ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.157 by root, Wed Nov 28 20:58:32 2007 UTC vs.
Revision 1.225 by root, Wed Apr 16 01:37:14 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 294
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 298
225#if __GNUC__ >= 3 299#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 302#else
236# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
240#endif 308#endif
241 309
242#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
244 319
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 322
248#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
249#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
250 325
251typedef ev_watcher *W; 326typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
254 329
330#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif
256 335
257#ifdef _WIN32 336#ifdef _WIN32
258# include "ev_win32.c" 337# include "ev_win32.c"
259#endif 338#endif
260 339
281 perror (msg); 360 perror (msg);
282 abort (); 361 abort ();
283 } 362 }
284} 363}
285 364
365static void *
366ev_realloc_emul (void *ptr, long size)
367{
368 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and
370 * the single unix specification, so work around them here.
371 */
372
373 if (size)
374 return realloc (ptr, size);
375
376 free (ptr);
377 return 0;
378}
379
286static void *(*alloc)(void *ptr, long size); 380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 381
288void 382void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 383ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 384{
291 alloc = cb; 385 alloc = cb;
292} 386}
293 387
294inline_speed void * 388inline_speed void *
295ev_realloc (void *ptr, long size) 389ev_realloc (void *ptr, long size)
296{ 390{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 391 ptr = alloc (ptr, size);
298 392
299 if (!ptr && size) 393 if (!ptr && size)
300 { 394 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 396 abort ();
396{ 490{
397 return ev_rt_now; 491 return ev_rt_now;
398} 492}
399#endif 493#endif
400 494
401#define array_roundsize(type,n) (((n) | 4) & ~3) 495void
496ev_sleep (ev_tstamp delay)
497{
498 if (delay > 0.)
499 {
500#if EV_USE_NANOSLEEP
501 struct timespec ts;
502
503 ts.tv_sec = (time_t)delay;
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0);
507#elif defined(_WIN32)
508 Sleep ((unsigned long)(delay * 1e3));
509#else
510 struct timeval tv;
511
512 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514
515 select (0, 0, 0, 0, &tv);
516#endif
517 }
518}
519
520/*****************************************************************************/
521
522int inline_size
523array_nextsize (int elem, int cur, int cnt)
524{
525 int ncur = cur + 1;
526
527 do
528 ncur <<= 1;
529 while (cnt > ncur);
530
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096)
533 {
534 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
536 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem;
538 }
539
540 return ncur;
541}
542
543static noinline void *
544array_realloc (int elem, void *base, int *cur, int cnt)
545{
546 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur);
548}
402 549
403#define array_needsize(type,base,cur,cnt,init) \ 550#define array_needsize(type,base,cur,cnt,init) \
404 if (expect_false ((cnt) > cur)) \ 551 if (expect_false ((cnt) > (cur))) \
405 { \ 552 { \
406 int newcnt = cur; \ 553 int ocur_ = (cur); \
407 do \ 554 (base) = (type *)array_realloc \
408 { \ 555 (sizeof (type), (base), &(cur), (cnt)); \
409 newcnt = array_roundsize (type, newcnt << 1); \ 556 init ((base) + (ocur_), (cur) - ocur_); \
410 } \
411 while ((cnt) > newcnt); \
412 \
413 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
414 init (base + cur, newcnt - cur); \
415 cur = newcnt; \
416 } 557 }
417 558
559#if 0
418#define array_slim(type,stem) \ 560#define array_slim(type,stem) \
419 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 561 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
420 { \ 562 { \
421 stem ## max = array_roundsize (stem ## cnt >> 1); \ 563 stem ## max = array_roundsize (stem ## cnt >> 1); \
422 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 564 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
423 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
424 } 566 }
567#endif
425 568
426#define array_free(stem, idx) \ 569#define array_free(stem, idx) \
427 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
428 571
429/*****************************************************************************/ 572/*****************************************************************************/
430 573
431void noinline 574void noinline
432ev_feed_event (EV_P_ void *w, int revents) 575ev_feed_event (EV_P_ void *w, int revents)
433{ 576{
434 W w_ = (W)w; 577 W w_ = (W)w;
578 int pri = ABSPRI (w_);
435 579
436 if (expect_false (w_->pending)) 580 if (expect_false (w_->pending))
581 pendings [pri][w_->pending - 1].events |= revents;
582 else
437 { 583 {
584 w_->pending = ++pendingcnt [pri];
585 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
586 pendings [pri][w_->pending - 1].w = w_;
438 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 587 pendings [pri][w_->pending - 1].events = revents;
439 return;
440 } 588 }
441
442 w_->pending = ++pendingcnt [ABSPRI (w_)];
443 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
444 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
445 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
446} 589}
447 590
448void inline_size 591void inline_speed
449queue_events (EV_P_ W *events, int eventcnt, int type) 592queue_events (EV_P_ W *events, int eventcnt, int type)
450{ 593{
451 int i; 594 int i;
452 595
453 for (i = 0; i < eventcnt; ++i) 596 for (i = 0; i < eventcnt; ++i)
485} 628}
486 629
487void 630void
488ev_feed_fd_event (EV_P_ int fd, int revents) 631ev_feed_fd_event (EV_P_ int fd, int revents)
489{ 632{
633 if (fd >= 0 && fd < anfdmax)
490 fd_event (EV_A_ fd, revents); 634 fd_event (EV_A_ fd, revents);
491} 635}
492 636
493void inline_size 637void inline_size
494fd_reify (EV_P) 638fd_reify (EV_P)
495{ 639{
499 { 643 {
500 int fd = fdchanges [i]; 644 int fd = fdchanges [i];
501 ANFD *anfd = anfds + fd; 645 ANFD *anfd = anfds + fd;
502 ev_io *w; 646 ev_io *w;
503 647
504 int events = 0; 648 unsigned char events = 0;
505 649
506 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
507 events |= w->events; 651 events |= (unsigned char)w->events;
508 652
509#if EV_SELECT_IS_WINSOCKET 653#if EV_SELECT_IS_WINSOCKET
510 if (events) 654 if (events)
511 { 655 {
512 unsigned long argp; 656 unsigned long argp;
657 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else
513 anfd->handle = _get_osfhandle (fd); 660 anfd->handle = _get_osfhandle (fd);
661 #endif
514 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
515 } 663 }
516#endif 664#endif
517 665
666 {
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
518 anfd->reify = 0; 670 anfd->reify = 0;
519
520 backend_modify (EV_A_ fd, anfd->events, events);
521 anfd->events = events; 671 anfd->events = events;
672
673 if (o_events != events || o_reify & EV_IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events);
675 }
522 } 676 }
523 677
524 fdchangecnt = 0; 678 fdchangecnt = 0;
525} 679}
526 680
527void inline_size 681void inline_size
528fd_change (EV_P_ int fd) 682fd_change (EV_P_ int fd, int flags)
529{ 683{
530 if (expect_false (anfds [fd].reify)) 684 unsigned char reify = anfds [fd].reify;
531 return;
532
533 anfds [fd].reify = 1; 685 anfds [fd].reify |= flags;
534 686
687 if (expect_true (!reify))
688 {
535 ++fdchangecnt; 689 ++fdchangecnt;
536 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
537 fdchanges [fdchangecnt - 1] = fd; 691 fdchanges [fdchangecnt - 1] = fd;
692 }
538} 693}
539 694
540void inline_speed 695void inline_speed
541fd_kill (EV_P_ int fd) 696fd_kill (EV_P_ int fd)
542{ 697{
593 748
594 for (fd = 0; fd < anfdmax; ++fd) 749 for (fd = 0; fd < anfdmax; ++fd)
595 if (anfds [fd].events) 750 if (anfds [fd].events)
596 { 751 {
597 anfds [fd].events = 0; 752 anfds [fd].events = 0;
598 fd_change (EV_A_ fd); 753 fd_change (EV_A_ fd, EV_IOFDSET | 1);
599 } 754 }
600} 755}
601 756
602/*****************************************************************************/ 757/*****************************************************************************/
603 758
604void inline_speed 759void inline_speed
605upheap (WT *heap, int k) 760upheap (WT *heap, int k)
606{ 761{
607 WT w = heap [k]; 762 WT w = heap [k];
608 763
609 while (k && heap [k >> 1]->at > w->at) 764 while (k)
610 { 765 {
766 int p = (k - 1) >> 1;
767
768 if (heap [p]->at <= w->at)
769 break;
770
611 heap [k] = heap [k >> 1]; 771 heap [k] = heap [p];
612 ((W)heap [k])->active = k + 1; 772 ((W)heap [k])->active = k + 1;
613 k >>= 1; 773 k = p;
614 } 774 }
615 775
616 heap [k] = w; 776 heap [k] = w;
617 ((W)heap [k])->active = k + 1; 777 ((W)heap [k])->active = k + 1;
618
619} 778}
620 779
621void inline_speed 780void inline_speed
622downheap (WT *heap, int N, int k) 781downheap (WT *heap, int N, int k)
623{ 782{
624 WT w = heap [k]; 783 WT w = heap [k];
625 784
626 while (k < (N >> 1)) 785 for (;;)
627 { 786 {
628 int j = k << 1; 787 int c = (k << 1) + 1;
629 788
630 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 789 if (c >= N)
631 ++j;
632
633 if (w->at <= heap [j]->at)
634 break; 790 break;
635 791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
636 heap [k] = heap [j]; 798 heap [k] = heap [c];
637 ((W)heap [k])->active = k + 1; 799 ((W)heap [k])->active = k + 1;
800
638 k = j; 801 k = c;
639 } 802 }
640 803
641 heap [k] = w; 804 heap [k] = w;
642 ((W)heap [k])->active = k + 1; 805 ((W)heap [k])->active = k + 1;
643} 806}
652/*****************************************************************************/ 815/*****************************************************************************/
653 816
654typedef struct 817typedef struct
655{ 818{
656 WL head; 819 WL head;
657 sig_atomic_t volatile gotsig; 820 EV_ATOMIC_T gotsig;
658} ANSIG; 821} ANSIG;
659 822
660static ANSIG *signals; 823static ANSIG *signals;
661static int signalmax; 824static int signalmax;
662 825
663static int sigpipe [2]; 826static EV_ATOMIC_T gotsig;
664static sig_atomic_t volatile gotsig;
665static ev_io sigev;
666 827
667void inline_size 828void inline_size
668signals_init (ANSIG *base, int count) 829signals_init (ANSIG *base, int count)
669{ 830{
670 while (count--) 831 while (count--)
674 835
675 ++base; 836 ++base;
676 } 837 }
677} 838}
678 839
679static void 840/*****************************************************************************/
680sighandler (int signum)
681{
682#if _WIN32
683 signal (signum, sighandler);
684#endif
685 841
686 signals [signum - 1].gotsig = 1;
687
688 if (!gotsig)
689 {
690 int old_errno = errno;
691 gotsig = 1;
692 write (sigpipe [1], &signum, 1);
693 errno = old_errno;
694 }
695}
696
697void noinline
698ev_feed_signal_event (EV_P_ int signum)
699{
700 WL w;
701
702#if EV_MULTIPLICITY
703 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
704#endif
705
706 --signum;
707
708 if (signum < 0 || signum >= signalmax)
709 return;
710
711 signals [signum].gotsig = 0;
712
713 for (w = signals [signum].head; w; w = w->next)
714 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
715}
716
717static void
718sigcb (EV_P_ ev_io *iow, int revents)
719{
720 int signum;
721
722 read (sigpipe [0], &revents, 1);
723 gotsig = 0;
724
725 for (signum = signalmax; signum--; )
726 if (signals [signum].gotsig)
727 ev_feed_signal_event (EV_A_ signum + 1);
728}
729
730void inline_size 842void inline_speed
731fd_intern (int fd) 843fd_intern (int fd)
732{ 844{
733#ifdef _WIN32 845#ifdef _WIN32
734 int arg = 1; 846 int arg = 1;
735 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
738 fcntl (fd, F_SETFL, O_NONBLOCK); 850 fcntl (fd, F_SETFL, O_NONBLOCK);
739#endif 851#endif
740} 852}
741 853
742static void noinline 854static void noinline
743siginit (EV_P) 855evpipe_init (EV_P)
744{ 856{
857 if (!ev_is_active (&pipeev))
858 {
859#if EV_USE_EVENTFD
860 if ((evfd = eventfd (0, 0)) >= 0)
861 {
862 evpipe [0] = -1;
863 fd_intern (evfd);
864 ev_io_set (&pipeev, evfd, EV_READ);
865 }
866 else
867#endif
868 {
869 while (pipe (evpipe))
870 syserr ("(libev) error creating signal/async pipe");
871
745 fd_intern (sigpipe [0]); 872 fd_intern (evpipe [0]);
746 fd_intern (sigpipe [1]); 873 fd_intern (evpipe [1]);
874 ev_io_set (&pipeev, evpipe [0], EV_READ);
875 }
747 876
748 ev_io_set (&sigev, sigpipe [0], EV_READ);
749 ev_io_start (EV_A_ &sigev); 877 ev_io_start (EV_A_ &pipeev);
750 ev_unref (EV_A); /* child watcher should not keep loop alive */ 878 ev_unref (EV_A); /* watcher should not keep loop alive */
879 }
880}
881
882void inline_size
883evpipe_write (EV_P_ EV_ATOMIC_T *flag)
884{
885 if (!*flag)
886 {
887 int old_errno = errno; /* save errno because write might clobber it */
888
889 *flag = 1;
890
891#if EV_USE_EVENTFD
892 if (evfd >= 0)
893 {
894 uint64_t counter = 1;
895 write (evfd, &counter, sizeof (uint64_t));
896 }
897 else
898#endif
899 write (evpipe [1], &old_errno, 1);
900
901 errno = old_errno;
902 }
903}
904
905static void
906pipecb (EV_P_ ev_io *iow, int revents)
907{
908#if EV_USE_EVENTFD
909 if (evfd >= 0)
910 {
911 uint64_t counter = 1;
912 read (evfd, &counter, sizeof (uint64_t));
913 }
914 else
915#endif
916 {
917 char dummy;
918 read (evpipe [0], &dummy, 1);
919 }
920
921 if (gotsig && ev_is_default_loop (EV_A))
922 {
923 int signum;
924 gotsig = 0;
925
926 for (signum = signalmax; signum--; )
927 if (signals [signum].gotsig)
928 ev_feed_signal_event (EV_A_ signum + 1);
929 }
930
931#if EV_ASYNC_ENABLE
932 if (gotasync)
933 {
934 int i;
935 gotasync = 0;
936
937 for (i = asynccnt; i--; )
938 if (asyncs [i]->sent)
939 {
940 asyncs [i]->sent = 0;
941 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
942 }
943 }
944#endif
751} 945}
752 946
753/*****************************************************************************/ 947/*****************************************************************************/
754 948
949static void
950ev_sighandler (int signum)
951{
952#if EV_MULTIPLICITY
953 struct ev_loop *loop = &default_loop_struct;
954#endif
955
956#if _WIN32
957 signal (signum, ev_sighandler);
958#endif
959
960 signals [signum - 1].gotsig = 1;
961 evpipe_write (EV_A_ &gotsig);
962}
963
964void noinline
965ev_feed_signal_event (EV_P_ int signum)
966{
967 WL w;
968
969#if EV_MULTIPLICITY
970 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
971#endif
972
973 --signum;
974
975 if (signum < 0 || signum >= signalmax)
976 return;
977
978 signals [signum].gotsig = 0;
979
980 for (w = signals [signum].head; w; w = w->next)
981 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
982}
983
984/*****************************************************************************/
985
755static ev_child *childs [EV_PID_HASHSIZE]; 986static WL childs [EV_PID_HASHSIZE];
756 987
757#ifndef _WIN32 988#ifndef _WIN32
758 989
759static ev_signal childev; 990static ev_signal childev;
760 991
992#ifndef WIFCONTINUED
993# define WIFCONTINUED(status) 0
994#endif
995
761void inline_speed 996void inline_speed
762child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 997child_reap (EV_P_ int chain, int pid, int status)
763{ 998{
764 ev_child *w; 999 ev_child *w;
1000 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
765 1001
766 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1002 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1003 {
767 if (w->pid == pid || !w->pid) 1004 if ((w->pid == pid || !w->pid)
1005 && (!traced || (w->flags & 1)))
768 { 1006 {
769 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1007 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
770 w->rpid = pid; 1008 w->rpid = pid;
771 w->rstatus = status; 1009 w->rstatus = status;
772 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1010 ev_feed_event (EV_A_ (W)w, EV_CHILD);
773 } 1011 }
1012 }
774} 1013}
775 1014
776#ifndef WCONTINUED 1015#ifndef WCONTINUED
777# define WCONTINUED 0 1016# define WCONTINUED 0
778#endif 1017#endif
787 if (!WCONTINUED 1026 if (!WCONTINUED
788 || errno != EINVAL 1027 || errno != EINVAL
789 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1028 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
790 return; 1029 return;
791 1030
792 /* make sure we are called again until all childs have been reaped */ 1031 /* make sure we are called again until all children have been reaped */
793 /* we need to do it this way so that the callback gets called before we continue */ 1032 /* we need to do it this way so that the callback gets called before we continue */
794 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1033 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
795 1034
796 child_reap (EV_A_ sw, pid, pid, status); 1035 child_reap (EV_A_ pid, pid, status);
797 if (EV_PID_HASHSIZE > 1) 1036 if (EV_PID_HASHSIZE > 1)
798 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1037 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
799} 1038}
800 1039
801#endif 1040#endif
802 1041
803/*****************************************************************************/ 1042/*****************************************************************************/
875} 1114}
876 1115
877unsigned int 1116unsigned int
878ev_embeddable_backends (void) 1117ev_embeddable_backends (void)
879{ 1118{
880 return EVBACKEND_EPOLL 1119 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
881 | EVBACKEND_KQUEUE 1120
882 | EVBACKEND_PORT; 1121 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1122 /* please fix it and tell me how to detect the fix */
1123 flags &= ~EVBACKEND_EPOLL;
1124
1125 return flags;
883} 1126}
884 1127
885unsigned int 1128unsigned int
886ev_backend (EV_P) 1129ev_backend (EV_P)
887{ 1130{
888 return backend; 1131 return backend;
1132}
1133
1134unsigned int
1135ev_loop_count (EV_P)
1136{
1137 return loop_count;
1138}
1139
1140void
1141ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1142{
1143 io_blocktime = interval;
1144}
1145
1146void
1147ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 timeout_blocktime = interval;
889} 1150}
890 1151
891static void noinline 1152static void noinline
892loop_init (EV_P_ unsigned int flags) 1153loop_init (EV_P_ unsigned int flags)
893{ 1154{
899 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1160 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
900 have_monotonic = 1; 1161 have_monotonic = 1;
901 } 1162 }
902#endif 1163#endif
903 1164
904 ev_rt_now = ev_time (); 1165 ev_rt_now = ev_time ();
905 mn_now = get_clock (); 1166 mn_now = get_clock ();
906 now_floor = mn_now; 1167 now_floor = mn_now;
907 rtmn_diff = ev_rt_now - mn_now; 1168 rtmn_diff = ev_rt_now - mn_now;
1169
1170 io_blocktime = 0.;
1171 timeout_blocktime = 0.;
1172 backend = 0;
1173 backend_fd = -1;
1174 gotasync = 0;
1175#if EV_USE_INOTIFY
1176 fs_fd = -2;
1177#endif
1178
1179 /* pid check not overridable via env */
1180#ifndef _WIN32
1181 if (flags & EVFLAG_FORKCHECK)
1182 curpid = getpid ();
1183#endif
908 1184
909 if (!(flags & EVFLAG_NOENV) 1185 if (!(flags & EVFLAG_NOENV)
910 && !enable_secure () 1186 && !enable_secure ()
911 && getenv ("LIBEV_FLAGS")) 1187 && getenv ("LIBEV_FLAGS"))
912 flags = atoi (getenv ("LIBEV_FLAGS")); 1188 flags = atoi (getenv ("LIBEV_FLAGS"));
913 1189
914 if (!(flags & 0x0000ffffUL)) 1190 if (!(flags & 0x0000ffffU))
915 flags |= ev_recommended_backends (); 1191 flags |= ev_recommended_backends ();
916
917 backend = 0;
918 backend_fd = -1;
919#if EV_USE_INOTIFY
920 fs_fd = -2;
921#endif
922 1192
923#if EV_USE_PORT 1193#if EV_USE_PORT
924 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
925#endif 1195#endif
926#if EV_USE_KQUEUE 1196#if EV_USE_KQUEUE
934#endif 1204#endif
935#if EV_USE_SELECT 1205#if EV_USE_SELECT
936 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1206 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
937#endif 1207#endif
938 1208
939 ev_init (&sigev, sigcb); 1209 ev_init (&pipeev, pipecb);
940 ev_set_priority (&sigev, EV_MAXPRI); 1210 ev_set_priority (&pipeev, EV_MAXPRI);
941 } 1211 }
942} 1212}
943 1213
944static void noinline 1214static void noinline
945loop_destroy (EV_P) 1215loop_destroy (EV_P)
946{ 1216{
947 int i; 1217 int i;
1218
1219 if (ev_is_active (&pipeev))
1220 {
1221 ev_ref (EV_A); /* signal watcher */
1222 ev_io_stop (EV_A_ &pipeev);
1223
1224#if EV_USE_EVENTFD
1225 if (evfd >= 0)
1226 close (evfd);
1227#endif
1228
1229 if (evpipe [0] >= 0)
1230 {
1231 close (evpipe [0]);
1232 close (evpipe [1]);
1233 }
1234 }
948 1235
949#if EV_USE_INOTIFY 1236#if EV_USE_INOTIFY
950 if (fs_fd >= 0) 1237 if (fs_fd >= 0)
951 close (fs_fd); 1238 close (fs_fd);
952#endif 1239#endif
969#if EV_USE_SELECT 1256#if EV_USE_SELECT
970 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1257 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
971#endif 1258#endif
972 1259
973 for (i = NUMPRI; i--; ) 1260 for (i = NUMPRI; i--; )
1261 {
974 array_free (pending, [i]); 1262 array_free (pending, [i]);
1263#if EV_IDLE_ENABLE
1264 array_free (idle, [i]);
1265#endif
1266 }
1267
1268 ev_free (anfds); anfdmax = 0;
975 1269
976 /* have to use the microsoft-never-gets-it-right macro */ 1270 /* have to use the microsoft-never-gets-it-right macro */
977 array_free (fdchange, EMPTY0); 1271 array_free (fdchange, EMPTY);
978 array_free (timer, EMPTY0); 1272 array_free (timer, EMPTY);
979#if EV_PERIODIC_ENABLE 1273#if EV_PERIODIC_ENABLE
980 array_free (periodic, EMPTY0); 1274 array_free (periodic, EMPTY);
981#endif 1275#endif
1276#if EV_FORK_ENABLE
982 array_free (idle, EMPTY0); 1277 array_free (fork, EMPTY);
1278#endif
983 array_free (prepare, EMPTY0); 1279 array_free (prepare, EMPTY);
984 array_free (check, EMPTY0); 1280 array_free (check, EMPTY);
1281#if EV_ASYNC_ENABLE
1282 array_free (async, EMPTY);
1283#endif
985 1284
986 backend = 0; 1285 backend = 0;
987} 1286}
988 1287
989void inline_size infy_fork (EV_P); 1288void inline_size infy_fork (EV_P);
1002#endif 1301#endif
1003#if EV_USE_INOTIFY 1302#if EV_USE_INOTIFY
1004 infy_fork (EV_A); 1303 infy_fork (EV_A);
1005#endif 1304#endif
1006 1305
1007 if (ev_is_active (&sigev)) 1306 if (ev_is_active (&pipeev))
1008 { 1307 {
1009 /* default loop */ 1308 /* this "locks" the handlers against writing to the pipe */
1309 /* while we modify the fd vars */
1310 gotsig = 1;
1311#if EV_ASYNC_ENABLE
1312 gotasync = 1;
1313#endif
1010 1314
1011 ev_ref (EV_A); 1315 ev_ref (EV_A);
1012 ev_io_stop (EV_A_ &sigev); 1316 ev_io_stop (EV_A_ &pipeev);
1317
1318#if EV_USE_EVENTFD
1319 if (evfd >= 0)
1320 close (evfd);
1321#endif
1322
1323 if (evpipe [0] >= 0)
1324 {
1013 close (sigpipe [0]); 1325 close (evpipe [0]);
1014 close (sigpipe [1]); 1326 close (evpipe [1]);
1327 }
1015 1328
1016 while (pipe (sigpipe))
1017 syserr ("(libev) error creating pipe");
1018
1019 siginit (EV_A); 1329 evpipe_init (EV_A);
1330 /* now iterate over everything, in case we missed something */
1331 pipecb (EV_A_ &pipeev, EV_READ);
1020 } 1332 }
1021 1333
1022 postfork = 0; 1334 postfork = 0;
1023} 1335}
1024 1336
1046} 1358}
1047 1359
1048void 1360void
1049ev_loop_fork (EV_P) 1361ev_loop_fork (EV_P)
1050{ 1362{
1051 postfork = 1; 1363 postfork = 1; /* must be in line with ev_default_fork */
1052} 1364}
1053 1365
1054#endif 1366#endif
1055 1367
1056#if EV_MULTIPLICITY 1368#if EV_MULTIPLICITY
1059#else 1371#else
1060int 1372int
1061ev_default_loop (unsigned int flags) 1373ev_default_loop (unsigned int flags)
1062#endif 1374#endif
1063{ 1375{
1064 if (sigpipe [0] == sigpipe [1])
1065 if (pipe (sigpipe))
1066 return 0;
1067
1068 if (!ev_default_loop_ptr) 1376 if (!ev_default_loop_ptr)
1069 { 1377 {
1070#if EV_MULTIPLICITY 1378#if EV_MULTIPLICITY
1071 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1379 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1072#else 1380#else
1075 1383
1076 loop_init (EV_A_ flags); 1384 loop_init (EV_A_ flags);
1077 1385
1078 if (ev_backend (EV_A)) 1386 if (ev_backend (EV_A))
1079 { 1387 {
1080 siginit (EV_A);
1081
1082#ifndef _WIN32 1388#ifndef _WIN32
1083 ev_signal_init (&childev, childcb, SIGCHLD); 1389 ev_signal_init (&childev, childcb, SIGCHLD);
1084 ev_set_priority (&childev, EV_MAXPRI); 1390 ev_set_priority (&childev, EV_MAXPRI);
1085 ev_signal_start (EV_A_ &childev); 1391 ev_signal_start (EV_A_ &childev);
1086 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1392 ev_unref (EV_A); /* child watcher should not keep loop alive */
1103#ifndef _WIN32 1409#ifndef _WIN32
1104 ev_ref (EV_A); /* child watcher */ 1410 ev_ref (EV_A); /* child watcher */
1105 ev_signal_stop (EV_A_ &childev); 1411 ev_signal_stop (EV_A_ &childev);
1106#endif 1412#endif
1107 1413
1108 ev_ref (EV_A); /* signal watcher */
1109 ev_io_stop (EV_A_ &sigev);
1110
1111 close (sigpipe [0]); sigpipe [0] = 0;
1112 close (sigpipe [1]); sigpipe [1] = 0;
1113
1114 loop_destroy (EV_A); 1414 loop_destroy (EV_A);
1115} 1415}
1116 1416
1117void 1417void
1118ev_default_fork (void) 1418ev_default_fork (void)
1120#if EV_MULTIPLICITY 1420#if EV_MULTIPLICITY
1121 struct ev_loop *loop = ev_default_loop_ptr; 1421 struct ev_loop *loop = ev_default_loop_ptr;
1122#endif 1422#endif
1123 1423
1124 if (backend) 1424 if (backend)
1125 postfork = 1; 1425 postfork = 1; /* must be in line with ev_loop_fork */
1126} 1426}
1127 1427
1128/*****************************************************************************/ 1428/*****************************************************************************/
1129 1429
1130int inline_size 1430void
1131any_pending (EV_P) 1431ev_invoke (EV_P_ void *w, int revents)
1132{ 1432{
1133 int pri; 1433 EV_CB_INVOKE ((W)w, revents);
1134
1135 for (pri = NUMPRI; pri--; )
1136 if (pendingcnt [pri])
1137 return 1;
1138
1139 return 0;
1140} 1434}
1141 1435
1142void inline_speed 1436void inline_speed
1143call_pending (EV_P) 1437call_pending (EV_P)
1144{ 1438{
1162void inline_size 1456void inline_size
1163timers_reify (EV_P) 1457timers_reify (EV_P)
1164{ 1458{
1165 while (timercnt && ((WT)timers [0])->at <= mn_now) 1459 while (timercnt && ((WT)timers [0])->at <= mn_now)
1166 { 1460 {
1167 ev_timer *w = timers [0]; 1461 ev_timer *w = (ev_timer *)timers [0];
1168 1462
1169 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1463 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1170 1464
1171 /* first reschedule or stop timer */ 1465 /* first reschedule or stop timer */
1172 if (w->repeat) 1466 if (w->repeat)
1175 1469
1176 ((WT)w)->at += w->repeat; 1470 ((WT)w)->at += w->repeat;
1177 if (((WT)w)->at < mn_now) 1471 if (((WT)w)->at < mn_now)
1178 ((WT)w)->at = mn_now; 1472 ((WT)w)->at = mn_now;
1179 1473
1180 downheap ((WT *)timers, timercnt, 0); 1474 downheap (timers, timercnt, 0);
1181 } 1475 }
1182 else 1476 else
1183 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1477 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1184 1478
1185 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1479 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1190void inline_size 1484void inline_size
1191periodics_reify (EV_P) 1485periodics_reify (EV_P)
1192{ 1486{
1193 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1487 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1194 { 1488 {
1195 ev_periodic *w = periodics [0]; 1489 ev_periodic *w = (ev_periodic *)periodics [0];
1196 1490
1197 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1491 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1198 1492
1199 /* first reschedule or stop timer */ 1493 /* first reschedule or stop timer */
1200 if (w->reschedule_cb) 1494 if (w->reschedule_cb)
1201 { 1495 {
1202 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1496 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1203 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1497 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1204 downheap ((WT *)periodics, periodiccnt, 0); 1498 downheap (periodics, periodiccnt, 0);
1205 } 1499 }
1206 else if (w->interval) 1500 else if (w->interval)
1207 { 1501 {
1208 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1502 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1503 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1209 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1504 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1210 downheap ((WT *)periodics, periodiccnt, 0); 1505 downheap (periodics, periodiccnt, 0);
1211 } 1506 }
1212 else 1507 else
1213 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1508 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1214 1509
1215 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1510 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1222 int i; 1517 int i;
1223 1518
1224 /* adjust periodics after time jump */ 1519 /* adjust periodics after time jump */
1225 for (i = 0; i < periodiccnt; ++i) 1520 for (i = 0; i < periodiccnt; ++i)
1226 { 1521 {
1227 ev_periodic *w = periodics [i]; 1522 ev_periodic *w = (ev_periodic *)periodics [i];
1228 1523
1229 if (w->reschedule_cb) 1524 if (w->reschedule_cb)
1230 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1525 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1231 else if (w->interval) 1526 else if (w->interval)
1232 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1527 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1233 } 1528 }
1234 1529
1235 /* now rebuild the heap */ 1530 /* now rebuild the heap */
1236 for (i = periodiccnt >> 1; i--; ) 1531 for (i = periodiccnt >> 1; i--; )
1237 downheap ((WT *)periodics, periodiccnt, i); 1532 downheap (periodics, periodiccnt, i);
1238} 1533}
1239#endif 1534#endif
1240 1535
1536#if EV_IDLE_ENABLE
1241int inline_size 1537void inline_size
1242time_update_monotonic (EV_P) 1538idle_reify (EV_P)
1243{ 1539{
1540 if (expect_false (idleall))
1541 {
1542 int pri;
1543
1544 for (pri = NUMPRI; pri--; )
1545 {
1546 if (pendingcnt [pri])
1547 break;
1548
1549 if (idlecnt [pri])
1550 {
1551 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1552 break;
1553 }
1554 }
1555 }
1556}
1557#endif
1558
1559void inline_speed
1560time_update (EV_P_ ev_tstamp max_block)
1561{
1562 int i;
1563
1564#if EV_USE_MONOTONIC
1565 if (expect_true (have_monotonic))
1566 {
1567 ev_tstamp odiff = rtmn_diff;
1568
1244 mn_now = get_clock (); 1569 mn_now = get_clock ();
1245 1570
1571 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1572 /* interpolate in the meantime */
1246 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1573 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1247 { 1574 {
1248 ev_rt_now = rtmn_diff + mn_now; 1575 ev_rt_now = rtmn_diff + mn_now;
1249 return 0; 1576 return;
1250 } 1577 }
1251 else 1578
1252 {
1253 now_floor = mn_now; 1579 now_floor = mn_now;
1254 ev_rt_now = ev_time (); 1580 ev_rt_now = ev_time ();
1255 return 1;
1256 }
1257}
1258 1581
1259void inline_size 1582 /* loop a few times, before making important decisions.
1260time_update (EV_P) 1583 * on the choice of "4": one iteration isn't enough,
1261{ 1584 * in case we get preempted during the calls to
1262 int i; 1585 * ev_time and get_clock. a second call is almost guaranteed
1263 1586 * to succeed in that case, though. and looping a few more times
1264#if EV_USE_MONOTONIC 1587 * doesn't hurt either as we only do this on time-jumps or
1265 if (expect_true (have_monotonic)) 1588 * in the unlikely event of having been preempted here.
1266 { 1589 */
1267 if (time_update_monotonic (EV_A)) 1590 for (i = 4; --i; )
1268 { 1591 {
1269 ev_tstamp odiff = rtmn_diff;
1270
1271 /* loop a few times, before making important decisions.
1272 * on the choice of "4": one iteration isn't enough,
1273 * in case we get preempted during the calls to
1274 * ev_time and get_clock. a second call is almost guaranteed
1275 * to succeed in that case, though. and looping a few more times
1276 * doesn't hurt either as we only do this on time-jumps or
1277 * in the unlikely event of having been preempted here.
1278 */
1279 for (i = 4; --i; )
1280 {
1281 rtmn_diff = ev_rt_now - mn_now; 1592 rtmn_diff = ev_rt_now - mn_now;
1282 1593
1283 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1594 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1284 return; /* all is well */ 1595 return; /* all is well */
1285 1596
1286 ev_rt_now = ev_time (); 1597 ev_rt_now = ev_time ();
1287 mn_now = get_clock (); 1598 mn_now = get_clock ();
1288 now_floor = mn_now; 1599 now_floor = mn_now;
1289 } 1600 }
1290 1601
1291# if EV_PERIODIC_ENABLE 1602# if EV_PERIODIC_ENABLE
1292 periodics_reschedule (EV_A); 1603 periodics_reschedule (EV_A);
1293# endif 1604# endif
1294 /* no timer adjustment, as the monotonic clock doesn't jump */ 1605 /* no timer adjustment, as the monotonic clock doesn't jump */
1295 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1606 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1296 }
1297 } 1607 }
1298 else 1608 else
1299#endif 1609#endif
1300 { 1610 {
1301 ev_rt_now = ev_time (); 1611 ev_rt_now = ev_time ();
1302 1612
1303 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1613 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1304 { 1614 {
1305#if EV_PERIODIC_ENABLE 1615#if EV_PERIODIC_ENABLE
1306 periodics_reschedule (EV_A); 1616 periodics_reschedule (EV_A);
1307#endif 1617#endif
1308
1309 /* adjust timers. this is easy, as the offset is the same for all of them */ 1618 /* adjust timers. this is easy, as the offset is the same for all of them */
1310 for (i = 0; i < timercnt; ++i) 1619 for (i = 0; i < timercnt; ++i)
1311 ((WT)timers [i])->at += ev_rt_now - mn_now; 1620 ((WT)timers [i])->at += ev_rt_now - mn_now;
1312 } 1621 }
1313 1622
1330static int loop_done; 1639static int loop_done;
1331 1640
1332void 1641void
1333ev_loop (EV_P_ int flags) 1642ev_loop (EV_P_ int flags)
1334{ 1643{
1335 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1644 loop_done = EVUNLOOP_CANCEL;
1336 ? EVUNLOOP_ONE
1337 : EVUNLOOP_CANCEL;
1338 1645
1339 while (activecnt) 1646 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1647
1648 do
1340 { 1649 {
1650#ifndef _WIN32
1651 if (expect_false (curpid)) /* penalise the forking check even more */
1652 if (expect_false (getpid () != curpid))
1653 {
1654 curpid = getpid ();
1655 postfork = 1;
1656 }
1657#endif
1658
1341#if EV_FORK_ENABLE 1659#if EV_FORK_ENABLE
1342 /* we might have forked, so queue fork handlers */ 1660 /* we might have forked, so queue fork handlers */
1343 if (expect_false (postfork)) 1661 if (expect_false (postfork))
1344 if (forkcnt) 1662 if (forkcnt)
1345 { 1663 {
1346 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1664 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1347 call_pending (EV_A); 1665 call_pending (EV_A);
1348 } 1666 }
1349#endif 1667#endif
1350 1668
1351 /* queue check watchers (and execute them) */ 1669 /* queue prepare watchers (and execute them) */
1352 if (expect_false (preparecnt)) 1670 if (expect_false (preparecnt))
1353 { 1671 {
1354 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1672 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1355 call_pending (EV_A); 1673 call_pending (EV_A);
1356 } 1674 }
1357 1675
1676 if (expect_false (!activecnt))
1677 break;
1678
1358 /* we might have forked, so reify kernel state if necessary */ 1679 /* we might have forked, so reify kernel state if necessary */
1359 if (expect_false (postfork)) 1680 if (expect_false (postfork))
1360 loop_fork (EV_A); 1681 loop_fork (EV_A);
1361 1682
1362 /* update fd-related kernel structures */ 1683 /* update fd-related kernel structures */
1363 fd_reify (EV_A); 1684 fd_reify (EV_A);
1364 1685
1365 /* calculate blocking time */ 1686 /* calculate blocking time */
1366 { 1687 {
1367 ev_tstamp block; 1688 ev_tstamp waittime = 0.;
1689 ev_tstamp sleeptime = 0.;
1368 1690
1369 if (flags & EVLOOP_NONBLOCK || idlecnt) 1691 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1370 block = 0.; /* do not block at all */
1371 else
1372 { 1692 {
1373 /* update time to cancel out callback processing overhead */ 1693 /* update time to cancel out callback processing overhead */
1374#if EV_USE_MONOTONIC
1375 if (expect_true (have_monotonic))
1376 time_update_monotonic (EV_A); 1694 time_update (EV_A_ 1e100);
1377 else
1378#endif
1379 {
1380 ev_rt_now = ev_time ();
1381 mn_now = ev_rt_now;
1382 }
1383 1695
1384 block = MAX_BLOCKTIME; 1696 waittime = MAX_BLOCKTIME;
1385 1697
1386 if (timercnt) 1698 if (timercnt)
1387 { 1699 {
1388 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1700 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1389 if (block > to) block = to; 1701 if (waittime > to) waittime = to;
1390 } 1702 }
1391 1703
1392#if EV_PERIODIC_ENABLE 1704#if EV_PERIODIC_ENABLE
1393 if (periodiccnt) 1705 if (periodiccnt)
1394 { 1706 {
1395 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1707 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1396 if (block > to) block = to; 1708 if (waittime > to) waittime = to;
1397 } 1709 }
1398#endif 1710#endif
1399 1711
1400 if (expect_false (block < 0.)) block = 0.; 1712 if (expect_false (waittime < timeout_blocktime))
1713 waittime = timeout_blocktime;
1714
1715 sleeptime = waittime - backend_fudge;
1716
1717 if (expect_true (sleeptime > io_blocktime))
1718 sleeptime = io_blocktime;
1719
1720 if (sleeptime)
1721 {
1722 ev_sleep (sleeptime);
1723 waittime -= sleeptime;
1724 }
1401 } 1725 }
1402 1726
1727 ++loop_count;
1403 backend_poll (EV_A_ block); 1728 backend_poll (EV_A_ waittime);
1729
1730 /* update ev_rt_now, do magic */
1731 time_update (EV_A_ waittime + sleeptime);
1404 } 1732 }
1405
1406 /* update ev_rt_now, do magic */
1407 time_update (EV_A);
1408 1733
1409 /* queue pending timers and reschedule them */ 1734 /* queue pending timers and reschedule them */
1410 timers_reify (EV_A); /* relative timers called last */ 1735 timers_reify (EV_A); /* relative timers called last */
1411#if EV_PERIODIC_ENABLE 1736#if EV_PERIODIC_ENABLE
1412 periodics_reify (EV_A); /* absolute timers called first */ 1737 periodics_reify (EV_A); /* absolute timers called first */
1413#endif 1738#endif
1414 1739
1740#if EV_IDLE_ENABLE
1415 /* queue idle watchers unless other events are pending */ 1741 /* queue idle watchers unless other events are pending */
1416 if (idlecnt && !any_pending (EV_A)) 1742 idle_reify (EV_A);
1417 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1743#endif
1418 1744
1419 /* queue check watchers, to be executed first */ 1745 /* queue check watchers, to be executed first */
1420 if (expect_false (checkcnt)) 1746 if (expect_false (checkcnt))
1421 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1747 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1422 1748
1423 call_pending (EV_A); 1749 call_pending (EV_A);
1424
1425 if (expect_false (loop_done))
1426 break;
1427 } 1750 }
1751 while (expect_true (
1752 activecnt
1753 && !loop_done
1754 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1755 ));
1428 1756
1429 if (loop_done == EVUNLOOP_ONE) 1757 if (loop_done == EVUNLOOP_ONE)
1430 loop_done = EVUNLOOP_CANCEL; 1758 loop_done = EVUNLOOP_CANCEL;
1431} 1759}
1432 1760
1459 head = &(*head)->next; 1787 head = &(*head)->next;
1460 } 1788 }
1461} 1789}
1462 1790
1463void inline_speed 1791void inline_speed
1464ev_clear_pending (EV_P_ W w) 1792clear_pending (EV_P_ W w)
1465{ 1793{
1466 if (w->pending) 1794 if (w->pending)
1467 { 1795 {
1468 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1796 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1469 w->pending = 0; 1797 w->pending = 0;
1470 } 1798 }
1471} 1799}
1472 1800
1801int
1802ev_clear_pending (EV_P_ void *w)
1803{
1804 W w_ = (W)w;
1805 int pending = w_->pending;
1806
1807 if (expect_true (pending))
1808 {
1809 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1810 w_->pending = 0;
1811 p->w = 0;
1812 return p->events;
1813 }
1814 else
1815 return 0;
1816}
1817
1818void inline_size
1819pri_adjust (EV_P_ W w)
1820{
1821 int pri = w->priority;
1822 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1823 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1824 w->priority = pri;
1825}
1826
1473void inline_speed 1827void inline_speed
1474ev_start (EV_P_ W w, int active) 1828ev_start (EV_P_ W w, int active)
1475{ 1829{
1476 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1830 pri_adjust (EV_A_ w);
1477 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1478
1479 w->active = active; 1831 w->active = active;
1480 ev_ref (EV_A); 1832 ev_ref (EV_A);
1481} 1833}
1482 1834
1483void inline_size 1835void inline_size
1487 w->active = 0; 1839 w->active = 0;
1488} 1840}
1489 1841
1490/*****************************************************************************/ 1842/*****************************************************************************/
1491 1843
1492void 1844void noinline
1493ev_io_start (EV_P_ ev_io *w) 1845ev_io_start (EV_P_ ev_io *w)
1494{ 1846{
1495 int fd = w->fd; 1847 int fd = w->fd;
1496 1848
1497 if (expect_false (ev_is_active (w))) 1849 if (expect_false (ev_is_active (w)))
1499 1851
1500 assert (("ev_io_start called with negative fd", fd >= 0)); 1852 assert (("ev_io_start called with negative fd", fd >= 0));
1501 1853
1502 ev_start (EV_A_ (W)w, 1); 1854 ev_start (EV_A_ (W)w, 1);
1503 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1855 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1504 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1856 wlist_add (&anfds[fd].head, (WL)w);
1505 1857
1506 fd_change (EV_A_ fd); 1858 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1859 w->events &= ~EV_IOFDSET;
1507} 1860}
1508 1861
1509void 1862void noinline
1510ev_io_stop (EV_P_ ev_io *w) 1863ev_io_stop (EV_P_ ev_io *w)
1511{ 1864{
1512 ev_clear_pending (EV_A_ (W)w); 1865 clear_pending (EV_A_ (W)w);
1513 if (expect_false (!ev_is_active (w))) 1866 if (expect_false (!ev_is_active (w)))
1514 return; 1867 return;
1515 1868
1516 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1869 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1517 1870
1518 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1871 wlist_del (&anfds[w->fd].head, (WL)w);
1519 ev_stop (EV_A_ (W)w); 1872 ev_stop (EV_A_ (W)w);
1520 1873
1521 fd_change (EV_A_ w->fd); 1874 fd_change (EV_A_ w->fd, 1);
1522} 1875}
1523 1876
1524void 1877void noinline
1525ev_timer_start (EV_P_ ev_timer *w) 1878ev_timer_start (EV_P_ ev_timer *w)
1526{ 1879{
1527 if (expect_false (ev_is_active (w))) 1880 if (expect_false (ev_is_active (w)))
1528 return; 1881 return;
1529 1882
1530 ((WT)w)->at += mn_now; 1883 ((WT)w)->at += mn_now;
1531 1884
1532 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1885 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1533 1886
1534 ev_start (EV_A_ (W)w, ++timercnt); 1887 ev_start (EV_A_ (W)w, ++timercnt);
1535 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1888 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1536 timers [timercnt - 1] = w; 1889 timers [timercnt - 1] = (WT)w;
1537 upheap ((WT *)timers, timercnt - 1); 1890 upheap (timers, timercnt - 1);
1538 1891
1539 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1892 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1540} 1893}
1541 1894
1542void 1895void noinline
1543ev_timer_stop (EV_P_ ev_timer *w) 1896ev_timer_stop (EV_P_ ev_timer *w)
1544{ 1897{
1545 ev_clear_pending (EV_A_ (W)w); 1898 clear_pending (EV_A_ (W)w);
1546 if (expect_false (!ev_is_active (w))) 1899 if (expect_false (!ev_is_active (w)))
1547 return; 1900 return;
1548 1901
1549 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1902 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1550 1903
1551 { 1904 {
1552 int active = ((W)w)->active; 1905 int active = ((W)w)->active;
1553 1906
1554 if (expect_true (--active < --timercnt)) 1907 if (expect_true (--active < --timercnt))
1555 { 1908 {
1556 timers [active] = timers [timercnt]; 1909 timers [active] = timers [timercnt];
1557 adjustheap ((WT *)timers, timercnt, active); 1910 adjustheap (timers, timercnt, active);
1558 } 1911 }
1559 } 1912 }
1560 1913
1561 ((WT)w)->at -= mn_now; 1914 ((WT)w)->at -= mn_now;
1562 1915
1563 ev_stop (EV_A_ (W)w); 1916 ev_stop (EV_A_ (W)w);
1564} 1917}
1565 1918
1566void 1919void noinline
1567ev_timer_again (EV_P_ ev_timer *w) 1920ev_timer_again (EV_P_ ev_timer *w)
1568{ 1921{
1569 if (ev_is_active (w)) 1922 if (ev_is_active (w))
1570 { 1923 {
1571 if (w->repeat) 1924 if (w->repeat)
1572 { 1925 {
1573 ((WT)w)->at = mn_now + w->repeat; 1926 ((WT)w)->at = mn_now + w->repeat;
1574 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1927 adjustheap (timers, timercnt, ((W)w)->active - 1);
1575 } 1928 }
1576 else 1929 else
1577 ev_timer_stop (EV_A_ w); 1930 ev_timer_stop (EV_A_ w);
1578 } 1931 }
1579 else if (w->repeat) 1932 else if (w->repeat)
1582 ev_timer_start (EV_A_ w); 1935 ev_timer_start (EV_A_ w);
1583 } 1936 }
1584} 1937}
1585 1938
1586#if EV_PERIODIC_ENABLE 1939#if EV_PERIODIC_ENABLE
1587void 1940void noinline
1588ev_periodic_start (EV_P_ ev_periodic *w) 1941ev_periodic_start (EV_P_ ev_periodic *w)
1589{ 1942{
1590 if (expect_false (ev_is_active (w))) 1943 if (expect_false (ev_is_active (w)))
1591 return; 1944 return;
1592 1945
1594 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1947 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1595 else if (w->interval) 1948 else if (w->interval)
1596 { 1949 {
1597 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1950 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1598 /* this formula differs from the one in periodic_reify because we do not always round up */ 1951 /* this formula differs from the one in periodic_reify because we do not always round up */
1599 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1952 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1600 } 1953 }
1954 else
1955 ((WT)w)->at = w->offset;
1601 1956
1602 ev_start (EV_A_ (W)w, ++periodiccnt); 1957 ev_start (EV_A_ (W)w, ++periodiccnt);
1603 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1958 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1604 periodics [periodiccnt - 1] = w; 1959 periodics [periodiccnt - 1] = (WT)w;
1605 upheap ((WT *)periodics, periodiccnt - 1); 1960 upheap (periodics, periodiccnt - 1);
1606 1961
1607 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1962 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1608} 1963}
1609 1964
1610void 1965void noinline
1611ev_periodic_stop (EV_P_ ev_periodic *w) 1966ev_periodic_stop (EV_P_ ev_periodic *w)
1612{ 1967{
1613 ev_clear_pending (EV_A_ (W)w); 1968 clear_pending (EV_A_ (W)w);
1614 if (expect_false (!ev_is_active (w))) 1969 if (expect_false (!ev_is_active (w)))
1615 return; 1970 return;
1616 1971
1617 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1972 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1618 1973
1619 { 1974 {
1620 int active = ((W)w)->active; 1975 int active = ((W)w)->active;
1621 1976
1622 if (expect_true (--active < --periodiccnt)) 1977 if (expect_true (--active < --periodiccnt))
1623 { 1978 {
1624 periodics [active] = periodics [periodiccnt]; 1979 periodics [active] = periodics [periodiccnt];
1625 adjustheap ((WT *)periodics, periodiccnt, active); 1980 adjustheap (periodics, periodiccnt, active);
1626 } 1981 }
1627 } 1982 }
1628 1983
1629 ev_stop (EV_A_ (W)w); 1984 ev_stop (EV_A_ (W)w);
1630} 1985}
1631 1986
1632void 1987void noinline
1633ev_periodic_again (EV_P_ ev_periodic *w) 1988ev_periodic_again (EV_P_ ev_periodic *w)
1634{ 1989{
1635 /* TODO: use adjustheap and recalculation */ 1990 /* TODO: use adjustheap and recalculation */
1636 ev_periodic_stop (EV_A_ w); 1991 ev_periodic_stop (EV_A_ w);
1637 ev_periodic_start (EV_A_ w); 1992 ev_periodic_start (EV_A_ w);
1640 1995
1641#ifndef SA_RESTART 1996#ifndef SA_RESTART
1642# define SA_RESTART 0 1997# define SA_RESTART 0
1643#endif 1998#endif
1644 1999
1645void 2000void noinline
1646ev_signal_start (EV_P_ ev_signal *w) 2001ev_signal_start (EV_P_ ev_signal *w)
1647{ 2002{
1648#if EV_MULTIPLICITY 2003#if EV_MULTIPLICITY
1649 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2004 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1650#endif 2005#endif
1651 if (expect_false (ev_is_active (w))) 2006 if (expect_false (ev_is_active (w)))
1652 return; 2007 return;
1653 2008
1654 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2009 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1655 2010
2011 evpipe_init (EV_A);
2012
2013 {
2014#ifndef _WIN32
2015 sigset_t full, prev;
2016 sigfillset (&full);
2017 sigprocmask (SIG_SETMASK, &full, &prev);
2018#endif
2019
2020 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2021
2022#ifndef _WIN32
2023 sigprocmask (SIG_SETMASK, &prev, 0);
2024#endif
2025 }
2026
1656 ev_start (EV_A_ (W)w, 1); 2027 ev_start (EV_A_ (W)w, 1);
1657 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1658 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2028 wlist_add (&signals [w->signum - 1].head, (WL)w);
1659 2029
1660 if (!((WL)w)->next) 2030 if (!((WL)w)->next)
1661 { 2031 {
1662#if _WIN32 2032#if _WIN32
1663 signal (w->signum, sighandler); 2033 signal (w->signum, ev_sighandler);
1664#else 2034#else
1665 struct sigaction sa; 2035 struct sigaction sa;
1666 sa.sa_handler = sighandler; 2036 sa.sa_handler = ev_sighandler;
1667 sigfillset (&sa.sa_mask); 2037 sigfillset (&sa.sa_mask);
1668 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2038 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1669 sigaction (w->signum, &sa, 0); 2039 sigaction (w->signum, &sa, 0);
1670#endif 2040#endif
1671 } 2041 }
1672} 2042}
1673 2043
1674void 2044void noinline
1675ev_signal_stop (EV_P_ ev_signal *w) 2045ev_signal_stop (EV_P_ ev_signal *w)
1676{ 2046{
1677 ev_clear_pending (EV_A_ (W)w); 2047 clear_pending (EV_A_ (W)w);
1678 if (expect_false (!ev_is_active (w))) 2048 if (expect_false (!ev_is_active (w)))
1679 return; 2049 return;
1680 2050
1681 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2051 wlist_del (&signals [w->signum - 1].head, (WL)w);
1682 ev_stop (EV_A_ (W)w); 2052 ev_stop (EV_A_ (W)w);
1683 2053
1684 if (!signals [w->signum - 1].head) 2054 if (!signals [w->signum - 1].head)
1685 signal (w->signum, SIG_DFL); 2055 signal (w->signum, SIG_DFL);
1686} 2056}
1693#endif 2063#endif
1694 if (expect_false (ev_is_active (w))) 2064 if (expect_false (ev_is_active (w)))
1695 return; 2065 return;
1696 2066
1697 ev_start (EV_A_ (W)w, 1); 2067 ev_start (EV_A_ (W)w, 1);
1698 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2068 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1699} 2069}
1700 2070
1701void 2071void
1702ev_child_stop (EV_P_ ev_child *w) 2072ev_child_stop (EV_P_ ev_child *w)
1703{ 2073{
1704 ev_clear_pending (EV_A_ (W)w); 2074 clear_pending (EV_A_ (W)w);
1705 if (expect_false (!ev_is_active (w))) 2075 if (expect_false (!ev_is_active (w)))
1706 return; 2076 return;
1707 2077
1708 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2078 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1709 ev_stop (EV_A_ (W)w); 2079 ev_stop (EV_A_ (W)w);
1710} 2080}
1711 2081
1712#if EV_STAT_ENABLE 2082#if EV_STAT_ENABLE
1713 2083
1945} 2315}
1946 2316
1947void 2317void
1948ev_stat_stop (EV_P_ ev_stat *w) 2318ev_stat_stop (EV_P_ ev_stat *w)
1949{ 2319{
1950 ev_clear_pending (EV_A_ (W)w); 2320 clear_pending (EV_A_ (W)w);
1951 if (expect_false (!ev_is_active (w))) 2321 if (expect_false (!ev_is_active (w)))
1952 return; 2322 return;
1953 2323
1954#if EV_USE_INOTIFY 2324#if EV_USE_INOTIFY
1955 infy_del (EV_A_ w); 2325 infy_del (EV_A_ w);
1958 2328
1959 ev_stop (EV_A_ (W)w); 2329 ev_stop (EV_A_ (W)w);
1960} 2330}
1961#endif 2331#endif
1962 2332
2333#if EV_IDLE_ENABLE
1963void 2334void
1964ev_idle_start (EV_P_ ev_idle *w) 2335ev_idle_start (EV_P_ ev_idle *w)
1965{ 2336{
1966 if (expect_false (ev_is_active (w))) 2337 if (expect_false (ev_is_active (w)))
1967 return; 2338 return;
1968 2339
2340 pri_adjust (EV_A_ (W)w);
2341
2342 {
2343 int active = ++idlecnt [ABSPRI (w)];
2344
2345 ++idleall;
1969 ev_start (EV_A_ (W)w, ++idlecnt); 2346 ev_start (EV_A_ (W)w, active);
2347
1970 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2348 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1971 idles [idlecnt - 1] = w; 2349 idles [ABSPRI (w)][active - 1] = w;
2350 }
1972} 2351}
1973 2352
1974void 2353void
1975ev_idle_stop (EV_P_ ev_idle *w) 2354ev_idle_stop (EV_P_ ev_idle *w)
1976{ 2355{
1977 ev_clear_pending (EV_A_ (W)w); 2356 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2357 if (expect_false (!ev_is_active (w)))
1979 return; 2358 return;
1980 2359
1981 { 2360 {
1982 int active = ((W)w)->active; 2361 int active = ((W)w)->active;
1983 idles [active - 1] = idles [--idlecnt]; 2362
2363 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
1984 ((W)idles [active - 1])->active = active; 2364 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2365
2366 ev_stop (EV_A_ (W)w);
2367 --idleall;
1985 } 2368 }
1986
1987 ev_stop (EV_A_ (W)w);
1988} 2369}
2370#endif
1989 2371
1990void 2372void
1991ev_prepare_start (EV_P_ ev_prepare *w) 2373ev_prepare_start (EV_P_ ev_prepare *w)
1992{ 2374{
1993 if (expect_false (ev_is_active (w))) 2375 if (expect_false (ev_is_active (w)))
1999} 2381}
2000 2382
2001void 2383void
2002ev_prepare_stop (EV_P_ ev_prepare *w) 2384ev_prepare_stop (EV_P_ ev_prepare *w)
2003{ 2385{
2004 ev_clear_pending (EV_A_ (W)w); 2386 clear_pending (EV_A_ (W)w);
2005 if (expect_false (!ev_is_active (w))) 2387 if (expect_false (!ev_is_active (w)))
2006 return; 2388 return;
2007 2389
2008 { 2390 {
2009 int active = ((W)w)->active; 2391 int active = ((W)w)->active;
2026} 2408}
2027 2409
2028void 2410void
2029ev_check_stop (EV_P_ ev_check *w) 2411ev_check_stop (EV_P_ ev_check *w)
2030{ 2412{
2031 ev_clear_pending (EV_A_ (W)w); 2413 clear_pending (EV_A_ (W)w);
2032 if (expect_false (!ev_is_active (w))) 2414 if (expect_false (!ev_is_active (w)))
2033 return; 2415 return;
2034 2416
2035 { 2417 {
2036 int active = ((W)w)->active; 2418 int active = ((W)w)->active;
2043 2425
2044#if EV_EMBED_ENABLE 2426#if EV_EMBED_ENABLE
2045void noinline 2427void noinline
2046ev_embed_sweep (EV_P_ ev_embed *w) 2428ev_embed_sweep (EV_P_ ev_embed *w)
2047{ 2429{
2048 ev_loop (w->loop, EVLOOP_NONBLOCK); 2430 ev_loop (w->other, EVLOOP_NONBLOCK);
2049} 2431}
2050 2432
2051static void 2433static void
2052embed_cb (EV_P_ ev_io *io, int revents) 2434embed_io_cb (EV_P_ ev_io *io, int revents)
2053{ 2435{
2054 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2436 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2055 2437
2056 if (ev_cb (w)) 2438 if (ev_cb (w))
2057 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2439 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2058 else 2440 else
2059 ev_embed_sweep (loop, w); 2441 ev_loop (w->other, EVLOOP_NONBLOCK);
2060} 2442}
2443
2444static void
2445embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2446{
2447 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2448
2449 {
2450 struct ev_loop *loop = w->other;
2451
2452 while (fdchangecnt)
2453 {
2454 fd_reify (EV_A);
2455 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2456 }
2457 }
2458}
2459
2460#if 0
2461static void
2462embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2463{
2464 ev_idle_stop (EV_A_ idle);
2465}
2466#endif
2061 2467
2062void 2468void
2063ev_embed_start (EV_P_ ev_embed *w) 2469ev_embed_start (EV_P_ ev_embed *w)
2064{ 2470{
2065 if (expect_false (ev_is_active (w))) 2471 if (expect_false (ev_is_active (w)))
2066 return; 2472 return;
2067 2473
2068 { 2474 {
2069 struct ev_loop *loop = w->loop; 2475 struct ev_loop *loop = w->other;
2070 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2476 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2071 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2477 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2072 } 2478 }
2073 2479
2074 ev_set_priority (&w->io, ev_priority (w)); 2480 ev_set_priority (&w->io, ev_priority (w));
2075 ev_io_start (EV_A_ &w->io); 2481 ev_io_start (EV_A_ &w->io);
2076 2482
2483 ev_prepare_init (&w->prepare, embed_prepare_cb);
2484 ev_set_priority (&w->prepare, EV_MINPRI);
2485 ev_prepare_start (EV_A_ &w->prepare);
2486
2487 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2488
2077 ev_start (EV_A_ (W)w, 1); 2489 ev_start (EV_A_ (W)w, 1);
2078} 2490}
2079 2491
2080void 2492void
2081ev_embed_stop (EV_P_ ev_embed *w) 2493ev_embed_stop (EV_P_ ev_embed *w)
2082{ 2494{
2083 ev_clear_pending (EV_A_ (W)w); 2495 clear_pending (EV_A_ (W)w);
2084 if (expect_false (!ev_is_active (w))) 2496 if (expect_false (!ev_is_active (w)))
2085 return; 2497 return;
2086 2498
2087 ev_io_stop (EV_A_ &w->io); 2499 ev_io_stop (EV_A_ &w->io);
2500 ev_prepare_stop (EV_A_ &w->prepare);
2088 2501
2089 ev_stop (EV_A_ (W)w); 2502 ev_stop (EV_A_ (W)w);
2090} 2503}
2091#endif 2504#endif
2092 2505
2103} 2516}
2104 2517
2105void 2518void
2106ev_fork_stop (EV_P_ ev_fork *w) 2519ev_fork_stop (EV_P_ ev_fork *w)
2107{ 2520{
2108 ev_clear_pending (EV_A_ (W)w); 2521 clear_pending (EV_A_ (W)w);
2109 if (expect_false (!ev_is_active (w))) 2522 if (expect_false (!ev_is_active (w)))
2110 return; 2523 return;
2111 2524
2112 { 2525 {
2113 int active = ((W)w)->active; 2526 int active = ((W)w)->active;
2117 2530
2118 ev_stop (EV_A_ (W)w); 2531 ev_stop (EV_A_ (W)w);
2119} 2532}
2120#endif 2533#endif
2121 2534
2535#if EV_ASYNC_ENABLE
2536void
2537ev_async_start (EV_P_ ev_async *w)
2538{
2539 if (expect_false (ev_is_active (w)))
2540 return;
2541
2542 evpipe_init (EV_A);
2543
2544 ev_start (EV_A_ (W)w, ++asynccnt);
2545 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2546 asyncs [asynccnt - 1] = w;
2547}
2548
2549void
2550ev_async_stop (EV_P_ ev_async *w)
2551{
2552 clear_pending (EV_A_ (W)w);
2553 if (expect_false (!ev_is_active (w)))
2554 return;
2555
2556 {
2557 int active = ((W)w)->active;
2558 asyncs [active - 1] = asyncs [--asynccnt];
2559 ((W)asyncs [active - 1])->active = active;
2560 }
2561
2562 ev_stop (EV_A_ (W)w);
2563}
2564
2565void
2566ev_async_send (EV_P_ ev_async *w)
2567{
2568 w->sent = 1;
2569 evpipe_write (EV_A_ &gotasync);
2570}
2571#endif
2572
2122/*****************************************************************************/ 2573/*****************************************************************************/
2123 2574
2124struct ev_once 2575struct ev_once
2125{ 2576{
2126 ev_io io; 2577 ev_io io;
2181 ev_timer_set (&once->to, timeout, 0.); 2632 ev_timer_set (&once->to, timeout, 0.);
2182 ev_timer_start (EV_A_ &once->to); 2633 ev_timer_start (EV_A_ &once->to);
2183 } 2634 }
2184} 2635}
2185 2636
2637#if EV_MULTIPLICITY
2638 #include "ev_wrap.h"
2639#endif
2640
2186#ifdef __cplusplus 2641#ifdef __cplusplus
2187} 2642}
2188#endif 2643#endif
2189 2644

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines