ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.226 by root, Fri Apr 18 17:16:44 2008 UTC vs.
Revision 1.251 by root, Thu May 22 03:42:34 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 259
242#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
279} 297}
280# endif 298# endif
281#endif 299#endif
282 300
283/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
284 308
285/* 309/*
286 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
325 349
326typedef ev_watcher *W; 350typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
329 353
354#define ev_active(w) ((W)(w))->active
355#define ev_at(w) ((WT)(w))->at
356
330#if EV_USE_MONOTONIC 357#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 359/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 360static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 361#endif
419 W w; 446 W w;
420 int events; 447 int events;
421} ANPENDING; 448} ANPENDING;
422 449
423#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
424typedef struct 452typedef struct
425{ 453{
426 WL head; 454 WL head;
427} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
428#endif 474#endif
429 475
430#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
431 477
432 struct ev_loop 478 struct ev_loop
517 } 563 }
518} 564}
519 565
520/*****************************************************************************/ 566/*****************************************************************************/
521 567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
522int inline_size 570int inline_size
523array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
524{ 572{
525 int ncur = cur + 1; 573 int ncur = cur + 1;
526 574
527 do 575 do
528 ncur <<= 1; 576 ncur <<= 1;
529 while (cnt > ncur); 577 while (cnt > ncur);
530 578
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 581 {
534 ncur *= elem; 582 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 585 ncur /= elem;
538 } 586 }
539 587
540 return ncur; 588 return ncur;
754 } 802 }
755} 803}
756 804
757/*****************************************************************************/ 805/*****************************************************************************/
758 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
759void inline_speed 827void inline_speed
760upheap (WT *heap, int k) 828downheap (ANHE *heap, int N, int k)
761{ 829{
762 WT w = heap [k]; 830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
763 832
764 while (k) 833 for (;;)
765 { 834 {
766 int p = (k - 1) >> 1; 835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
767 838
768 if (heap [p]->at <= w->at) 839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
769 break; 855 break;
770 856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
906/* towards the root */
907void inline_speed
908upheap (ANHE *heap, int k)
909{
910 ANHE he = heap [k];
911
912 for (;;)
913 {
914 int p = HPARENT (k);
915
916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
917 break;
918
771 heap [k] = heap [p]; 919 heap [k] = heap [p];
772 ((W)heap [k])->active = k + 1; 920 ev_active (ANHE_w (heap [k])) = k;
773 k = p; 921 k = p;
774 } 922 }
775 923
776 heap [k] = w; 924 heap [k] = he;
777 ((W)heap [k])->active = k + 1; 925 ev_active (ANHE_w (he)) = k;
778}
779
780void inline_speed
781downheap (WT *heap, int N, int k)
782{
783 WT w = heap [k];
784
785 for (;;)
786 {
787 int c = (k << 1) + 1;
788
789 if (c >= N)
790 break;
791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
798 heap [k] = heap [c];
799 ((W)heap [k])->active = k + 1;
800
801 k = c;
802 }
803
804 heap [k] = w;
805 ((W)heap [k])->active = k + 1;
806} 926}
807 927
808void inline_size 928void inline_size
809adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
810{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
811 upheap (heap, k); 932 upheap (heap, k);
933 else
812 downheap (heap, N, k); 934 downheap (heap, N, k);
935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
813} 947}
814 948
815/*****************************************************************************/ 949/*****************************************************************************/
816 950
817typedef struct 951typedef struct
906pipecb (EV_P_ ev_io *iow, int revents) 1040pipecb (EV_P_ ev_io *iow, int revents)
907{ 1041{
908#if EV_USE_EVENTFD 1042#if EV_USE_EVENTFD
909 if (evfd >= 0) 1043 if (evfd >= 0)
910 { 1044 {
911 uint64_t counter = 1; 1045 uint64_t counter;
912 read (evfd, &counter, sizeof (uint64_t)); 1046 read (evfd, &counter, sizeof (uint64_t));
913 } 1047 }
914 else 1048 else
915#endif 1049#endif
916 { 1050 {
1335 1469
1336 postfork = 0; 1470 postfork = 0;
1337} 1471}
1338 1472
1339#if EV_MULTIPLICITY 1473#if EV_MULTIPLICITY
1474
1340struct ev_loop * 1475struct ev_loop *
1341ev_loop_new (unsigned int flags) 1476ev_loop_new (unsigned int flags)
1342{ 1477{
1343 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1478 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1344 1479
1363ev_loop_fork (EV_P) 1498ev_loop_fork (EV_P)
1364{ 1499{
1365 postfork = 1; /* must be in line with ev_default_fork */ 1500 postfork = 1; /* must be in line with ev_default_fork */
1366} 1501}
1367 1502
1503#if EV_VERIFY
1504void noinline
1505verify_watcher (EV_P_ W w)
1506{
1507 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1508
1509 if (w->pending)
1510 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1511}
1512
1513static void noinline
1514verify_heap (EV_P_ ANHE *heap, int N)
1515{
1516 int i;
1517
1518 for (i = HEAP0; i < N + HEAP0; ++i)
1519 {
1520 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1521 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1522 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1523
1524 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1525 }
1526}
1527
1528static void noinline
1529array_verify (EV_P_ W *ws, int cnt)
1530{
1531 while (cnt--)
1532 {
1533 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1534 verify_watcher (EV_A_ ws [cnt]);
1535 }
1536}
1537#endif
1538
1539void
1540ev_loop_verify (EV_P)
1541{
1542#if EV_VERIFY
1543 int i;
1544 WL w;
1545
1546 assert (activecnt >= -1);
1547
1548 assert (fdchangemax >= fdchangecnt);
1549 for (i = 0; i < fdchangecnt; ++i)
1550 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1551
1552 assert (anfdmax >= 0);
1553 for (i = 0; i < anfdmax; ++i)
1554 for (w = anfds [i].head; w; w = w->next)
1555 {
1556 verify_watcher (EV_A_ (W)w);
1557 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1558 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1559 }
1560
1561 assert (timermax >= timercnt);
1562 verify_heap (EV_A_ timers, timercnt);
1563
1564#if EV_PERIODIC_ENABLE
1565 assert (periodicmax >= periodiccnt);
1566 verify_heap (EV_A_ periodics, periodiccnt);
1567#endif
1568
1569 for (i = NUMPRI; i--; )
1570 {
1571 assert (pendingmax [i] >= pendingcnt [i]);
1572#if EV_IDLE_ENABLE
1573 assert (idlemax [i] >= idlecnt [i]);
1574 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1575#endif
1576 }
1577
1578#if EV_FORK_ENABLE
1579 assert (forkmax >= forkcnt);
1580 array_verify (EV_A_ (W *)forks, forkcnt);
1581#endif
1582
1583#if EV_ASYNC_ENABLE
1584 assert (asyncmax >= asynccnt);
1585 array_verify (EV_A_ (W *)asyncs, asynccnt);
1586#endif
1587
1588 assert (preparemax >= preparecnt);
1589 array_verify (EV_A_ (W *)prepares, preparecnt);
1590
1591 assert (checkmax >= checkcnt);
1592 array_verify (EV_A_ (W *)checks, checkcnt);
1593
1594# if 0
1595 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1596 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1368#endif 1597# endif
1598#endif
1599}
1600
1601#endif /* multiplicity */
1369 1602
1370#if EV_MULTIPLICITY 1603#if EV_MULTIPLICITY
1371struct ev_loop * 1604struct ev_loop *
1372ev_default_loop_init (unsigned int flags) 1605ev_default_loop_init (unsigned int flags)
1373#else 1606#else
1449 { 1682 {
1450 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1683 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1451 1684
1452 p->w->pending = 0; 1685 p->w->pending = 0;
1453 EV_CB_INVOKE (p->w, p->events); 1686 EV_CB_INVOKE (p->w, p->events);
1687 EV_FREQUENT_CHECK;
1454 } 1688 }
1455 } 1689 }
1456} 1690}
1457
1458void inline_size
1459timers_reify (EV_P)
1460{
1461 while (timercnt && ((WT)timers [0])->at <= mn_now)
1462 {
1463 ev_timer *w = (ev_timer *)timers [0];
1464
1465 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1466
1467 /* first reschedule or stop timer */
1468 if (w->repeat)
1469 {
1470 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1471
1472 ((WT)w)->at += w->repeat;
1473 if (((WT)w)->at < mn_now)
1474 ((WT)w)->at = mn_now;
1475
1476 downheap (timers, timercnt, 0);
1477 }
1478 else
1479 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1480
1481 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1482 }
1483}
1484
1485#if EV_PERIODIC_ENABLE
1486void inline_size
1487periodics_reify (EV_P)
1488{
1489 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1490 {
1491 ev_periodic *w = (ev_periodic *)periodics [0];
1492
1493 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1494
1495 /* first reschedule or stop timer */
1496 if (w->reschedule_cb)
1497 {
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1499 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1500 downheap (periodics, periodiccnt, 0);
1501 }
1502 else if (w->interval)
1503 {
1504 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1505 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1506 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1507 downheap (periodics, periodiccnt, 0);
1508 }
1509 else
1510 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1511
1512 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1513 }
1514}
1515
1516static void noinline
1517periodics_reschedule (EV_P)
1518{
1519 int i;
1520
1521 /* adjust periodics after time jump */
1522 for (i = 0; i < periodiccnt; ++i)
1523 {
1524 ev_periodic *w = (ev_periodic *)periodics [i];
1525
1526 if (w->reschedule_cb)
1527 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1528 else if (w->interval)
1529 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1530 }
1531
1532 /* now rebuild the heap */
1533 for (i = periodiccnt >> 1; i--; )
1534 downheap (periodics, periodiccnt, i);
1535}
1536#endif
1537 1691
1538#if EV_IDLE_ENABLE 1692#if EV_IDLE_ENABLE
1539void inline_size 1693void inline_size
1540idle_reify (EV_P) 1694idle_reify (EV_P)
1541{ 1695{
1553 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1707 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1554 break; 1708 break;
1555 } 1709 }
1556 } 1710 }
1557 } 1711 }
1712}
1713#endif
1714
1715void inline_size
1716timers_reify (EV_P)
1717{
1718 EV_FREQUENT_CHECK;
1719
1720 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1721 {
1722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1723
1724 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1725
1726 /* first reschedule or stop timer */
1727 if (w->repeat)
1728 {
1729 ev_at (w) += w->repeat;
1730 if (ev_at (w) < mn_now)
1731 ev_at (w) = mn_now;
1732
1733 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1734
1735 ANHE_at_cache (timers [HEAP0]);
1736 downheap (timers, timercnt, HEAP0);
1737 }
1738 else
1739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1743 }
1744}
1745
1746#if EV_PERIODIC_ENABLE
1747void inline_size
1748periodics_reify (EV_P)
1749{
1750 EV_FREQUENT_CHECK;
1751
1752 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1753 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1755
1756 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1757
1758 /* first reschedule or stop timer */
1759 if (w->reschedule_cb)
1760 {
1761 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1762
1763 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1764
1765 ANHE_at_cache (periodics [HEAP0]);
1766 downheap (periodics, periodiccnt, HEAP0);
1767 }
1768 else if (w->interval)
1769 {
1770 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1771 /* if next trigger time is not sufficiently in the future, put it there */
1772 /* this might happen because of floating point inexactness */
1773 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1774 {
1775 ev_at (w) += w->interval;
1776
1777 /* if interval is unreasonably low we might still have a time in the past */
1778 /* so correct this. this will make the periodic very inexact, but the user */
1779 /* has effectively asked to get triggered more often than possible */
1780 if (ev_at (w) < ev_rt_now)
1781 ev_at (w) = ev_rt_now;
1782 }
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else
1788 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1789
1790 EV_FREQUENT_CHECK;
1791 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1792 }
1793}
1794
1795static void noinline
1796periodics_reschedule (EV_P)
1797{
1798 int i;
1799
1800 /* adjust periodics after time jump */
1801 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1802 {
1803 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1804
1805 if (w->reschedule_cb)
1806 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1807 else if (w->interval)
1808 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1809
1810 ANHE_at_cache (periodics [i]);
1811 }
1812
1813 reheap (periodics, periodiccnt);
1558} 1814}
1559#endif 1815#endif
1560 1816
1561void inline_speed 1817void inline_speed
1562time_update (EV_P_ ev_tstamp max_block) 1818time_update (EV_P_ ev_tstamp max_block)
1591 */ 1847 */
1592 for (i = 4; --i; ) 1848 for (i = 4; --i; )
1593 { 1849 {
1594 rtmn_diff = ev_rt_now - mn_now; 1850 rtmn_diff = ev_rt_now - mn_now;
1595 1851
1596 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1852 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1597 return; /* all is well */ 1853 return; /* all is well */
1598 1854
1599 ev_rt_now = ev_time (); 1855 ev_rt_now = ev_time ();
1600 mn_now = get_clock (); 1856 mn_now = get_clock ();
1601 now_floor = mn_now; 1857 now_floor = mn_now;
1617#if EV_PERIODIC_ENABLE 1873#if EV_PERIODIC_ENABLE
1618 periodics_reschedule (EV_A); 1874 periodics_reschedule (EV_A);
1619#endif 1875#endif
1620 /* adjust timers. this is easy, as the offset is the same for all of them */ 1876 /* adjust timers. this is easy, as the offset is the same for all of them */
1621 for (i = 0; i < timercnt; ++i) 1877 for (i = 0; i < timercnt; ++i)
1878 {
1879 ANHE *he = timers + i + HEAP0;
1622 ((WT)timers [i])->at += ev_rt_now - mn_now; 1880 ANHE_w (*he)->at += ev_rt_now - mn_now;
1881 ANHE_at_cache (*he);
1882 }
1623 } 1883 }
1624 1884
1625 mn_now = ev_rt_now; 1885 mn_now = ev_rt_now;
1626 } 1886 }
1627} 1887}
1647 1907
1648 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1908 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1649 1909
1650 do 1910 do
1651 { 1911 {
1912#if EV_VERIFY >= 2
1913 ev_loop_verify (EV_A);
1914#endif
1915
1652#ifndef _WIN32 1916#ifndef _WIN32
1653 if (expect_false (curpid)) /* penalise the forking check even more */ 1917 if (expect_false (curpid)) /* penalise the forking check even more */
1654 if (expect_false (getpid () != curpid)) 1918 if (expect_false (getpid () != curpid))
1655 { 1919 {
1656 curpid = getpid (); 1920 curpid = getpid ();
1697 1961
1698 waittime = MAX_BLOCKTIME; 1962 waittime = MAX_BLOCKTIME;
1699 1963
1700 if (timercnt) 1964 if (timercnt)
1701 { 1965 {
1702 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1966 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1703 if (waittime > to) waittime = to; 1967 if (waittime > to) waittime = to;
1704 } 1968 }
1705 1969
1706#if EV_PERIODIC_ENABLE 1970#if EV_PERIODIC_ENABLE
1707 if (periodiccnt) 1971 if (periodiccnt)
1708 { 1972 {
1709 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1973 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1710 if (waittime > to) waittime = to; 1974 if (waittime > to) waittime = to;
1711 } 1975 }
1712#endif 1976#endif
1713 1977
1714 if (expect_false (waittime < timeout_blocktime)) 1978 if (expect_false (waittime < timeout_blocktime))
1851 if (expect_false (ev_is_active (w))) 2115 if (expect_false (ev_is_active (w)))
1852 return; 2116 return;
1853 2117
1854 assert (("ev_io_start called with negative fd", fd >= 0)); 2118 assert (("ev_io_start called with negative fd", fd >= 0));
1855 2119
2120 EV_FREQUENT_CHECK;
2121
1856 ev_start (EV_A_ (W)w, 1); 2122 ev_start (EV_A_ (W)w, 1);
1857 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2123 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1858 wlist_add (&anfds[fd].head, (WL)w); 2124 wlist_add (&anfds[fd].head, (WL)w);
1859 2125
1860 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2126 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1861 w->events &= ~EV_IOFDSET; 2127 w->events &= ~EV_IOFDSET;
2128
2129 EV_FREQUENT_CHECK;
1862} 2130}
1863 2131
1864void noinline 2132void noinline
1865ev_io_stop (EV_P_ ev_io *w) 2133ev_io_stop (EV_P_ ev_io *w)
1866{ 2134{
1867 clear_pending (EV_A_ (W)w); 2135 clear_pending (EV_A_ (W)w);
1868 if (expect_false (!ev_is_active (w))) 2136 if (expect_false (!ev_is_active (w)))
1869 return; 2137 return;
1870 2138
1871 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2139 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2140
2141 EV_FREQUENT_CHECK;
1872 2142
1873 wlist_del (&anfds[w->fd].head, (WL)w); 2143 wlist_del (&anfds[w->fd].head, (WL)w);
1874 ev_stop (EV_A_ (W)w); 2144 ev_stop (EV_A_ (W)w);
1875 2145
1876 fd_change (EV_A_ w->fd, 1); 2146 fd_change (EV_A_ w->fd, 1);
2147
2148 EV_FREQUENT_CHECK;
1877} 2149}
1878 2150
1879void noinline 2151void noinline
1880ev_timer_start (EV_P_ ev_timer *w) 2152ev_timer_start (EV_P_ ev_timer *w)
1881{ 2153{
1882 if (expect_false (ev_is_active (w))) 2154 if (expect_false (ev_is_active (w)))
1883 return; 2155 return;
1884 2156
1885 ((WT)w)->at += mn_now; 2157 ev_at (w) += mn_now;
1886 2158
1887 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2159 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1888 2160
2161 EV_FREQUENT_CHECK;
2162
2163 ++timercnt;
1889 ev_start (EV_A_ (W)w, ++timercnt); 2164 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1890 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2165 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1891 timers [timercnt - 1] = (WT)w; 2166 ANHE_w (timers [ev_active (w)]) = (WT)w;
1892 upheap (timers, timercnt - 1); 2167 ANHE_at_cache (timers [ev_active (w)]);
2168 upheap (timers, ev_active (w));
1893 2169
2170 EV_FREQUENT_CHECK;
2171
1894 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2172 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1895} 2173}
1896 2174
1897void noinline 2175void noinline
1898ev_timer_stop (EV_P_ ev_timer *w) 2176ev_timer_stop (EV_P_ ev_timer *w)
1899{ 2177{
1900 clear_pending (EV_A_ (W)w); 2178 clear_pending (EV_A_ (W)w);
1901 if (expect_false (!ev_is_active (w))) 2179 if (expect_false (!ev_is_active (w)))
1902 return; 2180 return;
1903 2181
1904 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2182 EV_FREQUENT_CHECK;
1905 2183
1906 { 2184 {
1907 int active = ((W)w)->active; 2185 int active = ev_active (w);
1908 2186
2187 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2188
2189 --timercnt;
2190
1909 if (expect_true (--active < --timercnt)) 2191 if (expect_true (active < timercnt + HEAP0))
1910 { 2192 {
1911 timers [active] = timers [timercnt]; 2193 timers [active] = timers [timercnt + HEAP0];
1912 adjustheap (timers, timercnt, active); 2194 adjustheap (timers, timercnt, active);
1913 } 2195 }
1914 } 2196 }
1915 2197
1916 ((WT)w)->at -= mn_now; 2198 EV_FREQUENT_CHECK;
2199
2200 ev_at (w) -= mn_now;
1917 2201
1918 ev_stop (EV_A_ (W)w); 2202 ev_stop (EV_A_ (W)w);
1919} 2203}
1920 2204
1921void noinline 2205void noinline
1922ev_timer_again (EV_P_ ev_timer *w) 2206ev_timer_again (EV_P_ ev_timer *w)
1923{ 2207{
2208 EV_FREQUENT_CHECK;
2209
1924 if (ev_is_active (w)) 2210 if (ev_is_active (w))
1925 { 2211 {
1926 if (w->repeat) 2212 if (w->repeat)
1927 { 2213 {
1928 ((WT)w)->at = mn_now + w->repeat; 2214 ev_at (w) = mn_now + w->repeat;
2215 ANHE_at_cache (timers [ev_active (w)]);
1929 adjustheap (timers, timercnt, ((W)w)->active - 1); 2216 adjustheap (timers, timercnt, ev_active (w));
1930 } 2217 }
1931 else 2218 else
1932 ev_timer_stop (EV_A_ w); 2219 ev_timer_stop (EV_A_ w);
1933 } 2220 }
1934 else if (w->repeat) 2221 else if (w->repeat)
1935 { 2222 {
1936 w->at = w->repeat; 2223 ev_at (w) = w->repeat;
1937 ev_timer_start (EV_A_ w); 2224 ev_timer_start (EV_A_ w);
1938 } 2225 }
2226
2227 EV_FREQUENT_CHECK;
1939} 2228}
1940 2229
1941#if EV_PERIODIC_ENABLE 2230#if EV_PERIODIC_ENABLE
1942void noinline 2231void noinline
1943ev_periodic_start (EV_P_ ev_periodic *w) 2232ev_periodic_start (EV_P_ ev_periodic *w)
1944{ 2233{
1945 if (expect_false (ev_is_active (w))) 2234 if (expect_false (ev_is_active (w)))
1946 return; 2235 return;
1947 2236
1948 if (w->reschedule_cb) 2237 if (w->reschedule_cb)
1949 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2238 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1950 else if (w->interval) 2239 else if (w->interval)
1951 { 2240 {
1952 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2241 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1953 /* this formula differs from the one in periodic_reify because we do not always round up */ 2242 /* this formula differs from the one in periodic_reify because we do not always round up */
1954 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2243 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1955 } 2244 }
1956 else 2245 else
1957 ((WT)w)->at = w->offset; 2246 ev_at (w) = w->offset;
1958 2247
2248 EV_FREQUENT_CHECK;
2249
2250 ++periodiccnt;
1959 ev_start (EV_A_ (W)w, ++periodiccnt); 2251 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1960 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2252 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1961 periodics [periodiccnt - 1] = (WT)w; 2253 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1962 upheap (periodics, periodiccnt - 1); 2254 ANHE_at_cache (periodics [ev_active (w)]);
2255 upheap (periodics, ev_active (w));
1963 2256
2257 EV_FREQUENT_CHECK;
2258
1964 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2259 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1965} 2260}
1966 2261
1967void noinline 2262void noinline
1968ev_periodic_stop (EV_P_ ev_periodic *w) 2263ev_periodic_stop (EV_P_ ev_periodic *w)
1969{ 2264{
1970 clear_pending (EV_A_ (W)w); 2265 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 2266 if (expect_false (!ev_is_active (w)))
1972 return; 2267 return;
1973 2268
1974 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2269 EV_FREQUENT_CHECK;
1975 2270
1976 { 2271 {
1977 int active = ((W)w)->active; 2272 int active = ev_active (w);
1978 2273
2274 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2275
2276 --periodiccnt;
2277
1979 if (expect_true (--active < --periodiccnt)) 2278 if (expect_true (active < periodiccnt + HEAP0))
1980 { 2279 {
1981 periodics [active] = periodics [periodiccnt]; 2280 periodics [active] = periodics [periodiccnt + HEAP0];
1982 adjustheap (periodics, periodiccnt, active); 2281 adjustheap (periodics, periodiccnt, active);
1983 } 2282 }
1984 } 2283 }
1985 2284
2285 EV_FREQUENT_CHECK;
2286
1986 ev_stop (EV_A_ (W)w); 2287 ev_stop (EV_A_ (W)w);
1987} 2288}
1988 2289
1989void noinline 2290void noinline
1990ev_periodic_again (EV_P_ ev_periodic *w) 2291ev_periodic_again (EV_P_ ev_periodic *w)
2009 return; 2310 return;
2010 2311
2011 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2312 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2012 2313
2013 evpipe_init (EV_A); 2314 evpipe_init (EV_A);
2315
2316 EV_FREQUENT_CHECK;
2014 2317
2015 { 2318 {
2016#ifndef _WIN32 2319#ifndef _WIN32
2017 sigset_t full, prev; 2320 sigset_t full, prev;
2018 sigfillset (&full); 2321 sigfillset (&full);
2039 sigfillset (&sa.sa_mask); 2342 sigfillset (&sa.sa_mask);
2040 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2343 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2041 sigaction (w->signum, &sa, 0); 2344 sigaction (w->signum, &sa, 0);
2042#endif 2345#endif
2043 } 2346 }
2347
2348 EV_FREQUENT_CHECK;
2044} 2349}
2045 2350
2046void noinline 2351void noinline
2047ev_signal_stop (EV_P_ ev_signal *w) 2352ev_signal_stop (EV_P_ ev_signal *w)
2048{ 2353{
2049 clear_pending (EV_A_ (W)w); 2354 clear_pending (EV_A_ (W)w);
2050 if (expect_false (!ev_is_active (w))) 2355 if (expect_false (!ev_is_active (w)))
2051 return; 2356 return;
2052 2357
2358 EV_FREQUENT_CHECK;
2359
2053 wlist_del (&signals [w->signum - 1].head, (WL)w); 2360 wlist_del (&signals [w->signum - 1].head, (WL)w);
2054 ev_stop (EV_A_ (W)w); 2361 ev_stop (EV_A_ (W)w);
2055 2362
2056 if (!signals [w->signum - 1].head) 2363 if (!signals [w->signum - 1].head)
2057 signal (w->signum, SIG_DFL); 2364 signal (w->signum, SIG_DFL);
2365
2366 EV_FREQUENT_CHECK;
2058} 2367}
2059 2368
2060void 2369void
2061ev_child_start (EV_P_ ev_child *w) 2370ev_child_start (EV_P_ ev_child *w)
2062{ 2371{
2064 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2373 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2065#endif 2374#endif
2066 if (expect_false (ev_is_active (w))) 2375 if (expect_false (ev_is_active (w)))
2067 return; 2376 return;
2068 2377
2378 EV_FREQUENT_CHECK;
2379
2069 ev_start (EV_A_ (W)w, 1); 2380 ev_start (EV_A_ (W)w, 1);
2070 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2381 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2382
2383 EV_FREQUENT_CHECK;
2071} 2384}
2072 2385
2073void 2386void
2074ev_child_stop (EV_P_ ev_child *w) 2387ev_child_stop (EV_P_ ev_child *w)
2075{ 2388{
2076 clear_pending (EV_A_ (W)w); 2389 clear_pending (EV_A_ (W)w);
2077 if (expect_false (!ev_is_active (w))) 2390 if (expect_false (!ev_is_active (w)))
2078 return; 2391 return;
2079 2392
2393 EV_FREQUENT_CHECK;
2394
2080 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2395 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2081 ev_stop (EV_A_ (W)w); 2396 ev_stop (EV_A_ (W)w);
2397
2398 EV_FREQUENT_CHECK;
2082} 2399}
2083 2400
2084#if EV_STAT_ENABLE 2401#if EV_STAT_ENABLE
2085 2402
2086# ifdef _WIN32 2403# ifdef _WIN32
2104 if (w->wd < 0) 2421 if (w->wd < 0)
2105 { 2422 {
2106 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2423 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2107 2424
2108 /* monitor some parent directory for speedup hints */ 2425 /* monitor some parent directory for speedup hints */
2426 /* note that exceeding the hardcoded limit is not a correctness issue, */
2427 /* but an efficiency issue only */
2109 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2428 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2110 { 2429 {
2111 char path [4096]; 2430 char path [4096];
2112 strcpy (path, w->path); 2431 strcpy (path, w->path);
2113 2432
2312 else 2631 else
2313#endif 2632#endif
2314 ev_timer_start (EV_A_ &w->timer); 2633 ev_timer_start (EV_A_ &w->timer);
2315 2634
2316 ev_start (EV_A_ (W)w, 1); 2635 ev_start (EV_A_ (W)w, 1);
2636
2637 EV_FREQUENT_CHECK;
2317} 2638}
2318 2639
2319void 2640void
2320ev_stat_stop (EV_P_ ev_stat *w) 2641ev_stat_stop (EV_P_ ev_stat *w)
2321{ 2642{
2322 clear_pending (EV_A_ (W)w); 2643 clear_pending (EV_A_ (W)w);
2323 if (expect_false (!ev_is_active (w))) 2644 if (expect_false (!ev_is_active (w)))
2324 return; 2645 return;
2325 2646
2647 EV_FREQUENT_CHECK;
2648
2326#if EV_USE_INOTIFY 2649#if EV_USE_INOTIFY
2327 infy_del (EV_A_ w); 2650 infy_del (EV_A_ w);
2328#endif 2651#endif
2329 ev_timer_stop (EV_A_ &w->timer); 2652 ev_timer_stop (EV_A_ &w->timer);
2330 2653
2331 ev_stop (EV_A_ (W)w); 2654 ev_stop (EV_A_ (W)w);
2655
2656 EV_FREQUENT_CHECK;
2332} 2657}
2333#endif 2658#endif
2334 2659
2335#if EV_IDLE_ENABLE 2660#if EV_IDLE_ENABLE
2336void 2661void
2338{ 2663{
2339 if (expect_false (ev_is_active (w))) 2664 if (expect_false (ev_is_active (w)))
2340 return; 2665 return;
2341 2666
2342 pri_adjust (EV_A_ (W)w); 2667 pri_adjust (EV_A_ (W)w);
2668
2669 EV_FREQUENT_CHECK;
2343 2670
2344 { 2671 {
2345 int active = ++idlecnt [ABSPRI (w)]; 2672 int active = ++idlecnt [ABSPRI (w)];
2346 2673
2347 ++idleall; 2674 ++idleall;
2348 ev_start (EV_A_ (W)w, active); 2675 ev_start (EV_A_ (W)w, active);
2349 2676
2350 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2677 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2351 idles [ABSPRI (w)][active - 1] = w; 2678 idles [ABSPRI (w)][active - 1] = w;
2352 } 2679 }
2680
2681 EV_FREQUENT_CHECK;
2353} 2682}
2354 2683
2355void 2684void
2356ev_idle_stop (EV_P_ ev_idle *w) 2685ev_idle_stop (EV_P_ ev_idle *w)
2357{ 2686{
2358 clear_pending (EV_A_ (W)w); 2687 clear_pending (EV_A_ (W)w);
2359 if (expect_false (!ev_is_active (w))) 2688 if (expect_false (!ev_is_active (w)))
2360 return; 2689 return;
2361 2690
2691 EV_FREQUENT_CHECK;
2692
2362 { 2693 {
2363 int active = ((W)w)->active; 2694 int active = ev_active (w);
2364 2695
2365 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2696 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2366 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2697 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2367 2698
2368 ev_stop (EV_A_ (W)w); 2699 ev_stop (EV_A_ (W)w);
2369 --idleall; 2700 --idleall;
2370 } 2701 }
2702
2703 EV_FREQUENT_CHECK;
2371} 2704}
2372#endif 2705#endif
2373 2706
2374void 2707void
2375ev_prepare_start (EV_P_ ev_prepare *w) 2708ev_prepare_start (EV_P_ ev_prepare *w)
2376{ 2709{
2377 if (expect_false (ev_is_active (w))) 2710 if (expect_false (ev_is_active (w)))
2378 return; 2711 return;
2712
2713 EV_FREQUENT_CHECK;
2379 2714
2380 ev_start (EV_A_ (W)w, ++preparecnt); 2715 ev_start (EV_A_ (W)w, ++preparecnt);
2381 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2716 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2382 prepares [preparecnt - 1] = w; 2717 prepares [preparecnt - 1] = w;
2718
2719 EV_FREQUENT_CHECK;
2383} 2720}
2384 2721
2385void 2722void
2386ev_prepare_stop (EV_P_ ev_prepare *w) 2723ev_prepare_stop (EV_P_ ev_prepare *w)
2387{ 2724{
2388 clear_pending (EV_A_ (W)w); 2725 clear_pending (EV_A_ (W)w);
2389 if (expect_false (!ev_is_active (w))) 2726 if (expect_false (!ev_is_active (w)))
2390 return; 2727 return;
2391 2728
2729 EV_FREQUENT_CHECK;
2730
2392 { 2731 {
2393 int active = ((W)w)->active; 2732 int active = ev_active (w);
2733
2394 prepares [active - 1] = prepares [--preparecnt]; 2734 prepares [active - 1] = prepares [--preparecnt];
2395 ((W)prepares [active - 1])->active = active; 2735 ev_active (prepares [active - 1]) = active;
2396 } 2736 }
2397 2737
2398 ev_stop (EV_A_ (W)w); 2738 ev_stop (EV_A_ (W)w);
2739
2740 EV_FREQUENT_CHECK;
2399} 2741}
2400 2742
2401void 2743void
2402ev_check_start (EV_P_ ev_check *w) 2744ev_check_start (EV_P_ ev_check *w)
2403{ 2745{
2404 if (expect_false (ev_is_active (w))) 2746 if (expect_false (ev_is_active (w)))
2405 return; 2747 return;
2748
2749 EV_FREQUENT_CHECK;
2406 2750
2407 ev_start (EV_A_ (W)w, ++checkcnt); 2751 ev_start (EV_A_ (W)w, ++checkcnt);
2408 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2752 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2409 checks [checkcnt - 1] = w; 2753 checks [checkcnt - 1] = w;
2754
2755 EV_FREQUENT_CHECK;
2410} 2756}
2411 2757
2412void 2758void
2413ev_check_stop (EV_P_ ev_check *w) 2759ev_check_stop (EV_P_ ev_check *w)
2414{ 2760{
2415 clear_pending (EV_A_ (W)w); 2761 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 2762 if (expect_false (!ev_is_active (w)))
2417 return; 2763 return;
2418 2764
2765 EV_FREQUENT_CHECK;
2766
2419 { 2767 {
2420 int active = ((W)w)->active; 2768 int active = ev_active (w);
2769
2421 checks [active - 1] = checks [--checkcnt]; 2770 checks [active - 1] = checks [--checkcnt];
2422 ((W)checks [active - 1])->active = active; 2771 ev_active (checks [active - 1]) = active;
2423 } 2772 }
2424 2773
2425 ev_stop (EV_A_ (W)w); 2774 ev_stop (EV_A_ (W)w);
2775
2776 EV_FREQUENT_CHECK;
2426} 2777}
2427 2778
2428#if EV_EMBED_ENABLE 2779#if EV_EMBED_ENABLE
2429void noinline 2780void noinline
2430ev_embed_sweep (EV_P_ ev_embed *w) 2781ev_embed_sweep (EV_P_ ev_embed *w)
2477 struct ev_loop *loop = w->other; 2828 struct ev_loop *loop = w->other;
2478 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2829 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2830 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2480 } 2831 }
2481 2832
2833 EV_FREQUENT_CHECK;
2834
2482 ev_set_priority (&w->io, ev_priority (w)); 2835 ev_set_priority (&w->io, ev_priority (w));
2483 ev_io_start (EV_A_ &w->io); 2836 ev_io_start (EV_A_ &w->io);
2484 2837
2485 ev_prepare_init (&w->prepare, embed_prepare_cb); 2838 ev_prepare_init (&w->prepare, embed_prepare_cb);
2486 ev_set_priority (&w->prepare, EV_MINPRI); 2839 ev_set_priority (&w->prepare, EV_MINPRI);
2487 ev_prepare_start (EV_A_ &w->prepare); 2840 ev_prepare_start (EV_A_ &w->prepare);
2488 2841
2489 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2842 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2490 2843
2491 ev_start (EV_A_ (W)w, 1); 2844 ev_start (EV_A_ (W)w, 1);
2845
2846 EV_FREQUENT_CHECK;
2492} 2847}
2493 2848
2494void 2849void
2495ev_embed_stop (EV_P_ ev_embed *w) 2850ev_embed_stop (EV_P_ ev_embed *w)
2496{ 2851{
2497 clear_pending (EV_A_ (W)w); 2852 clear_pending (EV_A_ (W)w);
2498 if (expect_false (!ev_is_active (w))) 2853 if (expect_false (!ev_is_active (w)))
2499 return; 2854 return;
2500 2855
2856 EV_FREQUENT_CHECK;
2857
2501 ev_io_stop (EV_A_ &w->io); 2858 ev_io_stop (EV_A_ &w->io);
2502 ev_prepare_stop (EV_A_ &w->prepare); 2859 ev_prepare_stop (EV_A_ &w->prepare);
2503 2860
2504 ev_stop (EV_A_ (W)w); 2861 ev_stop (EV_A_ (W)w);
2862
2863 EV_FREQUENT_CHECK;
2505} 2864}
2506#endif 2865#endif
2507 2866
2508#if EV_FORK_ENABLE 2867#if EV_FORK_ENABLE
2509void 2868void
2510ev_fork_start (EV_P_ ev_fork *w) 2869ev_fork_start (EV_P_ ev_fork *w)
2511{ 2870{
2512 if (expect_false (ev_is_active (w))) 2871 if (expect_false (ev_is_active (w)))
2513 return; 2872 return;
2873
2874 EV_FREQUENT_CHECK;
2514 2875
2515 ev_start (EV_A_ (W)w, ++forkcnt); 2876 ev_start (EV_A_ (W)w, ++forkcnt);
2516 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2877 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2517 forks [forkcnt - 1] = w; 2878 forks [forkcnt - 1] = w;
2879
2880 EV_FREQUENT_CHECK;
2518} 2881}
2519 2882
2520void 2883void
2521ev_fork_stop (EV_P_ ev_fork *w) 2884ev_fork_stop (EV_P_ ev_fork *w)
2522{ 2885{
2523 clear_pending (EV_A_ (W)w); 2886 clear_pending (EV_A_ (W)w);
2524 if (expect_false (!ev_is_active (w))) 2887 if (expect_false (!ev_is_active (w)))
2525 return; 2888 return;
2526 2889
2890 EV_FREQUENT_CHECK;
2891
2527 { 2892 {
2528 int active = ((W)w)->active; 2893 int active = ev_active (w);
2894
2529 forks [active - 1] = forks [--forkcnt]; 2895 forks [active - 1] = forks [--forkcnt];
2530 ((W)forks [active - 1])->active = active; 2896 ev_active (forks [active - 1]) = active;
2531 } 2897 }
2532 2898
2533 ev_stop (EV_A_ (W)w); 2899 ev_stop (EV_A_ (W)w);
2900
2901 EV_FREQUENT_CHECK;
2534} 2902}
2535#endif 2903#endif
2536 2904
2537#if EV_ASYNC_ENABLE 2905#if EV_ASYNC_ENABLE
2538void 2906void
2540{ 2908{
2541 if (expect_false (ev_is_active (w))) 2909 if (expect_false (ev_is_active (w)))
2542 return; 2910 return;
2543 2911
2544 evpipe_init (EV_A); 2912 evpipe_init (EV_A);
2913
2914 EV_FREQUENT_CHECK;
2545 2915
2546 ev_start (EV_A_ (W)w, ++asynccnt); 2916 ev_start (EV_A_ (W)w, ++asynccnt);
2547 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2917 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2548 asyncs [asynccnt - 1] = w; 2918 asyncs [asynccnt - 1] = w;
2919
2920 EV_FREQUENT_CHECK;
2549} 2921}
2550 2922
2551void 2923void
2552ev_async_stop (EV_P_ ev_async *w) 2924ev_async_stop (EV_P_ ev_async *w)
2553{ 2925{
2554 clear_pending (EV_A_ (W)w); 2926 clear_pending (EV_A_ (W)w);
2555 if (expect_false (!ev_is_active (w))) 2927 if (expect_false (!ev_is_active (w)))
2556 return; 2928 return;
2557 2929
2930 EV_FREQUENT_CHECK;
2931
2558 { 2932 {
2559 int active = ((W)w)->active; 2933 int active = ev_active (w);
2934
2560 asyncs [active - 1] = asyncs [--asynccnt]; 2935 asyncs [active - 1] = asyncs [--asynccnt];
2561 ((W)asyncs [active - 1])->active = active; 2936 ev_active (asyncs [active - 1]) = active;
2562 } 2937 }
2563 2938
2564 ev_stop (EV_A_ (W)w); 2939 ev_stop (EV_A_ (W)w);
2940
2941 EV_FREQUENT_CHECK;
2565} 2942}
2566 2943
2567void 2944void
2568ev_async_send (EV_P_ ev_async *w) 2945ev_async_send (EV_P_ ev_async *w)
2569{ 2946{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines