ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.62 by root, Sun Nov 4 20:38:07 2007 UTC vs.
Revision 1.224 by root, Wed Apr 9 22:07:50 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 136#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 137#include <stddef.h>
63 138
64#include <stdio.h> 139#include <stdio.h>
65 140
66#include <assert.h> 141#include <assert.h>
67#include <errno.h> 142#include <errno.h>
68#include <sys/types.h> 143#include <sys/types.h>
144#include <time.h>
145
146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
69#ifndef WIN32 154#ifndef _WIN32
155# include <sys/time.h>
70# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
71#endif 163# endif
72#include <sys/time.h> 164#endif
73#include <time.h>
74 165
75/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
76 167
77#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
79#endif 178#endif
80 179
81#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
83#endif 182#endif
84 183
85#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
87#endif 190#endif
88 191
89#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
90# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
91#endif 198#endif
92 199
93#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
95#endif 202#endif
96 203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
97#ifndef EV_USE_WIN32 208#ifndef EV_USE_INOTIFY
98# ifdef WIN32 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 210# define EV_USE_INOTIFY 1
100# else 211# else
101# define EV_USE_WIN32 0 212# define EV_USE_INOTIFY 0
102# endif 213# endif
103#endif 214#endif
104 215
105#ifndef EV_USE_REALTIME 216#ifndef EV_PID_HASHSIZE
106# define EV_USE_REALTIME 1 217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
107#endif 221# endif
222#endif
108 223
109/**/ 224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
110 241
111#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
114#endif 245#endif
116#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
119#endif 250#endif
120 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
121/**/ 283/**/
122 284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 298
128#include "ev.h"
129
130#if __GNUC__ >= 3 299#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 301# define noinline __attribute__ ((noinline))
133#else 302#else
134# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
135# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
136#endif 308#endif
137 309
138#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
140 319
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
144typedef struct ev_watcher *W; 326typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
147 329
330#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif
335
336#ifdef _WIN32
337# include "ev_win32.c"
338#endif
149 339
150/*****************************************************************************/ 340/*****************************************************************************/
151 341
342static void (*syserr_cb)(const char *msg);
343
344void
345ev_set_syserr_cb (void (*cb)(const char *msg))
346{
347 syserr_cb = cb;
348}
349
350static void noinline
351syserr (const char *msg)
352{
353 if (!msg)
354 msg = "(libev) system error";
355
356 if (syserr_cb)
357 syserr_cb (msg);
358 else
359 {
360 perror (msg);
361 abort ();
362 }
363}
364
365static void *
366ev_realloc_emul (void *ptr, long size)
367{
368 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and
370 * the single unix specification, so work around them here.
371 */
372
373 if (size)
374 return realloc (ptr, size);
375
376 free (ptr);
377 return 0;
378}
379
380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
381
382void
383ev_set_allocator (void *(*cb)(void *ptr, long size))
384{
385 alloc = cb;
386}
387
388inline_speed void *
389ev_realloc (void *ptr, long size)
390{
391 ptr = alloc (ptr, size);
392
393 if (!ptr && size)
394 {
395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
396 abort ();
397 }
398
399 return ptr;
400}
401
402#define ev_malloc(size) ev_realloc (0, (size))
403#define ev_free(ptr) ev_realloc ((ptr), 0)
404
405/*****************************************************************************/
406
152typedef struct 407typedef struct
153{ 408{
154 struct ev_watcher_list *head; 409 WL head;
155 unsigned char events; 410 unsigned char events;
156 unsigned char reify; 411 unsigned char reify;
412#if EV_SELECT_IS_WINSOCKET
413 SOCKET handle;
414#endif
157} ANFD; 415} ANFD;
158 416
159typedef struct 417typedef struct
160{ 418{
161 W w; 419 W w;
162 int events; 420 int events;
163} ANPENDING; 421} ANPENDING;
164 422
423#if EV_USE_INOTIFY
424typedef struct
425{
426 WL head;
427} ANFS;
428#endif
429
165#if EV_MULTIPLICITY 430#if EV_MULTIPLICITY
166 431
167struct ev_loop 432 struct ev_loop
168{ 433 {
434 ev_tstamp ev_rt_now;
435 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 436 #define VAR(name,decl) decl;
170# include "ev_vars.h" 437 #include "ev_vars.h"
171};
172# undef VAR 438 #undef VAR
439 };
173# include "ev_wrap.h" 440 #include "ev_wrap.h"
441
442 static struct ev_loop default_loop_struct;
443 struct ev_loop *ev_default_loop_ptr;
174 444
175#else 445#else
176 446
447 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 448 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 449 #include "ev_vars.h"
179# undef VAR 450 #undef VAR
451
452 static int ev_default_loop_ptr;
180 453
181#endif 454#endif
182 455
183/*****************************************************************************/ 456/*****************************************************************************/
184 457
185inline ev_tstamp 458ev_tstamp
186ev_time (void) 459ev_time (void)
187{ 460{
188#if EV_USE_REALTIME 461#if EV_USE_REALTIME
189 struct timespec ts; 462 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 463 clock_gettime (CLOCK_REALTIME, &ts);
194 gettimeofday (&tv, 0); 467 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6; 468 return tv.tv_sec + tv.tv_usec * 1e-6;
196#endif 469#endif
197} 470}
198 471
199inline ev_tstamp 472ev_tstamp inline_size
200get_clock (void) 473get_clock (void)
201{ 474{
202#if EV_USE_MONOTONIC 475#if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic)) 476 if (expect_true (have_monotonic))
204 { 477 {
209#endif 482#endif
210 483
211 return ev_time (); 484 return ev_time ();
212} 485}
213 486
487#if EV_MULTIPLICITY
214ev_tstamp 488ev_tstamp
215ev_now (EV_P) 489ev_now (EV_P)
216{ 490{
217 return rt_now; 491 return ev_rt_now;
218} 492}
493#endif
219 494
220#define array_roundsize(base,n) ((n) | 4 & ~3) 495void
221 496ev_sleep (ev_tstamp delay)
222#define array_needsize(base,cur,cnt,init) \ 497{
223 if (expect_false ((cnt) > cur)) \ 498 if (delay > 0.)
224 { \
225 int newcnt = cur; \
226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \
233 init (base + cur, newcnt - cur); \
234 cur = newcnt; \
235 } 499 {
500#if EV_USE_NANOSLEEP
501 struct timespec ts;
502
503 ts.tv_sec = (time_t)delay;
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0);
507#elif defined(_WIN32)
508 Sleep ((unsigned long)(delay * 1e3));
509#else
510 struct timeval tv;
511
512 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514
515 select (0, 0, 0, 0, &tv);
516#endif
517 }
518}
236 519
237/*****************************************************************************/ 520/*****************************************************************************/
238 521
239static void 522int inline_size
523array_nextsize (int elem, int cur, int cnt)
524{
525 int ncur = cur + 1;
526
527 do
528 ncur <<= 1;
529 while (cnt > ncur);
530
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096)
533 {
534 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
536 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem;
538 }
539
540 return ncur;
541}
542
543static noinline void *
544array_realloc (int elem, void *base, int *cur, int cnt)
545{
546 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur);
548}
549
550#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \
552 { \
553 int ocur_ = (cur); \
554 (base) = (type *)array_realloc \
555 (sizeof (type), (base), &(cur), (cnt)); \
556 init ((base) + (ocur_), (cur) - ocur_); \
557 }
558
559#if 0
560#define array_slim(type,stem) \
561 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
562 { \
563 stem ## max = array_roundsize (stem ## cnt >> 1); \
564 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
566 }
567#endif
568
569#define array_free(stem, idx) \
570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
571
572/*****************************************************************************/
573
574void noinline
575ev_feed_event (EV_P_ void *w, int revents)
576{
577 W w_ = (W)w;
578 int pri = ABSPRI (w_);
579
580 if (expect_false (w_->pending))
581 pendings [pri][w_->pending - 1].events |= revents;
582 else
583 {
584 w_->pending = ++pendingcnt [pri];
585 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
586 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents;
588 }
589}
590
591void inline_speed
592queue_events (EV_P_ W *events, int eventcnt, int type)
593{
594 int i;
595
596 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type);
598}
599
600/*****************************************************************************/
601
602void inline_size
240anfds_init (ANFD *base, int count) 603anfds_init (ANFD *base, int count)
241{ 604{
242 while (count--) 605 while (count--)
243 { 606 {
244 base->head = 0; 607 base->head = 0;
247 610
248 ++base; 611 ++base;
249 } 612 }
250} 613}
251 614
252static void 615void inline_speed
253event (EV_P_ W w, int events)
254{
255 if (w->pending)
256 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 return;
259 }
260
261 w->pending = ++pendingcnt [ABSPRI (w)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263 pendings [ABSPRI (w)][w->pending - 1].w = w;
264 pendings [ABSPRI (w)][w->pending - 1].events = events;
265}
266
267static void
268queue_events (EV_P_ W *events, int eventcnt, int type)
269{
270 int i;
271
272 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type);
274}
275
276static void
277fd_event (EV_P_ int fd, int events) 616fd_event (EV_P_ int fd, int revents)
278{ 617{
279 ANFD *anfd = anfds + fd; 618 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 619 ev_io *w;
281 620
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 621 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
283 { 622 {
284 int ev = w->events & events; 623 int ev = w->events & revents;
285 624
286 if (ev) 625 if (ev)
287 event (EV_A_ (W)w, ev); 626 ev_feed_event (EV_A_ (W)w, ev);
288 } 627 }
289} 628}
290 629
291/*****************************************************************************/ 630void
631ev_feed_fd_event (EV_P_ int fd, int revents)
632{
633 if (fd >= 0 && fd < anfdmax)
634 fd_event (EV_A_ fd, revents);
635}
292 636
293static void 637void inline_size
294fd_reify (EV_P) 638fd_reify (EV_P)
295{ 639{
296 int i; 640 int i;
297 641
298 for (i = 0; i < fdchangecnt; ++i) 642 for (i = 0; i < fdchangecnt; ++i)
299 { 643 {
300 int fd = fdchanges [i]; 644 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd; 645 ANFD *anfd = anfds + fd;
302 struct ev_io *w; 646 ev_io *w;
303 647
304 int events = 0; 648 unsigned char events = 0;
305 649
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
307 events |= w->events; 651 events |= (unsigned char)w->events;
308 652
309 anfd->reify = 0; 653#if EV_SELECT_IS_WINSOCKET
310 654 if (events)
311 if (anfd->events != events)
312 { 655 {
313 method_modify (EV_A_ fd, anfd->events, events); 656 unsigned long argp;
314 anfd->events = events; 657 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else
660 anfd->handle = _get_osfhandle (fd);
661 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
315 } 663 }
664#endif
665
666 {
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
670 anfd->reify = 0;
671 anfd->events = events;
672
673 if (o_events != events || o_reify & EV_IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events);
675 }
316 } 676 }
317 677
318 fdchangecnt = 0; 678 fdchangecnt = 0;
319} 679}
320 680
321static void 681void inline_size
322fd_change (EV_P_ int fd) 682fd_change (EV_P_ int fd, int flags)
323{ 683{
324 if (anfds [fd].reify || fdchangecnt < 0) 684 unsigned char reify = anfds [fd].reify;
325 return;
326
327 anfds [fd].reify = 1; 685 anfds [fd].reify |= flags;
328 686
687 if (expect_true (!reify))
688 {
329 ++fdchangecnt; 689 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
331 fdchanges [fdchangecnt - 1] = fd; 691 fdchanges [fdchangecnt - 1] = fd;
692 }
332} 693}
333 694
334static void 695void inline_speed
335fd_kill (EV_P_ int fd) 696fd_kill (EV_P_ int fd)
336{ 697{
337 struct ev_io *w; 698 ev_io *w;
338 699
339 while ((w = (struct ev_io *)anfds [fd].head)) 700 while ((w = (ev_io *)anfds [fd].head))
340 { 701 {
341 ev_io_stop (EV_A_ w); 702 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 } 704 }
705}
706
707int inline_size
708fd_valid (int fd)
709{
710#ifdef _WIN32
711 return _get_osfhandle (fd) != -1;
712#else
713 return fcntl (fd, F_GETFD) != -1;
714#endif
344} 715}
345 716
346/* called on EBADF to verify fds */ 717/* called on EBADF to verify fds */
347static void 718static void noinline
348fd_ebadf (EV_P) 719fd_ebadf (EV_P)
349{ 720{
350 int fd; 721 int fd;
351 722
352 for (fd = 0; fd < anfdmax; ++fd) 723 for (fd = 0; fd < anfdmax; ++fd)
353 if (anfds [fd].events) 724 if (anfds [fd].events)
354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 725 if (!fd_valid (fd) == -1 && errno == EBADF)
355 fd_kill (EV_A_ fd); 726 fd_kill (EV_A_ fd);
356} 727}
357 728
358/* called on ENOMEM in select/poll to kill some fds and retry */ 729/* called on ENOMEM in select/poll to kill some fds and retry */
359static void 730static void noinline
360fd_enomem (EV_P) 731fd_enomem (EV_P)
361{ 732{
362 int fd; 733 int fd;
363 734
364 for (fd = anfdmax; fd--; ) 735 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events) 736 if (anfds [fd].events)
366 { 737 {
367 close (fd);
368 fd_kill (EV_A_ fd); 738 fd_kill (EV_A_ fd);
369 return; 739 return;
370 } 740 }
371} 741}
372 742
373/* susually called after fork if method needs to re-arm all fds from scratch */ 743/* usually called after fork if backend needs to re-arm all fds from scratch */
374static void 744static void noinline
375fd_rearm_all (EV_P) 745fd_rearm_all (EV_P)
376{ 746{
377 int fd; 747 int fd;
378 748
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd) 749 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events) 750 if (anfds [fd].events)
382 { 751 {
383 anfds [fd].events = 0; 752 anfds [fd].events = 0;
384 fd_change (EV_A_ fd); 753 fd_change (EV_A_ fd, EV_IOFDSET | 1);
385 } 754 }
386} 755}
387 756
388/*****************************************************************************/ 757/*****************************************************************************/
389 758
390static void 759void inline_speed
391upheap (WT *heap, int k) 760upheap (WT *heap, int k)
392{ 761{
393 WT w = heap [k]; 762 WT w = heap [k];
394 763
395 while (k && heap [k >> 1]->at > w->at) 764 while (k)
396 { 765 {
766 int p = (k - 1) >> 1;
767
768 if (heap [p]->at <= w->at)
769 break;
770
397 heap [k] = heap [k >> 1]; 771 heap [k] = heap [p];
398 ((W)heap [k])->active = k + 1; 772 ((W)heap [k])->active = k + 1;
399 k >>= 1; 773 k = p;
400 } 774 }
401 775
402 heap [k] = w; 776 heap [k] = w;
403 ((W)heap [k])->active = k + 1; 777 ((W)heap [k])->active = k + 1;
404
405} 778}
406 779
407static void 780void inline_speed
408downheap (WT *heap, int N, int k) 781downheap (WT *heap, int N, int k)
409{ 782{
410 WT w = heap [k]; 783 WT w = heap [k];
411 784
412 while (k < (N >> 1)) 785 for (;;)
413 { 786 {
414 int j = k << 1; 787 int c = (k << 1) + 1;
415 788
416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 789 if (c >= N)
417 ++j;
418
419 if (w->at <= heap [j]->at)
420 break; 790 break;
421 791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
422 heap [k] = heap [j]; 798 heap [k] = heap [c];
423 ((W)heap [k])->active = k + 1; 799 ((W)heap [k])->active = k + 1;
800
424 k = j; 801 k = c;
425 } 802 }
426 803
427 heap [k] = w; 804 heap [k] = w;
428 ((W)heap [k])->active = k + 1; 805 ((W)heap [k])->active = k + 1;
429} 806}
430 807
808void inline_size
809adjustheap (WT *heap, int N, int k)
810{
811 upheap (heap, k);
812 downheap (heap, N, k);
813}
814
431/*****************************************************************************/ 815/*****************************************************************************/
432 816
433typedef struct 817typedef struct
434{ 818{
435 struct ev_watcher_list *head; 819 WL head;
436 sig_atomic_t volatile gotsig; 820 EV_ATOMIC_T gotsig;
437} ANSIG; 821} ANSIG;
438 822
439static ANSIG *signals; 823static ANSIG *signals;
440static int signalmax; 824static int signalmax;
441 825
442static int sigpipe [2]; 826static EV_ATOMIC_T gotsig;
443static sig_atomic_t volatile gotsig;
444static struct ev_io sigev;
445 827
446static void 828void inline_size
447signals_init (ANSIG *base, int count) 829signals_init (ANSIG *base, int count)
448{ 830{
449 while (count--) 831 while (count--)
450 { 832 {
451 base->head = 0; 833 base->head = 0;
453 835
454 ++base; 836 ++base;
455 } 837 }
456} 838}
457 839
840/*****************************************************************************/
841
842void inline_speed
843fd_intern (int fd)
844{
845#ifdef _WIN32
846 int arg = 1;
847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
848#else
849 fcntl (fd, F_SETFD, FD_CLOEXEC);
850 fcntl (fd, F_SETFL, O_NONBLOCK);
851#endif
852}
853
854static void noinline
855evpipe_init (EV_P)
856{
857 if (!ev_is_active (&pipeev))
858 {
859#if EV_USE_EVENTFD
860 if ((evfd = eventfd (0, 0)) >= 0)
861 {
862 evpipe [0] = -1;
863 fd_intern (evfd);
864 ev_io_set (&pipeev, evfd, EV_READ);
865 }
866 else
867#endif
868 {
869 while (pipe (evpipe))
870 syserr ("(libev) error creating signal/async pipe");
871
872 fd_intern (evpipe [0]);
873 fd_intern (evpipe [1]);
874 ev_io_set (&pipeev, evpipe [0], EV_READ);
875 }
876
877 ev_io_start (EV_A_ &pipeev);
878 ev_unref (EV_A); /* watcher should not keep loop alive */
879 }
880}
881
882void inline_size
883evpipe_write (EV_P_ EV_ATOMIC_T *flag)
884{
885 if (!*flag)
886 {
887 int old_errno = errno; /* save errno because write might clobber it */
888
889 *flag = 1;
890
891#if EV_USE_EVENTFD
892 if (evfd >= 0)
893 {
894 uint64_t counter = 1;
895 write (evfd, &counter, sizeof (uint64_t));
896 }
897 else
898#endif
899 write (evpipe [1], &old_errno, 1);
900
901 errno = old_errno;
902 }
903}
904
458static void 905static void
906pipecb (EV_P_ ev_io *iow, int revents)
907{
908#if EV_USE_EVENTFD
909 if (evfd >= 0)
910 {
911 uint64_t counter = 1;
912 read (evfd, &counter, sizeof (uint64_t));
913 }
914 else
915#endif
916 {
917 char dummy;
918 read (evpipe [0], &dummy, 1);
919 }
920
921 if (gotsig && ev_is_default_loop (EV_A))
922 {
923 int signum;
924 gotsig = 0;
925
926 for (signum = signalmax; signum--; )
927 if (signals [signum].gotsig)
928 ev_feed_signal_event (EV_A_ signum + 1);
929 }
930
931#if EV_ASYNC_ENABLE
932 if (gotasync)
933 {
934 int i;
935 gotasync = 0;
936
937 for (i = asynccnt; i--; )
938 if (asyncs [i]->sent)
939 {
940 asyncs [i]->sent = 0;
941 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
942 }
943 }
944#endif
945}
946
947/*****************************************************************************/
948
949static void
459sighandler (int signum) 950ev_sighandler (int signum)
460{ 951{
952#if EV_MULTIPLICITY
953 struct ev_loop *loop = &default_loop_struct;
954#endif
955
956#if _WIN32
957 signal (signum, ev_sighandler);
958#endif
959
461 signals [signum - 1].gotsig = 1; 960 signals [signum - 1].gotsig = 1;
462 961 evpipe_write (EV_A_ &gotsig);
463 if (!gotsig)
464 {
465 int old_errno = errno;
466 gotsig = 1;
467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
469 }
470} 962}
471 963
472static void 964void noinline
473sigcb (EV_P_ struct ev_io *iow, int revents) 965ev_feed_signal_event (EV_P_ int signum)
474{ 966{
475 struct ev_watcher_list *w; 967 WL w;
968
969#if EV_MULTIPLICITY
970 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
971#endif
972
476 int signum; 973 --signum;
477 974
478 read (sigpipe [0], &revents, 1); 975 if (signum < 0 || signum >= signalmax)
479 gotsig = 0; 976 return;
480 977
481 for (signum = signalmax; signum--; )
482 if (signals [signum].gotsig)
483 {
484 signals [signum].gotsig = 0; 978 signals [signum].gotsig = 0;
485 979
486 for (w = signals [signum].head; w; w = w->next) 980 for (w = signals [signum].head; w; w = w->next)
487 event (EV_A_ (W)w, EV_SIGNAL); 981 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
488 }
489}
490
491static void
492siginit (EV_P)
493{
494#ifndef WIN32
495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
497
498 /* rather than sort out wether we really need nb, set it */
499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
502
503 ev_io_set (&sigev, sigpipe [0], EV_READ);
504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
506} 982}
507 983
508/*****************************************************************************/ 984/*****************************************************************************/
509 985
986static WL childs [EV_PID_HASHSIZE];
987
510#ifndef WIN32 988#ifndef _WIN32
511 989
512static struct ev_child *childs [PID_HASHSIZE];
513static struct ev_signal childev; 990static ev_signal childev;
991
992#ifndef WIFCONTINUED
993# define WIFCONTINUED(status) 0
994#endif
995
996void inline_speed
997child_reap (EV_P_ int chain, int pid, int status)
998{
999 ev_child *w;
1000 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1001
1002 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1003 {
1004 if ((w->pid == pid || !w->pid)
1005 && (!traced || (w->flags & 1)))
1006 {
1007 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1008 w->rpid = pid;
1009 w->rstatus = status;
1010 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1011 }
1012 }
1013}
514 1014
515#ifndef WCONTINUED 1015#ifndef WCONTINUED
516# define WCONTINUED 0 1016# define WCONTINUED 0
517#endif 1017#endif
518 1018
519static void 1019static void
520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
521{
522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 w->priority = sw->priority; /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents) 1020childcb (EV_P_ ev_signal *sw, int revents)
536{ 1021{
537 int pid, status; 1022 int pid, status;
538 1023
1024 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1025 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
540 { 1026 if (!WCONTINUED
1027 || errno != EINVAL
1028 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1029 return;
1030
541 /* make sure we are called again until all childs have been reaped */ 1031 /* make sure we are called again until all children have been reaped */
1032 /* we need to do it this way so that the callback gets called before we continue */
542 event (EV_A_ (W)sw, EV_SIGNAL); 1033 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
543 1034
544 child_reap (EV_A_ sw, pid, pid, status); 1035 child_reap (EV_A_ pid, pid, status);
1036 if (EV_PID_HASHSIZE > 1)
545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1037 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
546 }
547} 1038}
548 1039
549#endif 1040#endif
550 1041
551/*****************************************************************************/ 1042/*****************************************************************************/
552 1043
1044#if EV_USE_PORT
1045# include "ev_port.c"
1046#endif
553#if EV_USE_KQUEUE 1047#if EV_USE_KQUEUE
554# include "ev_kqueue.c" 1048# include "ev_kqueue.c"
555#endif 1049#endif
556#if EV_USE_EPOLL 1050#if EV_USE_EPOLL
557# include "ev_epoll.c" 1051# include "ev_epoll.c"
574{ 1068{
575 return EV_VERSION_MINOR; 1069 return EV_VERSION_MINOR;
576} 1070}
577 1071
578/* return true if we are running with elevated privileges and should ignore env variables */ 1072/* return true if we are running with elevated privileges and should ignore env variables */
579static int 1073int inline_size
580enable_secure (void) 1074enable_secure (void)
581{ 1075{
582#ifdef WIN32 1076#ifdef _WIN32
583 return 0; 1077 return 0;
584#else 1078#else
585 return getuid () != geteuid () 1079 return getuid () != geteuid ()
586 || getgid () != getegid (); 1080 || getgid () != getegid ();
587#endif 1081#endif
588} 1082}
589 1083
590int 1084unsigned int
591ev_method (EV_P) 1085ev_supported_backends (void)
592{ 1086{
593 return method; 1087 unsigned int flags = 0;
594}
595 1088
596static void 1089 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
597loop_init (EV_P_ int methods) 1090 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1091 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1092 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1093 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1094
1095 return flags;
1096}
1097
1098unsigned int
1099ev_recommended_backends (void)
598{ 1100{
599 if (!method) 1101 unsigned int flags = ev_supported_backends ();
1102
1103#ifndef __NetBSD__
1104 /* kqueue is borked on everything but netbsd apparently */
1105 /* it usually doesn't work correctly on anything but sockets and pipes */
1106 flags &= ~EVBACKEND_KQUEUE;
1107#endif
1108#ifdef __APPLE__
1109 // flags &= ~EVBACKEND_KQUEUE; for documentation
1110 flags &= ~EVBACKEND_POLL;
1111#endif
1112
1113 return flags;
1114}
1115
1116unsigned int
1117ev_embeddable_backends (void)
1118{
1119 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1120
1121 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1122 /* please fix it and tell me how to detect the fix */
1123 flags &= ~EVBACKEND_EPOLL;
1124
1125 return flags;
1126}
1127
1128unsigned int
1129ev_backend (EV_P)
1130{
1131 return backend;
1132}
1133
1134unsigned int
1135ev_loop_count (EV_P)
1136{
1137 return loop_count;
1138}
1139
1140void
1141ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1142{
1143 io_blocktime = interval;
1144}
1145
1146void
1147ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 timeout_blocktime = interval;
1150}
1151
1152static void noinline
1153loop_init (EV_P_ unsigned int flags)
1154{
1155 if (!backend)
600 { 1156 {
601#if EV_USE_MONOTONIC 1157#if EV_USE_MONOTONIC
602 { 1158 {
603 struct timespec ts; 1159 struct timespec ts;
604 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1160 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
605 have_monotonic = 1; 1161 have_monotonic = 1;
606 } 1162 }
607#endif 1163#endif
608 1164
609 rt_now = ev_time (); 1165 ev_rt_now = ev_time ();
610 mn_now = get_clock (); 1166 mn_now = get_clock ();
611 now_floor = mn_now; 1167 now_floor = mn_now;
612 rtmn_diff = rt_now - mn_now; 1168 rtmn_diff = ev_rt_now - mn_now;
613 1169
614 if (methods == EVMETHOD_AUTO) 1170 io_blocktime = 0.;
615 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1171 timeout_blocktime = 0.;
1172 backend = 0;
1173 backend_fd = -1;
1174 gotasync = 0;
1175#if EV_USE_INOTIFY
1176 fs_fd = -2;
1177#endif
1178
1179 /* pid check not overridable via env */
1180#ifndef _WIN32
1181 if (flags & EVFLAG_FORKCHECK)
1182 curpid = getpid ();
1183#endif
1184
1185 if (!(flags & EVFLAG_NOENV)
1186 && !enable_secure ()
1187 && getenv ("LIBEV_FLAGS"))
616 methods = atoi (getenv ("LIBEV_METHODS")); 1188 flags = atoi (getenv ("LIBEV_FLAGS"));
617 else
618 methods = EVMETHOD_ANY;
619 1189
620 method = 0; 1190 if (!(flags & 0x0000ffffUL))
621#if EV_USE_WIN32 1191 flags |= ev_recommended_backends ();
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1192
1193#if EV_USE_PORT
1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
623#endif 1195#endif
624#if EV_USE_KQUEUE 1196#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1197 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
626#endif 1198#endif
627#if EV_USE_EPOLL 1199#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1200 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
629#endif 1201#endif
630#if EV_USE_POLL 1202#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1203 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
632#endif 1204#endif
633#if EV_USE_SELECT 1205#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1206 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
635#endif 1207#endif
636 }
637}
638 1208
639void 1209 ev_init (&pipeev, pipecb);
1210 ev_set_priority (&pipeev, EV_MAXPRI);
1211 }
1212}
1213
1214static void noinline
640loop_destroy (EV_P) 1215loop_destroy (EV_P)
641{ 1216{
1217 int i;
1218
1219 if (ev_is_active (&pipeev))
1220 {
1221 ev_ref (EV_A); /* signal watcher */
1222 ev_io_stop (EV_A_ &pipeev);
1223
1224#if EV_USE_EVENTFD
1225 if (evfd >= 0)
1226 close (evfd);
1227#endif
1228
1229 if (evpipe [0] >= 0)
1230 {
1231 close (evpipe [0]);
1232 close (evpipe [1]);
1233 }
1234 }
1235
642#if EV_USE_WIN32 1236#if EV_USE_INOTIFY
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1237 if (fs_fd >= 0)
1238 close (fs_fd);
1239#endif
1240
1241 if (backend_fd >= 0)
1242 close (backend_fd);
1243
1244#if EV_USE_PORT
1245 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
644#endif 1246#endif
645#if EV_USE_KQUEUE 1247#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1248 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
647#endif 1249#endif
648#if EV_USE_EPOLL 1250#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1251 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
650#endif 1252#endif
651#if EV_USE_POLL 1253#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1254 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
653#endif 1255#endif
654#if EV_USE_SELECT 1256#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1257 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
656#endif 1258#endif
657 1259
658 method = 0; 1260 for (i = NUMPRI; i--; )
659 /*TODO*/ 1261 {
660} 1262 array_free (pending, [i]);
1263#if EV_IDLE_ENABLE
1264 array_free (idle, [i]);
1265#endif
1266 }
661 1267
662void 1268 ev_free (anfds); anfdmax = 0;
1269
1270 /* have to use the microsoft-never-gets-it-right macro */
1271 array_free (fdchange, EMPTY);
1272 array_free (timer, EMPTY);
1273#if EV_PERIODIC_ENABLE
1274 array_free (periodic, EMPTY);
1275#endif
1276#if EV_FORK_ENABLE
1277 array_free (fork, EMPTY);
1278#endif
1279 array_free (prepare, EMPTY);
1280 array_free (check, EMPTY);
1281#if EV_ASYNC_ENABLE
1282 array_free (async, EMPTY);
1283#endif
1284
1285 backend = 0;
1286}
1287
1288void inline_size infy_fork (EV_P);
1289
1290void inline_size
663loop_fork (EV_P) 1291loop_fork (EV_P)
664{ 1292{
665 /*TODO*/ 1293#if EV_USE_PORT
1294 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1295#endif
1296#if EV_USE_KQUEUE
1297 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1298#endif
666#if EV_USE_EPOLL 1299#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1300 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
668#endif 1301#endif
669#if EV_USE_KQUEUE 1302#if EV_USE_INOTIFY
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1303 infy_fork (EV_A);
671#endif 1304#endif
1305
1306 if (ev_is_active (&pipeev))
1307 {
1308 /* this "locks" the handlers against writing to the pipe */
1309 /* while we modify the fd vars */
1310 gotsig = 1;
1311#if EV_ASYNC_ENABLE
1312 gotasync = 1;
1313#endif
1314
1315 ev_ref (EV_A);
1316 ev_io_stop (EV_A_ &pipeev);
1317
1318#if EV_USE_EVENTFD
1319 if (evfd >= 0)
1320 close (evfd);
1321#endif
1322
1323 if (evpipe [0] >= 0)
1324 {
1325 close (evpipe [0]);
1326 close (evpipe [1]);
1327 }
1328
1329 evpipe_init (EV_A);
1330 /* now iterate over everything, in case we missed something */
1331 pipecb (EV_A_ &pipeev, EV_READ);
1332 }
1333
1334 postfork = 0;
672} 1335}
673 1336
674#if EV_MULTIPLICITY 1337#if EV_MULTIPLICITY
675struct ev_loop * 1338struct ev_loop *
676ev_loop_new (int methods) 1339ev_loop_new (unsigned int flags)
677{ 1340{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1341 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
679 1342
1343 memset (loop, 0, sizeof (struct ev_loop));
1344
680 loop_init (EV_A_ methods); 1345 loop_init (EV_A_ flags);
681 1346
682 if (ev_method (EV_A)) 1347 if (ev_backend (EV_A))
683 return loop; 1348 return loop;
684 1349
685 return 0; 1350 return 0;
686} 1351}
687 1352
688void 1353void
689ev_loop_destroy (EV_P) 1354ev_loop_destroy (EV_P)
690{ 1355{
691 loop_destroy (EV_A); 1356 loop_destroy (EV_A);
692 free (loop); 1357 ev_free (loop);
693} 1358}
694 1359
695void 1360void
696ev_loop_fork (EV_P) 1361ev_loop_fork (EV_P)
697{ 1362{
698 loop_fork (EV_A); 1363 postfork = 1; /* must be in line with ev_default_fork */
699} 1364}
700 1365
701#endif 1366#endif
702 1367
703#if EV_MULTIPLICITY 1368#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop * 1369struct ev_loop *
1370ev_default_loop_init (unsigned int flags)
708#else 1371#else
709static int default_loop;
710
711int 1372int
1373ev_default_loop (unsigned int flags)
712#endif 1374#endif
713ev_default_loop (int methods)
714{ 1375{
715 if (sigpipe [0] == sigpipe [1])
716 if (pipe (sigpipe))
717 return 0;
718
719 if (!default_loop) 1376 if (!ev_default_loop_ptr)
720 { 1377 {
721#if EV_MULTIPLICITY 1378#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct; 1379 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
723#else 1380#else
724 default_loop = 1; 1381 ev_default_loop_ptr = 1;
725#endif 1382#endif
726 1383
727 loop_init (EV_A_ methods); 1384 loop_init (EV_A_ flags);
728 1385
729 if (ev_method (EV_A)) 1386 if (ev_backend (EV_A))
730 { 1387 {
731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
733 siginit (EV_A);
734
735#ifndef WIN32 1388#ifndef _WIN32
736 ev_signal_init (&childev, childcb, SIGCHLD); 1389 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI); 1390 ev_set_priority (&childev, EV_MAXPRI);
738 ev_signal_start (EV_A_ &childev); 1391 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1392 ev_unref (EV_A); /* child watcher should not keep loop alive */
740#endif 1393#endif
741 } 1394 }
742 else 1395 else
743 default_loop = 0; 1396 ev_default_loop_ptr = 0;
744 } 1397 }
745 1398
746 return default_loop; 1399 return ev_default_loop_ptr;
747} 1400}
748 1401
749void 1402void
750ev_default_destroy (void) 1403ev_default_destroy (void)
751{ 1404{
752#if EV_MULTIPLICITY 1405#if EV_MULTIPLICITY
753 struct ev_loop *loop = default_loop; 1406 struct ev_loop *loop = ev_default_loop_ptr;
754#endif 1407#endif
755 1408
1409#ifndef _WIN32
756 ev_ref (EV_A); /* child watcher */ 1410 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev); 1411 ev_signal_stop (EV_A_ &childev);
758 1412#endif
759 ev_ref (EV_A); /* signal watcher */
760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764 1413
765 loop_destroy (EV_A); 1414 loop_destroy (EV_A);
766} 1415}
767 1416
768void 1417void
769ev_default_fork (void) 1418ev_default_fork (void)
770{ 1419{
771#if EV_MULTIPLICITY 1420#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop; 1421 struct ev_loop *loop = ev_default_loop_ptr;
773#endif 1422#endif
774 1423
775 loop_fork (EV_A); 1424 if (backend)
776 1425 postfork = 1; /* must be in line with ev_loop_fork */
777 ev_io_stop (EV_A_ &sigev);
778 close (sigpipe [0]);
779 close (sigpipe [1]);
780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
783 siginit (EV_A);
784} 1426}
785 1427
786/*****************************************************************************/ 1428/*****************************************************************************/
787 1429
788static void 1430void
1431ev_invoke (EV_P_ void *w, int revents)
1432{
1433 EV_CB_INVOKE ((W)w, revents);
1434}
1435
1436void inline_speed
789call_pending (EV_P) 1437call_pending (EV_P)
790{ 1438{
791 int pri; 1439 int pri;
792 1440
793 for (pri = NUMPRI; pri--; ) 1441 for (pri = NUMPRI; pri--; )
794 while (pendingcnt [pri]) 1442 while (pendingcnt [pri])
795 { 1443 {
796 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1444 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
797 1445
798 if (p->w) 1446 if (expect_true (p->w))
799 { 1447 {
1448 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1449
800 p->w->pending = 0; 1450 p->w->pending = 0;
801 p->w->cb (EV_A_ p->w, p->events); 1451 EV_CB_INVOKE (p->w, p->events);
802 } 1452 }
803 } 1453 }
804} 1454}
805 1455
806static void 1456void inline_size
807timers_reify (EV_P) 1457timers_reify (EV_P)
808{ 1458{
809 while (timercnt && timers [0]->at <= mn_now) 1459 while (timercnt && ((WT)timers [0])->at <= mn_now)
810 { 1460 {
811 struct ev_timer *w = timers [0]; 1461 ev_timer *w = (ev_timer *)timers [0];
812 1462
813 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1463 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
814 1464
815 /* first reschedule or stop timer */ 1465 /* first reschedule or stop timer */
816 if (w->repeat) 1466 if (w->repeat)
817 { 1467 {
818 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1468 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1469
819 w->at = mn_now + w->repeat; 1470 ((WT)w)->at += w->repeat;
1471 if (((WT)w)->at < mn_now)
1472 ((WT)w)->at = mn_now;
1473
820 downheap ((WT *)timers, timercnt, 0); 1474 downheap (timers, timercnt, 0);
821 } 1475 }
822 else 1476 else
823 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1477 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
824 1478
825 event (EV_A_ (W)w, EV_TIMEOUT); 1479 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
826 } 1480 }
827} 1481}
828 1482
829static void 1483#if EV_PERIODIC_ENABLE
1484void inline_size
830periodics_reify (EV_P) 1485periodics_reify (EV_P)
831{ 1486{
832 while (periodiccnt && periodics [0]->at <= rt_now) 1487 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
833 { 1488 {
834 struct ev_periodic *w = periodics [0]; 1489 ev_periodic *w = (ev_periodic *)periodics [0];
835 1490
836 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1491 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
837 1492
838 /* first reschedule or stop timer */ 1493 /* first reschedule or stop timer */
839 if (w->interval) 1494 if (w->reschedule_cb)
840 { 1495 {
1496 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1497 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1498 downheap (periodics, periodiccnt, 0);
1499 }
1500 else if (w->interval)
1501 {
841 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval; 1502 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1503 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
842 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now)); 1504 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
843 downheap ((WT *)periodics, periodiccnt, 0); 1505 downheap (periodics, periodiccnt, 0);
844 } 1506 }
845 else 1507 else
846 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1508 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
847 1509
848 event (EV_A_ (W)w, EV_PERIODIC); 1510 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
849 } 1511 }
850} 1512}
851 1513
852static void 1514static void noinline
853periodics_reschedule (EV_P) 1515periodics_reschedule (EV_P)
854{ 1516{
855 int i; 1517 int i;
856 1518
857 /* adjust periodics after time jump */ 1519 /* adjust periodics after time jump */
858 for (i = 0; i < periodiccnt; ++i) 1520 for (i = 0; i < periodiccnt; ++i)
859 { 1521 {
860 struct ev_periodic *w = periodics [i]; 1522 ev_periodic *w = (ev_periodic *)periodics [i];
861 1523
1524 if (w->reschedule_cb)
1525 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
862 if (w->interval) 1526 else if (w->interval)
1527 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1528 }
1529
1530 /* now rebuild the heap */
1531 for (i = periodiccnt >> 1; i--; )
1532 downheap (periodics, periodiccnt, i);
1533}
1534#endif
1535
1536#if EV_IDLE_ENABLE
1537void inline_size
1538idle_reify (EV_P)
1539{
1540 if (expect_false (idleall))
1541 {
1542 int pri;
1543
1544 for (pri = NUMPRI; pri--; )
863 { 1545 {
864 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval; 1546 if (pendingcnt [pri])
1547 break;
865 1548
866 if (fabs (diff) >= 1e-4) 1549 if (idlecnt [pri])
867 { 1550 {
868 ev_periodic_stop (EV_A_ w); 1551 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
869 ev_periodic_start (EV_A_ w); 1552 break;
870
871 i = 0; /* restart loop, inefficient, but time jumps should be rare */
872 } 1553 }
873 } 1554 }
874 } 1555 }
875} 1556}
1557#endif
876 1558
877inline int 1559void inline_speed
878time_update_monotonic (EV_P) 1560time_update (EV_P_ ev_tstamp max_block)
879{
880 mn_now = get_clock ();
881
882 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
883 {
884 rt_now = rtmn_diff + mn_now;
885 return 0;
886 }
887 else
888 {
889 now_floor = mn_now;
890 rt_now = ev_time ();
891 return 1;
892 }
893}
894
895static void
896time_update (EV_P)
897{ 1561{
898 int i; 1562 int i;
899 1563
900#if EV_USE_MONOTONIC 1564#if EV_USE_MONOTONIC
901 if (expect_true (have_monotonic)) 1565 if (expect_true (have_monotonic))
902 { 1566 {
903 if (time_update_monotonic (EV_A)) 1567 ev_tstamp odiff = rtmn_diff;
1568
1569 mn_now = get_clock ();
1570
1571 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1572 /* interpolate in the meantime */
1573 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
904 { 1574 {
905 ev_tstamp odiff = rtmn_diff; 1575 ev_rt_now = rtmn_diff + mn_now;
1576 return;
1577 }
906 1578
1579 now_floor = mn_now;
1580 ev_rt_now = ev_time ();
1581
907 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1582 /* loop a few times, before making important decisions.
1583 * on the choice of "4": one iteration isn't enough,
1584 * in case we get preempted during the calls to
1585 * ev_time and get_clock. a second call is almost guaranteed
1586 * to succeed in that case, though. and looping a few more times
1587 * doesn't hurt either as we only do this on time-jumps or
1588 * in the unlikely event of having been preempted here.
1589 */
1590 for (i = 4; --i; )
908 { 1591 {
909 rtmn_diff = rt_now - mn_now; 1592 rtmn_diff = ev_rt_now - mn_now;
910 1593
911 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1594 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
912 return; /* all is well */ 1595 return; /* all is well */
913 1596
914 rt_now = ev_time (); 1597 ev_rt_now = ev_time ();
915 mn_now = get_clock (); 1598 mn_now = get_clock ();
916 now_floor = mn_now; 1599 now_floor = mn_now;
917 } 1600 }
918 1601
1602# if EV_PERIODIC_ENABLE
1603 periodics_reschedule (EV_A);
1604# endif
1605 /* no timer adjustment, as the monotonic clock doesn't jump */
1606 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1607 }
1608 else
1609#endif
1610 {
1611 ev_rt_now = ev_time ();
1612
1613 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1614 {
1615#if EV_PERIODIC_ENABLE
919 periodics_reschedule (EV_A); 1616 periodics_reschedule (EV_A);
920 /* no timer adjustment, as the monotonic clock doesn't jump */ 1617#endif
921 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1618 /* adjust timers. this is easy, as the offset is the same for all of them */
1619 for (i = 0; i < timercnt; ++i)
1620 ((WT)timers [i])->at += ev_rt_now - mn_now;
922 } 1621 }
923 }
924 else
925#endif
926 {
927 rt_now = ev_time ();
928 1622
929 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
930 {
931 periodics_reschedule (EV_A);
932
933 /* adjust timers. this is easy, as the offset is the same for all */
934 for (i = 0; i < timercnt; ++i)
935 timers [i]->at += rt_now - mn_now;
936 }
937
938 mn_now = rt_now; 1623 mn_now = ev_rt_now;
939 } 1624 }
940} 1625}
941 1626
942void 1627void
943ev_ref (EV_P) 1628ev_ref (EV_P)
954static int loop_done; 1639static int loop_done;
955 1640
956void 1641void
957ev_loop (EV_P_ int flags) 1642ev_loop (EV_P_ int flags)
958{ 1643{
959 double block; 1644 loop_done = EVUNLOOP_CANCEL;
960 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1645
1646 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
961 1647
962 do 1648 do
963 { 1649 {
1650#ifndef _WIN32
1651 if (expect_false (curpid)) /* penalise the forking check even more */
1652 if (expect_false (getpid () != curpid))
1653 {
1654 curpid = getpid ();
1655 postfork = 1;
1656 }
1657#endif
1658
1659#if EV_FORK_ENABLE
1660 /* we might have forked, so queue fork handlers */
1661 if (expect_false (postfork))
1662 if (forkcnt)
1663 {
1664 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1665 call_pending (EV_A);
1666 }
1667#endif
1668
964 /* queue check watchers (and execute them) */ 1669 /* queue prepare watchers (and execute them) */
965 if (expect_false (preparecnt)) 1670 if (expect_false (preparecnt))
966 { 1671 {
967 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1672 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
968 call_pending (EV_A); 1673 call_pending (EV_A);
969 } 1674 }
970 1675
1676 if (expect_false (!activecnt))
1677 break;
1678
1679 /* we might have forked, so reify kernel state if necessary */
1680 if (expect_false (postfork))
1681 loop_fork (EV_A);
1682
971 /* update fd-related kernel structures */ 1683 /* update fd-related kernel structures */
972 fd_reify (EV_A); 1684 fd_reify (EV_A);
973 1685
974 /* calculate blocking time */ 1686 /* calculate blocking time */
1687 {
1688 ev_tstamp waittime = 0.;
1689 ev_tstamp sleeptime = 0.;
975 1690
976 /* we only need this for !monotonic clockor timers, but as we basically 1691 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
977 always have timers, we just calculate it always */
978#if EV_USE_MONOTONIC
979 if (expect_true (have_monotonic))
980 time_update_monotonic (EV_A);
981 else
982#endif
983 { 1692 {
984 rt_now = ev_time (); 1693 /* update time to cancel out callback processing overhead */
985 mn_now = rt_now; 1694 time_update (EV_A_ 1e100);
986 }
987 1695
988 if (flags & EVLOOP_NONBLOCK || idlecnt)
989 block = 0.;
990 else
991 {
992 block = MAX_BLOCKTIME; 1696 waittime = MAX_BLOCKTIME;
993 1697
994 if (timercnt) 1698 if (timercnt)
995 { 1699 {
996 ev_tstamp to = timers [0]->at - mn_now + method_fudge; 1700 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
997 if (block > to) block = to; 1701 if (waittime > to) waittime = to;
998 } 1702 }
999 1703
1704#if EV_PERIODIC_ENABLE
1000 if (periodiccnt) 1705 if (periodiccnt)
1001 { 1706 {
1002 ev_tstamp to = periodics [0]->at - rt_now + method_fudge; 1707 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1003 if (block > to) block = to; 1708 if (waittime > to) waittime = to;
1004 } 1709 }
1710#endif
1005 1711
1006 if (block < 0.) block = 0.; 1712 if (expect_false (waittime < timeout_blocktime))
1713 waittime = timeout_blocktime;
1714
1715 sleeptime = waittime - backend_fudge;
1716
1717 if (expect_true (sleeptime > io_blocktime))
1718 sleeptime = io_blocktime;
1719
1720 if (sleeptime)
1721 {
1722 ev_sleep (sleeptime);
1723 waittime -= sleeptime;
1724 }
1007 } 1725 }
1008 1726
1009 method_poll (EV_A_ block); 1727 ++loop_count;
1728 backend_poll (EV_A_ waittime);
1010 1729
1011 /* update rt_now, do magic */ 1730 /* update ev_rt_now, do magic */
1012 time_update (EV_A); 1731 time_update (EV_A_ waittime + sleeptime);
1732 }
1013 1733
1014 /* queue pending timers and reschedule them */ 1734 /* queue pending timers and reschedule them */
1015 timers_reify (EV_A); /* relative timers called last */ 1735 timers_reify (EV_A); /* relative timers called last */
1736#if EV_PERIODIC_ENABLE
1016 periodics_reify (EV_A); /* absolute timers called first */ 1737 periodics_reify (EV_A); /* absolute timers called first */
1738#endif
1017 1739
1740#if EV_IDLE_ENABLE
1018 /* queue idle watchers unless io or timers are pending */ 1741 /* queue idle watchers unless other events are pending */
1019 if (!pendingcnt) 1742 idle_reify (EV_A);
1020 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1743#endif
1021 1744
1022 /* queue check watchers, to be executed first */ 1745 /* queue check watchers, to be executed first */
1023 if (checkcnt) 1746 if (expect_false (checkcnt))
1024 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1747 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1025 1748
1026 call_pending (EV_A); 1749 call_pending (EV_A);
1027 } 1750 }
1028 while (activecnt && !loop_done); 1751 while (expect_true (
1752 activecnt
1753 && !loop_done
1754 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1755 ));
1029 1756
1030 if (loop_done != 2) 1757 if (loop_done == EVUNLOOP_ONE)
1031 loop_done = 0; 1758 loop_done = EVUNLOOP_CANCEL;
1032} 1759}
1033 1760
1034void 1761void
1035ev_unloop (EV_P_ int how) 1762ev_unloop (EV_P_ int how)
1036{ 1763{
1037 loop_done = how; 1764 loop_done = how;
1038} 1765}
1039 1766
1040/*****************************************************************************/ 1767/*****************************************************************************/
1041 1768
1042inline void 1769void inline_size
1043wlist_add (WL *head, WL elem) 1770wlist_add (WL *head, WL elem)
1044{ 1771{
1045 elem->next = *head; 1772 elem->next = *head;
1046 *head = elem; 1773 *head = elem;
1047} 1774}
1048 1775
1049inline void 1776void inline_size
1050wlist_del (WL *head, WL elem) 1777wlist_del (WL *head, WL elem)
1051{ 1778{
1052 while (*head) 1779 while (*head)
1053 { 1780 {
1054 if (*head == elem) 1781 if (*head == elem)
1059 1786
1060 head = &(*head)->next; 1787 head = &(*head)->next;
1061 } 1788 }
1062} 1789}
1063 1790
1064inline void 1791void inline_speed
1065ev_clear_pending (EV_P_ W w) 1792clear_pending (EV_P_ W w)
1066{ 1793{
1067 if (w->pending) 1794 if (w->pending)
1068 { 1795 {
1069 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1796 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1070 w->pending = 0; 1797 w->pending = 0;
1071 } 1798 }
1072} 1799}
1073 1800
1074inline void 1801int
1802ev_clear_pending (EV_P_ void *w)
1803{
1804 W w_ = (W)w;
1805 int pending = w_->pending;
1806
1807 if (expect_true (pending))
1808 {
1809 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1810 w_->pending = 0;
1811 p->w = 0;
1812 return p->events;
1813 }
1814 else
1815 return 0;
1816}
1817
1818void inline_size
1819pri_adjust (EV_P_ W w)
1820{
1821 int pri = w->priority;
1822 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1823 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1824 w->priority = pri;
1825}
1826
1827void inline_speed
1075ev_start (EV_P_ W w, int active) 1828ev_start (EV_P_ W w, int active)
1076{ 1829{
1077 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1830 pri_adjust (EV_A_ w);
1078 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1079
1080 w->active = active; 1831 w->active = active;
1081 ev_ref (EV_A); 1832 ev_ref (EV_A);
1082} 1833}
1083 1834
1084inline void 1835void inline_size
1085ev_stop (EV_P_ W w) 1836ev_stop (EV_P_ W w)
1086{ 1837{
1087 ev_unref (EV_A); 1838 ev_unref (EV_A);
1088 w->active = 0; 1839 w->active = 0;
1089} 1840}
1090 1841
1091/*****************************************************************************/ 1842/*****************************************************************************/
1092 1843
1093void 1844void noinline
1094ev_io_start (EV_P_ struct ev_io *w) 1845ev_io_start (EV_P_ ev_io *w)
1095{ 1846{
1096 int fd = w->fd; 1847 int fd = w->fd;
1097 1848
1098 if (ev_is_active (w)) 1849 if (expect_false (ev_is_active (w)))
1099 return; 1850 return;
1100 1851
1101 assert (("ev_io_start called with negative fd", fd >= 0)); 1852 assert (("ev_io_start called with negative fd", fd >= 0));
1102 1853
1103 ev_start (EV_A_ (W)w, 1); 1854 ev_start (EV_A_ (W)w, 1);
1104 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1855 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1105 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1856 wlist_add (&anfds[fd].head, (WL)w);
1106 1857
1107 fd_change (EV_A_ fd); 1858 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1859 w->events &= ~EV_IOFDSET;
1108} 1860}
1109 1861
1110void 1862void noinline
1111ev_io_stop (EV_P_ struct ev_io *w) 1863ev_io_stop (EV_P_ ev_io *w)
1112{ 1864{
1113 ev_clear_pending (EV_A_ (W)w); 1865 clear_pending (EV_A_ (W)w);
1114 if (!ev_is_active (w)) 1866 if (expect_false (!ev_is_active (w)))
1115 return; 1867 return;
1116 1868
1869 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1870
1117 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1871 wlist_del (&anfds[w->fd].head, (WL)w);
1118 ev_stop (EV_A_ (W)w); 1872 ev_stop (EV_A_ (W)w);
1119 1873
1120 fd_change (EV_A_ w->fd); 1874 fd_change (EV_A_ w->fd, 1);
1121} 1875}
1122 1876
1123void 1877void noinline
1124ev_timer_start (EV_P_ struct ev_timer *w) 1878ev_timer_start (EV_P_ ev_timer *w)
1125{ 1879{
1126 if (ev_is_active (w)) 1880 if (expect_false (ev_is_active (w)))
1127 return; 1881 return;
1128 1882
1129 w->at += mn_now; 1883 ((WT)w)->at += mn_now;
1130 1884
1131 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1885 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1132 1886
1133 ev_start (EV_A_ (W)w, ++timercnt); 1887 ev_start (EV_A_ (W)w, ++timercnt);
1134 array_needsize (timers, timermax, timercnt, ); 1888 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1135 timers [timercnt - 1] = w; 1889 timers [timercnt - 1] = (WT)w;
1136 upheap ((WT *)timers, timercnt - 1); 1890 upheap (timers, timercnt - 1);
1137 1891
1138 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1892 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1139} 1893}
1140 1894
1141void 1895void noinline
1142ev_timer_stop (EV_P_ struct ev_timer *w) 1896ev_timer_stop (EV_P_ ev_timer *w)
1143{ 1897{
1144 ev_clear_pending (EV_A_ (W)w); 1898 clear_pending (EV_A_ (W)w);
1145 if (!ev_is_active (w)) 1899 if (expect_false (!ev_is_active (w)))
1146 return; 1900 return;
1147 1901
1148 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1902 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1149 1903
1150 if (((W)w)->active < timercnt--) 1904 {
1905 int active = ((W)w)->active;
1906
1907 if (expect_true (--active < --timercnt))
1151 { 1908 {
1152 timers [((W)w)->active - 1] = timers [timercnt]; 1909 timers [active] = timers [timercnt];
1153 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1910 adjustheap (timers, timercnt, active);
1154 } 1911 }
1912 }
1155 1913
1156 w->at = w->repeat; 1914 ((WT)w)->at -= mn_now;
1157 1915
1158 ev_stop (EV_A_ (W)w); 1916 ev_stop (EV_A_ (W)w);
1159} 1917}
1160 1918
1161void 1919void noinline
1162ev_timer_again (EV_P_ struct ev_timer *w) 1920ev_timer_again (EV_P_ ev_timer *w)
1163{ 1921{
1164 if (ev_is_active (w)) 1922 if (ev_is_active (w))
1165 { 1923 {
1166 if (w->repeat) 1924 if (w->repeat)
1167 { 1925 {
1168 w->at = mn_now + w->repeat; 1926 ((WT)w)->at = mn_now + w->repeat;
1169 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1927 adjustheap (timers, timercnt, ((W)w)->active - 1);
1170 } 1928 }
1171 else 1929 else
1172 ev_timer_stop (EV_A_ w); 1930 ev_timer_stop (EV_A_ w);
1173 } 1931 }
1174 else if (w->repeat) 1932 else if (w->repeat)
1933 {
1934 w->at = w->repeat;
1175 ev_timer_start (EV_A_ w); 1935 ev_timer_start (EV_A_ w);
1936 }
1176} 1937}
1177 1938
1178void 1939#if EV_PERIODIC_ENABLE
1940void noinline
1179ev_periodic_start (EV_P_ struct ev_periodic *w) 1941ev_periodic_start (EV_P_ ev_periodic *w)
1180{ 1942{
1181 if (ev_is_active (w)) 1943 if (expect_false (ev_is_active (w)))
1182 return; 1944 return;
1183 1945
1946 if (w->reschedule_cb)
1947 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1948 else if (w->interval)
1949 {
1184 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1950 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1185
1186 /* this formula differs from the one in periodic_reify because we do not always round up */ 1951 /* this formula differs from the one in periodic_reify because we do not always round up */
1187 if (w->interval)
1188 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval; 1952 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1953 }
1954 else
1955 ((WT)w)->at = w->offset;
1189 1956
1190 ev_start (EV_A_ (W)w, ++periodiccnt); 1957 ev_start (EV_A_ (W)w, ++periodiccnt);
1191 array_needsize (periodics, periodicmax, periodiccnt, ); 1958 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1192 periodics [periodiccnt - 1] = w; 1959 periodics [periodiccnt - 1] = (WT)w;
1193 upheap ((WT *)periodics, periodiccnt - 1); 1960 upheap (periodics, periodiccnt - 1);
1194 1961
1195 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1962 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1196} 1963}
1197 1964
1198void 1965void noinline
1199ev_periodic_stop (EV_P_ struct ev_periodic *w) 1966ev_periodic_stop (EV_P_ ev_periodic *w)
1200{ 1967{
1201 ev_clear_pending (EV_A_ (W)w); 1968 clear_pending (EV_A_ (W)w);
1202 if (!ev_is_active (w)) 1969 if (expect_false (!ev_is_active (w)))
1203 return; 1970 return;
1204 1971
1205 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1972 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1206 1973
1207 if (((W)w)->active < periodiccnt--) 1974 {
1975 int active = ((W)w)->active;
1976
1977 if (expect_true (--active < --periodiccnt))
1208 { 1978 {
1209 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1979 periodics [active] = periodics [periodiccnt];
1210 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1980 adjustheap (periodics, periodiccnt, active);
1211 } 1981 }
1982 }
1212 1983
1213 ev_stop (EV_A_ (W)w); 1984 ev_stop (EV_A_ (W)w);
1214} 1985}
1215 1986
1216void 1987void noinline
1217ev_idle_start (EV_P_ struct ev_idle *w) 1988ev_periodic_again (EV_P_ ev_periodic *w)
1218{ 1989{
1219 if (ev_is_active (w)) 1990 /* TODO: use adjustheap and recalculation */
1220 return;
1221
1222 ev_start (EV_A_ (W)w, ++idlecnt);
1223 array_needsize (idles, idlemax, idlecnt, );
1224 idles [idlecnt - 1] = w;
1225}
1226
1227void
1228ev_idle_stop (EV_P_ struct ev_idle *w)
1229{
1230 ev_clear_pending (EV_A_ (W)w);
1231 if (ev_is_active (w))
1232 return;
1233
1234 idles [((W)w)->active - 1] = idles [--idlecnt];
1235 ev_stop (EV_A_ (W)w); 1991 ev_periodic_stop (EV_A_ w);
1992 ev_periodic_start (EV_A_ w);
1236} 1993}
1237 1994#endif
1238void
1239ev_prepare_start (EV_P_ struct ev_prepare *w)
1240{
1241 if (ev_is_active (w))
1242 return;
1243
1244 ev_start (EV_A_ (W)w, ++preparecnt);
1245 array_needsize (prepares, preparemax, preparecnt, );
1246 prepares [preparecnt - 1] = w;
1247}
1248
1249void
1250ev_prepare_stop (EV_P_ struct ev_prepare *w)
1251{
1252 ev_clear_pending (EV_A_ (W)w);
1253 if (ev_is_active (w))
1254 return;
1255
1256 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1257 ev_stop (EV_A_ (W)w);
1258}
1259
1260void
1261ev_check_start (EV_P_ struct ev_check *w)
1262{
1263 if (ev_is_active (w))
1264 return;
1265
1266 ev_start (EV_A_ (W)w, ++checkcnt);
1267 array_needsize (checks, checkmax, checkcnt, );
1268 checks [checkcnt - 1] = w;
1269}
1270
1271void
1272ev_check_stop (EV_P_ struct ev_check *w)
1273{
1274 ev_clear_pending (EV_A_ (W)w);
1275 if (ev_is_active (w))
1276 return;
1277
1278 checks [((W)w)->active - 1] = checks [--checkcnt];
1279 ev_stop (EV_A_ (W)w);
1280}
1281 1995
1282#ifndef SA_RESTART 1996#ifndef SA_RESTART
1283# define SA_RESTART 0 1997# define SA_RESTART 0
1284#endif 1998#endif
1285 1999
1286void 2000void noinline
1287ev_signal_start (EV_P_ struct ev_signal *w) 2001ev_signal_start (EV_P_ ev_signal *w)
1288{ 2002{
1289#if EV_MULTIPLICITY 2003#if EV_MULTIPLICITY
1290 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2004 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1291#endif 2005#endif
1292 if (ev_is_active (w)) 2006 if (expect_false (ev_is_active (w)))
1293 return; 2007 return;
1294 2008
1295 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2009 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1296 2010
2011 evpipe_init (EV_A);
2012
2013 {
2014#ifndef _WIN32
2015 sigset_t full, prev;
2016 sigfillset (&full);
2017 sigprocmask (SIG_SETMASK, &full, &prev);
2018#endif
2019
2020 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2021
2022#ifndef _WIN32
2023 sigprocmask (SIG_SETMASK, &prev, 0);
2024#endif
2025 }
2026
1297 ev_start (EV_A_ (W)w, 1); 2027 ev_start (EV_A_ (W)w, 1);
1298 array_needsize (signals, signalmax, w->signum, signals_init);
1299 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2028 wlist_add (&signals [w->signum - 1].head, (WL)w);
1300 2029
1301 if (!w->next) 2030 if (!((WL)w)->next)
1302 { 2031 {
2032#if _WIN32
2033 signal (w->signum, ev_sighandler);
2034#else
1303 struct sigaction sa; 2035 struct sigaction sa;
1304 sa.sa_handler = sighandler; 2036 sa.sa_handler = ev_sighandler;
1305 sigfillset (&sa.sa_mask); 2037 sigfillset (&sa.sa_mask);
1306 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2038 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1307 sigaction (w->signum, &sa, 0); 2039 sigaction (w->signum, &sa, 0);
2040#endif
1308 } 2041 }
1309} 2042}
1310 2043
1311void 2044void noinline
1312ev_signal_stop (EV_P_ struct ev_signal *w) 2045ev_signal_stop (EV_P_ ev_signal *w)
1313{ 2046{
1314 ev_clear_pending (EV_A_ (W)w); 2047 clear_pending (EV_A_ (W)w);
1315 if (!ev_is_active (w)) 2048 if (expect_false (!ev_is_active (w)))
1316 return; 2049 return;
1317 2050
1318 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2051 wlist_del (&signals [w->signum - 1].head, (WL)w);
1319 ev_stop (EV_A_ (W)w); 2052 ev_stop (EV_A_ (W)w);
1320 2053
1321 if (!signals [w->signum - 1].head) 2054 if (!signals [w->signum - 1].head)
1322 signal (w->signum, SIG_DFL); 2055 signal (w->signum, SIG_DFL);
1323} 2056}
1324 2057
1325void 2058void
1326ev_child_start (EV_P_ struct ev_child *w) 2059ev_child_start (EV_P_ ev_child *w)
1327{ 2060{
1328#if EV_MULTIPLICITY 2061#if EV_MULTIPLICITY
1329 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2062 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1330#endif 2063#endif
1331 if (ev_is_active (w)) 2064 if (expect_false (ev_is_active (w)))
1332 return; 2065 return;
1333 2066
1334 ev_start (EV_A_ (W)w, 1); 2067 ev_start (EV_A_ (W)w, 1);
1335 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2068 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1336} 2069}
1337 2070
1338void 2071void
1339ev_child_stop (EV_P_ struct ev_child *w) 2072ev_child_stop (EV_P_ ev_child *w)
1340{ 2073{
1341 ev_clear_pending (EV_A_ (W)w); 2074 clear_pending (EV_A_ (W)w);
1342 if (ev_is_active (w)) 2075 if (expect_false (!ev_is_active (w)))
1343 return; 2076 return;
1344 2077
1345 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2078 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1346 ev_stop (EV_A_ (W)w); 2079 ev_stop (EV_A_ (W)w);
1347} 2080}
1348 2081
2082#if EV_STAT_ENABLE
2083
2084# ifdef _WIN32
2085# undef lstat
2086# define lstat(a,b) _stati64 (a,b)
2087# endif
2088
2089#define DEF_STAT_INTERVAL 5.0074891
2090#define MIN_STAT_INTERVAL 0.1074891
2091
2092static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2093
2094#if EV_USE_INOTIFY
2095# define EV_INOTIFY_BUFSIZE 8192
2096
2097static void noinline
2098infy_add (EV_P_ ev_stat *w)
2099{
2100 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2101
2102 if (w->wd < 0)
2103 {
2104 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2105
2106 /* monitor some parent directory for speedup hints */
2107 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2108 {
2109 char path [4096];
2110 strcpy (path, w->path);
2111
2112 do
2113 {
2114 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2115 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2116
2117 char *pend = strrchr (path, '/');
2118
2119 if (!pend)
2120 break; /* whoops, no '/', complain to your admin */
2121
2122 *pend = 0;
2123 w->wd = inotify_add_watch (fs_fd, path, mask);
2124 }
2125 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2126 }
2127 }
2128 else
2129 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2130
2131 if (w->wd >= 0)
2132 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2133}
2134
2135static void noinline
2136infy_del (EV_P_ ev_stat *w)
2137{
2138 int slot;
2139 int wd = w->wd;
2140
2141 if (wd < 0)
2142 return;
2143
2144 w->wd = -2;
2145 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2146 wlist_del (&fs_hash [slot].head, (WL)w);
2147
2148 /* remove this watcher, if others are watching it, they will rearm */
2149 inotify_rm_watch (fs_fd, wd);
2150}
2151
2152static void noinline
2153infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2154{
2155 if (slot < 0)
2156 /* overflow, need to check for all hahs slots */
2157 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2158 infy_wd (EV_A_ slot, wd, ev);
2159 else
2160 {
2161 WL w_;
2162
2163 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2164 {
2165 ev_stat *w = (ev_stat *)w_;
2166 w_ = w_->next; /* lets us remove this watcher and all before it */
2167
2168 if (w->wd == wd || wd == -1)
2169 {
2170 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2171 {
2172 w->wd = -1;
2173 infy_add (EV_A_ w); /* re-add, no matter what */
2174 }
2175
2176 stat_timer_cb (EV_A_ &w->timer, 0);
2177 }
2178 }
2179 }
2180}
2181
2182static void
2183infy_cb (EV_P_ ev_io *w, int revents)
2184{
2185 char buf [EV_INOTIFY_BUFSIZE];
2186 struct inotify_event *ev = (struct inotify_event *)buf;
2187 int ofs;
2188 int len = read (fs_fd, buf, sizeof (buf));
2189
2190 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2191 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2192}
2193
2194void inline_size
2195infy_init (EV_P)
2196{
2197 if (fs_fd != -2)
2198 return;
2199
2200 fs_fd = inotify_init ();
2201
2202 if (fs_fd >= 0)
2203 {
2204 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2205 ev_set_priority (&fs_w, EV_MAXPRI);
2206 ev_io_start (EV_A_ &fs_w);
2207 }
2208}
2209
2210void inline_size
2211infy_fork (EV_P)
2212{
2213 int slot;
2214
2215 if (fs_fd < 0)
2216 return;
2217
2218 close (fs_fd);
2219 fs_fd = inotify_init ();
2220
2221 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2222 {
2223 WL w_ = fs_hash [slot].head;
2224 fs_hash [slot].head = 0;
2225
2226 while (w_)
2227 {
2228 ev_stat *w = (ev_stat *)w_;
2229 w_ = w_->next; /* lets us add this watcher */
2230
2231 w->wd = -1;
2232
2233 if (fs_fd >= 0)
2234 infy_add (EV_A_ w); /* re-add, no matter what */
2235 else
2236 ev_timer_start (EV_A_ &w->timer);
2237 }
2238
2239 }
2240}
2241
2242#endif
2243
2244void
2245ev_stat_stat (EV_P_ ev_stat *w)
2246{
2247 if (lstat (w->path, &w->attr) < 0)
2248 w->attr.st_nlink = 0;
2249 else if (!w->attr.st_nlink)
2250 w->attr.st_nlink = 1;
2251}
2252
2253static void noinline
2254stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2255{
2256 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2257
2258 /* we copy this here each the time so that */
2259 /* prev has the old value when the callback gets invoked */
2260 w->prev = w->attr;
2261 ev_stat_stat (EV_A_ w);
2262
2263 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2264 if (
2265 w->prev.st_dev != w->attr.st_dev
2266 || w->prev.st_ino != w->attr.st_ino
2267 || w->prev.st_mode != w->attr.st_mode
2268 || w->prev.st_nlink != w->attr.st_nlink
2269 || w->prev.st_uid != w->attr.st_uid
2270 || w->prev.st_gid != w->attr.st_gid
2271 || w->prev.st_rdev != w->attr.st_rdev
2272 || w->prev.st_size != w->attr.st_size
2273 || w->prev.st_atime != w->attr.st_atime
2274 || w->prev.st_mtime != w->attr.st_mtime
2275 || w->prev.st_ctime != w->attr.st_ctime
2276 ) {
2277 #if EV_USE_INOTIFY
2278 infy_del (EV_A_ w);
2279 infy_add (EV_A_ w);
2280 ev_stat_stat (EV_A_ w); /* avoid race... */
2281 #endif
2282
2283 ev_feed_event (EV_A_ w, EV_STAT);
2284 }
2285}
2286
2287void
2288ev_stat_start (EV_P_ ev_stat *w)
2289{
2290 if (expect_false (ev_is_active (w)))
2291 return;
2292
2293 /* since we use memcmp, we need to clear any padding data etc. */
2294 memset (&w->prev, 0, sizeof (ev_statdata));
2295 memset (&w->attr, 0, sizeof (ev_statdata));
2296
2297 ev_stat_stat (EV_A_ w);
2298
2299 if (w->interval < MIN_STAT_INTERVAL)
2300 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2301
2302 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2303 ev_set_priority (&w->timer, ev_priority (w));
2304
2305#if EV_USE_INOTIFY
2306 infy_init (EV_A);
2307
2308 if (fs_fd >= 0)
2309 infy_add (EV_A_ w);
2310 else
2311#endif
2312 ev_timer_start (EV_A_ &w->timer);
2313
2314 ev_start (EV_A_ (W)w, 1);
2315}
2316
2317void
2318ev_stat_stop (EV_P_ ev_stat *w)
2319{
2320 clear_pending (EV_A_ (W)w);
2321 if (expect_false (!ev_is_active (w)))
2322 return;
2323
2324#if EV_USE_INOTIFY
2325 infy_del (EV_A_ w);
2326#endif
2327 ev_timer_stop (EV_A_ &w->timer);
2328
2329 ev_stop (EV_A_ (W)w);
2330}
2331#endif
2332
2333#if EV_IDLE_ENABLE
2334void
2335ev_idle_start (EV_P_ ev_idle *w)
2336{
2337 if (expect_false (ev_is_active (w)))
2338 return;
2339
2340 pri_adjust (EV_A_ (W)w);
2341
2342 {
2343 int active = ++idlecnt [ABSPRI (w)];
2344
2345 ++idleall;
2346 ev_start (EV_A_ (W)w, active);
2347
2348 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2349 idles [ABSPRI (w)][active - 1] = w;
2350 }
2351}
2352
2353void
2354ev_idle_stop (EV_P_ ev_idle *w)
2355{
2356 clear_pending (EV_A_ (W)w);
2357 if (expect_false (!ev_is_active (w)))
2358 return;
2359
2360 {
2361 int active = ((W)w)->active;
2362
2363 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2364 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2365
2366 ev_stop (EV_A_ (W)w);
2367 --idleall;
2368 }
2369}
2370#endif
2371
2372void
2373ev_prepare_start (EV_P_ ev_prepare *w)
2374{
2375 if (expect_false (ev_is_active (w)))
2376 return;
2377
2378 ev_start (EV_A_ (W)w, ++preparecnt);
2379 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2380 prepares [preparecnt - 1] = w;
2381}
2382
2383void
2384ev_prepare_stop (EV_P_ ev_prepare *w)
2385{
2386 clear_pending (EV_A_ (W)w);
2387 if (expect_false (!ev_is_active (w)))
2388 return;
2389
2390 {
2391 int active = ((W)w)->active;
2392 prepares [active - 1] = prepares [--preparecnt];
2393 ((W)prepares [active - 1])->active = active;
2394 }
2395
2396 ev_stop (EV_A_ (W)w);
2397}
2398
2399void
2400ev_check_start (EV_P_ ev_check *w)
2401{
2402 if (expect_false (ev_is_active (w)))
2403 return;
2404
2405 ev_start (EV_A_ (W)w, ++checkcnt);
2406 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2407 checks [checkcnt - 1] = w;
2408}
2409
2410void
2411ev_check_stop (EV_P_ ev_check *w)
2412{
2413 clear_pending (EV_A_ (W)w);
2414 if (expect_false (!ev_is_active (w)))
2415 return;
2416
2417 {
2418 int active = ((W)w)->active;
2419 checks [active - 1] = checks [--checkcnt];
2420 ((W)checks [active - 1])->active = active;
2421 }
2422
2423 ev_stop (EV_A_ (W)w);
2424}
2425
2426#if EV_EMBED_ENABLE
2427void noinline
2428ev_embed_sweep (EV_P_ ev_embed *w)
2429{
2430 ev_loop (w->other, EVLOOP_NONBLOCK);
2431}
2432
2433static void
2434embed_io_cb (EV_P_ ev_io *io, int revents)
2435{
2436 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2437
2438 if (ev_cb (w))
2439 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2440 else
2441 ev_loop (w->other, EVLOOP_NONBLOCK);
2442}
2443
2444static void
2445embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2446{
2447 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2448
2449 {
2450 struct ev_loop *loop = w->other;
2451
2452 while (fdchangecnt)
2453 {
2454 fd_reify (EV_A);
2455 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2456 }
2457 }
2458}
2459
2460#if 0
2461static void
2462embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2463{
2464 ev_idle_stop (EV_A_ idle);
2465}
2466#endif
2467
2468void
2469ev_embed_start (EV_P_ ev_embed *w)
2470{
2471 if (expect_false (ev_is_active (w)))
2472 return;
2473
2474 {
2475 struct ev_loop *loop = w->other;
2476 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2477 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2478 }
2479
2480 ev_set_priority (&w->io, ev_priority (w));
2481 ev_io_start (EV_A_ &w->io);
2482
2483 ev_prepare_init (&w->prepare, embed_prepare_cb);
2484 ev_set_priority (&w->prepare, EV_MINPRI);
2485 ev_prepare_start (EV_A_ &w->prepare);
2486
2487 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2488
2489 ev_start (EV_A_ (W)w, 1);
2490}
2491
2492void
2493ev_embed_stop (EV_P_ ev_embed *w)
2494{
2495 clear_pending (EV_A_ (W)w);
2496 if (expect_false (!ev_is_active (w)))
2497 return;
2498
2499 ev_io_stop (EV_A_ &w->io);
2500 ev_prepare_stop (EV_A_ &w->prepare);
2501
2502 ev_stop (EV_A_ (W)w);
2503}
2504#endif
2505
2506#if EV_FORK_ENABLE
2507void
2508ev_fork_start (EV_P_ ev_fork *w)
2509{
2510 if (expect_false (ev_is_active (w)))
2511 return;
2512
2513 ev_start (EV_A_ (W)w, ++forkcnt);
2514 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2515 forks [forkcnt - 1] = w;
2516}
2517
2518void
2519ev_fork_stop (EV_P_ ev_fork *w)
2520{
2521 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w)))
2523 return;
2524
2525 {
2526 int active = ((W)w)->active;
2527 forks [active - 1] = forks [--forkcnt];
2528 ((W)forks [active - 1])->active = active;
2529 }
2530
2531 ev_stop (EV_A_ (W)w);
2532}
2533#endif
2534
2535#if EV_ASYNC_ENABLE
2536void
2537ev_async_start (EV_P_ ev_async *w)
2538{
2539 if (expect_false (ev_is_active (w)))
2540 return;
2541
2542 evpipe_init (EV_A);
2543
2544 ev_start (EV_A_ (W)w, ++asynccnt);
2545 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2546 asyncs [asynccnt - 1] = w;
2547}
2548
2549void
2550ev_async_stop (EV_P_ ev_async *w)
2551{
2552 clear_pending (EV_A_ (W)w);
2553 if (expect_false (!ev_is_active (w)))
2554 return;
2555
2556 {
2557 int active = ((W)w)->active;
2558 asyncs [active - 1] = asyncs [--asynccnt];
2559 ((W)asyncs [active - 1])->active = active;
2560 }
2561
2562 ev_stop (EV_A_ (W)w);
2563}
2564
2565void
2566ev_async_send (EV_P_ ev_async *w)
2567{
2568 w->sent = 1;
2569 evpipe_write (EV_A_ &gotasync);
2570}
2571#endif
2572
1349/*****************************************************************************/ 2573/*****************************************************************************/
1350 2574
1351struct ev_once 2575struct ev_once
1352{ 2576{
1353 struct ev_io io; 2577 ev_io io;
1354 struct ev_timer to; 2578 ev_timer to;
1355 void (*cb)(int revents, void *arg); 2579 void (*cb)(int revents, void *arg);
1356 void *arg; 2580 void *arg;
1357}; 2581};
1358 2582
1359static void 2583static void
1362 void (*cb)(int revents, void *arg) = once->cb; 2586 void (*cb)(int revents, void *arg) = once->cb;
1363 void *arg = once->arg; 2587 void *arg = once->arg;
1364 2588
1365 ev_io_stop (EV_A_ &once->io); 2589 ev_io_stop (EV_A_ &once->io);
1366 ev_timer_stop (EV_A_ &once->to); 2590 ev_timer_stop (EV_A_ &once->to);
1367 free (once); 2591 ev_free (once);
1368 2592
1369 cb (revents, arg); 2593 cb (revents, arg);
1370} 2594}
1371 2595
1372static void 2596static void
1373once_cb_io (EV_P_ struct ev_io *w, int revents) 2597once_cb_io (EV_P_ ev_io *w, int revents)
1374{ 2598{
1375 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1376} 2600}
1377 2601
1378static void 2602static void
1379once_cb_to (EV_P_ struct ev_timer *w, int revents) 2603once_cb_to (EV_P_ ev_timer *w, int revents)
1380{ 2604{
1381 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1382} 2606}
1383 2607
1384void 2608void
1385ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1386{ 2610{
1387 struct ev_once *once = malloc (sizeof (struct ev_once)); 2611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1388 2612
1389 if (!once) 2613 if (expect_false (!once))
2614 {
1390 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2615 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1391 else 2616 return;
1392 { 2617 }
2618
1393 once->cb = cb; 2619 once->cb = cb;
1394 once->arg = arg; 2620 once->arg = arg;
1395 2621
1396 ev_watcher_init (&once->io, once_cb_io); 2622 ev_init (&once->io, once_cb_io);
1397 if (fd >= 0) 2623 if (fd >= 0)
1398 { 2624 {
1399 ev_io_set (&once->io, fd, events); 2625 ev_io_set (&once->io, fd, events);
1400 ev_io_start (EV_A_ &once->io); 2626 ev_io_start (EV_A_ &once->io);
1401 } 2627 }
1402 2628
1403 ev_watcher_init (&once->to, once_cb_to); 2629 ev_init (&once->to, once_cb_to);
1404 if (timeout >= 0.) 2630 if (timeout >= 0.)
1405 { 2631 {
1406 ev_timer_set (&once->to, timeout, 0.); 2632 ev_timer_set (&once->to, timeout, 0.);
1407 ev_timer_start (EV_A_ &once->to); 2633 ev_timer_start (EV_A_ &once->to);
1408 }
1409 } 2634 }
1410} 2635}
1411 2636
2637#if EV_MULTIPLICITY
2638 #include "ev_wrap.h"
2639#endif
2640
2641#ifdef __cplusplus
2642}
2643#endif
2644

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines