ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.225 by root, Wed Apr 16 01:37:14 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
114 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 155# include <sys/time.h>
118# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
119#else 158#else
120# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 160# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
124# endif 163# endif
125#endif 164#endif
126 165
127/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
128 167
129#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
130# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
131#endif 170#endif
132 171
133#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
135#endif 178#endif
136 179
137#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
139#endif 182#endif
145# define EV_USE_POLL 1 188# define EV_USE_POLL 1
146# endif 189# endif
147#endif 190#endif
148 191
149#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
150# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
151#endif 198#endif
152 199
153#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
155#endif 202#endif
156 203
157#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 205# define EV_USE_PORT 0
159#endif 206#endif
160 207
161/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 241
163#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
166#endif 245#endif
168#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
171#endif 250#endif
172 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
173#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 268# include <winsock.h>
175#endif 269#endif
176 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
177/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 294
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 298
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 299#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 301# define noinline __attribute__ ((noinline))
193#else 302#else
194# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
195# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
196#endif 308#endif
197 309
198#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
200 319
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 322
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
206 325
207typedef struct ev_watcher *W; 326typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
210 329
330#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif
212 335
213#ifdef _WIN32 336#ifdef _WIN32
214# include "ev_win32.c" 337# include "ev_win32.c"
215#endif 338#endif
216 339
217/*****************************************************************************/ 340/*****************************************************************************/
218 341
219static void (*syserr_cb)(const char *msg); 342static void (*syserr_cb)(const char *msg);
220 343
344void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 345ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 346{
223 syserr_cb = cb; 347 syserr_cb = cb;
224} 348}
225 349
226static void 350static void noinline
227syserr (const char *msg) 351syserr (const char *msg)
228{ 352{
229 if (!msg) 353 if (!msg)
230 msg = "(libev) system error"; 354 msg = "(libev) system error";
231 355
236 perror (msg); 360 perror (msg);
237 abort (); 361 abort ();
238 } 362 }
239} 363}
240 364
365static void *
366ev_realloc_emul (void *ptr, long size)
367{
368 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and
370 * the single unix specification, so work around them here.
371 */
372
373 if (size)
374 return realloc (ptr, size);
375
376 free (ptr);
377 return 0;
378}
379
241static void *(*alloc)(void *ptr, long size); 380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 381
382void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 383ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 384{
245 alloc = cb; 385 alloc = cb;
246} 386}
247 387
248static void * 388inline_speed void *
249ev_realloc (void *ptr, long size) 389ev_realloc (void *ptr, long size)
250{ 390{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 391 ptr = alloc (ptr, size);
252 392
253 if (!ptr && size) 393 if (!ptr && size)
254 { 394 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort (); 396 abort ();
277typedef struct 417typedef struct
278{ 418{
279 W w; 419 W w;
280 int events; 420 int events;
281} ANPENDING; 421} ANPENDING;
422
423#if EV_USE_INOTIFY
424typedef struct
425{
426 WL head;
427} ANFS;
428#endif
282 429
283#if EV_MULTIPLICITY 430#if EV_MULTIPLICITY
284 431
285 struct ev_loop 432 struct ev_loop
286 { 433 {
320 gettimeofday (&tv, 0); 467 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 468 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 469#endif
323} 470}
324 471
325inline ev_tstamp 472ev_tstamp inline_size
326get_clock (void) 473get_clock (void)
327{ 474{
328#if EV_USE_MONOTONIC 475#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 476 if (expect_true (have_monotonic))
330 { 477 {
343{ 490{
344 return ev_rt_now; 491 return ev_rt_now;
345} 492}
346#endif 493#endif
347 494
348#define array_roundsize(type,n) (((n) | 4) & ~3) 495void
496ev_sleep (ev_tstamp delay)
497{
498 if (delay > 0.)
499 {
500#if EV_USE_NANOSLEEP
501 struct timespec ts;
502
503 ts.tv_sec = (time_t)delay;
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0);
507#elif defined(_WIN32)
508 Sleep ((unsigned long)(delay * 1e3));
509#else
510 struct timeval tv;
511
512 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514
515 select (0, 0, 0, 0, &tv);
516#endif
517 }
518}
519
520/*****************************************************************************/
521
522int inline_size
523array_nextsize (int elem, int cur, int cnt)
524{
525 int ncur = cur + 1;
526
527 do
528 ncur <<= 1;
529 while (cnt > ncur);
530
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096)
533 {
534 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
536 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem;
538 }
539
540 return ncur;
541}
542
543static noinline void *
544array_realloc (int elem, void *base, int *cur, int cnt)
545{
546 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur);
548}
349 549
350#define array_needsize(type,base,cur,cnt,init) \ 550#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 551 if (expect_false ((cnt) > (cur))) \
352 { \ 552 { \
353 int newcnt = cur; \ 553 int ocur_ = (cur); \
354 do \ 554 (base) = (type *)array_realloc \
355 { \ 555 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 556 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 557 }
364 558
559#if 0
365#define array_slim(type,stem) \ 560#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 561 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 562 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 563 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 564 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 566 }
567#endif
372 568
373#define array_free(stem, idx) \ 569#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 571
376/*****************************************************************************/ 572/*****************************************************************************/
377 573
378static void 574void noinline
575ev_feed_event (EV_P_ void *w, int revents)
576{
577 W w_ = (W)w;
578 int pri = ABSPRI (w_);
579
580 if (expect_false (w_->pending))
581 pendings [pri][w_->pending - 1].events |= revents;
582 else
583 {
584 w_->pending = ++pendingcnt [pri];
585 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
586 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents;
588 }
589}
590
591void inline_speed
592queue_events (EV_P_ W *events, int eventcnt, int type)
593{
594 int i;
595
596 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type);
598}
599
600/*****************************************************************************/
601
602void inline_size
379anfds_init (ANFD *base, int count) 603anfds_init (ANFD *base, int count)
380{ 604{
381 while (count--) 605 while (count--)
382 { 606 {
383 base->head = 0; 607 base->head = 0;
386 610
387 ++base; 611 ++base;
388 } 612 }
389} 613}
390 614
391void 615void inline_speed
392ev_feed_event (EV_P_ void *w, int revents)
393{
394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
397 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return;
400 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409}
410
411static void
412queue_events (EV_P_ W *events, int eventcnt, int type)
413{
414 int i;
415
416 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type);
418}
419
420inline void
421fd_event (EV_P_ int fd, int revents) 616fd_event (EV_P_ int fd, int revents)
422{ 617{
423 ANFD *anfd = anfds + fd; 618 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 619 ev_io *w;
425 620
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 621 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 622 {
428 int ev = w->events & revents; 623 int ev = w->events & revents;
429 624
430 if (ev) 625 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 626 ev_feed_event (EV_A_ (W)w, ev);
433} 628}
434 629
435void 630void
436ev_feed_fd_event (EV_P_ int fd, int revents) 631ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 632{
633 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 634 fd_event (EV_A_ fd, revents);
439} 635}
440 636
441/*****************************************************************************/ 637void inline_size
442
443inline void
444fd_reify (EV_P) 638fd_reify (EV_P)
445{ 639{
446 int i; 640 int i;
447 641
448 for (i = 0; i < fdchangecnt; ++i) 642 for (i = 0; i < fdchangecnt; ++i)
449 { 643 {
450 int fd = fdchanges [i]; 644 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 645 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 646 ev_io *w;
453 647
454 int events = 0; 648 unsigned char events = 0;
455 649
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 651 events |= (unsigned char)w->events;
458 652
459#if EV_SELECT_IS_WINSOCKET 653#if EV_SELECT_IS_WINSOCKET
460 if (events) 654 if (events)
461 { 655 {
462 unsigned long argp; 656 unsigned long argp;
657 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else
463 anfd->handle = _get_osfhandle (fd); 660 anfd->handle = _get_osfhandle (fd);
661 #endif
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
465 } 663 }
466#endif 664#endif
467 665
666 {
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
468 anfd->reify = 0; 670 anfd->reify = 0;
469
470 backend_modify (EV_A_ fd, anfd->events, events);
471 anfd->events = events; 671 anfd->events = events;
672
673 if (o_events != events || o_reify & EV_IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events);
675 }
472 } 676 }
473 677
474 fdchangecnt = 0; 678 fdchangecnt = 0;
475} 679}
476 680
477static void 681void inline_size
478fd_change (EV_P_ int fd) 682fd_change (EV_P_ int fd, int flags)
479{ 683{
480 if (expect_false (anfds [fd].reify)) 684 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 685 anfds [fd].reify |= flags;
484 686
687 if (expect_true (!reify))
688 {
485 ++fdchangecnt; 689 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 691 fdchanges [fdchangecnt - 1] = fd;
692 }
488} 693}
489 694
490static void 695void inline_speed
491fd_kill (EV_P_ int fd) 696fd_kill (EV_P_ int fd)
492{ 697{
493 struct ev_io *w; 698 ev_io *w;
494 699
495 while ((w = (struct ev_io *)anfds [fd].head)) 700 while ((w = (ev_io *)anfds [fd].head))
496 { 701 {
497 ev_io_stop (EV_A_ w); 702 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 704 }
500} 705}
501 706
502inline int 707int inline_size
503fd_valid (int fd) 708fd_valid (int fd)
504{ 709{
505#ifdef _WIN32 710#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 711 return _get_osfhandle (fd) != -1;
507#else 712#else
508 return fcntl (fd, F_GETFD) != -1; 713 return fcntl (fd, F_GETFD) != -1;
509#endif 714#endif
510} 715}
511 716
512/* called on EBADF to verify fds */ 717/* called on EBADF to verify fds */
513static void 718static void noinline
514fd_ebadf (EV_P) 719fd_ebadf (EV_P)
515{ 720{
516 int fd; 721 int fd;
517 722
518 for (fd = 0; fd < anfdmax; ++fd) 723 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 725 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 726 fd_kill (EV_A_ fd);
522} 727}
523 728
524/* called on ENOMEM in select/poll to kill some fds and retry */ 729/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 730static void noinline
526fd_enomem (EV_P) 731fd_enomem (EV_P)
527{ 732{
528 int fd; 733 int fd;
529 734
530 for (fd = anfdmax; fd--; ) 735 for (fd = anfdmax; fd--; )
534 return; 739 return;
535 } 740 }
536} 741}
537 742
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 743/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 744static void noinline
540fd_rearm_all (EV_P) 745fd_rearm_all (EV_P)
541{ 746{
542 int fd; 747 int fd;
543 748
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 749 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 750 if (anfds [fd].events)
547 { 751 {
548 anfds [fd].events = 0; 752 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 753 fd_change (EV_A_ fd, EV_IOFDSET | 1);
550 } 754 }
551} 755}
552 756
553/*****************************************************************************/ 757/*****************************************************************************/
554 758
555static void 759void inline_speed
556upheap (WT *heap, int k) 760upheap (WT *heap, int k)
557{ 761{
558 WT w = heap [k]; 762 WT w = heap [k];
559 763
560 while (k && heap [k >> 1]->at > w->at) 764 while (k)
561 { 765 {
766 int p = (k - 1) >> 1;
767
768 if (heap [p]->at <= w->at)
769 break;
770
562 heap [k] = heap [k >> 1]; 771 heap [k] = heap [p];
563 ((W)heap [k])->active = k + 1; 772 ((W)heap [k])->active = k + 1;
564 k >>= 1; 773 k = p;
565 } 774 }
566 775
567 heap [k] = w; 776 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 777 ((W)heap [k])->active = k + 1;
569
570} 778}
571 779
572static void 780void inline_speed
573downheap (WT *heap, int N, int k) 781downheap (WT *heap, int N, int k)
574{ 782{
575 WT w = heap [k]; 783 WT w = heap [k];
576 784
577 while (k < (N >> 1)) 785 for (;;)
578 { 786 {
579 int j = k << 1; 787 int c = (k << 1) + 1;
580 788
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 789 if (c >= N)
582 ++j;
583
584 if (w->at <= heap [j]->at)
585 break; 790 break;
586 791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
587 heap [k] = heap [j]; 798 heap [k] = heap [c];
588 ((W)heap [k])->active = k + 1; 799 ((W)heap [k])->active = k + 1;
800
589 k = j; 801 k = c;
590 } 802 }
591 803
592 heap [k] = w; 804 heap [k] = w;
593 ((W)heap [k])->active = k + 1; 805 ((W)heap [k])->active = k + 1;
594} 806}
595 807
596inline void 808void inline_size
597adjustheap (WT *heap, int N, int k) 809adjustheap (WT *heap, int N, int k)
598{ 810{
599 upheap (heap, k); 811 upheap (heap, k);
600 downheap (heap, N, k); 812 downheap (heap, N, k);
601} 813}
603/*****************************************************************************/ 815/*****************************************************************************/
604 816
605typedef struct 817typedef struct
606{ 818{
607 WL head; 819 WL head;
608 sig_atomic_t volatile gotsig; 820 EV_ATOMIC_T gotsig;
609} ANSIG; 821} ANSIG;
610 822
611static ANSIG *signals; 823static ANSIG *signals;
612static int signalmax; 824static int signalmax;
613 825
614static int sigpipe [2]; 826static EV_ATOMIC_T gotsig;
615static sig_atomic_t volatile gotsig;
616static struct ev_io sigev;
617 827
618static void 828void inline_size
619signals_init (ANSIG *base, int count) 829signals_init (ANSIG *base, int count)
620{ 830{
621 while (count--) 831 while (count--)
622 { 832 {
623 base->head = 0; 833 base->head = 0;
625 835
626 ++base; 836 ++base;
627 } 837 }
628} 838}
629 839
630static void 840/*****************************************************************************/
631sighandler (int signum)
632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636 841
637 signals [signum - 1].gotsig = 1; 842void inline_speed
638
639 if (!gotsig)
640 {
641 int old_errno = errno;
642 gotsig = 1;
643 write (sigpipe [1], &signum, 1);
644 errno = old_errno;
645 }
646}
647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
668static void
669sigcb (EV_P_ struct ev_io *iow, int revents)
670{
671 int signum;
672
673 read (sigpipe [0], &revents, 1);
674 gotsig = 0;
675
676 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1);
679}
680
681static void
682fd_intern (int fd) 843fd_intern (int fd)
683{ 844{
684#ifdef _WIN32 845#ifdef _WIN32
685 int arg = 1; 846 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 849 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 850 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 851#endif
691} 852}
692 853
854static void noinline
855evpipe_init (EV_P)
856{
857 if (!ev_is_active (&pipeev))
858 {
859#if EV_USE_EVENTFD
860 if ((evfd = eventfd (0, 0)) >= 0)
861 {
862 evpipe [0] = -1;
863 fd_intern (evfd);
864 ev_io_set (&pipeev, evfd, EV_READ);
865 }
866 else
867#endif
868 {
869 while (pipe (evpipe))
870 syserr ("(libev) error creating signal/async pipe");
871
872 fd_intern (evpipe [0]);
873 fd_intern (evpipe [1]);
874 ev_io_set (&pipeev, evpipe [0], EV_READ);
875 }
876
877 ev_io_start (EV_A_ &pipeev);
878 ev_unref (EV_A); /* watcher should not keep loop alive */
879 }
880}
881
882void inline_size
883evpipe_write (EV_P_ EV_ATOMIC_T *flag)
884{
885 if (!*flag)
886 {
887 int old_errno = errno; /* save errno because write might clobber it */
888
889 *flag = 1;
890
891#if EV_USE_EVENTFD
892 if (evfd >= 0)
893 {
894 uint64_t counter = 1;
895 write (evfd, &counter, sizeof (uint64_t));
896 }
897 else
898#endif
899 write (evpipe [1], &old_errno, 1);
900
901 errno = old_errno;
902 }
903}
904
693static void 905static void
694siginit (EV_P) 906pipecb (EV_P_ ev_io *iow, int revents)
695{ 907{
696 fd_intern (sigpipe [0]); 908#if EV_USE_EVENTFD
697 fd_intern (sigpipe [1]); 909 if (evfd >= 0)
910 {
911 uint64_t counter = 1;
912 read (evfd, &counter, sizeof (uint64_t));
913 }
914 else
915#endif
916 {
917 char dummy;
918 read (evpipe [0], &dummy, 1);
919 }
698 920
699 ev_io_set (&sigev, sigpipe [0], EV_READ); 921 if (gotsig && ev_is_default_loop (EV_A))
700 ev_io_start (EV_A_ &sigev); 922 {
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 923 int signum;
924 gotsig = 0;
925
926 for (signum = signalmax; signum--; )
927 if (signals [signum].gotsig)
928 ev_feed_signal_event (EV_A_ signum + 1);
929 }
930
931#if EV_ASYNC_ENABLE
932 if (gotasync)
933 {
934 int i;
935 gotasync = 0;
936
937 for (i = asynccnt; i--; )
938 if (asyncs [i]->sent)
939 {
940 asyncs [i]->sent = 0;
941 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
942 }
943 }
944#endif
702} 945}
703 946
704/*****************************************************************************/ 947/*****************************************************************************/
705 948
706static struct ev_child *childs [PID_HASHSIZE]; 949static void
950ev_sighandler (int signum)
951{
952#if EV_MULTIPLICITY
953 struct ev_loop *loop = &default_loop_struct;
954#endif
955
956#if _WIN32
957 signal (signum, ev_sighandler);
958#endif
959
960 signals [signum - 1].gotsig = 1;
961 evpipe_write (EV_A_ &gotsig);
962}
963
964void noinline
965ev_feed_signal_event (EV_P_ int signum)
966{
967 WL w;
968
969#if EV_MULTIPLICITY
970 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
971#endif
972
973 --signum;
974
975 if (signum < 0 || signum >= signalmax)
976 return;
977
978 signals [signum].gotsig = 0;
979
980 for (w = signals [signum].head; w; w = w->next)
981 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
982}
983
984/*****************************************************************************/
985
986static WL childs [EV_PID_HASHSIZE];
707 987
708#ifndef _WIN32 988#ifndef _WIN32
709 989
710static struct ev_signal childev; 990static ev_signal childev;
991
992#ifndef WIFCONTINUED
993# define WIFCONTINUED(status) 0
994#endif
995
996void inline_speed
997child_reap (EV_P_ int chain, int pid, int status)
998{
999 ev_child *w;
1000 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1001
1002 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1003 {
1004 if ((w->pid == pid || !w->pid)
1005 && (!traced || (w->flags & 1)))
1006 {
1007 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1008 w->rpid = pid;
1009 w->rstatus = status;
1010 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1011 }
1012 }
1013}
711 1014
712#ifndef WCONTINUED 1015#ifndef WCONTINUED
713# define WCONTINUED 0 1016# define WCONTINUED 0
714#endif 1017#endif
715 1018
716static void 1019static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 1020childcb (EV_P_ ev_signal *sw, int revents)
733{ 1021{
734 int pid, status; 1022 int pid, status;
735 1023
1024 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1025 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 1026 if (!WCONTINUED
1027 || errno != EINVAL
1028 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1029 return;
1030
738 /* make sure we are called again until all childs have been reaped */ 1031 /* make sure we are called again until all children have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 1032 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1033 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 1034
742 child_reap (EV_A_ sw, pid, pid, status); 1035 child_reap (EV_A_ pid, pid, status);
1036 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1037 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 1038}
746 1039
747#endif 1040#endif
748 1041
749/*****************************************************************************/ 1042/*****************************************************************************/
775{ 1068{
776 return EV_VERSION_MINOR; 1069 return EV_VERSION_MINOR;
777} 1070}
778 1071
779/* return true if we are running with elevated privileges and should ignore env variables */ 1072/* return true if we are running with elevated privileges and should ignore env variables */
780static int 1073int inline_size
781enable_secure (void) 1074enable_secure (void)
782{ 1075{
783#ifdef _WIN32 1076#ifdef _WIN32
784 return 0; 1077 return 0;
785#else 1078#else
821} 1114}
822 1115
823unsigned int 1116unsigned int
824ev_embeddable_backends (void) 1117ev_embeddable_backends (void)
825{ 1118{
826 return EVBACKEND_EPOLL 1119 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
827 | EVBACKEND_KQUEUE 1120
828 | EVBACKEND_PORT; 1121 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1122 /* please fix it and tell me how to detect the fix */
1123 flags &= ~EVBACKEND_EPOLL;
1124
1125 return flags;
829} 1126}
830 1127
831unsigned int 1128unsigned int
832ev_backend (EV_P) 1129ev_backend (EV_P)
833{ 1130{
834 return backend; 1131 return backend;
835} 1132}
836 1133
837static void 1134unsigned int
1135ev_loop_count (EV_P)
1136{
1137 return loop_count;
1138}
1139
1140void
1141ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1142{
1143 io_blocktime = interval;
1144}
1145
1146void
1147ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 timeout_blocktime = interval;
1150}
1151
1152static void noinline
838loop_init (EV_P_ unsigned int flags) 1153loop_init (EV_P_ unsigned int flags)
839{ 1154{
840 if (!backend) 1155 if (!backend)
841 { 1156 {
842#if EV_USE_MONOTONIC 1157#if EV_USE_MONOTONIC
845 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1160 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
846 have_monotonic = 1; 1161 have_monotonic = 1;
847 } 1162 }
848#endif 1163#endif
849 1164
850 ev_rt_now = ev_time (); 1165 ev_rt_now = ev_time ();
851 mn_now = get_clock (); 1166 mn_now = get_clock ();
852 now_floor = mn_now; 1167 now_floor = mn_now;
853 rtmn_diff = ev_rt_now - mn_now; 1168 rtmn_diff = ev_rt_now - mn_now;
1169
1170 io_blocktime = 0.;
1171 timeout_blocktime = 0.;
1172 backend = 0;
1173 backend_fd = -1;
1174 gotasync = 0;
1175#if EV_USE_INOTIFY
1176 fs_fd = -2;
1177#endif
1178
1179 /* pid check not overridable via env */
1180#ifndef _WIN32
1181 if (flags & EVFLAG_FORKCHECK)
1182 curpid = getpid ();
1183#endif
854 1184
855 if (!(flags & EVFLAG_NOENV) 1185 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 1186 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 1187 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 1188 flags = atoi (getenv ("LIBEV_FLAGS"));
859 1189
860 if (!(flags & 0x0000ffffUL)) 1190 if (!(flags & 0x0000ffffU))
861 flags |= ev_recommended_backends (); 1191 flags |= ev_recommended_backends ();
862 1192
863 backend = 0;
864#if EV_USE_PORT 1193#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 1195#endif
867#if EV_USE_KQUEUE 1196#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1197 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
875#endif 1204#endif
876#if EV_USE_SELECT 1205#if EV_USE_SELECT
877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1206 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
878#endif 1207#endif
879 1208
880 ev_init (&sigev, sigcb); 1209 ev_init (&pipeev, pipecb);
881 ev_set_priority (&sigev, EV_MAXPRI); 1210 ev_set_priority (&pipeev, EV_MAXPRI);
882 } 1211 }
883} 1212}
884 1213
885static void 1214static void noinline
886loop_destroy (EV_P) 1215loop_destroy (EV_P)
887{ 1216{
888 int i; 1217 int i;
1218
1219 if (ev_is_active (&pipeev))
1220 {
1221 ev_ref (EV_A); /* signal watcher */
1222 ev_io_stop (EV_A_ &pipeev);
1223
1224#if EV_USE_EVENTFD
1225 if (evfd >= 0)
1226 close (evfd);
1227#endif
1228
1229 if (evpipe [0] >= 0)
1230 {
1231 close (evpipe [0]);
1232 close (evpipe [1]);
1233 }
1234 }
1235
1236#if EV_USE_INOTIFY
1237 if (fs_fd >= 0)
1238 close (fs_fd);
1239#endif
1240
1241 if (backend_fd >= 0)
1242 close (backend_fd);
889 1243
890#if EV_USE_PORT 1244#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1245 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1246#endif
893#if EV_USE_KQUEUE 1247#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1256#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1257 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1258#endif
905 1259
906 for (i = NUMPRI; i--; ) 1260 for (i = NUMPRI; i--; )
1261 {
907 array_free (pending, [i]); 1262 array_free (pending, [i]);
1263#if EV_IDLE_ENABLE
1264 array_free (idle, [i]);
1265#endif
1266 }
1267
1268 ev_free (anfds); anfdmax = 0;
908 1269
909 /* have to use the microsoft-never-gets-it-right macro */ 1270 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 1271 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1272 array_free (timer, EMPTY);
912#if EV_PERIODICS 1273#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1274 array_free (periodic, EMPTY);
914#endif 1275#endif
1276#if EV_FORK_ENABLE
915 array_free (idle, EMPTY0); 1277 array_free (fork, EMPTY);
1278#endif
916 array_free (prepare, EMPTY0); 1279 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1280 array_free (check, EMPTY);
1281#if EV_ASYNC_ENABLE
1282 array_free (async, EMPTY);
1283#endif
918 1284
919 backend = 0; 1285 backend = 0;
920} 1286}
921 1287
922static void 1288void inline_size infy_fork (EV_P);
1289
1290void inline_size
923loop_fork (EV_P) 1291loop_fork (EV_P)
924{ 1292{
925#if EV_USE_PORT 1293#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1294 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1295#endif
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1297 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1298#endif
931#if EV_USE_EPOLL 1299#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1300 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
933#endif 1301#endif
1302#if EV_USE_INOTIFY
1303 infy_fork (EV_A);
1304#endif
934 1305
935 if (ev_is_active (&sigev)) 1306 if (ev_is_active (&pipeev))
936 { 1307 {
937 /* default loop */ 1308 /* this "locks" the handlers against writing to the pipe */
1309 /* while we modify the fd vars */
1310 gotsig = 1;
1311#if EV_ASYNC_ENABLE
1312 gotasync = 1;
1313#endif
938 1314
939 ev_ref (EV_A); 1315 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev); 1316 ev_io_stop (EV_A_ &pipeev);
1317
1318#if EV_USE_EVENTFD
1319 if (evfd >= 0)
1320 close (evfd);
1321#endif
1322
1323 if (evpipe [0] >= 0)
1324 {
941 close (sigpipe [0]); 1325 close (evpipe [0]);
942 close (sigpipe [1]); 1326 close (evpipe [1]);
1327 }
943 1328
944 while (pipe (sigpipe))
945 syserr ("(libev) error creating pipe");
946
947 siginit (EV_A); 1329 evpipe_init (EV_A);
1330 /* now iterate over everything, in case we missed something */
1331 pipecb (EV_A_ &pipeev, EV_READ);
948 } 1332 }
949 1333
950 postfork = 0; 1334 postfork = 0;
951} 1335}
952 1336
974} 1358}
975 1359
976void 1360void
977ev_loop_fork (EV_P) 1361ev_loop_fork (EV_P)
978{ 1362{
979 postfork = 1; 1363 postfork = 1; /* must be in line with ev_default_fork */
980} 1364}
981 1365
982#endif 1366#endif
983 1367
984#if EV_MULTIPLICITY 1368#if EV_MULTIPLICITY
987#else 1371#else
988int 1372int
989ev_default_loop (unsigned int flags) 1373ev_default_loop (unsigned int flags)
990#endif 1374#endif
991{ 1375{
992 if (sigpipe [0] == sigpipe [1])
993 if (pipe (sigpipe))
994 return 0;
995
996 if (!ev_default_loop_ptr) 1376 if (!ev_default_loop_ptr)
997 { 1377 {
998#if EV_MULTIPLICITY 1378#if EV_MULTIPLICITY
999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1379 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1000#else 1380#else
1003 1383
1004 loop_init (EV_A_ flags); 1384 loop_init (EV_A_ flags);
1005 1385
1006 if (ev_backend (EV_A)) 1386 if (ev_backend (EV_A))
1007 { 1387 {
1008 siginit (EV_A);
1009
1010#ifndef _WIN32 1388#ifndef _WIN32
1011 ev_signal_init (&childev, childcb, SIGCHLD); 1389 ev_signal_init (&childev, childcb, SIGCHLD);
1012 ev_set_priority (&childev, EV_MAXPRI); 1390 ev_set_priority (&childev, EV_MAXPRI);
1013 ev_signal_start (EV_A_ &childev); 1391 ev_signal_start (EV_A_ &childev);
1014 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1392 ev_unref (EV_A); /* child watcher should not keep loop alive */
1031#ifndef _WIN32 1409#ifndef _WIN32
1032 ev_ref (EV_A); /* child watcher */ 1410 ev_ref (EV_A); /* child watcher */
1033 ev_signal_stop (EV_A_ &childev); 1411 ev_signal_stop (EV_A_ &childev);
1034#endif 1412#endif
1035 1413
1036 ev_ref (EV_A); /* signal watcher */
1037 ev_io_stop (EV_A_ &sigev);
1038
1039 close (sigpipe [0]); sigpipe [0] = 0;
1040 close (sigpipe [1]); sigpipe [1] = 0;
1041
1042 loop_destroy (EV_A); 1414 loop_destroy (EV_A);
1043} 1415}
1044 1416
1045void 1417void
1046ev_default_fork (void) 1418ev_default_fork (void)
1048#if EV_MULTIPLICITY 1420#if EV_MULTIPLICITY
1049 struct ev_loop *loop = ev_default_loop_ptr; 1421 struct ev_loop *loop = ev_default_loop_ptr;
1050#endif 1422#endif
1051 1423
1052 if (backend) 1424 if (backend)
1053 postfork = 1; 1425 postfork = 1; /* must be in line with ev_loop_fork */
1054} 1426}
1055 1427
1056/*****************************************************************************/ 1428/*****************************************************************************/
1057 1429
1058static int 1430void
1059any_pending (EV_P) 1431ev_invoke (EV_P_ void *w, int revents)
1060{ 1432{
1061 int pri; 1433 EV_CB_INVOKE ((W)w, revents);
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068} 1434}
1069 1435
1070inline void 1436void inline_speed
1071call_pending (EV_P) 1437call_pending (EV_P)
1072{ 1438{
1073 int pri; 1439 int pri;
1074 1440
1075 for (pri = NUMPRI; pri--; ) 1441 for (pri = NUMPRI; pri--; )
1077 { 1443 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1444 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1445
1080 if (expect_true (p->w)) 1446 if (expect_true (p->w))
1081 { 1447 {
1448 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1449
1082 p->w->pending = 0; 1450 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1451 EV_CB_INVOKE (p->w, p->events);
1084 } 1452 }
1085 } 1453 }
1086} 1454}
1087 1455
1088inline void 1456void inline_size
1089timers_reify (EV_P) 1457timers_reify (EV_P)
1090{ 1458{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1459 while (timercnt && ((WT)timers [0])->at <= mn_now)
1092 { 1460 {
1093 struct ev_timer *w = timers [0]; 1461 ev_timer *w = (ev_timer *)timers [0];
1094 1462
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1463 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1096 1464
1097 /* first reschedule or stop timer */ 1465 /* first reschedule or stop timer */
1098 if (w->repeat) 1466 if (w->repeat)
1099 { 1467 {
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1468 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 1469
1102 ((WT)w)->at += w->repeat; 1470 ((WT)w)->at += w->repeat;
1103 if (((WT)w)->at < mn_now) 1471 if (((WT)w)->at < mn_now)
1104 ((WT)w)->at = mn_now; 1472 ((WT)w)->at = mn_now;
1105 1473
1106 downheap ((WT *)timers, timercnt, 0); 1474 downheap (timers, timercnt, 0);
1107 } 1475 }
1108 else 1476 else
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1477 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 1478
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1479 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1480 }
1113} 1481}
1114 1482
1115#if EV_PERIODICS 1483#if EV_PERIODIC_ENABLE
1116inline void 1484void inline_size
1117periodics_reify (EV_P) 1485periodics_reify (EV_P)
1118{ 1486{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1487 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1120 { 1488 {
1121 struct ev_periodic *w = periodics [0]; 1489 ev_periodic *w = (ev_periodic *)periodics [0];
1122 1490
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1491 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1492
1125 /* first reschedule or stop timer */ 1493 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1494 if (w->reschedule_cb)
1127 { 1495 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1496 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1497 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1130 downheap ((WT *)periodics, periodiccnt, 0); 1498 downheap (periodics, periodiccnt, 0);
1131 } 1499 }
1132 else if (w->interval) 1500 else if (w->interval)
1133 { 1501 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1502 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1503 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1504 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0); 1505 downheap (periodics, periodiccnt, 0);
1137 } 1506 }
1138 else 1507 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1508 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 1509
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1510 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1511 }
1143} 1512}
1144 1513
1145static void 1514static void noinline
1146periodics_reschedule (EV_P) 1515periodics_reschedule (EV_P)
1147{ 1516{
1148 int i; 1517 int i;
1149 1518
1150 /* adjust periodics after time jump */ 1519 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1520 for (i = 0; i < periodiccnt; ++i)
1152 { 1521 {
1153 struct ev_periodic *w = periodics [i]; 1522 ev_periodic *w = (ev_periodic *)periodics [i];
1154 1523
1155 if (w->reschedule_cb) 1524 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1525 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1526 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1527 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1159 } 1528 }
1160 1529
1161 /* now rebuild the heap */ 1530 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; ) 1531 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1532 downheap (periodics, periodiccnt, i);
1164} 1533}
1165#endif 1534#endif
1166 1535
1167inline int 1536#if EV_IDLE_ENABLE
1168time_update_monotonic (EV_P) 1537void inline_size
1538idle_reify (EV_P)
1169{ 1539{
1540 if (expect_false (idleall))
1541 {
1542 int pri;
1543
1544 for (pri = NUMPRI; pri--; )
1545 {
1546 if (pendingcnt [pri])
1547 break;
1548
1549 if (idlecnt [pri])
1550 {
1551 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1552 break;
1553 }
1554 }
1555 }
1556}
1557#endif
1558
1559void inline_speed
1560time_update (EV_P_ ev_tstamp max_block)
1561{
1562 int i;
1563
1564#if EV_USE_MONOTONIC
1565 if (expect_true (have_monotonic))
1566 {
1567 ev_tstamp odiff = rtmn_diff;
1568
1170 mn_now = get_clock (); 1569 mn_now = get_clock ();
1171 1570
1571 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1572 /* interpolate in the meantime */
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1573 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 { 1574 {
1174 ev_rt_now = rtmn_diff + mn_now; 1575 ev_rt_now = rtmn_diff + mn_now;
1175 return 0; 1576 return;
1176 } 1577 }
1177 else 1578
1178 {
1179 now_floor = mn_now; 1579 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 1580 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 1581
1185inline void 1582 /* loop a few times, before making important decisions.
1186time_update (EV_P) 1583 * on the choice of "4": one iteration isn't enough,
1187{ 1584 * in case we get preempted during the calls to
1188 int i; 1585 * ev_time and get_clock. a second call is almost guaranteed
1189 1586 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 1587 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 1588 * in the unlikely event of having been preempted here.
1192 { 1589 */
1193 if (time_update_monotonic (EV_A)) 1590 for (i = 4; --i; )
1194 { 1591 {
1195 ev_tstamp odiff = rtmn_diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now; 1592 rtmn_diff = ev_rt_now - mn_now;
1200 1593
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1594 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1202 return; /* all is well */ 1595 return; /* all is well */
1203 1596
1204 ev_rt_now = ev_time (); 1597 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1598 mn_now = get_clock ();
1206 now_floor = mn_now; 1599 now_floor = mn_now;
1207 } 1600 }
1208 1601
1209# if EV_PERIODICS 1602# if EV_PERIODIC_ENABLE
1603 periodics_reschedule (EV_A);
1604# endif
1605 /* no timer adjustment, as the monotonic clock doesn't jump */
1606 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1607 }
1608 else
1609#endif
1610 {
1611 ev_rt_now = ev_time ();
1612
1613 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1614 {
1615#if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 1616 periodics_reschedule (EV_A);
1211# endif 1617#endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1214 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */ 1618 /* adjust timers. this is easy, as the offset is the same for all of them */
1228 for (i = 0; i < timercnt; ++i) 1619 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now; 1620 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 } 1621 }
1231 1622
1232 mn_now = ev_rt_now; 1623 mn_now = ev_rt_now;
1248static int loop_done; 1639static int loop_done;
1249 1640
1250void 1641void
1251ev_loop (EV_P_ int flags) 1642ev_loop (EV_P_ int flags)
1252{ 1643{
1253 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1644 loop_done = EVUNLOOP_CANCEL;
1254 ? EVUNLOOP_ONE
1255 : EVUNLOOP_CANCEL;
1256 1645
1257 while (activecnt) 1646 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1647
1648 do
1258 { 1649 {
1650#ifndef _WIN32
1651 if (expect_false (curpid)) /* penalise the forking check even more */
1652 if (expect_false (getpid () != curpid))
1653 {
1654 curpid = getpid ();
1655 postfork = 1;
1656 }
1657#endif
1658
1659#if EV_FORK_ENABLE
1660 /* we might have forked, so queue fork handlers */
1661 if (expect_false (postfork))
1662 if (forkcnt)
1663 {
1664 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1665 call_pending (EV_A);
1666 }
1667#endif
1668
1259 /* queue check watchers (and execute them) */ 1669 /* queue prepare watchers (and execute them) */
1260 if (expect_false (preparecnt)) 1670 if (expect_false (preparecnt))
1261 { 1671 {
1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1672 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1263 call_pending (EV_A); 1673 call_pending (EV_A);
1264 } 1674 }
1265 1675
1676 if (expect_false (!activecnt))
1677 break;
1678
1266 /* we might have forked, so reify kernel state if necessary */ 1679 /* we might have forked, so reify kernel state if necessary */
1267 if (expect_false (postfork)) 1680 if (expect_false (postfork))
1268 loop_fork (EV_A); 1681 loop_fork (EV_A);
1269 1682
1270 /* update fd-related kernel structures */ 1683 /* update fd-related kernel structures */
1271 fd_reify (EV_A); 1684 fd_reify (EV_A);
1272 1685
1273 /* calculate blocking time */ 1686 /* calculate blocking time */
1274 { 1687 {
1275 double block; 1688 ev_tstamp waittime = 0.;
1689 ev_tstamp sleeptime = 0.;
1276 1690
1277 if (flags & EVLOOP_NONBLOCK || idlecnt) 1691 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1278 block = 0.; /* do not block at all */
1279 else
1280 { 1692 {
1281 /* update time to cancel out callback processing overhead */ 1693 /* update time to cancel out callback processing overhead */
1282#if EV_USE_MONOTONIC
1283 if (expect_true (have_monotonic))
1284 time_update_monotonic (EV_A); 1694 time_update (EV_A_ 1e100);
1285 else
1286#endif
1287 {
1288 ev_rt_now = ev_time ();
1289 mn_now = ev_rt_now;
1290 }
1291 1695
1292 block = MAX_BLOCKTIME; 1696 waittime = MAX_BLOCKTIME;
1293 1697
1294 if (timercnt) 1698 if (timercnt)
1295 { 1699 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1700 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1297 if (block > to) block = to; 1701 if (waittime > to) waittime = to;
1298 } 1702 }
1299 1703
1300#if EV_PERIODICS 1704#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 1705 if (periodiccnt)
1302 { 1706 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1707 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1304 if (block > to) block = to; 1708 if (waittime > to) waittime = to;
1305 } 1709 }
1306#endif 1710#endif
1307 1711
1308 if (expect_false (block < 0.)) block = 0.; 1712 if (expect_false (waittime < timeout_blocktime))
1713 waittime = timeout_blocktime;
1714
1715 sleeptime = waittime - backend_fudge;
1716
1717 if (expect_true (sleeptime > io_blocktime))
1718 sleeptime = io_blocktime;
1719
1720 if (sleeptime)
1721 {
1722 ev_sleep (sleeptime);
1723 waittime -= sleeptime;
1724 }
1309 } 1725 }
1310 1726
1727 ++loop_count;
1311 backend_poll (EV_A_ block); 1728 backend_poll (EV_A_ waittime);
1729
1730 /* update ev_rt_now, do magic */
1731 time_update (EV_A_ waittime + sleeptime);
1312 } 1732 }
1313
1314 /* update ev_rt_now, do magic */
1315 time_update (EV_A);
1316 1733
1317 /* queue pending timers and reschedule them */ 1734 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 1735 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 1736#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 1737 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 1738#endif
1322 1739
1740#if EV_IDLE_ENABLE
1323 /* queue idle watchers unless io or timers are pending */ 1741 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 1742 idle_reify (EV_A);
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1743#endif
1326 1744
1327 /* queue check watchers, to be executed first */ 1745 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 1746 if (expect_false (checkcnt))
1329 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1747 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1330 1748
1331 call_pending (EV_A); 1749 call_pending (EV_A);
1332
1333 if (expect_false (loop_done))
1334 break;
1335 } 1750 }
1751 while (expect_true (
1752 activecnt
1753 && !loop_done
1754 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1755 ));
1336 1756
1337 if (loop_done == EVUNLOOP_ONE) 1757 if (loop_done == EVUNLOOP_ONE)
1338 loop_done = EVUNLOOP_CANCEL; 1758 loop_done = EVUNLOOP_CANCEL;
1339} 1759}
1340 1760
1344 loop_done = how; 1764 loop_done = how;
1345} 1765}
1346 1766
1347/*****************************************************************************/ 1767/*****************************************************************************/
1348 1768
1349inline void 1769void inline_size
1350wlist_add (WL *head, WL elem) 1770wlist_add (WL *head, WL elem)
1351{ 1771{
1352 elem->next = *head; 1772 elem->next = *head;
1353 *head = elem; 1773 *head = elem;
1354} 1774}
1355 1775
1356inline void 1776void inline_size
1357wlist_del (WL *head, WL elem) 1777wlist_del (WL *head, WL elem)
1358{ 1778{
1359 while (*head) 1779 while (*head)
1360 { 1780 {
1361 if (*head == elem) 1781 if (*head == elem)
1366 1786
1367 head = &(*head)->next; 1787 head = &(*head)->next;
1368 } 1788 }
1369} 1789}
1370 1790
1371inline void 1791void inline_speed
1372ev_clear_pending (EV_P_ W w) 1792clear_pending (EV_P_ W w)
1373{ 1793{
1374 if (w->pending) 1794 if (w->pending)
1375 { 1795 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1796 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1377 w->pending = 0; 1797 w->pending = 0;
1378 } 1798 }
1379} 1799}
1380 1800
1381inline void 1801int
1802ev_clear_pending (EV_P_ void *w)
1803{
1804 W w_ = (W)w;
1805 int pending = w_->pending;
1806
1807 if (expect_true (pending))
1808 {
1809 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1810 w_->pending = 0;
1811 p->w = 0;
1812 return p->events;
1813 }
1814 else
1815 return 0;
1816}
1817
1818void inline_size
1819pri_adjust (EV_P_ W w)
1820{
1821 int pri = w->priority;
1822 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1823 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1824 w->priority = pri;
1825}
1826
1827void inline_speed
1382ev_start (EV_P_ W w, int active) 1828ev_start (EV_P_ W w, int active)
1383{ 1829{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1830 pri_adjust (EV_A_ w);
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386
1387 w->active = active; 1831 w->active = active;
1388 ev_ref (EV_A); 1832 ev_ref (EV_A);
1389} 1833}
1390 1834
1391inline void 1835void inline_size
1392ev_stop (EV_P_ W w) 1836ev_stop (EV_P_ W w)
1393{ 1837{
1394 ev_unref (EV_A); 1838 ev_unref (EV_A);
1395 w->active = 0; 1839 w->active = 0;
1396} 1840}
1397 1841
1398/*****************************************************************************/ 1842/*****************************************************************************/
1399 1843
1400void 1844void noinline
1401ev_io_start (EV_P_ struct ev_io *w) 1845ev_io_start (EV_P_ ev_io *w)
1402{ 1846{
1403 int fd = w->fd; 1847 int fd = w->fd;
1404 1848
1405 if (expect_false (ev_is_active (w))) 1849 if (expect_false (ev_is_active (w)))
1406 return; 1850 return;
1407 1851
1408 assert (("ev_io_start called with negative fd", fd >= 0)); 1852 assert (("ev_io_start called with negative fd", fd >= 0));
1409 1853
1410 ev_start (EV_A_ (W)w, 1); 1854 ev_start (EV_A_ (W)w, 1);
1411 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1855 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1412 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1856 wlist_add (&anfds[fd].head, (WL)w);
1413 1857
1414 fd_change (EV_A_ fd); 1858 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1859 w->events &= ~EV_IOFDSET;
1415} 1860}
1416 1861
1417void 1862void noinline
1418ev_io_stop (EV_P_ struct ev_io *w) 1863ev_io_stop (EV_P_ ev_io *w)
1419{ 1864{
1420 ev_clear_pending (EV_A_ (W)w); 1865 clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 1866 if (expect_false (!ev_is_active (w)))
1422 return; 1867 return;
1423 1868
1424 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1869 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1425 1870
1426 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1871 wlist_del (&anfds[w->fd].head, (WL)w);
1427 ev_stop (EV_A_ (W)w); 1872 ev_stop (EV_A_ (W)w);
1428 1873
1429 fd_change (EV_A_ w->fd); 1874 fd_change (EV_A_ w->fd, 1);
1430} 1875}
1431 1876
1432void 1877void noinline
1433ev_timer_start (EV_P_ struct ev_timer *w) 1878ev_timer_start (EV_P_ ev_timer *w)
1434{ 1879{
1435 if (expect_false (ev_is_active (w))) 1880 if (expect_false (ev_is_active (w)))
1436 return; 1881 return;
1437 1882
1438 ((WT)w)->at += mn_now; 1883 ((WT)w)->at += mn_now;
1439 1884
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1885 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 1886
1442 ev_start (EV_A_ (W)w, ++timercnt); 1887 ev_start (EV_A_ (W)w, ++timercnt);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1888 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1444 timers [timercnt - 1] = w; 1889 timers [timercnt - 1] = (WT)w;
1445 upheap ((WT *)timers, timercnt - 1); 1890 upheap (timers, timercnt - 1);
1446 1891
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1892 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1448} 1893}
1449 1894
1450void 1895void noinline
1451ev_timer_stop (EV_P_ struct ev_timer *w) 1896ev_timer_stop (EV_P_ ev_timer *w)
1452{ 1897{
1453 ev_clear_pending (EV_A_ (W)w); 1898 clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 1899 if (expect_false (!ev_is_active (w)))
1455 return; 1900 return;
1456 1901
1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1902 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1458 1903
1904 {
1905 int active = ((W)w)->active;
1906
1459 if (expect_true (((W)w)->active < timercnt--)) 1907 if (expect_true (--active < --timercnt))
1460 { 1908 {
1461 timers [((W)w)->active - 1] = timers [timercnt]; 1909 timers [active] = timers [timercnt];
1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1910 adjustheap (timers, timercnt, active);
1463 } 1911 }
1912 }
1464 1913
1465 ((WT)w)->at -= mn_now; 1914 ((WT)w)->at -= mn_now;
1466 1915
1467 ev_stop (EV_A_ (W)w); 1916 ev_stop (EV_A_ (W)w);
1468} 1917}
1469 1918
1470void 1919void noinline
1471ev_timer_again (EV_P_ struct ev_timer *w) 1920ev_timer_again (EV_P_ ev_timer *w)
1472{ 1921{
1473 if (ev_is_active (w)) 1922 if (ev_is_active (w))
1474 { 1923 {
1475 if (w->repeat) 1924 if (w->repeat)
1476 { 1925 {
1477 ((WT)w)->at = mn_now + w->repeat; 1926 ((WT)w)->at = mn_now + w->repeat;
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1927 adjustheap (timers, timercnt, ((W)w)->active - 1);
1479 } 1928 }
1480 else 1929 else
1481 ev_timer_stop (EV_A_ w); 1930 ev_timer_stop (EV_A_ w);
1482 } 1931 }
1483 else if (w->repeat) 1932 else if (w->repeat)
1485 w->at = w->repeat; 1934 w->at = w->repeat;
1486 ev_timer_start (EV_A_ w); 1935 ev_timer_start (EV_A_ w);
1487 } 1936 }
1488} 1937}
1489 1938
1490#if EV_PERIODICS 1939#if EV_PERIODIC_ENABLE
1491void 1940void noinline
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 1941ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 1942{
1494 if (expect_false (ev_is_active (w))) 1943 if (expect_false (ev_is_active (w)))
1495 return; 1944 return;
1496 1945
1497 if (w->reschedule_cb) 1946 if (w->reschedule_cb)
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1947 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1499 else if (w->interval) 1948 else if (w->interval)
1500 { 1949 {
1501 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1950 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 1951 /* this formula differs from the one in periodic_reify because we do not always round up */
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1952 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1504 } 1953 }
1954 else
1955 ((WT)w)->at = w->offset;
1505 1956
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 1957 ev_start (EV_A_ (W)w, ++periodiccnt);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1958 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 1959 periodics [periodiccnt - 1] = (WT)w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 1960 upheap (periodics, periodiccnt - 1);
1510 1961
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1962 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1512} 1963}
1513 1964
1514void 1965void noinline
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 1966ev_periodic_stop (EV_P_ ev_periodic *w)
1516{ 1967{
1517 ev_clear_pending (EV_A_ (W)w); 1968 clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 1969 if (expect_false (!ev_is_active (w)))
1519 return; 1970 return;
1520 1971
1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1972 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1522 1973
1974 {
1975 int active = ((W)w)->active;
1976
1523 if (expect_true (((W)w)->active < periodiccnt--)) 1977 if (expect_true (--active < --periodiccnt))
1524 { 1978 {
1525 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1979 periodics [active] = periodics [periodiccnt];
1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1980 adjustheap (periodics, periodiccnt, active);
1527 } 1981 }
1982 }
1528 1983
1529 ev_stop (EV_A_ (W)w); 1984 ev_stop (EV_A_ (W)w);
1530} 1985}
1531 1986
1532void 1987void noinline
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 1988ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 1989{
1535 /* TODO: use adjustheap and recalculation */ 1990 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 1991 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 1992 ev_periodic_start (EV_A_ w);
1538} 1993}
1539#endif 1994#endif
1540 1995
1541void
1542ev_idle_start (EV_P_ struct ev_idle *w)
1543{
1544 if (expect_false (ev_is_active (w)))
1545 return;
1546
1547 ev_start (EV_A_ (W)w, ++idlecnt);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1549 idles [idlecnt - 1] = w;
1550}
1551
1552void
1553ev_idle_stop (EV_P_ struct ev_idle *w)
1554{
1555 ev_clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w)))
1557 return;
1558
1559 idles [((W)w)->active - 1] = idles [--idlecnt];
1560 ev_stop (EV_A_ (W)w);
1561}
1562
1563void
1564ev_prepare_start (EV_P_ struct ev_prepare *w)
1565{
1566 if (expect_false (ev_is_active (w)))
1567 return;
1568
1569 ev_start (EV_A_ (W)w, ++preparecnt);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1571 prepares [preparecnt - 1] = w;
1572}
1573
1574void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w)
1576{
1577 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w)))
1579 return;
1580
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1582 ev_stop (EV_A_ (W)w);
1583}
1584
1585void
1586ev_check_start (EV_P_ struct ev_check *w)
1587{
1588 if (expect_false (ev_is_active (w)))
1589 return;
1590
1591 ev_start (EV_A_ (W)w, ++checkcnt);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1593 checks [checkcnt - 1] = w;
1594}
1595
1596void
1597ev_check_stop (EV_P_ struct ev_check *w)
1598{
1599 ev_clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w)))
1601 return;
1602
1603 checks [((W)w)->active - 1] = checks [--checkcnt];
1604 ev_stop (EV_A_ (W)w);
1605}
1606
1607#ifndef SA_RESTART 1996#ifndef SA_RESTART
1608# define SA_RESTART 0 1997# define SA_RESTART 0
1609#endif 1998#endif
1610 1999
1611void 2000void noinline
1612ev_signal_start (EV_P_ struct ev_signal *w) 2001ev_signal_start (EV_P_ ev_signal *w)
1613{ 2002{
1614#if EV_MULTIPLICITY 2003#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2004 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif 2005#endif
1617 if (expect_false (ev_is_active (w))) 2006 if (expect_false (ev_is_active (w)))
1618 return; 2007 return;
1619 2008
1620 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2009 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1621 2010
2011 evpipe_init (EV_A);
2012
2013 {
2014#ifndef _WIN32
2015 sigset_t full, prev;
2016 sigfillset (&full);
2017 sigprocmask (SIG_SETMASK, &full, &prev);
2018#endif
2019
2020 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2021
2022#ifndef _WIN32
2023 sigprocmask (SIG_SETMASK, &prev, 0);
2024#endif
2025 }
2026
1622 ev_start (EV_A_ (W)w, 1); 2027 ev_start (EV_A_ (W)w, 1);
1623 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1624 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2028 wlist_add (&signals [w->signum - 1].head, (WL)w);
1625 2029
1626 if (!((WL)w)->next) 2030 if (!((WL)w)->next)
1627 { 2031 {
1628#if _WIN32 2032#if _WIN32
1629 signal (w->signum, sighandler); 2033 signal (w->signum, ev_sighandler);
1630#else 2034#else
1631 struct sigaction sa; 2035 struct sigaction sa;
1632 sa.sa_handler = sighandler; 2036 sa.sa_handler = ev_sighandler;
1633 sigfillset (&sa.sa_mask); 2037 sigfillset (&sa.sa_mask);
1634 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2038 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1635 sigaction (w->signum, &sa, 0); 2039 sigaction (w->signum, &sa, 0);
1636#endif 2040#endif
1637 } 2041 }
1638} 2042}
1639 2043
1640void 2044void noinline
1641ev_signal_stop (EV_P_ struct ev_signal *w) 2045ev_signal_stop (EV_P_ ev_signal *w)
1642{ 2046{
1643 ev_clear_pending (EV_A_ (W)w); 2047 clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 2048 if (expect_false (!ev_is_active (w)))
1645 return; 2049 return;
1646 2050
1647 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2051 wlist_del (&signals [w->signum - 1].head, (WL)w);
1648 ev_stop (EV_A_ (W)w); 2052 ev_stop (EV_A_ (W)w);
1649 2053
1650 if (!signals [w->signum - 1].head) 2054 if (!signals [w->signum - 1].head)
1651 signal (w->signum, SIG_DFL); 2055 signal (w->signum, SIG_DFL);
1652} 2056}
1653 2057
1654void 2058void
1655ev_child_start (EV_P_ struct ev_child *w) 2059ev_child_start (EV_P_ ev_child *w)
1656{ 2060{
1657#if EV_MULTIPLICITY 2061#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2062 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif 2063#endif
1660 if (expect_false (ev_is_active (w))) 2064 if (expect_false (ev_is_active (w)))
1661 return; 2065 return;
1662 2066
1663 ev_start (EV_A_ (W)w, 1); 2067 ev_start (EV_A_ (W)w, 1);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2068 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1665} 2069}
1666 2070
1667void 2071void
1668ev_child_stop (EV_P_ struct ev_child *w) 2072ev_child_stop (EV_P_ ev_child *w)
1669{ 2073{
1670 ev_clear_pending (EV_A_ (W)w); 2074 clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 2075 if (expect_false (!ev_is_active (w)))
1672 return; 2076 return;
1673 2077
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2078 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1675 ev_stop (EV_A_ (W)w); 2079 ev_stop (EV_A_ (W)w);
1676} 2080}
1677 2081
1678#if EV_MULTIPLICITY 2082#if EV_STAT_ENABLE
2083
2084# ifdef _WIN32
2085# undef lstat
2086# define lstat(a,b) _stati64 (a,b)
2087# endif
2088
2089#define DEF_STAT_INTERVAL 5.0074891
2090#define MIN_STAT_INTERVAL 0.1074891
2091
2092static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2093
2094#if EV_USE_INOTIFY
2095# define EV_INOTIFY_BUFSIZE 8192
2096
2097static void noinline
2098infy_add (EV_P_ ev_stat *w)
2099{
2100 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2101
2102 if (w->wd < 0)
2103 {
2104 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2105
2106 /* monitor some parent directory for speedup hints */
2107 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2108 {
2109 char path [4096];
2110 strcpy (path, w->path);
2111
2112 do
2113 {
2114 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2115 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2116
2117 char *pend = strrchr (path, '/');
2118
2119 if (!pend)
2120 break; /* whoops, no '/', complain to your admin */
2121
2122 *pend = 0;
2123 w->wd = inotify_add_watch (fs_fd, path, mask);
2124 }
2125 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2126 }
2127 }
2128 else
2129 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2130
2131 if (w->wd >= 0)
2132 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2133}
2134
2135static void noinline
2136infy_del (EV_P_ ev_stat *w)
2137{
2138 int slot;
2139 int wd = w->wd;
2140
2141 if (wd < 0)
2142 return;
2143
2144 w->wd = -2;
2145 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2146 wlist_del (&fs_hash [slot].head, (WL)w);
2147
2148 /* remove this watcher, if others are watching it, they will rearm */
2149 inotify_rm_watch (fs_fd, wd);
2150}
2151
2152static void noinline
2153infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2154{
2155 if (slot < 0)
2156 /* overflow, need to check for all hahs slots */
2157 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2158 infy_wd (EV_A_ slot, wd, ev);
2159 else
2160 {
2161 WL w_;
2162
2163 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2164 {
2165 ev_stat *w = (ev_stat *)w_;
2166 w_ = w_->next; /* lets us remove this watcher and all before it */
2167
2168 if (w->wd == wd || wd == -1)
2169 {
2170 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2171 {
2172 w->wd = -1;
2173 infy_add (EV_A_ w); /* re-add, no matter what */
2174 }
2175
2176 stat_timer_cb (EV_A_ &w->timer, 0);
2177 }
2178 }
2179 }
2180}
2181
1679static void 2182static void
1680embed_cb (EV_P_ struct ev_io *io, int revents) 2183infy_cb (EV_P_ ev_io *w, int revents)
1681{ 2184{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 2185 char buf [EV_INOTIFY_BUFSIZE];
2186 struct inotify_event *ev = (struct inotify_event *)buf;
2187 int ofs;
2188 int len = read (fs_fd, buf, sizeof (buf));
1683 2189
2190 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2191 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2192}
2193
2194void inline_size
2195infy_init (EV_P)
2196{
2197 if (fs_fd != -2)
2198 return;
2199
2200 fs_fd = inotify_init ();
2201
2202 if (fs_fd >= 0)
2203 {
2204 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2205 ev_set_priority (&fs_w, EV_MAXPRI);
2206 ev_io_start (EV_A_ &fs_w);
2207 }
2208}
2209
2210void inline_size
2211infy_fork (EV_P)
2212{
2213 int slot;
2214
2215 if (fs_fd < 0)
2216 return;
2217
2218 close (fs_fd);
2219 fs_fd = inotify_init ();
2220
2221 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2222 {
2223 WL w_ = fs_hash [slot].head;
2224 fs_hash [slot].head = 0;
2225
2226 while (w_)
2227 {
2228 ev_stat *w = (ev_stat *)w_;
2229 w_ = w_->next; /* lets us add this watcher */
2230
2231 w->wd = -1;
2232
2233 if (fs_fd >= 0)
2234 infy_add (EV_A_ w); /* re-add, no matter what */
2235 else
2236 ev_timer_start (EV_A_ &w->timer);
2237 }
2238
2239 }
2240}
2241
2242#endif
2243
2244void
2245ev_stat_stat (EV_P_ ev_stat *w)
2246{
2247 if (lstat (w->path, &w->attr) < 0)
2248 w->attr.st_nlink = 0;
2249 else if (!w->attr.st_nlink)
2250 w->attr.st_nlink = 1;
2251}
2252
2253static void noinline
2254stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2255{
2256 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2257
2258 /* we copy this here each the time so that */
2259 /* prev has the old value when the callback gets invoked */
2260 w->prev = w->attr;
2261 ev_stat_stat (EV_A_ w);
2262
2263 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2264 if (
2265 w->prev.st_dev != w->attr.st_dev
2266 || w->prev.st_ino != w->attr.st_ino
2267 || w->prev.st_mode != w->attr.st_mode
2268 || w->prev.st_nlink != w->attr.st_nlink
2269 || w->prev.st_uid != w->attr.st_uid
2270 || w->prev.st_gid != w->attr.st_gid
2271 || w->prev.st_rdev != w->attr.st_rdev
2272 || w->prev.st_size != w->attr.st_size
2273 || w->prev.st_atime != w->attr.st_atime
2274 || w->prev.st_mtime != w->attr.st_mtime
2275 || w->prev.st_ctime != w->attr.st_ctime
2276 ) {
2277 #if EV_USE_INOTIFY
2278 infy_del (EV_A_ w);
2279 infy_add (EV_A_ w);
2280 ev_stat_stat (EV_A_ w); /* avoid race... */
2281 #endif
2282
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2283 ev_feed_event (EV_A_ w, EV_STAT);
1685 ev_loop (w->loop, EVLOOP_NONBLOCK); 2284 }
1686} 2285}
1687 2286
1688void 2287void
1689ev_embed_start (EV_P_ struct ev_embed *w) 2288ev_stat_start (EV_P_ ev_stat *w)
1690{ 2289{
1691 if (expect_false (ev_is_active (w))) 2290 if (expect_false (ev_is_active (w)))
1692 return; 2291 return;
1693 2292
2293 /* since we use memcmp, we need to clear any padding data etc. */
2294 memset (&w->prev, 0, sizeof (ev_statdata));
2295 memset (&w->attr, 0, sizeof (ev_statdata));
2296
2297 ev_stat_stat (EV_A_ w);
2298
2299 if (w->interval < MIN_STAT_INTERVAL)
2300 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2301
2302 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2303 ev_set_priority (&w->timer, ev_priority (w));
2304
2305#if EV_USE_INOTIFY
2306 infy_init (EV_A);
2307
2308 if (fs_fd >= 0)
2309 infy_add (EV_A_ w);
2310 else
2311#endif
2312 ev_timer_start (EV_A_ &w->timer);
2313
2314 ev_start (EV_A_ (W)w, 1);
2315}
2316
2317void
2318ev_stat_stop (EV_P_ ev_stat *w)
2319{
2320 clear_pending (EV_A_ (W)w);
2321 if (expect_false (!ev_is_active (w)))
2322 return;
2323
2324#if EV_USE_INOTIFY
2325 infy_del (EV_A_ w);
2326#endif
2327 ev_timer_stop (EV_A_ &w->timer);
2328
2329 ev_stop (EV_A_ (W)w);
2330}
2331#endif
2332
2333#if EV_IDLE_ENABLE
2334void
2335ev_idle_start (EV_P_ ev_idle *w)
2336{
2337 if (expect_false (ev_is_active (w)))
2338 return;
2339
2340 pri_adjust (EV_A_ (W)w);
2341
1694 { 2342 {
2343 int active = ++idlecnt [ABSPRI (w)];
2344
2345 ++idleall;
2346 ev_start (EV_A_ (W)w, active);
2347
2348 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2349 idles [ABSPRI (w)][active - 1] = w;
2350 }
2351}
2352
2353void
2354ev_idle_stop (EV_P_ ev_idle *w)
2355{
2356 clear_pending (EV_A_ (W)w);
2357 if (expect_false (!ev_is_active (w)))
2358 return;
2359
2360 {
2361 int active = ((W)w)->active;
2362
2363 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2364 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2365
2366 ev_stop (EV_A_ (W)w);
2367 --idleall;
2368 }
2369}
2370#endif
2371
2372void
2373ev_prepare_start (EV_P_ ev_prepare *w)
2374{
2375 if (expect_false (ev_is_active (w)))
2376 return;
2377
2378 ev_start (EV_A_ (W)w, ++preparecnt);
2379 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2380 prepares [preparecnt - 1] = w;
2381}
2382
2383void
2384ev_prepare_stop (EV_P_ ev_prepare *w)
2385{
2386 clear_pending (EV_A_ (W)w);
2387 if (expect_false (!ev_is_active (w)))
2388 return;
2389
2390 {
2391 int active = ((W)w)->active;
2392 prepares [active - 1] = prepares [--preparecnt];
2393 ((W)prepares [active - 1])->active = active;
2394 }
2395
2396 ev_stop (EV_A_ (W)w);
2397}
2398
2399void
2400ev_check_start (EV_P_ ev_check *w)
2401{
2402 if (expect_false (ev_is_active (w)))
2403 return;
2404
2405 ev_start (EV_A_ (W)w, ++checkcnt);
2406 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2407 checks [checkcnt - 1] = w;
2408}
2409
2410void
2411ev_check_stop (EV_P_ ev_check *w)
2412{
2413 clear_pending (EV_A_ (W)w);
2414 if (expect_false (!ev_is_active (w)))
2415 return;
2416
2417 {
2418 int active = ((W)w)->active;
2419 checks [active - 1] = checks [--checkcnt];
2420 ((W)checks [active - 1])->active = active;
2421 }
2422
2423 ev_stop (EV_A_ (W)w);
2424}
2425
2426#if EV_EMBED_ENABLE
2427void noinline
2428ev_embed_sweep (EV_P_ ev_embed *w)
2429{
2430 ev_loop (w->other, EVLOOP_NONBLOCK);
2431}
2432
2433static void
2434embed_io_cb (EV_P_ ev_io *io, int revents)
2435{
2436 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2437
2438 if (ev_cb (w))
2439 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2440 else
2441 ev_loop (w->other, EVLOOP_NONBLOCK);
2442}
2443
2444static void
2445embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2446{
2447 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2448
2449 {
1695 struct ev_loop *loop = w->loop; 2450 struct ev_loop *loop = w->other;
2451
2452 while (fdchangecnt)
2453 {
2454 fd_reify (EV_A);
2455 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2456 }
2457 }
2458}
2459
2460#if 0
2461static void
2462embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2463{
2464 ev_idle_stop (EV_A_ idle);
2465}
2466#endif
2467
2468void
2469ev_embed_start (EV_P_ ev_embed *w)
2470{
2471 if (expect_false (ev_is_active (w)))
2472 return;
2473
2474 {
2475 struct ev_loop *loop = w->other;
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2476 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2477 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1698 } 2478 }
1699 2479
2480 ev_set_priority (&w->io, ev_priority (w));
1700 ev_io_start (EV_A_ &w->io); 2481 ev_io_start (EV_A_ &w->io);
2482
2483 ev_prepare_init (&w->prepare, embed_prepare_cb);
2484 ev_set_priority (&w->prepare, EV_MINPRI);
2485 ev_prepare_start (EV_A_ &w->prepare);
2486
2487 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2488
1701 ev_start (EV_A_ (W)w, 1); 2489 ev_start (EV_A_ (W)w, 1);
1702} 2490}
1703 2491
1704void 2492void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 2493ev_embed_stop (EV_P_ ev_embed *w)
1706{ 2494{
1707 ev_clear_pending (EV_A_ (W)w); 2495 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2496 if (expect_false (!ev_is_active (w)))
1709 return; 2497 return;
1710 2498
1711 ev_io_stop (EV_A_ &w->io); 2499 ev_io_stop (EV_A_ &w->io);
2500 ev_prepare_stop (EV_A_ &w->prepare);
2501
1712 ev_stop (EV_A_ (W)w); 2502 ev_stop (EV_A_ (W)w);
1713} 2503}
1714#endif 2504#endif
1715 2505
2506#if EV_FORK_ENABLE
2507void
2508ev_fork_start (EV_P_ ev_fork *w)
2509{
2510 if (expect_false (ev_is_active (w)))
2511 return;
2512
2513 ev_start (EV_A_ (W)w, ++forkcnt);
2514 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2515 forks [forkcnt - 1] = w;
2516}
2517
2518void
2519ev_fork_stop (EV_P_ ev_fork *w)
2520{
2521 clear_pending (EV_A_ (W)w);
2522 if (expect_false (!ev_is_active (w)))
2523 return;
2524
2525 {
2526 int active = ((W)w)->active;
2527 forks [active - 1] = forks [--forkcnt];
2528 ((W)forks [active - 1])->active = active;
2529 }
2530
2531 ev_stop (EV_A_ (W)w);
2532}
2533#endif
2534
2535#if EV_ASYNC_ENABLE
2536void
2537ev_async_start (EV_P_ ev_async *w)
2538{
2539 if (expect_false (ev_is_active (w)))
2540 return;
2541
2542 evpipe_init (EV_A);
2543
2544 ev_start (EV_A_ (W)w, ++asynccnt);
2545 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2546 asyncs [asynccnt - 1] = w;
2547}
2548
2549void
2550ev_async_stop (EV_P_ ev_async *w)
2551{
2552 clear_pending (EV_A_ (W)w);
2553 if (expect_false (!ev_is_active (w)))
2554 return;
2555
2556 {
2557 int active = ((W)w)->active;
2558 asyncs [active - 1] = asyncs [--asynccnt];
2559 ((W)asyncs [active - 1])->active = active;
2560 }
2561
2562 ev_stop (EV_A_ (W)w);
2563}
2564
2565void
2566ev_async_send (EV_P_ ev_async *w)
2567{
2568 w->sent = 1;
2569 evpipe_write (EV_A_ &gotasync);
2570}
2571#endif
2572
1716/*****************************************************************************/ 2573/*****************************************************************************/
1717 2574
1718struct ev_once 2575struct ev_once
1719{ 2576{
1720 struct ev_io io; 2577 ev_io io;
1721 struct ev_timer to; 2578 ev_timer to;
1722 void (*cb)(int revents, void *arg); 2579 void (*cb)(int revents, void *arg);
1723 void *arg; 2580 void *arg;
1724}; 2581};
1725 2582
1726static void 2583static void
1735 2592
1736 cb (revents, arg); 2593 cb (revents, arg);
1737} 2594}
1738 2595
1739static void 2596static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 2597once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 2598{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1743} 2600}
1744 2601
1745static void 2602static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 2603once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 2604{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1749} 2606}
1750 2607
1751void 2608void
1775 ev_timer_set (&once->to, timeout, 0.); 2632 ev_timer_set (&once->to, timeout, 0.);
1776 ev_timer_start (EV_A_ &once->to); 2633 ev_timer_start (EV_A_ &once->to);
1777 } 2634 }
1778} 2635}
1779 2636
2637#if EV_MULTIPLICITY
2638 #include "ev_wrap.h"
2639#endif
2640
1780#ifdef __cplusplus 2641#ifdef __cplusplus
1781} 2642}
1782#endif 2643#endif
1783 2644

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines