))
2497 return; 3301 return;
2498 3302
3303 EV_FREQUENT_CHECK;
3304
2499 ev_io_stop (EV_A_ &w->io); 3305 ev_io_stop (EV_A_ &w->io);
2500 ev_prepare_stop (EV_A_ &w->prepare); 3306 ev_prepare_stop (EV_A_ &w->prepare);
3307 ev_fork_stop (EV_A_ &w->fork);
2501 3308
2502 ev_stop (EV_A_ (W)w); 3309 EV_FREQUENT_CHECK;
2503} 3310}
2504#endif 3311#endif
2505 3312
2506#if EV_FORK_ENABLE 3313#if EV_FORK_ENABLE
2507void 3314void
2508ev_fork_start (EV_P_ ev_fork *w) 3315ev_fork_start (EV_P_ ev_fork *w)
2509{ 3316{
2510 if (expect_false (ev_is_active (w))) 3317 if (expect_false (ev_is_active (w)))
2511 return; 3318 return;
3319
3320 EV_FREQUENT_CHECK;
2512 3321
2513 ev_start (EV_A_ (W)w, ++forkcnt); 3322 ev_start (EV_A_ (W)w, ++forkcnt);
2514 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3323 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2515 forks [forkcnt - 1] = w; 3324 forks [forkcnt - 1] = w;
3325
3326 EV_FREQUENT_CHECK;
2516} 3327}
2517 3328
2518void 3329void
2519ev_fork_stop (EV_P_ ev_fork *w) 3330ev_fork_stop (EV_P_ ev_fork *w)
2520{ 3331{
2521 clear_pending (EV_A_ (W)w); 3332 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w))) 3333 if (expect_false (!ev_is_active (w)))
2523 return; 3334 return;
2524 3335
3336 EV_FREQUENT_CHECK;
3337
2525 { 3338 {
2526 int active = ((W)w)->active; 3339 int active = ev_active (w);
3340
2527 forks [active - 1] = forks [--forkcnt]; 3341 forks [active - 1] = forks [--forkcnt];
2528 ((W)forks [active - 1])->active = active; 3342 ev_active (forks [active - 1]) = active;
2529 } 3343 }
2530 3344
2531 ev_stop (EV_A_ (W)w); 3345 ev_stop (EV_A_ (W)w);
3346
3347 EV_FREQUENT_CHECK;
2532} 3348}
2533#endif 3349#endif
2534 3350
2535#if EV_ASYNC_ENABLE 3351#if EV_ASYNC_ENABLE
2536void 3352void
2538{ 3354{
2539 if (expect_false (ev_is_active (w))) 3355 if (expect_false (ev_is_active (w)))
2540 return; 3356 return;
2541 3357
2542 evpipe_init (EV_A); 3358 evpipe_init (EV_A);
3359
3360 EV_FREQUENT_CHECK;
2543 3361
2544 ev_start (EV_A_ (W)w, ++asynccnt); 3362 ev_start (EV_A_ (W)w, ++asynccnt);
2545 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3363 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2546 asyncs [asynccnt - 1] = w; 3364 asyncs [asynccnt - 1] = w;
3365
3366 EV_FREQUENT_CHECK;
2547} 3367}
2548 3368
2549void 3369void
2550ev_async_stop (EV_P_ ev_async *w) 3370ev_async_stop (EV_P_ ev_async *w)
2551{ 3371{
2552 clear_pending (EV_A_ (W)w); 3372 clear_pending (EV_A_ (W)w);
2553 if (expect_false (!ev_is_active (w))) 3373 if (expect_false (!ev_is_active (w)))
2554 return; 3374 return;
2555 3375
3376 EV_FREQUENT_CHECK;
3377
2556 { 3378 {
2557 int active = ((W)w)->active; 3379 int active = ev_active (w);
3380
2558 asyncs [active - 1] = asyncs [--asynccnt]; 3381 asyncs [active - 1] = asyncs [--asynccnt];
2559 ((W)asyncs [active - 1])->active = active; 3382 ev_active (asyncs [active - 1]) = active;
2560 } 3383 }
2561 3384
2562 ev_stop (EV_A_ (W)w); 3385 ev_stop (EV_A_ (W)w);
3386
3387 EV_FREQUENT_CHECK;
2563} 3388}
2564 3389
2565void 3390void
2566ev_async_send (EV_P_ ev_async *w) 3391ev_async_send (EV_P_ ev_async *w)
2567{ 3392{
2584once_cb (EV_P_ struct ev_once *once, int revents) 3409once_cb (EV_P_ struct ev_once *once, int revents)
2585{ 3410{
2586 void (*cb)(int revents, void *arg) = once->cb; 3411 void (*cb)(int revents, void *arg) = once->cb;
2587 void *arg = once->arg; 3412 void *arg = once->arg;
2588 3413
2589 ev_io_stop (EV_A_ &once->io); 3414 ev_io_stop (EV_A_ &once->io);
2590 ev_timer_stop (EV_A_ &once->to); 3415 ev_timer_stop (EV_A_ &once->to);
2591 ev_free (once); 3416 ev_free (once);
2592 3417
2593 cb (revents, arg); 3418 cb (revents, arg);
2594} 3419}
2595 3420
2596static void 3421static void
2597once_cb_io (EV_P_ ev_io *w, int revents) 3422once_cb_io (EV_P_ ev_io *w, int revents)
2598{ 3423{
2599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3424 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3425
3426 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2600} 3427}
2601 3428
2602static void 3429static void
2603once_cb_to (EV_P_ ev_timer *w, int revents) 3430once_cb_to (EV_P_ ev_timer *w, int revents)
2604{ 3431{
2605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3432 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3433
3434 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2606} 3435}
2607 3436
2608void 3437void
2609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3438ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2610{ 3439{
2632 ev_timer_set (&once->to, timeout, 0.); 3461 ev_timer_set (&once->to, timeout, 0.);
2633 ev_timer_start (EV_A_ &once->to); 3462 ev_timer_start (EV_A_ &once->to);
2634 } 3463 }
2635} 3464}
2636 3465
3466/*****************************************************************************/
3467
3468#if EV_WALK_ENABLE
3469void
3470ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3471{
3472 int i, j;
3473 ev_watcher_list *wl, *wn;
3474
3475 if (types & (EV_IO | EV_EMBED))
3476 for (i = 0; i < anfdmax; ++i)
3477 for (wl = anfds [i].head; wl; )
3478 {
3479 wn = wl->next;
3480
3481#if EV_EMBED_ENABLE
3482 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3483 {
3484 if (types & EV_EMBED)
3485 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3486 }
3487 else
3488#endif
3489#if EV_USE_INOTIFY
3490 if (ev_cb ((ev_io *)wl) == infy_cb)
3491 ;
3492 else
3493#endif
3494 if ((ev_io *)wl != &pipe_w)
3495 if (types & EV_IO)
3496 cb (EV_A_ EV_IO, wl);
3497
3498 wl = wn;
3499 }
3500
3501 if (types & (EV_TIMER | EV_STAT))
3502 for (i = timercnt + HEAP0; i-- > HEAP0; )
3503#if EV_STAT_ENABLE
3504 /*TODO: timer is not always active*/
3505 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3506 {
3507 if (types & EV_STAT)
3508 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3509 }
3510 else
3511#endif
3512 if (types & EV_TIMER)
3513 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3514
3515#if EV_PERIODIC_ENABLE
3516 if (types & EV_PERIODIC)
3517 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3518 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3519#endif
3520
3521#if EV_IDLE_ENABLE
3522 if (types & EV_IDLE)
3523 for (j = NUMPRI; i--; )
3524 for (i = idlecnt [j]; i--; )
3525 cb (EV_A_ EV_IDLE, idles [j][i]);
3526#endif
3527
3528#if EV_FORK_ENABLE
3529 if (types & EV_FORK)
3530 for (i = forkcnt; i--; )
3531 if (ev_cb (forks [i]) != embed_fork_cb)
3532 cb (EV_A_ EV_FORK, forks [i]);
3533#endif
3534
3535#if EV_ASYNC_ENABLE
3536 if (types & EV_ASYNC)
3537 for (i = asynccnt; i--; )
3538 cb (EV_A_ EV_ASYNC, asyncs [i]);
3539#endif
3540
3541 if (types & EV_PREPARE)
3542 for (i = preparecnt; i--; )
3543#if EV_EMBED_ENABLE
3544 if (ev_cb (prepares [i]) != embed_prepare_cb)
3545#endif
3546 cb (EV_A_ EV_PREPARE, prepares [i]);
3547
3548 if (types & EV_CHECK)
3549 for (i = checkcnt; i--; )
3550 cb (EV_A_ EV_CHECK, checks [i]);
3551
3552 if (types & EV_SIGNAL)
3553 for (i = 0; i < signalmax; ++i)
3554 for (wl = signals [i].head; wl; )
3555 {
3556 wn = wl->next;
3557 cb (EV_A_ EV_SIGNAL, wl);
3558 wl = wn;
3559 }
3560
3561 if (types & EV_CHILD)
3562 for (i = EV_PID_HASHSIZE; i--; )
3563 for (wl = childs [i]; wl; )
3564 {
3565 wn = wl->next;
3566 cb (EV_A_ EV_CHILD, wl);
3567 wl = wn;
3568 }
3569/* EV_STAT 0x00001000 /* stat data changed */
3570/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3571}
3572#endif
3573
2637#if EV_MULTIPLICITY 3574#if EV_MULTIPLICITY
2638 #include "ev_wrap.h" 3575 #include "ev_wrap.h"
2639#endif 3576#endif
2640 3577
2641#ifdef __cplusplus 3578#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines