ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.226 by root, Fri Apr 18 17:16:44 2008 UTC vs.
Revision 1.241 by root, Fri May 9 13:57:00 2008 UTC

325 325
326typedef ev_watcher *W; 326typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
329 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
330#if EV_USE_MONOTONIC 333#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 335/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 337#endif
419 W w; 422 W w;
420 int events; 423 int events;
421} ANPENDING; 424} ANPENDING;
422 425
423#if EV_USE_INOTIFY 426#if EV_USE_INOTIFY
427/* hash table entry per inotify-id */
424typedef struct 428typedef struct
425{ 429{
426 WL head; 430 WL head;
427} ANFS; 431} ANFS;
432#endif
433
434/* Heap Entry */
435#if EV_HEAP_CACHE_AT
436 typedef struct {
437 WT w;
438 ev_tstamp at;
439 } ANHE;
440
441 #define ANHE_w(he) (he) /* access watcher, read-write */
442 #define ANHE_at(he) (he)->at /* acces cahced at, read-only */
443 #define ANHE_at_set(he) (he)->at = (he)->w->at /* update at from watcher */
444#else
445 typedef WT ANHE;
446
447 #define ANHE_w(he) (he)
448 #define ANHE_at(he) (he)->at
449 #define ANHE_at_set(he)
428#endif 450#endif
429 451
430#if EV_MULTIPLICITY 452#if EV_MULTIPLICITY
431 453
432 struct ev_loop 454 struct ev_loop
517 } 539 }
518} 540}
519 541
520/*****************************************************************************/ 542/*****************************************************************************/
521 543
544#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
545
522int inline_size 546int inline_size
523array_nextsize (int elem, int cur, int cnt) 547array_nextsize (int elem, int cur, int cnt)
524{ 548{
525 int ncur = cur + 1; 549 int ncur = cur + 1;
526 550
527 do 551 do
528 ncur <<= 1; 552 ncur <<= 1;
529 while (cnt > ncur); 553 while (cnt > ncur);
530 554
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 555 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 556 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 557 {
534 ncur *= elem; 558 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 559 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 560 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 561 ncur /= elem;
538 } 562 }
539 563
540 return ncur; 564 return ncur;
754 } 778 }
755} 779}
756 780
757/*****************************************************************************/ 781/*****************************************************************************/
758 782
783/*
784 * the heap functions want a real array index. array index 0 uis guaranteed to not
785 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
786 * the branching factor of the d-tree.
787 */
788
789/*
790 * at the moment we allow libev the luxury of two heaps,
791 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
792 * which is more cache-efficient.
793 * the difference is about 5% with 50000+ watchers.
794 */
795#define EV_USE_4HEAP !EV_MINIMAL
796#if EV_USE_4HEAP
797
798#define DHEAP 4
799#define HEAP0 (DHEAP - 1) /* index of first element in heap */
800
801/* towards the root */
759void inline_speed 802void inline_speed
760upheap (WT *heap, int k) 803upheap (ANHE *heap, int k)
761{ 804{
762 WT w = heap [k]; 805 ANHE he = heap [k];
763 806
764 while (k) 807 for (;;)
765 { 808 {
766 int p = (k - 1) >> 1; 809 int p = ((k - HEAP0 - 1) / DHEAP) + HEAP0;
767 810
768 if (heap [p]->at <= w->at) 811 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
769 break; 812 break;
770 813
771 heap [k] = heap [p]; 814 heap [k] = heap [p];
772 ((W)heap [k])->active = k + 1; 815 ev_active (ANHE_w (heap [k])) = k;
773 k = p; 816 k = p;
774 } 817 }
775 818
819 ev_active (ANHE_w (he)) = k;
820 heap [k] = he;
821}
822
823/* away from the root */
824void inline_speed
825downheap (ANHE *heap, int N, int k)
826{
827 ANHE he = heap [k];
828 ANHE *E = heap + N + HEAP0;
829
830 for (;;)
831 {
832 ev_tstamp minat;
833 ANHE *minpos;
834 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
835
836 // find minimum child
837 if (expect_true (pos + DHEAP - 1 < E))
838 {
839 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
840 if (ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
841 if (ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
842 if (ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
843 }
844 else if (pos < E)
845 {
846 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
847 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
848 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
849 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
850 }
851 else
852 break;
853
854 if (ANHE_at (he) <= minat)
855 break;
856
857 ev_active (ANHE_w (*minpos)) = k;
858 heap [k] = *minpos;
859
860 k = minpos - heap;
861 }
862
863 ev_active (ANHE_w (he)) = k;
864 heap [k] = he;
865}
866
867#else // 4HEAP
868
869#define HEAP0 1
870
871/* towards the root */
872void inline_speed
873upheap (ANHE *heap, int k)
874{
875 ANHE he = heap [k];
876
877 for (;;)
878 {
879 int p = k >> 1;
880
881 /* maybe we could use a dummy element at heap [0]? */
882 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
883 break;
884
885 heap [k] = heap [p];
886 ev_active (ANHE_w (heap [k])) = k;
887 k = p;
888 }
889
776 heap [k] = w; 890 heap [k] = w;
777 ((W)heap [k])->active = k + 1; 891 ev_active (ANHE_w (heap [k])) = k;
778} 892}
779 893
894/* away from the root */
780void inline_speed 895void inline_speed
781downheap (WT *heap, int N, int k) 896downheap (ANHE *heap, int N, int k)
782{ 897{
783 WT w = heap [k]; 898 ANHE he = heap [k];
784 899
785 for (;;) 900 for (;;)
786 { 901 {
787 int c = (k << 1) + 1; 902 int c = k << 1;
788 903
789 if (c >= N) 904 if (c > N)
790 break; 905 break;
791 906
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at 907 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
793 ? 1 : 0; 908 ? 1 : 0;
794 909
795 if (w->at <= heap [c]->at) 910 if (w->at <= ANHE_at (heap [c]))
796 break; 911 break;
797 912
798 heap [k] = heap [c]; 913 heap [k] = heap [c];
799 ((W)heap [k])->active = k + 1; 914 ev_active (ANHE_w (heap [k])) = k;
800 915
801 k = c; 916 k = c;
802 } 917 }
803 918
804 heap [k] = w; 919 heap [k] = he;
805 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (he)) = k;
806} 921}
922#endif
807 923
808void inline_size 924void inline_size
809adjustheap (WT *heap, int N, int k) 925adjustheap (ANHE *heap, int N, int k)
810{ 926{
811 upheap (heap, k); 927 upheap (heap, k);
812 downheap (heap, N, k); 928 downheap (heap, N, k);
813} 929}
814 930
906pipecb (EV_P_ ev_io *iow, int revents) 1022pipecb (EV_P_ ev_io *iow, int revents)
907{ 1023{
908#if EV_USE_EVENTFD 1024#if EV_USE_EVENTFD
909 if (evfd >= 0) 1025 if (evfd >= 0)
910 { 1026 {
911 uint64_t counter = 1; 1027 uint64_t counter;
912 read (evfd, &counter, sizeof (uint64_t)); 1028 read (evfd, &counter, sizeof (uint64_t));
913 } 1029 }
914 else 1030 else
915#endif 1031#endif
916 { 1032 {
1362void 1478void
1363ev_loop_fork (EV_P) 1479ev_loop_fork (EV_P)
1364{ 1480{
1365 postfork = 1; /* must be in line with ev_default_fork */ 1481 postfork = 1; /* must be in line with ev_default_fork */
1366} 1482}
1367
1368#endif 1483#endif
1369 1484
1370#if EV_MULTIPLICITY 1485#if EV_MULTIPLICITY
1371struct ev_loop * 1486struct ev_loop *
1372ev_default_loop_init (unsigned int flags) 1487ev_default_loop_init (unsigned int flags)
1453 EV_CB_INVOKE (p->w, p->events); 1568 EV_CB_INVOKE (p->w, p->events);
1454 } 1569 }
1455 } 1570 }
1456} 1571}
1457 1572
1458void inline_size
1459timers_reify (EV_P)
1460{
1461 while (timercnt && ((WT)timers [0])->at <= mn_now)
1462 {
1463 ev_timer *w = (ev_timer *)timers [0];
1464
1465 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1466
1467 /* first reschedule or stop timer */
1468 if (w->repeat)
1469 {
1470 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1471
1472 ((WT)w)->at += w->repeat;
1473 if (((WT)w)->at < mn_now)
1474 ((WT)w)->at = mn_now;
1475
1476 downheap (timers, timercnt, 0);
1477 }
1478 else
1479 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1480
1481 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1482 }
1483}
1484
1485#if EV_PERIODIC_ENABLE
1486void inline_size
1487periodics_reify (EV_P)
1488{
1489 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1490 {
1491 ev_periodic *w = (ev_periodic *)periodics [0];
1492
1493 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1494
1495 /* first reschedule or stop timer */
1496 if (w->reschedule_cb)
1497 {
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1499 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1500 downheap (periodics, periodiccnt, 0);
1501 }
1502 else if (w->interval)
1503 {
1504 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1505 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1506 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1507 downheap (periodics, periodiccnt, 0);
1508 }
1509 else
1510 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1511
1512 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1513 }
1514}
1515
1516static void noinline
1517periodics_reschedule (EV_P)
1518{
1519 int i;
1520
1521 /* adjust periodics after time jump */
1522 for (i = 0; i < periodiccnt; ++i)
1523 {
1524 ev_periodic *w = (ev_periodic *)periodics [i];
1525
1526 if (w->reschedule_cb)
1527 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1528 else if (w->interval)
1529 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1530 }
1531
1532 /* now rebuild the heap */
1533 for (i = periodiccnt >> 1; i--; )
1534 downheap (periodics, periodiccnt, i);
1535}
1536#endif
1537
1538#if EV_IDLE_ENABLE 1573#if EV_IDLE_ENABLE
1539void inline_size 1574void inline_size
1540idle_reify (EV_P) 1575idle_reify (EV_P)
1541{ 1576{
1542 if (expect_false (idleall)) 1577 if (expect_false (idleall))
1553 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1588 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1554 break; 1589 break;
1555 } 1590 }
1556 } 1591 }
1557 } 1592 }
1593}
1594#endif
1595
1596void inline_size
1597timers_reify (EV_P)
1598{
1599 while (timercnt && ANHE_at (timers [HEAP0]) <= mn_now)
1600 {
1601 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1602
1603 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1604
1605 /* first reschedule or stop timer */
1606 if (w->repeat)
1607 {
1608 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1609
1610 ev_at (w) += w->repeat;
1611 if (ev_at (w) < mn_now)
1612 ev_at (w) = mn_now;
1613
1614 downheap (timers, timercnt, HEAP0);
1615 }
1616 else
1617 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1618
1619 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1620 }
1621}
1622
1623#if EV_PERIODIC_ENABLE
1624void inline_size
1625periodics_reify (EV_P)
1626{
1627 while (periodiccnt && ANHE_at (periodics [HEAP0]) <= ev_rt_now)
1628 {
1629 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1630
1631 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1632
1633 /* first reschedule or stop timer */
1634 if (w->reschedule_cb)
1635 {
1636 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1637 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1638 downheap (periodics, periodiccnt, 1);
1639 }
1640 else if (w->interval)
1641 {
1642 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1643 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1644 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1645 downheap (periodics, periodiccnt, HEAP0);
1646 }
1647 else
1648 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1649
1650 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1651 }
1652}
1653
1654static void noinline
1655periodics_reschedule (EV_P)
1656{
1657 int i;
1658
1659 /* adjust periodics after time jump */
1660 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1661 {
1662 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1663
1664 if (w->reschedule_cb)
1665 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1666 else if (w->interval)
1667 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1668 }
1669
1670 /* now rebuild the heap, this for the 2-heap, inefficient for the 4-heap, but correct */
1671 for (i = periodiccnt >> 1; --i; )
1672 downheap (periodics, periodiccnt, i + HEAP0);
1558} 1673}
1559#endif 1674#endif
1560 1675
1561void inline_speed 1676void inline_speed
1562time_update (EV_P_ ev_tstamp max_block) 1677time_update (EV_P_ ev_tstamp max_block)
1591 */ 1706 */
1592 for (i = 4; --i; ) 1707 for (i = 4; --i; )
1593 { 1708 {
1594 rtmn_diff = ev_rt_now - mn_now; 1709 rtmn_diff = ev_rt_now - mn_now;
1595 1710
1596 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1711 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1597 return; /* all is well */ 1712 return; /* all is well */
1598 1713
1599 ev_rt_now = ev_time (); 1714 ev_rt_now = ev_time ();
1600 mn_now = get_clock (); 1715 mn_now = get_clock ();
1601 now_floor = mn_now; 1716 now_floor = mn_now;
1617#if EV_PERIODIC_ENABLE 1732#if EV_PERIODIC_ENABLE
1618 periodics_reschedule (EV_A); 1733 periodics_reschedule (EV_A);
1619#endif 1734#endif
1620 /* adjust timers. this is easy, as the offset is the same for all of them */ 1735 /* adjust timers. this is easy, as the offset is the same for all of them */
1621 for (i = 0; i < timercnt; ++i) 1736 for (i = 0; i < timercnt; ++i)
1737 {
1738 ANHE *he = timers + i + HEAP0;
1622 ((WT)timers [i])->at += ev_rt_now - mn_now; 1739 ANHE_w (*he)->at += ev_rt_now - mn_now;
1740 ANHE_at_set (*he);
1741 }
1623 } 1742 }
1624 1743
1625 mn_now = ev_rt_now; 1744 mn_now = ev_rt_now;
1626 } 1745 }
1627} 1746}
1697 1816
1698 waittime = MAX_BLOCKTIME; 1817 waittime = MAX_BLOCKTIME;
1699 1818
1700 if (timercnt) 1819 if (timercnt)
1701 { 1820 {
1702 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1821 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1703 if (waittime > to) waittime = to; 1822 if (waittime > to) waittime = to;
1704 } 1823 }
1705 1824
1706#if EV_PERIODIC_ENABLE 1825#if EV_PERIODIC_ENABLE
1707 if (periodiccnt) 1826 if (periodiccnt)
1708 { 1827 {
1709 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1828 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1710 if (waittime > to) waittime = to; 1829 if (waittime > to) waittime = to;
1711 } 1830 }
1712#endif 1831#endif
1713 1832
1714 if (expect_false (waittime < timeout_blocktime)) 1833 if (expect_false (waittime < timeout_blocktime))
1880ev_timer_start (EV_P_ ev_timer *w) 1999ev_timer_start (EV_P_ ev_timer *w)
1881{ 2000{
1882 if (expect_false (ev_is_active (w))) 2001 if (expect_false (ev_is_active (w)))
1883 return; 2002 return;
1884 2003
1885 ((WT)w)->at += mn_now; 2004 ev_at (w) += mn_now;
1886 2005
1887 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2006 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1888 2007
1889 ev_start (EV_A_ (W)w, ++timercnt); 2008 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1890 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2009 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1891 timers [timercnt - 1] = (WT)w; 2010 ANHE_w (timers [ev_active (w)]) = (WT)w;
1892 upheap (timers, timercnt - 1); 2011 ANHE_at_set (timers [ev_active (w)]);
2012 upheap (timers, ev_active (w));
1893 2013
1894 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2014 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1895} 2015}
1896 2016
1897void noinline 2017void noinline
1898ev_timer_stop (EV_P_ ev_timer *w) 2018ev_timer_stop (EV_P_ ev_timer *w)
1899{ 2019{
1900 clear_pending (EV_A_ (W)w); 2020 clear_pending (EV_A_ (W)w);
1901 if (expect_false (!ev_is_active (w))) 2021 if (expect_false (!ev_is_active (w)))
1902 return; 2022 return;
1903 2023
1904 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1905
1906 { 2024 {
1907 int active = ((W)w)->active; 2025 int active = ev_active (w);
1908 2026
2027 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2028
1909 if (expect_true (--active < --timercnt)) 2029 if (expect_true (active < timercnt + HEAP0 - 1))
1910 { 2030 {
1911 timers [active] = timers [timercnt]; 2031 timers [active] = timers [timercnt + HEAP0 - 1];
1912 adjustheap (timers, timercnt, active); 2032 adjustheap (timers, timercnt, active);
1913 } 2033 }
2034
2035 --timercnt;
1914 } 2036 }
1915 2037
1916 ((WT)w)->at -= mn_now; 2038 ev_at (w) -= mn_now;
1917 2039
1918 ev_stop (EV_A_ (W)w); 2040 ev_stop (EV_A_ (W)w);
1919} 2041}
1920 2042
1921void noinline 2043void noinline
1923{ 2045{
1924 if (ev_is_active (w)) 2046 if (ev_is_active (w))
1925 { 2047 {
1926 if (w->repeat) 2048 if (w->repeat)
1927 { 2049 {
1928 ((WT)w)->at = mn_now + w->repeat; 2050 ev_at (w) = mn_now + w->repeat;
2051 ANHE_at_set (timers [ev_active (w)]);
1929 adjustheap (timers, timercnt, ((W)w)->active - 1); 2052 adjustheap (timers, timercnt, ev_active (w));
1930 } 2053 }
1931 else 2054 else
1932 ev_timer_stop (EV_A_ w); 2055 ev_timer_stop (EV_A_ w);
1933 } 2056 }
1934 else if (w->repeat) 2057 else if (w->repeat)
1935 { 2058 {
1936 w->at = w->repeat; 2059 ev_at (w) = w->repeat;
1937 ev_timer_start (EV_A_ w); 2060 ev_timer_start (EV_A_ w);
1938 } 2061 }
1939} 2062}
1940 2063
1941#if EV_PERIODIC_ENABLE 2064#if EV_PERIODIC_ENABLE
1944{ 2067{
1945 if (expect_false (ev_is_active (w))) 2068 if (expect_false (ev_is_active (w)))
1946 return; 2069 return;
1947 2070
1948 if (w->reschedule_cb) 2071 if (w->reschedule_cb)
1949 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2072 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1950 else if (w->interval) 2073 else if (w->interval)
1951 { 2074 {
1952 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2075 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1953 /* this formula differs from the one in periodic_reify because we do not always round up */ 2076 /* this formula differs from the one in periodic_reify because we do not always round up */
1954 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2077 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1955 } 2078 }
1956 else 2079 else
1957 ((WT)w)->at = w->offset; 2080 ev_at (w) = w->offset;
1958 2081
1959 ev_start (EV_A_ (W)w, ++periodiccnt); 2082 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1960 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2083 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1961 periodics [periodiccnt - 1] = (WT)w; 2084 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1962 upheap (periodics, periodiccnt - 1); 2085 upheap (periodics, ev_active (w));
1963 2086
1964 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2087 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1965} 2088}
1966 2089
1967void noinline 2090void noinline
1968ev_periodic_stop (EV_P_ ev_periodic *w) 2091ev_periodic_stop (EV_P_ ev_periodic *w)
1969{ 2092{
1970 clear_pending (EV_A_ (W)w); 2093 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 2094 if (expect_false (!ev_is_active (w)))
1972 return; 2095 return;
1973 2096
1974 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1975
1976 { 2097 {
1977 int active = ((W)w)->active; 2098 int active = ev_active (w);
1978 2099
2100 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2101
1979 if (expect_true (--active < --periodiccnt)) 2102 if (expect_true (active < periodiccnt + HEAP0 - 1))
1980 { 2103 {
1981 periodics [active] = periodics [periodiccnt]; 2104 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1982 adjustheap (periodics, periodiccnt, active); 2105 adjustheap (periodics, periodiccnt, active);
1983 } 2106 }
2107
2108 --periodiccnt;
1984 } 2109 }
1985 2110
1986 ev_stop (EV_A_ (W)w); 2111 ev_stop (EV_A_ (W)w);
1987} 2112}
1988 2113
2104 if (w->wd < 0) 2229 if (w->wd < 0)
2105 { 2230 {
2106 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2231 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2107 2232
2108 /* monitor some parent directory for speedup hints */ 2233 /* monitor some parent directory for speedup hints */
2234 /* note that exceeding the hardcoded limit is not a correctness issue, */
2235 /* but an efficiency issue only */
2109 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2236 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2110 { 2237 {
2111 char path [4096]; 2238 char path [4096];
2112 strcpy (path, w->path); 2239 strcpy (path, w->path);
2113 2240
2358 clear_pending (EV_A_ (W)w); 2485 clear_pending (EV_A_ (W)w);
2359 if (expect_false (!ev_is_active (w))) 2486 if (expect_false (!ev_is_active (w)))
2360 return; 2487 return;
2361 2488
2362 { 2489 {
2363 int active = ((W)w)->active; 2490 int active = ev_active (w);
2364 2491
2365 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2492 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2366 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2493 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2367 2494
2368 ev_stop (EV_A_ (W)w); 2495 ev_stop (EV_A_ (W)w);
2369 --idleall; 2496 --idleall;
2370 } 2497 }
2371} 2498}
2388 clear_pending (EV_A_ (W)w); 2515 clear_pending (EV_A_ (W)w);
2389 if (expect_false (!ev_is_active (w))) 2516 if (expect_false (!ev_is_active (w)))
2390 return; 2517 return;
2391 2518
2392 { 2519 {
2393 int active = ((W)w)->active; 2520 int active = ev_active (w);
2521
2394 prepares [active - 1] = prepares [--preparecnt]; 2522 prepares [active - 1] = prepares [--preparecnt];
2395 ((W)prepares [active - 1])->active = active; 2523 ev_active (prepares [active - 1]) = active;
2396 } 2524 }
2397 2525
2398 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
2399} 2527}
2400 2528
2415 clear_pending (EV_A_ (W)w); 2543 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 2544 if (expect_false (!ev_is_active (w)))
2417 return; 2545 return;
2418 2546
2419 { 2547 {
2420 int active = ((W)w)->active; 2548 int active = ev_active (w);
2549
2421 checks [active - 1] = checks [--checkcnt]; 2550 checks [active - 1] = checks [--checkcnt];
2422 ((W)checks [active - 1])->active = active; 2551 ev_active (checks [active - 1]) = active;
2423 } 2552 }
2424 2553
2425 ev_stop (EV_A_ (W)w); 2554 ev_stop (EV_A_ (W)w);
2426} 2555}
2427 2556
2523 clear_pending (EV_A_ (W)w); 2652 clear_pending (EV_A_ (W)w);
2524 if (expect_false (!ev_is_active (w))) 2653 if (expect_false (!ev_is_active (w)))
2525 return; 2654 return;
2526 2655
2527 { 2656 {
2528 int active = ((W)w)->active; 2657 int active = ev_active (w);
2658
2529 forks [active - 1] = forks [--forkcnt]; 2659 forks [active - 1] = forks [--forkcnt];
2530 ((W)forks [active - 1])->active = active; 2660 ev_active (forks [active - 1]) = active;
2531 } 2661 }
2532 2662
2533 ev_stop (EV_A_ (W)w); 2663 ev_stop (EV_A_ (W)w);
2534} 2664}
2535#endif 2665#endif
2554 clear_pending (EV_A_ (W)w); 2684 clear_pending (EV_A_ (W)w);
2555 if (expect_false (!ev_is_active (w))) 2685 if (expect_false (!ev_is_active (w)))
2556 return; 2686 return;
2557 2687
2558 { 2688 {
2559 int active = ((W)w)->active; 2689 int active = ev_active (w);
2690
2560 asyncs [active - 1] = asyncs [--asynccnt]; 2691 asyncs [active - 1] = asyncs [--asynccnt];
2561 ((W)asyncs [active - 1])->active = active; 2692 ev_active (asyncs [active - 1]) = active;
2562 } 2693 }
2563 2694
2564 ev_stop (EV_A_ (W)w); 2695 ev_stop (EV_A_ (W)w);
2565} 2696}
2566 2697

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines