ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.226 by root, Fri Apr 18 17:16:44 2008 UTC vs.
Revision 1.391 by root, Thu Aug 4 13:57:16 2011 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
152#endif 186#endif
187
188EV_CPP(extern "C" {)
153 189
154#ifndef _WIN32 190#ifndef _WIN32
155# include <sys/time.h> 191# include <sys/time.h>
156# include <sys/wait.h> 192# include <sys/wait.h>
157# include <unistd.h> 193# include <unistd.h>
158#else 194#else
195# include <io.h>
159# define WIN32_LEAN_AND_MEAN 196# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 197# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 198# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 199# define EV_SELECT_IS_WINSOCKET 1
163# endif 200# endif
201# undef EV_AVOID_STDIO
164#endif 202#endif
203
204/* OS X, in its infinite idiocy, actually HARDCODES
205 * a limit of 1024 into their select. Where people have brains,
206 * OS X engineers apparently have a vacuum. Or maybe they were
207 * ordered to have a vacuum, or they do anything for money.
208 * This might help. Or not.
209 */
210#define _DARWIN_UNLIMITED_SELECT 1
165 211
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 212/* this block tries to deduce configuration from header-defined symbols and defaults */
167 213
214/* try to deduce the maximum number of signals on this platform */
215#if defined (EV_NSIG)
216/* use what's provided */
217#elif defined (NSIG)
218# define EV_NSIG (NSIG)
219#elif defined(_NSIG)
220# define EV_NSIG (_NSIG)
221#elif defined (SIGMAX)
222# define EV_NSIG (SIGMAX+1)
223#elif defined (SIG_MAX)
224# define EV_NSIG (SIG_MAX+1)
225#elif defined (_SIG_MAX)
226# define EV_NSIG (_SIG_MAX+1)
227#elif defined (MAXSIG)
228# define EV_NSIG (MAXSIG+1)
229#elif defined (MAX_SIG)
230# define EV_NSIG (MAX_SIG+1)
231#elif defined (SIGARRAYSIZE)
232# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
233#elif defined (_sys_nsig)
234# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
235#else
236# error "unable to find value for NSIG, please report"
237/* to make it compile regardless, just remove the above line, */
238/* but consider reporting it, too! :) */
239# define EV_NSIG 65
240#endif
241
242#ifndef EV_USE_FLOOR
243# define EV_USE_FLOOR 0
244#endif
245
246#ifndef EV_USE_CLOCK_SYSCALL
247# if __linux && __GLIBC__ >= 2
248# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
249# else
250# define EV_USE_CLOCK_SYSCALL 0
251# endif
252#endif
253
168#ifndef EV_USE_MONOTONIC 254#ifndef EV_USE_MONOTONIC
255# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
256# define EV_USE_MONOTONIC EV_FEATURE_OS
257# else
169# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
259# endif
170#endif 260#endif
171 261
172#ifndef EV_USE_REALTIME 262#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 263# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 264#endif
175 265
176#ifndef EV_USE_NANOSLEEP 266#ifndef EV_USE_NANOSLEEP
267# if _POSIX_C_SOURCE >= 199309L
268# define EV_USE_NANOSLEEP EV_FEATURE_OS
269# else
177# define EV_USE_NANOSLEEP 0 270# define EV_USE_NANOSLEEP 0
271# endif
178#endif 272#endif
179 273
180#ifndef EV_USE_SELECT 274#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 275# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 276#endif
183 277
184#ifndef EV_USE_POLL 278#ifndef EV_USE_POLL
185# ifdef _WIN32 279# ifdef _WIN32
186# define EV_USE_POLL 0 280# define EV_USE_POLL 0
187# else 281# else
188# define EV_USE_POLL 1 282# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 283# endif
190#endif 284#endif
191 285
192#ifndef EV_USE_EPOLL 286#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 287# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 288# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 289# else
196# define EV_USE_EPOLL 0 290# define EV_USE_EPOLL 0
197# endif 291# endif
198#endif 292#endif
199 293
205# define EV_USE_PORT 0 299# define EV_USE_PORT 0
206#endif 300#endif
207 301
208#ifndef EV_USE_INOTIFY 302#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 304# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 305# else
212# define EV_USE_INOTIFY 0 306# define EV_USE_INOTIFY 0
213# endif 307# endif
214#endif 308#endif
215 309
216#ifndef EV_PID_HASHSIZE 310#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 311# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 312#endif
223 313
224#ifndef EV_INOTIFY_HASHSIZE 314#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 315# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 316#endif
231 317
232#ifndef EV_USE_EVENTFD 318#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 319# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 320# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 321# else
236# define EV_USE_EVENTFD 0 322# define EV_USE_EVENTFD 0
237# endif 323# endif
238#endif 324#endif
239 325
326#ifndef EV_USE_SIGNALFD
327# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
328# define EV_USE_SIGNALFD EV_FEATURE_OS
329# else
330# define EV_USE_SIGNALFD 0
331# endif
332#endif
333
334#if 0 /* debugging */
335# define EV_VERIFY 3
336# define EV_USE_4HEAP 1
337# define EV_HEAP_CACHE_AT 1
338#endif
339
340#ifndef EV_VERIFY
341# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
342#endif
343
344#ifndef EV_USE_4HEAP
345# define EV_USE_4HEAP EV_FEATURE_DATA
346#endif
347
348#ifndef EV_HEAP_CACHE_AT
349# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
350#endif
351
352/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
353/* which makes programs even slower. might work on other unices, too. */
354#if EV_USE_CLOCK_SYSCALL
355# include <syscall.h>
356# ifdef SYS_clock_gettime
357# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
358# undef EV_USE_MONOTONIC
359# define EV_USE_MONOTONIC 1
360# else
361# undef EV_USE_CLOCK_SYSCALL
362# define EV_USE_CLOCK_SYSCALL 0
363# endif
364#endif
365
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 366/* this block fixes any misconfiguration where we know we run into trouble otherwise */
367
368#ifdef _AIX
369/* AIX has a completely broken poll.h header */
370# undef EV_USE_POLL
371# define EV_USE_POLL 0
372#endif
241 373
242#ifndef CLOCK_MONOTONIC 374#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 375# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 376# define EV_USE_MONOTONIC 0
245#endif 377#endif
253# undef EV_USE_INOTIFY 385# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 386# define EV_USE_INOTIFY 0
255#endif 387#endif
256 388
257#if !EV_USE_NANOSLEEP 389#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 390/* hp-ux has it in sys/time.h, which we unconditionally include above */
391# if !defined(_WIN32) && !defined(__hpux)
259# include <sys/select.h> 392# include <sys/select.h>
260# endif 393# endif
261#endif 394#endif
262 395
263#if EV_USE_INOTIFY 396#if EV_USE_INOTIFY
397# include <sys/statfs.h>
264# include <sys/inotify.h> 398# include <sys/inotify.h>
399/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
400# ifndef IN_DONT_FOLLOW
401# undef EV_USE_INOTIFY
402# define EV_USE_INOTIFY 0
403# endif
265#endif 404#endif
266 405
267#if EV_SELECT_IS_WINSOCKET 406#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 407# include <winsock.h>
269#endif 408#endif
270 409
271#if EV_USE_EVENTFD 410#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 411/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 412# include <stdint.h>
274# ifdef __cplusplus 413# ifndef EFD_NONBLOCK
275extern "C" { 414# define EFD_NONBLOCK O_NONBLOCK
276# endif 415# endif
277int eventfd (unsigned int initval, int flags); 416# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 417# ifdef O_CLOEXEC
279} 418# define EFD_CLOEXEC O_CLOEXEC
419# else
420# define EFD_CLOEXEC 02000000
421# endif
280# endif 422# endif
423EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
424#endif
425
426#if EV_USE_SIGNALFD
427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
428# include <stdint.h>
429# ifndef SFD_NONBLOCK
430# define SFD_NONBLOCK O_NONBLOCK
431# endif
432# ifndef SFD_CLOEXEC
433# ifdef O_CLOEXEC
434# define SFD_CLOEXEC O_CLOEXEC
435# else
436# define SFD_CLOEXEC 02000000
437# endif
438# endif
439EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
440
441struct signalfd_siginfo
442{
443 uint32_t ssi_signo;
444 char pad[128 - sizeof (uint32_t)];
445};
281#endif 446#endif
282 447
283/**/ 448/**/
284 449
450#if EV_VERIFY >= 3
451# define EV_FREQUENT_CHECK ev_verify (EV_A)
452#else
453# define EV_FREQUENT_CHECK do { } while (0)
454#endif
455
285/* 456/*
286 * This is used to avoid floating point rounding problems. 457 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 458 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 459 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 460#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
461/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 462
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 465
466#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
467#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
468
469/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
470/* ECB.H BEGIN */
471/*
472 * libecb - http://software.schmorp.de/pkg/libecb
473 *
474 * Copyright (©) 2009-2011 Marc Alexander Lehmann <libecb@schmorp.de>
475 * Copyright (©) 2011 Emanuele Giaquinta
476 * All rights reserved.
477 *
478 * Redistribution and use in source and binary forms, with or without modifica-
479 * tion, are permitted provided that the following conditions are met:
480 *
481 * 1. Redistributions of source code must retain the above copyright notice,
482 * this list of conditions and the following disclaimer.
483 *
484 * 2. Redistributions in binary form must reproduce the above copyright
485 * notice, this list of conditions and the following disclaimer in the
486 * documentation and/or other materials provided with the distribution.
487 *
488 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
489 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
490 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
491 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
492 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
493 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
494 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
495 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
496 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
497 * OF THE POSSIBILITY OF SUCH DAMAGE.
498 */
499
500#ifndef ECB_H
501#define ECB_H
502
503#ifdef _WIN32
504 typedef signed char int8_t;
505 typedef unsigned char uint8_t;
506 typedef signed short int16_t;
507 typedef unsigned short uint16_t;
508 typedef signed int int32_t;
509 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 510 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 511 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 512 typedef unsigned long long uint64_t;
513 #else /* _MSC_VER || __BORLANDC__ */
514 typedef signed __int64 int64_t;
515 typedef unsigned __int64 uint64_t;
516 #endif
302#else 517#else
303# define expect(expr,value) (expr) 518 #include <inttypes.h>
304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif 519#endif
520
521/* many compilers define _GNUC_ to some versions but then only implement
522 * what their idiot authors think are the "more important" extensions,
523 * causing enormous grief in return for some better fake benchmark numbers.
524 * or so.
525 * we try to detect these and simply assume they are not gcc - if they have
526 * an issue with that they should have done it right in the first place.
527 */
528#ifndef ECB_GCC_VERSION
529 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
530 #define ECB_GCC_VERSION(major,minor) 0
531 #else
532 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
308#endif 533 #endif
534#endif
309 535
536/*****************************************************************************/
537
538/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
539/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
540
541#if ECB_NO_THREADS || ECB_NO_SMP
542 #define ECB_MEMORY_FENCE do { } while (0)
543 #define ECB_MEMORY_FENCE_ACQUIRE do { } while (0)
544 #define ECB_MEMORY_FENCE_RELEASE do { } while (0)
545#endif
546
547#ifndef ECB_MEMORY_FENCE
548 #if ECB_GCC_VERSION(2,5)
549 #if __x86
550 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
551 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
552 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
553 #elif __amd64
554 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
555 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
556 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
557 #endif
558 #endif
559#endif
560
561#ifndef ECB_MEMORY_FENCE
562 #if ECB_GCC_VERSION(4,4)
563 #define ECB_MEMORY_FENCE __sync_synchronize ()
564 #define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); })
565 #define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); })
566 #elif _MSC_VER >= 1400 /* VC++ 2005 */
567 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
568 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
569 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
570 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
571 #elif defined(_WIN32)
572 #include <WinNT.h>
573 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
574 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
575 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
576 #endif
577#endif
578
579#ifndef ECB_MEMORY_FENCE
580 /*
581 * if you get undefined symbol references to pthread_mutex_lock,
582 * or failure to find pthread.h, then you should implement
583 * the ECB_MEMORY_FENCE operations for your cpu/compiler
584 * OR provide pthread.h and link against the posix thread library
585 * of your system.
586 */
587 #include <pthread.h>
588 #define ECB_NEEDS_PTHREADS 1
589 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
590
591 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
592 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
593 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
594 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
595#endif
596
597/*****************************************************************************/
598
599#define ECB_C99 (__STDC_VERSION__ >= 199901L)
600
601#if __cplusplus
602 #define ecb_inline static inline
603#elif ECB_GCC_VERSION(2,5)
604 #define ecb_inline static __inline__
605#elif ECB_C99
606 #define ecb_inline static inline
607#else
608 #define ecb_inline static
609#endif
610
611#if ECB_GCC_VERSION(3,3)
612 #define ecb_restrict __restrict__
613#elif ECB_C99
614 #define ecb_restrict restrict
615#else
616 #define ecb_restrict
617#endif
618
619typedef int ecb_bool;
620
621#define ECB_CONCAT_(a, b) a ## b
622#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
623#define ECB_STRINGIFY_(a) # a
624#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
625
626#define ecb_function_ ecb_inline
627
628#if ECB_GCC_VERSION(3,1)
629 #define ecb_attribute(attrlist) __attribute__(attrlist)
630 #define ecb_is_constant(expr) __builtin_constant_p (expr)
631 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
632 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
633#else
634 #define ecb_attribute(attrlist)
635 #define ecb_is_constant(expr) 0
636 #define ecb_expect(expr,value) (expr)
637 #define ecb_prefetch(addr,rw,locality)
638#endif
639
640/* no emulation for ecb_decltype */
641#if ECB_GCC_VERSION(4,5)
642 #define ecb_decltype(x) __decltype(x)
643#elif ECB_GCC_VERSION(3,0)
644 #define ecb_decltype(x) __typeof(x)
645#endif
646
647#define ecb_noinline ecb_attribute ((__noinline__))
648#define ecb_noreturn ecb_attribute ((__noreturn__))
649#define ecb_unused ecb_attribute ((__unused__))
650#define ecb_const ecb_attribute ((__const__))
651#define ecb_pure ecb_attribute ((__pure__))
652
653#if ECB_GCC_VERSION(4,3)
654 #define ecb_artificial ecb_attribute ((__artificial__))
655 #define ecb_hot ecb_attribute ((__hot__))
656 #define ecb_cold ecb_attribute ((__cold__))
657#else
658 #define ecb_artificial
659 #define ecb_hot
660 #define ecb_cold
661#endif
662
663/* put around conditional expressions if you are very sure that the */
664/* expression is mostly true or mostly false. note that these return */
665/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 666#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 667#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
668/* for compatibility to the rest of the world */
669#define ecb_likely(expr) ecb_expect_true (expr)
670#define ecb_unlikely(expr) ecb_expect_false (expr)
671
672/* count trailing zero bits and count # of one bits */
673#if ECB_GCC_VERSION(3,4)
674 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
675 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
676 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
677 #define ecb_ctz32(x) __builtin_ctz (x)
678 #define ecb_ctz64(x) __builtin_ctzll (x)
679 #define ecb_popcount32(x) __builtin_popcount (x)
680 /* no popcountll */
681#else
682 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
683 ecb_function_ int
684 ecb_ctz32 (uint32_t x)
685 {
686 int r = 0;
687
688 x &= ~x + 1; /* this isolates the lowest bit */
689
690#if ECB_branchless_on_i386
691 r += !!(x & 0xaaaaaaaa) << 0;
692 r += !!(x & 0xcccccccc) << 1;
693 r += !!(x & 0xf0f0f0f0) << 2;
694 r += !!(x & 0xff00ff00) << 3;
695 r += !!(x & 0xffff0000) << 4;
696#else
697 if (x & 0xaaaaaaaa) r += 1;
698 if (x & 0xcccccccc) r += 2;
699 if (x & 0xf0f0f0f0) r += 4;
700 if (x & 0xff00ff00) r += 8;
701 if (x & 0xffff0000) r += 16;
702#endif
703
704 return r;
705 }
706
707 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
708 ecb_function_ int
709 ecb_ctz64 (uint64_t x)
710 {
711 int shift = x & 0xffffffffU ? 0 : 32;
712 return ecb_ctz32 (x >> shift) + shift;
713 }
714
715 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
716 ecb_function_ int
717 ecb_popcount32 (uint32_t x)
718 {
719 x -= (x >> 1) & 0x55555555;
720 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
721 x = ((x >> 4) + x) & 0x0f0f0f0f;
722 x *= 0x01010101;
723
724 return x >> 24;
725 }
726
727 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
728 ecb_function_ int ecb_ld32 (uint32_t x)
729 {
730 int r = 0;
731
732 if (x >> 16) { x >>= 16; r += 16; }
733 if (x >> 8) { x >>= 8; r += 8; }
734 if (x >> 4) { x >>= 4; r += 4; }
735 if (x >> 2) { x >>= 2; r += 2; }
736 if (x >> 1) { r += 1; }
737
738 return r;
739 }
740
741 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
742 ecb_function_ int ecb_ld64 (uint64_t x)
743 {
744 int r = 0;
745
746 if (x >> 32) { x >>= 32; r += 32; }
747
748 return r + ecb_ld32 (x);
749 }
750#endif
751
752/* popcount64 is only available on 64 bit cpus as gcc builtin */
753/* so for this version we are lazy */
754ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
755ecb_function_ int
756ecb_popcount64 (uint64_t x)
757{
758 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
759}
760
761ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
762ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
763ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
764ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
765ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
766ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
767ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
768ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
769
770ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
771ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
772ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
773ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
774ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
775ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
776ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
777ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
778
779#if ECB_GCC_VERSION(4,3)
780 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
781 #define ecb_bswap32(x) __builtin_bswap32 (x)
782 #define ecb_bswap64(x) __builtin_bswap64 (x)
783#else
784 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
785 ecb_function_ uint16_t
786 ecb_bswap16 (uint16_t x)
787 {
788 return ecb_rotl16 (x, 8);
789 }
790
791 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
792 ecb_function_ uint32_t
793 ecb_bswap32 (uint32_t x)
794 {
795 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
796 }
797
798 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
799 ecb_function_ uint64_t
800 ecb_bswap64 (uint64_t x)
801 {
802 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
803 }
804#endif
805
806#if ECB_GCC_VERSION(4,5)
807 #define ecb_unreachable() __builtin_unreachable ()
808#else
809 /* this seems to work fine, but gcc always emits a warning for it :/ */
810 ecb_function_ void ecb_unreachable (void) ecb_noreturn;
811 ecb_function_ void ecb_unreachable (void) { }
812#endif
813
814/* try to tell the compiler that some condition is definitely true */
815#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
816
817ecb_function_ unsigned char ecb_byteorder_helper (void) ecb_const;
818ecb_function_ unsigned char
819ecb_byteorder_helper (void)
820{
821 const uint32_t u = 0x11223344;
822 return *(unsigned char *)&u;
823}
824
825ecb_function_ ecb_bool ecb_big_endian (void) ecb_const;
826ecb_function_ ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
827ecb_function_ ecb_bool ecb_little_endian (void) ecb_const;
828ecb_function_ ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
829
830#if ECB_GCC_VERSION(3,0) || ECB_C99
831 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
832#else
833 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
834#endif
835
836#if ecb_cplusplus_does_not_suck
837 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
838 template<typename T, int N>
839 static inline int ecb_array_length (const T (&arr)[N])
840 {
841 return N;
842 }
843#else
844 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
845#endif
846
847#endif
848
849/* ECB.H END */
850
851#define expect_false(cond) ecb_expect_false (cond)
852#define expect_true(cond) ecb_expect_true (cond)
853#define noinline ecb_noinline
854
312#define inline_size static inline 855#define inline_size ecb_inline
313 856
314#if EV_MINIMAL 857#if EV_FEATURE_CODE
858# define inline_speed ecb_inline
859#else
315# define inline_speed static noinline 860# define inline_speed static noinline
861#endif
862
863#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
864
865#if EV_MINPRI == EV_MAXPRI
866# define ABSPRI(w) (((W)w), 0)
316#else 867#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 868# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
869#endif
322 870
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 871#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 872#define EMPTY2(a,b) /* used to suppress some warnings */
325 873
326typedef ev_watcher *W; 874typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 875typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 876typedef ev_watcher_time *WT;
329 877
878#define ev_active(w) ((W)(w))->active
879#define ev_at(w) ((WT)(w))->at
880
881#if EV_USE_REALTIME
882/* sig_atomic_t is used to avoid per-thread variables or locking but still */
883/* giving it a reasonably high chance of working on typical architectures */
884static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
885#endif
886
330#if EV_USE_MONOTONIC 887#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 888static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
889#endif
890
891#ifndef EV_FD_TO_WIN32_HANDLE
892# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
893#endif
894#ifndef EV_WIN32_HANDLE_TO_FD
895# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
896#endif
897#ifndef EV_WIN32_CLOSE_FD
898# define EV_WIN32_CLOSE_FD(fd) close (fd)
334#endif 899#endif
335 900
336#ifdef _WIN32 901#ifdef _WIN32
337# include "ev_win32.c" 902# include "ev_win32.c"
338#endif 903#endif
339 904
340/*****************************************************************************/ 905/*****************************************************************************/
341 906
907/* define a suitable floor function (only used by periodics atm) */
908
909#if EV_USE_FLOOR
910# include <math.h>
911# define ev_floor(v) floor (v)
912#else
913
914#include <float.h>
915
916/* a floor() replacement function, should be independent of ev_tstamp type */
917static ev_tstamp noinline
918ev_floor (ev_tstamp v)
919{
920 /* the choice of shift factor is not terribly important */
921#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
922 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
923#else
924 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
925#endif
926
927 /* argument too large for an unsigned long? */
928 if (expect_false (v >= shift))
929 {
930 ev_tstamp f;
931
932 if (v == v - 1.)
933 return v; /* very large number */
934
935 f = shift * ev_floor (v * (1. / shift));
936 return f + ev_floor (v - f);
937 }
938
939 /* special treatment for negative args? */
940 if (expect_false (v < 0.))
941 {
942 ev_tstamp f = -ev_floor (-v);
943
944 return f - (f == v ? 0 : 1);
945 }
946
947 /* fits into an unsigned long */
948 return (unsigned long)v;
949}
950
951#endif
952
953/*****************************************************************************/
954
955#ifdef __linux
956# include <sys/utsname.h>
957#endif
958
959static unsigned int noinline ecb_cold
960ev_linux_version (void)
961{
962#ifdef __linux
963 unsigned int v = 0;
964 struct utsname buf;
965 int i;
966 char *p = buf.release;
967
968 if (uname (&buf))
969 return 0;
970
971 for (i = 3+1; --i; )
972 {
973 unsigned int c = 0;
974
975 for (;;)
976 {
977 if (*p >= '0' && *p <= '9')
978 c = c * 10 + *p++ - '0';
979 else
980 {
981 p += *p == '.';
982 break;
983 }
984 }
985
986 v = (v << 8) | c;
987 }
988
989 return v;
990#else
991 return 0;
992#endif
993}
994
995/*****************************************************************************/
996
997#if EV_AVOID_STDIO
998static void noinline ecb_cold
999ev_printerr (const char *msg)
1000{
1001 write (STDERR_FILENO, msg, strlen (msg));
1002}
1003#endif
1004
342static void (*syserr_cb)(const char *msg); 1005static void (*syserr_cb)(const char *msg);
343 1006
344void 1007void ecb_cold
345ev_set_syserr_cb (void (*cb)(const char *msg)) 1008ev_set_syserr_cb (void (*cb)(const char *msg))
346{ 1009{
347 syserr_cb = cb; 1010 syserr_cb = cb;
348} 1011}
349 1012
350static void noinline 1013static void noinline ecb_cold
351syserr (const char *msg) 1014ev_syserr (const char *msg)
352{ 1015{
353 if (!msg) 1016 if (!msg)
354 msg = "(libev) system error"; 1017 msg = "(libev) system error";
355 1018
356 if (syserr_cb) 1019 if (syserr_cb)
357 syserr_cb (msg); 1020 syserr_cb (msg);
358 else 1021 else
359 { 1022 {
1023#if EV_AVOID_STDIO
1024 ev_printerr (msg);
1025 ev_printerr (": ");
1026 ev_printerr (strerror (errno));
1027 ev_printerr ("\n");
1028#else
360 perror (msg); 1029 perror (msg);
1030#endif
361 abort (); 1031 abort ();
362 } 1032 }
363} 1033}
364 1034
365static void * 1035static void *
366ev_realloc_emul (void *ptr, long size) 1036ev_realloc_emul (void *ptr, long size)
367{ 1037{
1038#if __GLIBC__
1039 return realloc (ptr, size);
1040#else
368 /* some systems, notably openbsd and darwin, fail to properly 1041 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and 1042 * implement realloc (x, 0) (as required by both ansi c-89 and
370 * the single unix specification, so work around them here. 1043 * the single unix specification, so work around them here.
371 */ 1044 */
372 1045
373 if (size) 1046 if (size)
374 return realloc (ptr, size); 1047 return realloc (ptr, size);
375 1048
376 free (ptr); 1049 free (ptr);
377 return 0; 1050 return 0;
1051#endif
378} 1052}
379 1053
380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1054static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
381 1055
382void 1056void ecb_cold
383ev_set_allocator (void *(*cb)(void *ptr, long size)) 1057ev_set_allocator (void *(*cb)(void *ptr, long size))
384{ 1058{
385 alloc = cb; 1059 alloc = cb;
386} 1060}
387 1061
390{ 1064{
391 ptr = alloc (ptr, size); 1065 ptr = alloc (ptr, size);
392 1066
393 if (!ptr && size) 1067 if (!ptr && size)
394 { 1068 {
1069#if EV_AVOID_STDIO
1070 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1071#else
395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1072 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1073#endif
396 abort (); 1074 abort ();
397 } 1075 }
398 1076
399 return ptr; 1077 return ptr;
400} 1078}
402#define ev_malloc(size) ev_realloc (0, (size)) 1080#define ev_malloc(size) ev_realloc (0, (size))
403#define ev_free(ptr) ev_realloc ((ptr), 0) 1081#define ev_free(ptr) ev_realloc ((ptr), 0)
404 1082
405/*****************************************************************************/ 1083/*****************************************************************************/
406 1084
1085/* set in reify when reification needed */
1086#define EV_ANFD_REIFY 1
1087
1088/* file descriptor info structure */
407typedef struct 1089typedef struct
408{ 1090{
409 WL head; 1091 WL head;
410 unsigned char events; 1092 unsigned char events; /* the events watched for */
1093 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1094 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
411 unsigned char reify; 1095 unsigned char unused;
1096#if EV_USE_EPOLL
1097 unsigned int egen; /* generation counter to counter epoll bugs */
1098#endif
412#if EV_SELECT_IS_WINSOCKET 1099#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
413 SOCKET handle; 1100 SOCKET handle;
414#endif 1101#endif
1102#if EV_USE_IOCP
1103 OVERLAPPED or, ow;
1104#endif
415} ANFD; 1105} ANFD;
416 1106
1107/* stores the pending event set for a given watcher */
417typedef struct 1108typedef struct
418{ 1109{
419 W w; 1110 W w;
420 int events; 1111 int events; /* the pending event set for the given watcher */
421} ANPENDING; 1112} ANPENDING;
422 1113
423#if EV_USE_INOTIFY 1114#if EV_USE_INOTIFY
1115/* hash table entry per inotify-id */
424typedef struct 1116typedef struct
425{ 1117{
426 WL head; 1118 WL head;
427} ANFS; 1119} ANFS;
1120#endif
1121
1122/* Heap Entry */
1123#if EV_HEAP_CACHE_AT
1124 /* a heap element */
1125 typedef struct {
1126 ev_tstamp at;
1127 WT w;
1128 } ANHE;
1129
1130 #define ANHE_w(he) (he).w /* access watcher, read-write */
1131 #define ANHE_at(he) (he).at /* access cached at, read-only */
1132 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1133#else
1134 /* a heap element */
1135 typedef WT ANHE;
1136
1137 #define ANHE_w(he) (he)
1138 #define ANHE_at(he) (he)->at
1139 #define ANHE_at_cache(he)
428#endif 1140#endif
429 1141
430#if EV_MULTIPLICITY 1142#if EV_MULTIPLICITY
431 1143
432 struct ev_loop 1144 struct ev_loop
451 1163
452 static int ev_default_loop_ptr; 1164 static int ev_default_loop_ptr;
453 1165
454#endif 1166#endif
455 1167
1168#if EV_FEATURE_API
1169# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1170# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1171# define EV_INVOKE_PENDING invoke_cb (EV_A)
1172#else
1173# define EV_RELEASE_CB (void)0
1174# define EV_ACQUIRE_CB (void)0
1175# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1176#endif
1177
1178#define EVBREAK_RECURSE 0x80
1179
456/*****************************************************************************/ 1180/*****************************************************************************/
457 1181
1182#ifndef EV_HAVE_EV_TIME
458ev_tstamp 1183ev_tstamp
459ev_time (void) 1184ev_time (void)
460{ 1185{
461#if EV_USE_REALTIME 1186#if EV_USE_REALTIME
1187 if (expect_true (have_realtime))
1188 {
462 struct timespec ts; 1189 struct timespec ts;
463 clock_gettime (CLOCK_REALTIME, &ts); 1190 clock_gettime (CLOCK_REALTIME, &ts);
464 return ts.tv_sec + ts.tv_nsec * 1e-9; 1191 return ts.tv_sec + ts.tv_nsec * 1e-9;
465#else 1192 }
1193#endif
1194
466 struct timeval tv; 1195 struct timeval tv;
467 gettimeofday (&tv, 0); 1196 gettimeofday (&tv, 0);
468 return tv.tv_sec + tv.tv_usec * 1e-6; 1197 return tv.tv_sec + tv.tv_usec * 1e-6;
469#endif
470} 1198}
1199#endif
471 1200
472ev_tstamp inline_size 1201inline_size ev_tstamp
473get_clock (void) 1202get_clock (void)
474{ 1203{
475#if EV_USE_MONOTONIC 1204#if EV_USE_MONOTONIC
476 if (expect_true (have_monotonic)) 1205 if (expect_true (have_monotonic))
477 { 1206 {
498 if (delay > 0.) 1227 if (delay > 0.)
499 { 1228 {
500#if EV_USE_NANOSLEEP 1229#if EV_USE_NANOSLEEP
501 struct timespec ts; 1230 struct timespec ts;
502 1231
503 ts.tv_sec = (time_t)delay; 1232 EV_TS_SET (ts, delay);
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0); 1233 nanosleep (&ts, 0);
507#elif defined(_WIN32) 1234#elif defined(_WIN32)
508 Sleep ((unsigned long)(delay * 1e3)); 1235 Sleep ((unsigned long)(delay * 1e3));
509#else 1236#else
510 struct timeval tv; 1237 struct timeval tv;
511 1238
512 tv.tv_sec = (time_t)delay; 1239 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1240 /* something not guaranteed by newer posix versions, but guaranteed */
514 1241 /* by older ones */
1242 EV_TV_SET (tv, delay);
515 select (0, 0, 0, 0, &tv); 1243 select (0, 0, 0, 0, &tv);
516#endif 1244#endif
517 } 1245 }
518} 1246}
519 1247
520/*****************************************************************************/ 1248/*****************************************************************************/
521 1249
522int inline_size 1250#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1251
1252/* find a suitable new size for the given array, */
1253/* hopefully by rounding to a nice-to-malloc size */
1254inline_size int
523array_nextsize (int elem, int cur, int cnt) 1255array_nextsize (int elem, int cur, int cnt)
524{ 1256{
525 int ncur = cur + 1; 1257 int ncur = cur + 1;
526 1258
527 do 1259 do
528 ncur <<= 1; 1260 ncur <<= 1;
529 while (cnt > ncur); 1261 while (cnt > ncur);
530 1262
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1263 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 1264 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 1265 {
534 ncur *= elem; 1266 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1267 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 1268 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 1269 ncur /= elem;
538 } 1270 }
539 1271
540 return ncur; 1272 return ncur;
541} 1273}
542 1274
543static noinline void * 1275static void * noinline ecb_cold
544array_realloc (int elem, void *base, int *cur, int cnt) 1276array_realloc (int elem, void *base, int *cur, int cnt)
545{ 1277{
546 *cur = array_nextsize (elem, *cur, cnt); 1278 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur); 1279 return ev_realloc (base, elem * *cur);
548} 1280}
1281
1282#define array_init_zero(base,count) \
1283 memset ((void *)(base), 0, sizeof (*(base)) * (count))
549 1284
550#define array_needsize(type,base,cur,cnt,init) \ 1285#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \ 1286 if (expect_false ((cnt) > (cur))) \
552 { \ 1287 { \
553 int ocur_ = (cur); \ 1288 int ecb_unused ocur_ = (cur); \
554 (base) = (type *)array_realloc \ 1289 (base) = (type *)array_realloc \
555 (sizeof (type), (base), &(cur), (cnt)); \ 1290 (sizeof (type), (base), &(cur), (cnt)); \
556 init ((base) + (ocur_), (cur) - ocur_); \ 1291 init ((base) + (ocur_), (cur) - ocur_); \
557 } 1292 }
558 1293
565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1300 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
566 } 1301 }
567#endif 1302#endif
568 1303
569#define array_free(stem, idx) \ 1304#define array_free(stem, idx) \
570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1305 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
571 1306
572/*****************************************************************************/ 1307/*****************************************************************************/
1308
1309/* dummy callback for pending events */
1310static void noinline
1311pendingcb (EV_P_ ev_prepare *w, int revents)
1312{
1313}
573 1314
574void noinline 1315void noinline
575ev_feed_event (EV_P_ void *w, int revents) 1316ev_feed_event (EV_P_ void *w, int revents)
576{ 1317{
577 W w_ = (W)w; 1318 W w_ = (W)w;
586 pendings [pri][w_->pending - 1].w = w_; 1327 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents; 1328 pendings [pri][w_->pending - 1].events = revents;
588 } 1329 }
589} 1330}
590 1331
591void inline_speed 1332inline_speed void
1333feed_reverse (EV_P_ W w)
1334{
1335 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1336 rfeeds [rfeedcnt++] = w;
1337}
1338
1339inline_size void
1340feed_reverse_done (EV_P_ int revents)
1341{
1342 do
1343 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1344 while (rfeedcnt);
1345}
1346
1347inline_speed void
592queue_events (EV_P_ W *events, int eventcnt, int type) 1348queue_events (EV_P_ W *events, int eventcnt, int type)
593{ 1349{
594 int i; 1350 int i;
595 1351
596 for (i = 0; i < eventcnt; ++i) 1352 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type); 1353 ev_feed_event (EV_A_ events [i], type);
598} 1354}
599 1355
600/*****************************************************************************/ 1356/*****************************************************************************/
601 1357
602void inline_size 1358inline_speed void
603anfds_init (ANFD *base, int count)
604{
605 while (count--)
606 {
607 base->head = 0;
608 base->events = EV_NONE;
609 base->reify = 0;
610
611 ++base;
612 }
613}
614
615void inline_speed
616fd_event (EV_P_ int fd, int revents) 1359fd_event_nocheck (EV_P_ int fd, int revents)
617{ 1360{
618 ANFD *anfd = anfds + fd; 1361 ANFD *anfd = anfds + fd;
619 ev_io *w; 1362 ev_io *w;
620 1363
621 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1364 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
625 if (ev) 1368 if (ev)
626 ev_feed_event (EV_A_ (W)w, ev); 1369 ev_feed_event (EV_A_ (W)w, ev);
627 } 1370 }
628} 1371}
629 1372
1373/* do not submit kernel events for fds that have reify set */
1374/* because that means they changed while we were polling for new events */
1375inline_speed void
1376fd_event (EV_P_ int fd, int revents)
1377{
1378 ANFD *anfd = anfds + fd;
1379
1380 if (expect_true (!anfd->reify))
1381 fd_event_nocheck (EV_A_ fd, revents);
1382}
1383
630void 1384void
631ev_feed_fd_event (EV_P_ int fd, int revents) 1385ev_feed_fd_event (EV_P_ int fd, int revents)
632{ 1386{
633 if (fd >= 0 && fd < anfdmax) 1387 if (fd >= 0 && fd < anfdmax)
634 fd_event (EV_A_ fd, revents); 1388 fd_event_nocheck (EV_A_ fd, revents);
635} 1389}
636 1390
637void inline_size 1391/* make sure the external fd watch events are in-sync */
1392/* with the kernel/libev internal state */
1393inline_size void
638fd_reify (EV_P) 1394fd_reify (EV_P)
639{ 1395{
640 int i; 1396 int i;
1397
1398#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1399 for (i = 0; i < fdchangecnt; ++i)
1400 {
1401 int fd = fdchanges [i];
1402 ANFD *anfd = anfds + fd;
1403
1404 if (anfd->reify & EV__IOFDSET && anfd->head)
1405 {
1406 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1407
1408 if (handle != anfd->handle)
1409 {
1410 unsigned long arg;
1411
1412 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1413
1414 /* handle changed, but fd didn't - we need to do it in two steps */
1415 backend_modify (EV_A_ fd, anfd->events, 0);
1416 anfd->events = 0;
1417 anfd->handle = handle;
1418 }
1419 }
1420 }
1421#endif
641 1422
642 for (i = 0; i < fdchangecnt; ++i) 1423 for (i = 0; i < fdchangecnt; ++i)
643 { 1424 {
644 int fd = fdchanges [i]; 1425 int fd = fdchanges [i];
645 ANFD *anfd = anfds + fd; 1426 ANFD *anfd = anfds + fd;
646 ev_io *w; 1427 ev_io *w;
647 1428
648 unsigned char events = 0; 1429 unsigned char o_events = anfd->events;
1430 unsigned char o_reify = anfd->reify;
649 1431
650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1432 anfd->reify = 0;
651 events |= (unsigned char)w->events;
652 1433
653#if EV_SELECT_IS_WINSOCKET 1434 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
654 if (events)
655 { 1435 {
656 unsigned long argp; 1436 anfd->events = 0;
657 #ifdef EV_FD_TO_WIN32_HANDLE 1437
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1438 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
659 #else 1439 anfd->events |= (unsigned char)w->events;
660 anfd->handle = _get_osfhandle (fd); 1440
661 #endif 1441 if (o_events != anfd->events)
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1442 o_reify = EV__IOFDSET; /* actually |= */
663 } 1443 }
664#endif
665 1444
666 { 1445 if (o_reify & EV__IOFDSET)
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
670 anfd->reify = 0;
671 anfd->events = events;
672
673 if (o_events != events || o_reify & EV_IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events); 1446 backend_modify (EV_A_ fd, o_events, anfd->events);
675 }
676 } 1447 }
677 1448
678 fdchangecnt = 0; 1449 fdchangecnt = 0;
679} 1450}
680 1451
681void inline_size 1452/* something about the given fd changed */
1453inline_size void
682fd_change (EV_P_ int fd, int flags) 1454fd_change (EV_P_ int fd, int flags)
683{ 1455{
684 unsigned char reify = anfds [fd].reify; 1456 unsigned char reify = anfds [fd].reify;
685 anfds [fd].reify |= flags; 1457 anfds [fd].reify |= flags;
686 1458
690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1462 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
691 fdchanges [fdchangecnt - 1] = fd; 1463 fdchanges [fdchangecnt - 1] = fd;
692 } 1464 }
693} 1465}
694 1466
695void inline_speed 1467/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1468inline_speed void ecb_cold
696fd_kill (EV_P_ int fd) 1469fd_kill (EV_P_ int fd)
697{ 1470{
698 ev_io *w; 1471 ev_io *w;
699 1472
700 while ((w = (ev_io *)anfds [fd].head)) 1473 while ((w = (ev_io *)anfds [fd].head))
702 ev_io_stop (EV_A_ w); 1475 ev_io_stop (EV_A_ w);
703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1476 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
704 } 1477 }
705} 1478}
706 1479
707int inline_size 1480/* check whether the given fd is actually valid, for error recovery */
1481inline_size int ecb_cold
708fd_valid (int fd) 1482fd_valid (int fd)
709{ 1483{
710#ifdef _WIN32 1484#ifdef _WIN32
711 return _get_osfhandle (fd) != -1; 1485 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
712#else 1486#else
713 return fcntl (fd, F_GETFD) != -1; 1487 return fcntl (fd, F_GETFD) != -1;
714#endif 1488#endif
715} 1489}
716 1490
717/* called on EBADF to verify fds */ 1491/* called on EBADF to verify fds */
718static void noinline 1492static void noinline ecb_cold
719fd_ebadf (EV_P) 1493fd_ebadf (EV_P)
720{ 1494{
721 int fd; 1495 int fd;
722 1496
723 for (fd = 0; fd < anfdmax; ++fd) 1497 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 1498 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 1499 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 1500 fd_kill (EV_A_ fd);
727} 1501}
728 1502
729/* called on ENOMEM in select/poll to kill some fds and retry */ 1503/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 1504static void noinline ecb_cold
731fd_enomem (EV_P) 1505fd_enomem (EV_P)
732{ 1506{
733 int fd; 1507 int fd;
734 1508
735 for (fd = anfdmax; fd--; ) 1509 for (fd = anfdmax; fd--; )
736 if (anfds [fd].events) 1510 if (anfds [fd].events)
737 { 1511 {
738 fd_kill (EV_A_ fd); 1512 fd_kill (EV_A_ fd);
739 return; 1513 break;
740 } 1514 }
741} 1515}
742 1516
743/* usually called after fork if backend needs to re-arm all fds from scratch */ 1517/* usually called after fork if backend needs to re-arm all fds from scratch */
744static void noinline 1518static void noinline
748 1522
749 for (fd = 0; fd < anfdmax; ++fd) 1523 for (fd = 0; fd < anfdmax; ++fd)
750 if (anfds [fd].events) 1524 if (anfds [fd].events)
751 { 1525 {
752 anfds [fd].events = 0; 1526 anfds [fd].events = 0;
1527 anfds [fd].emask = 0;
753 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1528 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
754 } 1529 }
755} 1530}
756 1531
757/*****************************************************************************/ 1532/* used to prepare libev internal fd's */
758 1533/* this is not fork-safe */
759void inline_speed 1534inline_speed void
760upheap (WT *heap, int k)
761{
762 WT w = heap [k];
763
764 while (k)
765 {
766 int p = (k - 1) >> 1;
767
768 if (heap [p]->at <= w->at)
769 break;
770
771 heap [k] = heap [p];
772 ((W)heap [k])->active = k + 1;
773 k = p;
774 }
775
776 heap [k] = w;
777 ((W)heap [k])->active = k + 1;
778}
779
780void inline_speed
781downheap (WT *heap, int N, int k)
782{
783 WT w = heap [k];
784
785 for (;;)
786 {
787 int c = (k << 1) + 1;
788
789 if (c >= N)
790 break;
791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
798 heap [k] = heap [c];
799 ((W)heap [k])->active = k + 1;
800
801 k = c;
802 }
803
804 heap [k] = w;
805 ((W)heap [k])->active = k + 1;
806}
807
808void inline_size
809adjustheap (WT *heap, int N, int k)
810{
811 upheap (heap, k);
812 downheap (heap, N, k);
813}
814
815/*****************************************************************************/
816
817typedef struct
818{
819 WL head;
820 EV_ATOMIC_T gotsig;
821} ANSIG;
822
823static ANSIG *signals;
824static int signalmax;
825
826static EV_ATOMIC_T gotsig;
827
828void inline_size
829signals_init (ANSIG *base, int count)
830{
831 while (count--)
832 {
833 base->head = 0;
834 base->gotsig = 0;
835
836 ++base;
837 }
838}
839
840/*****************************************************************************/
841
842void inline_speed
843fd_intern (int fd) 1535fd_intern (int fd)
844{ 1536{
845#ifdef _WIN32 1537#ifdef _WIN32
846 int arg = 1; 1538 unsigned long arg = 1;
847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1539 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
848#else 1540#else
849 fcntl (fd, F_SETFD, FD_CLOEXEC); 1541 fcntl (fd, F_SETFD, FD_CLOEXEC);
850 fcntl (fd, F_SETFL, O_NONBLOCK); 1542 fcntl (fd, F_SETFL, O_NONBLOCK);
851#endif 1543#endif
852} 1544}
853 1545
1546/*****************************************************************************/
1547
1548/*
1549 * the heap functions want a real array index. array index 0 is guaranteed to not
1550 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1551 * the branching factor of the d-tree.
1552 */
1553
1554/*
1555 * at the moment we allow libev the luxury of two heaps,
1556 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1557 * which is more cache-efficient.
1558 * the difference is about 5% with 50000+ watchers.
1559 */
1560#if EV_USE_4HEAP
1561
1562#define DHEAP 4
1563#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1564#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1565#define UPHEAP_DONE(p,k) ((p) == (k))
1566
1567/* away from the root */
1568inline_speed void
1569downheap (ANHE *heap, int N, int k)
1570{
1571 ANHE he = heap [k];
1572 ANHE *E = heap + N + HEAP0;
1573
1574 for (;;)
1575 {
1576 ev_tstamp minat;
1577 ANHE *minpos;
1578 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1579
1580 /* find minimum child */
1581 if (expect_true (pos + DHEAP - 1 < E))
1582 {
1583 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1584 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1585 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1586 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1587 }
1588 else if (pos < E)
1589 {
1590 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1591 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1592 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1593 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1594 }
1595 else
1596 break;
1597
1598 if (ANHE_at (he) <= minat)
1599 break;
1600
1601 heap [k] = *minpos;
1602 ev_active (ANHE_w (*minpos)) = k;
1603
1604 k = minpos - heap;
1605 }
1606
1607 heap [k] = he;
1608 ev_active (ANHE_w (he)) = k;
1609}
1610
1611#else /* 4HEAP */
1612
1613#define HEAP0 1
1614#define HPARENT(k) ((k) >> 1)
1615#define UPHEAP_DONE(p,k) (!(p))
1616
1617/* away from the root */
1618inline_speed void
1619downheap (ANHE *heap, int N, int k)
1620{
1621 ANHE he = heap [k];
1622
1623 for (;;)
1624 {
1625 int c = k << 1;
1626
1627 if (c >= N + HEAP0)
1628 break;
1629
1630 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1631 ? 1 : 0;
1632
1633 if (ANHE_at (he) <= ANHE_at (heap [c]))
1634 break;
1635
1636 heap [k] = heap [c];
1637 ev_active (ANHE_w (heap [k])) = k;
1638
1639 k = c;
1640 }
1641
1642 heap [k] = he;
1643 ev_active (ANHE_w (he)) = k;
1644}
1645#endif
1646
1647/* towards the root */
1648inline_speed void
1649upheap (ANHE *heap, int k)
1650{
1651 ANHE he = heap [k];
1652
1653 for (;;)
1654 {
1655 int p = HPARENT (k);
1656
1657 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1658 break;
1659
1660 heap [k] = heap [p];
1661 ev_active (ANHE_w (heap [k])) = k;
1662 k = p;
1663 }
1664
1665 heap [k] = he;
1666 ev_active (ANHE_w (he)) = k;
1667}
1668
1669/* move an element suitably so it is in a correct place */
1670inline_size void
1671adjustheap (ANHE *heap, int N, int k)
1672{
1673 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1674 upheap (heap, k);
1675 else
1676 downheap (heap, N, k);
1677}
1678
1679/* rebuild the heap: this function is used only once and executed rarely */
1680inline_size void
1681reheap (ANHE *heap, int N)
1682{
1683 int i;
1684
1685 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1686 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1687 for (i = 0; i < N; ++i)
1688 upheap (heap, i + HEAP0);
1689}
1690
1691/*****************************************************************************/
1692
1693/* associate signal watchers to a signal signal */
1694typedef struct
1695{
1696 EV_ATOMIC_T pending;
1697#if EV_MULTIPLICITY
1698 EV_P;
1699#endif
1700 WL head;
1701} ANSIG;
1702
1703static ANSIG signals [EV_NSIG - 1];
1704
1705/*****************************************************************************/
1706
1707#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1708
854static void noinline 1709static void noinline ecb_cold
855evpipe_init (EV_P) 1710evpipe_init (EV_P)
856{ 1711{
857 if (!ev_is_active (&pipeev)) 1712 if (!ev_is_active (&pipe_w))
858 { 1713 {
859#if EV_USE_EVENTFD 1714# if EV_USE_EVENTFD
1715 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1716 if (evfd < 0 && errno == EINVAL)
860 if ((evfd = eventfd (0, 0)) >= 0) 1717 evfd = eventfd (0, 0);
1718
1719 if (evfd >= 0)
861 { 1720 {
862 evpipe [0] = -1; 1721 evpipe [0] = -1;
863 fd_intern (evfd); 1722 fd_intern (evfd); /* doing it twice doesn't hurt */
864 ev_io_set (&pipeev, evfd, EV_READ); 1723 ev_io_set (&pipe_w, evfd, EV_READ);
865 } 1724 }
866 else 1725 else
867#endif 1726# endif
868 { 1727 {
869 while (pipe (evpipe)) 1728 while (pipe (evpipe))
870 syserr ("(libev) error creating signal/async pipe"); 1729 ev_syserr ("(libev) error creating signal/async pipe");
871 1730
872 fd_intern (evpipe [0]); 1731 fd_intern (evpipe [0]);
873 fd_intern (evpipe [1]); 1732 fd_intern (evpipe [1]);
874 ev_io_set (&pipeev, evpipe [0], EV_READ); 1733 ev_io_set (&pipe_w, evpipe [0], EV_READ);
875 } 1734 }
876 1735
877 ev_io_start (EV_A_ &pipeev); 1736 ev_io_start (EV_A_ &pipe_w);
878 ev_unref (EV_A); /* watcher should not keep loop alive */ 1737 ev_unref (EV_A); /* watcher should not keep loop alive */
879 } 1738 }
880} 1739}
881 1740
882void inline_size 1741inline_speed void
883evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1742evpipe_write (EV_P_ EV_ATOMIC_T *flag)
884{ 1743{
885 if (!*flag) 1744 if (expect_true (*flag))
1745 return;
1746
1747 *flag = 1;
1748
1749 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1750
1751 pipe_write_skipped = 1;
1752
1753 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1754
1755 if (pipe_write_wanted)
886 { 1756 {
1757 int old_errno;
1758
1759 pipe_write_skipped = 0; /* just an optimsiation, no fence needed */
1760
887 int old_errno = errno; /* save errno because write might clobber it */ 1761 old_errno = errno; /* save errno because write will clobber it */
888
889 *flag = 1;
890 1762
891#if EV_USE_EVENTFD 1763#if EV_USE_EVENTFD
892 if (evfd >= 0) 1764 if (evfd >= 0)
893 { 1765 {
894 uint64_t counter = 1; 1766 uint64_t counter = 1;
895 write (evfd, &counter, sizeof (uint64_t)); 1767 write (evfd, &counter, sizeof (uint64_t));
896 } 1768 }
897 else 1769 else
898#endif 1770#endif
1771 {
1772 /* win32 people keep sending patches that change this write() to send() */
1773 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1774 /* so when you think this write should be a send instead, please find out */
1775 /* where your send() is from - it's definitely not the microsoft send, and */
1776 /* tell me. thank you. */
899 write (evpipe [1], &old_errno, 1); 1777 write (evpipe [1], &(evpipe [1]), 1);
1778 }
900 1779
901 errno = old_errno; 1780 errno = old_errno;
902 } 1781 }
903} 1782}
904 1783
1784/* called whenever the libev signal pipe */
1785/* got some events (signal, async) */
905static void 1786static void
906pipecb (EV_P_ ev_io *iow, int revents) 1787pipecb (EV_P_ ev_io *iow, int revents)
907{ 1788{
1789 int i;
1790
1791 if (revents & EV_READ)
1792 {
908#if EV_USE_EVENTFD 1793#if EV_USE_EVENTFD
909 if (evfd >= 0) 1794 if (evfd >= 0)
910 { 1795 {
911 uint64_t counter = 1; 1796 uint64_t counter;
912 read (evfd, &counter, sizeof (uint64_t)); 1797 read (evfd, &counter, sizeof (uint64_t));
913 } 1798 }
914 else 1799 else
915#endif 1800#endif
916 { 1801 {
917 char dummy; 1802 char dummy;
1803 /* see discussion in evpipe_write when you think this read should be recv in win32 */
918 read (evpipe [0], &dummy, 1); 1804 read (evpipe [0], &dummy, 1);
1805 }
1806 }
1807
1808 pipe_write_skipped = 0;
1809
1810#if EV_SIGNAL_ENABLE
1811 if (sig_pending)
919 } 1812 {
1813 sig_pending = 0;
920 1814
921 if (gotsig && ev_is_default_loop (EV_A)) 1815 for (i = EV_NSIG - 1; i--; )
922 { 1816 if (expect_false (signals [i].pending))
923 int signum;
924 gotsig = 0;
925
926 for (signum = signalmax; signum--; )
927 if (signals [signum].gotsig)
928 ev_feed_signal_event (EV_A_ signum + 1); 1817 ev_feed_signal_event (EV_A_ i + 1);
929 } 1818 }
1819#endif
930 1820
931#if EV_ASYNC_ENABLE 1821#if EV_ASYNC_ENABLE
932 if (gotasync) 1822 if (async_pending)
933 { 1823 {
934 int i; 1824 async_pending = 0;
935 gotasync = 0;
936 1825
937 for (i = asynccnt; i--; ) 1826 for (i = asynccnt; i--; )
938 if (asyncs [i]->sent) 1827 if (asyncs [i]->sent)
939 { 1828 {
940 asyncs [i]->sent = 0; 1829 asyncs [i]->sent = 0;
944#endif 1833#endif
945} 1834}
946 1835
947/*****************************************************************************/ 1836/*****************************************************************************/
948 1837
1838void
1839ev_feed_signal (int signum)
1840{
1841#if EV_MULTIPLICITY
1842 EV_P = signals [signum - 1].loop;
1843
1844 if (!EV_A)
1845 return;
1846#endif
1847
1848 if (!ev_active (&pipe_w))
1849 return;
1850
1851 signals [signum - 1].pending = 1;
1852 evpipe_write (EV_A_ &sig_pending);
1853}
1854
949static void 1855static void
950ev_sighandler (int signum) 1856ev_sighandler (int signum)
951{ 1857{
952#if EV_MULTIPLICITY
953 struct ev_loop *loop = &default_loop_struct;
954#endif
955
956#if _WIN32 1858#ifdef _WIN32
957 signal (signum, ev_sighandler); 1859 signal (signum, ev_sighandler);
958#endif 1860#endif
959 1861
960 signals [signum - 1].gotsig = 1; 1862 ev_feed_signal (signum);
961 evpipe_write (EV_A_ &gotsig);
962} 1863}
963 1864
964void noinline 1865void noinline
965ev_feed_signal_event (EV_P_ int signum) 1866ev_feed_signal_event (EV_P_ int signum)
966{ 1867{
967 WL w; 1868 WL w;
968 1869
1870 if (expect_false (signum <= 0 || signum > EV_NSIG))
1871 return;
1872
1873 --signum;
1874
969#if EV_MULTIPLICITY 1875#if EV_MULTIPLICITY
970 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1876 /* it is permissible to try to feed a signal to the wrong loop */
971#endif 1877 /* or, likely more useful, feeding a signal nobody is waiting for */
972 1878
973 --signum; 1879 if (expect_false (signals [signum].loop != EV_A))
974
975 if (signum < 0 || signum >= signalmax)
976 return; 1880 return;
1881#endif
977 1882
978 signals [signum].gotsig = 0; 1883 signals [signum].pending = 0;
979 1884
980 for (w = signals [signum].head; w; w = w->next) 1885 for (w = signals [signum].head; w; w = w->next)
981 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1886 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
982} 1887}
983 1888
1889#if EV_USE_SIGNALFD
1890static void
1891sigfdcb (EV_P_ ev_io *iow, int revents)
1892{
1893 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1894
1895 for (;;)
1896 {
1897 ssize_t res = read (sigfd, si, sizeof (si));
1898
1899 /* not ISO-C, as res might be -1, but works with SuS */
1900 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1901 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1902
1903 if (res < (ssize_t)sizeof (si))
1904 break;
1905 }
1906}
1907#endif
1908
1909#endif
1910
984/*****************************************************************************/ 1911/*****************************************************************************/
985 1912
1913#if EV_CHILD_ENABLE
986static WL childs [EV_PID_HASHSIZE]; 1914static WL childs [EV_PID_HASHSIZE];
987
988#ifndef _WIN32
989 1915
990static ev_signal childev; 1916static ev_signal childev;
991 1917
992#ifndef WIFCONTINUED 1918#ifndef WIFCONTINUED
993# define WIFCONTINUED(status) 0 1919# define WIFCONTINUED(status) 0
994#endif 1920#endif
995 1921
996void inline_speed 1922/* handle a single child status event */
1923inline_speed void
997child_reap (EV_P_ int chain, int pid, int status) 1924child_reap (EV_P_ int chain, int pid, int status)
998{ 1925{
999 ev_child *w; 1926 ev_child *w;
1000 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1927 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1001 1928
1002 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1929 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1003 { 1930 {
1004 if ((w->pid == pid || !w->pid) 1931 if ((w->pid == pid || !w->pid)
1005 && (!traced || (w->flags & 1))) 1932 && (!traced || (w->flags & 1)))
1006 { 1933 {
1007 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1934 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1014 1941
1015#ifndef WCONTINUED 1942#ifndef WCONTINUED
1016# define WCONTINUED 0 1943# define WCONTINUED 0
1017#endif 1944#endif
1018 1945
1946/* called on sigchld etc., calls waitpid */
1019static void 1947static void
1020childcb (EV_P_ ev_signal *sw, int revents) 1948childcb (EV_P_ ev_signal *sw, int revents)
1021{ 1949{
1022 int pid, status; 1950 int pid, status;
1023 1951
1031 /* make sure we are called again until all children have been reaped */ 1959 /* make sure we are called again until all children have been reaped */
1032 /* we need to do it this way so that the callback gets called before we continue */ 1960 /* we need to do it this way so that the callback gets called before we continue */
1033 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1961 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1034 1962
1035 child_reap (EV_A_ pid, pid, status); 1963 child_reap (EV_A_ pid, pid, status);
1036 if (EV_PID_HASHSIZE > 1) 1964 if ((EV_PID_HASHSIZE) > 1)
1037 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1965 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1038} 1966}
1039 1967
1040#endif 1968#endif
1041 1969
1042/*****************************************************************************/ 1970/*****************************************************************************/
1043 1971
1972#if EV_USE_IOCP
1973# include "ev_iocp.c"
1974#endif
1044#if EV_USE_PORT 1975#if EV_USE_PORT
1045# include "ev_port.c" 1976# include "ev_port.c"
1046#endif 1977#endif
1047#if EV_USE_KQUEUE 1978#if EV_USE_KQUEUE
1048# include "ev_kqueue.c" 1979# include "ev_kqueue.c"
1055#endif 1986#endif
1056#if EV_USE_SELECT 1987#if EV_USE_SELECT
1057# include "ev_select.c" 1988# include "ev_select.c"
1058#endif 1989#endif
1059 1990
1060int 1991int ecb_cold
1061ev_version_major (void) 1992ev_version_major (void)
1062{ 1993{
1063 return EV_VERSION_MAJOR; 1994 return EV_VERSION_MAJOR;
1064} 1995}
1065 1996
1066int 1997int ecb_cold
1067ev_version_minor (void) 1998ev_version_minor (void)
1068{ 1999{
1069 return EV_VERSION_MINOR; 2000 return EV_VERSION_MINOR;
1070} 2001}
1071 2002
1072/* return true if we are running with elevated privileges and should ignore env variables */ 2003/* return true if we are running with elevated privileges and should ignore env variables */
1073int inline_size 2004int inline_size ecb_cold
1074enable_secure (void) 2005enable_secure (void)
1075{ 2006{
1076#ifdef _WIN32 2007#ifdef _WIN32
1077 return 0; 2008 return 0;
1078#else 2009#else
1079 return getuid () != geteuid () 2010 return getuid () != geteuid ()
1080 || getgid () != getegid (); 2011 || getgid () != getegid ();
1081#endif 2012#endif
1082} 2013}
1083 2014
1084unsigned int 2015unsigned int ecb_cold
1085ev_supported_backends (void) 2016ev_supported_backends (void)
1086{ 2017{
1087 unsigned int flags = 0; 2018 unsigned int flags = 0;
1088 2019
1089 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2020 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1093 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2024 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1094 2025
1095 return flags; 2026 return flags;
1096} 2027}
1097 2028
1098unsigned int 2029unsigned int ecb_cold
1099ev_recommended_backends (void) 2030ev_recommended_backends (void)
1100{ 2031{
1101 unsigned int flags = ev_supported_backends (); 2032 unsigned int flags = ev_supported_backends ();
1102 2033
1103#ifndef __NetBSD__ 2034#ifndef __NetBSD__
1104 /* kqueue is borked on everything but netbsd apparently */ 2035 /* kqueue is borked on everything but netbsd apparently */
1105 /* it usually doesn't work correctly on anything but sockets and pipes */ 2036 /* it usually doesn't work correctly on anything but sockets and pipes */
1106 flags &= ~EVBACKEND_KQUEUE; 2037 flags &= ~EVBACKEND_KQUEUE;
1107#endif 2038#endif
1108#ifdef __APPLE__ 2039#ifdef __APPLE__
1109 // flags &= ~EVBACKEND_KQUEUE; for documentation 2040 /* only select works correctly on that "unix-certified" platform */
1110 flags &= ~EVBACKEND_POLL; 2041 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2042 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2043#endif
2044#ifdef __FreeBSD__
2045 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1111#endif 2046#endif
1112 2047
1113 return flags; 2048 return flags;
1114} 2049}
1115 2050
1116unsigned int 2051unsigned int ecb_cold
1117ev_embeddable_backends (void) 2052ev_embeddable_backends (void)
1118{ 2053{
1119 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2054 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1120 2055
1121 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2056 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1122 /* please fix it and tell me how to detect the fix */ 2057 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1123 flags &= ~EVBACKEND_EPOLL; 2058 flags &= ~EVBACKEND_EPOLL;
1124 2059
1125 return flags; 2060 return flags;
1126} 2061}
1127 2062
1128unsigned int 2063unsigned int
1129ev_backend (EV_P) 2064ev_backend (EV_P)
1130{ 2065{
1131 return backend; 2066 return backend;
1132} 2067}
1133 2068
2069#if EV_FEATURE_API
1134unsigned int 2070unsigned int
1135ev_loop_count (EV_P) 2071ev_iteration (EV_P)
1136{ 2072{
1137 return loop_count; 2073 return loop_count;
2074}
2075
2076unsigned int
2077ev_depth (EV_P)
2078{
2079 return loop_depth;
1138} 2080}
1139 2081
1140void 2082void
1141ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2083ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1142{ 2084{
1147ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2089ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1148{ 2090{
1149 timeout_blocktime = interval; 2091 timeout_blocktime = interval;
1150} 2092}
1151 2093
2094void
2095ev_set_userdata (EV_P_ void *data)
2096{
2097 userdata = data;
2098}
2099
2100void *
2101ev_userdata (EV_P)
2102{
2103 return userdata;
2104}
2105
2106void
2107ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2108{
2109 invoke_cb = invoke_pending_cb;
2110}
2111
2112void
2113ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2114{
2115 release_cb = release;
2116 acquire_cb = acquire;
2117}
2118#endif
2119
2120/* initialise a loop structure, must be zero-initialised */
1152static void noinline 2121static void noinline ecb_cold
1153loop_init (EV_P_ unsigned int flags) 2122loop_init (EV_P_ unsigned int flags)
1154{ 2123{
1155 if (!backend) 2124 if (!backend)
1156 { 2125 {
2126 origflags = flags;
2127
2128#if EV_USE_REALTIME
2129 if (!have_realtime)
2130 {
2131 struct timespec ts;
2132
2133 if (!clock_gettime (CLOCK_REALTIME, &ts))
2134 have_realtime = 1;
2135 }
2136#endif
2137
1157#if EV_USE_MONOTONIC 2138#if EV_USE_MONOTONIC
2139 if (!have_monotonic)
1158 { 2140 {
1159 struct timespec ts; 2141 struct timespec ts;
2142
1160 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2143 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1161 have_monotonic = 1; 2144 have_monotonic = 1;
1162 } 2145 }
1163#endif
1164
1165 ev_rt_now = ev_time ();
1166 mn_now = get_clock ();
1167 now_floor = mn_now;
1168 rtmn_diff = ev_rt_now - mn_now;
1169
1170 io_blocktime = 0.;
1171 timeout_blocktime = 0.;
1172 backend = 0;
1173 backend_fd = -1;
1174 gotasync = 0;
1175#if EV_USE_INOTIFY
1176 fs_fd = -2;
1177#endif 2146#endif
1178 2147
1179 /* pid check not overridable via env */ 2148 /* pid check not overridable via env */
1180#ifndef _WIN32 2149#ifndef _WIN32
1181 if (flags & EVFLAG_FORKCHECK) 2150 if (flags & EVFLAG_FORKCHECK)
1185 if (!(flags & EVFLAG_NOENV) 2154 if (!(flags & EVFLAG_NOENV)
1186 && !enable_secure () 2155 && !enable_secure ()
1187 && getenv ("LIBEV_FLAGS")) 2156 && getenv ("LIBEV_FLAGS"))
1188 flags = atoi (getenv ("LIBEV_FLAGS")); 2157 flags = atoi (getenv ("LIBEV_FLAGS"));
1189 2158
1190 if (!(flags & 0x0000ffffU)) 2159 ev_rt_now = ev_time ();
2160 mn_now = get_clock ();
2161 now_floor = mn_now;
2162 rtmn_diff = ev_rt_now - mn_now;
2163#if EV_FEATURE_API
2164 invoke_cb = ev_invoke_pending;
2165#endif
2166
2167 io_blocktime = 0.;
2168 timeout_blocktime = 0.;
2169 backend = 0;
2170 backend_fd = -1;
2171 sig_pending = 0;
2172#if EV_ASYNC_ENABLE
2173 async_pending = 0;
2174#endif
2175 pipe_write_skipped = 0;
2176 pipe_write_wanted = 0;
2177#if EV_USE_INOTIFY
2178 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2179#endif
2180#if EV_USE_SIGNALFD
2181 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2182#endif
2183
2184 if (!(flags & EVBACKEND_MASK))
1191 flags |= ev_recommended_backends (); 2185 flags |= ev_recommended_backends ();
1192 2186
2187#if EV_USE_IOCP
2188 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2189#endif
1193#if EV_USE_PORT 2190#if EV_USE_PORT
1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2191 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1195#endif 2192#endif
1196#if EV_USE_KQUEUE 2193#if EV_USE_KQUEUE
1197 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2194 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1204#endif 2201#endif
1205#if EV_USE_SELECT 2202#if EV_USE_SELECT
1206 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2203 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1207#endif 2204#endif
1208 2205
2206 ev_prepare_init (&pending_w, pendingcb);
2207
2208#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1209 ev_init (&pipeev, pipecb); 2209 ev_init (&pipe_w, pipecb);
1210 ev_set_priority (&pipeev, EV_MAXPRI); 2210 ev_set_priority (&pipe_w, EV_MAXPRI);
2211#endif
1211 } 2212 }
1212} 2213}
1213 2214
1214static void noinline 2215/* free up a loop structure */
2216void ecb_cold
1215loop_destroy (EV_P) 2217ev_loop_destroy (EV_P)
1216{ 2218{
1217 int i; 2219 int i;
1218 2220
2221#if EV_MULTIPLICITY
2222 /* mimic free (0) */
2223 if (!EV_A)
2224 return;
2225#endif
2226
2227#if EV_CLEANUP_ENABLE
2228 /* queue cleanup watchers (and execute them) */
2229 if (expect_false (cleanupcnt))
2230 {
2231 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2232 EV_INVOKE_PENDING;
2233 }
2234#endif
2235
2236#if EV_CHILD_ENABLE
2237 if (ev_is_active (&childev))
2238 {
2239 ev_ref (EV_A); /* child watcher */
2240 ev_signal_stop (EV_A_ &childev);
2241 }
2242#endif
2243
1219 if (ev_is_active (&pipeev)) 2244 if (ev_is_active (&pipe_w))
1220 { 2245 {
1221 ev_ref (EV_A); /* signal watcher */ 2246 /*ev_ref (EV_A);*/
1222 ev_io_stop (EV_A_ &pipeev); 2247 /*ev_io_stop (EV_A_ &pipe_w);*/
1223 2248
1224#if EV_USE_EVENTFD 2249#if EV_USE_EVENTFD
1225 if (evfd >= 0) 2250 if (evfd >= 0)
1226 close (evfd); 2251 close (evfd);
1227#endif 2252#endif
1228 2253
1229 if (evpipe [0] >= 0) 2254 if (evpipe [0] >= 0)
1230 { 2255 {
1231 close (evpipe [0]); 2256 EV_WIN32_CLOSE_FD (evpipe [0]);
1232 close (evpipe [1]); 2257 EV_WIN32_CLOSE_FD (evpipe [1]);
1233 } 2258 }
1234 } 2259 }
2260
2261#if EV_USE_SIGNALFD
2262 if (ev_is_active (&sigfd_w))
2263 close (sigfd);
2264#endif
1235 2265
1236#if EV_USE_INOTIFY 2266#if EV_USE_INOTIFY
1237 if (fs_fd >= 0) 2267 if (fs_fd >= 0)
1238 close (fs_fd); 2268 close (fs_fd);
1239#endif 2269#endif
1240 2270
1241 if (backend_fd >= 0) 2271 if (backend_fd >= 0)
1242 close (backend_fd); 2272 close (backend_fd);
1243 2273
2274#if EV_USE_IOCP
2275 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2276#endif
1244#if EV_USE_PORT 2277#if EV_USE_PORT
1245 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2278 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1246#endif 2279#endif
1247#if EV_USE_KQUEUE 2280#if EV_USE_KQUEUE
1248 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2281 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1263#if EV_IDLE_ENABLE 2296#if EV_IDLE_ENABLE
1264 array_free (idle, [i]); 2297 array_free (idle, [i]);
1265#endif 2298#endif
1266 } 2299 }
1267 2300
1268 ev_free (anfds); anfdmax = 0; 2301 ev_free (anfds); anfds = 0; anfdmax = 0;
1269 2302
1270 /* have to use the microsoft-never-gets-it-right macro */ 2303 /* have to use the microsoft-never-gets-it-right macro */
2304 array_free (rfeed, EMPTY);
1271 array_free (fdchange, EMPTY); 2305 array_free (fdchange, EMPTY);
1272 array_free (timer, EMPTY); 2306 array_free (timer, EMPTY);
1273#if EV_PERIODIC_ENABLE 2307#if EV_PERIODIC_ENABLE
1274 array_free (periodic, EMPTY); 2308 array_free (periodic, EMPTY);
1275#endif 2309#endif
1276#if EV_FORK_ENABLE 2310#if EV_FORK_ENABLE
1277 array_free (fork, EMPTY); 2311 array_free (fork, EMPTY);
1278#endif 2312#endif
2313#if EV_CLEANUP_ENABLE
2314 array_free (cleanup, EMPTY);
2315#endif
1279 array_free (prepare, EMPTY); 2316 array_free (prepare, EMPTY);
1280 array_free (check, EMPTY); 2317 array_free (check, EMPTY);
1281#if EV_ASYNC_ENABLE 2318#if EV_ASYNC_ENABLE
1282 array_free (async, EMPTY); 2319 array_free (async, EMPTY);
1283#endif 2320#endif
1284 2321
1285 backend = 0; 2322 backend = 0;
2323
2324#if EV_MULTIPLICITY
2325 if (ev_is_default_loop (EV_A))
2326#endif
2327 ev_default_loop_ptr = 0;
2328#if EV_MULTIPLICITY
2329 else
2330 ev_free (EV_A);
2331#endif
1286} 2332}
1287 2333
1288#if EV_USE_INOTIFY 2334#if EV_USE_INOTIFY
1289void inline_size infy_fork (EV_P); 2335inline_size void infy_fork (EV_P);
1290#endif 2336#endif
1291 2337
1292void inline_size 2338inline_size void
1293loop_fork (EV_P) 2339loop_fork (EV_P)
1294{ 2340{
1295#if EV_USE_PORT 2341#if EV_USE_PORT
1296 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2342 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1297#endif 2343#endif
1303#endif 2349#endif
1304#if EV_USE_INOTIFY 2350#if EV_USE_INOTIFY
1305 infy_fork (EV_A); 2351 infy_fork (EV_A);
1306#endif 2352#endif
1307 2353
1308 if (ev_is_active (&pipeev)) 2354 if (ev_is_active (&pipe_w))
1309 { 2355 {
1310 /* this "locks" the handlers against writing to the pipe */ 2356 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1311 /* while we modify the fd vars */
1312 gotsig = 1;
1313#if EV_ASYNC_ENABLE
1314 gotasync = 1;
1315#endif
1316 2357
1317 ev_ref (EV_A); 2358 ev_ref (EV_A);
1318 ev_io_stop (EV_A_ &pipeev); 2359 ev_io_stop (EV_A_ &pipe_w);
1319 2360
1320#if EV_USE_EVENTFD 2361#if EV_USE_EVENTFD
1321 if (evfd >= 0) 2362 if (evfd >= 0)
1322 close (evfd); 2363 close (evfd);
1323#endif 2364#endif
1324 2365
1325 if (evpipe [0] >= 0) 2366 if (evpipe [0] >= 0)
1326 { 2367 {
1327 close (evpipe [0]); 2368 EV_WIN32_CLOSE_FD (evpipe [0]);
1328 close (evpipe [1]); 2369 EV_WIN32_CLOSE_FD (evpipe [1]);
1329 } 2370 }
1330 2371
2372#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1331 evpipe_init (EV_A); 2373 evpipe_init (EV_A);
1332 /* now iterate over everything, in case we missed something */ 2374 /* now iterate over everything, in case we missed something */
1333 pipecb (EV_A_ &pipeev, EV_READ); 2375 pipecb (EV_A_ &pipe_w, EV_READ);
2376#endif
1334 } 2377 }
1335 2378
1336 postfork = 0; 2379 postfork = 0;
1337} 2380}
1338 2381
1339#if EV_MULTIPLICITY 2382#if EV_MULTIPLICITY
2383
1340struct ev_loop * 2384struct ev_loop * ecb_cold
1341ev_loop_new (unsigned int flags) 2385ev_loop_new (unsigned int flags)
1342{ 2386{
1343 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2387 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1344 2388
1345 memset (loop, 0, sizeof (struct ev_loop)); 2389 memset (EV_A, 0, sizeof (struct ev_loop));
1346
1347 loop_init (EV_A_ flags); 2390 loop_init (EV_A_ flags);
1348 2391
1349 if (ev_backend (EV_A)) 2392 if (ev_backend (EV_A))
1350 return loop; 2393 return EV_A;
1351 2394
2395 ev_free (EV_A);
1352 return 0; 2396 return 0;
1353} 2397}
1354 2398
1355void 2399#endif /* multiplicity */
1356ev_loop_destroy (EV_P)
1357{
1358 loop_destroy (EV_A);
1359 ev_free (loop);
1360}
1361 2400
1362void 2401#if EV_VERIFY
1363ev_loop_fork (EV_P) 2402static void noinline ecb_cold
2403verify_watcher (EV_P_ W w)
1364{ 2404{
1365 postfork = 1; /* must be in line with ev_default_fork */ 2405 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1366}
1367 2406
2407 if (w->pending)
2408 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2409}
2410
2411static void noinline ecb_cold
2412verify_heap (EV_P_ ANHE *heap, int N)
2413{
2414 int i;
2415
2416 for (i = HEAP0; i < N + HEAP0; ++i)
2417 {
2418 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2419 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2420 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2421
2422 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2423 }
2424}
2425
2426static void noinline ecb_cold
2427array_verify (EV_P_ W *ws, int cnt)
2428{
2429 while (cnt--)
2430 {
2431 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2432 verify_watcher (EV_A_ ws [cnt]);
2433 }
2434}
2435#endif
2436
2437#if EV_FEATURE_API
2438void ecb_cold
2439ev_verify (EV_P)
2440{
2441#if EV_VERIFY
2442 int i;
2443 WL w;
2444
2445 assert (activecnt >= -1);
2446
2447 assert (fdchangemax >= fdchangecnt);
2448 for (i = 0; i < fdchangecnt; ++i)
2449 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2450
2451 assert (anfdmax >= 0);
2452 for (i = 0; i < anfdmax; ++i)
2453 for (w = anfds [i].head; w; w = w->next)
2454 {
2455 verify_watcher (EV_A_ (W)w);
2456 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2457 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2458 }
2459
2460 assert (timermax >= timercnt);
2461 verify_heap (EV_A_ timers, timercnt);
2462
2463#if EV_PERIODIC_ENABLE
2464 assert (periodicmax >= periodiccnt);
2465 verify_heap (EV_A_ periodics, periodiccnt);
2466#endif
2467
2468 for (i = NUMPRI; i--; )
2469 {
2470 assert (pendingmax [i] >= pendingcnt [i]);
2471#if EV_IDLE_ENABLE
2472 assert (idleall >= 0);
2473 assert (idlemax [i] >= idlecnt [i]);
2474 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2475#endif
2476 }
2477
2478#if EV_FORK_ENABLE
2479 assert (forkmax >= forkcnt);
2480 array_verify (EV_A_ (W *)forks, forkcnt);
2481#endif
2482
2483#if EV_CLEANUP_ENABLE
2484 assert (cleanupmax >= cleanupcnt);
2485 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2486#endif
2487
2488#if EV_ASYNC_ENABLE
2489 assert (asyncmax >= asynccnt);
2490 array_verify (EV_A_ (W *)asyncs, asynccnt);
2491#endif
2492
2493#if EV_PREPARE_ENABLE
2494 assert (preparemax >= preparecnt);
2495 array_verify (EV_A_ (W *)prepares, preparecnt);
2496#endif
2497
2498#if EV_CHECK_ENABLE
2499 assert (checkmax >= checkcnt);
2500 array_verify (EV_A_ (W *)checks, checkcnt);
2501#endif
2502
2503# if 0
2504#if EV_CHILD_ENABLE
2505 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2506 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2507#endif
2508# endif
2509#endif
2510}
1368#endif 2511#endif
1369 2512
1370#if EV_MULTIPLICITY 2513#if EV_MULTIPLICITY
1371struct ev_loop * 2514struct ev_loop * ecb_cold
1372ev_default_loop_init (unsigned int flags)
1373#else 2515#else
1374int 2516int
2517#endif
1375ev_default_loop (unsigned int flags) 2518ev_default_loop (unsigned int flags)
1376#endif
1377{ 2519{
1378 if (!ev_default_loop_ptr) 2520 if (!ev_default_loop_ptr)
1379 { 2521 {
1380#if EV_MULTIPLICITY 2522#if EV_MULTIPLICITY
1381 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2523 EV_P = ev_default_loop_ptr = &default_loop_struct;
1382#else 2524#else
1383 ev_default_loop_ptr = 1; 2525 ev_default_loop_ptr = 1;
1384#endif 2526#endif
1385 2527
1386 loop_init (EV_A_ flags); 2528 loop_init (EV_A_ flags);
1387 2529
1388 if (ev_backend (EV_A)) 2530 if (ev_backend (EV_A))
1389 { 2531 {
1390#ifndef _WIN32 2532#if EV_CHILD_ENABLE
1391 ev_signal_init (&childev, childcb, SIGCHLD); 2533 ev_signal_init (&childev, childcb, SIGCHLD);
1392 ev_set_priority (&childev, EV_MAXPRI); 2534 ev_set_priority (&childev, EV_MAXPRI);
1393 ev_signal_start (EV_A_ &childev); 2535 ev_signal_start (EV_A_ &childev);
1394 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2536 ev_unref (EV_A); /* child watcher should not keep loop alive */
1395#endif 2537#endif
1400 2542
1401 return ev_default_loop_ptr; 2543 return ev_default_loop_ptr;
1402} 2544}
1403 2545
1404void 2546void
1405ev_default_destroy (void) 2547ev_loop_fork (EV_P)
1406{ 2548{
1407#if EV_MULTIPLICITY
1408 struct ev_loop *loop = ev_default_loop_ptr;
1409#endif
1410
1411#ifndef _WIN32
1412 ev_ref (EV_A); /* child watcher */
1413 ev_signal_stop (EV_A_ &childev);
1414#endif
1415
1416 loop_destroy (EV_A);
1417}
1418
1419void
1420ev_default_fork (void)
1421{
1422#if EV_MULTIPLICITY
1423 struct ev_loop *loop = ev_default_loop_ptr;
1424#endif
1425
1426 if (backend)
1427 postfork = 1; /* must be in line with ev_loop_fork */ 2549 postfork = 1; /* must be in line with ev_default_fork */
1428} 2550}
1429 2551
1430/*****************************************************************************/ 2552/*****************************************************************************/
1431 2553
1432void 2554void
1433ev_invoke (EV_P_ void *w, int revents) 2555ev_invoke (EV_P_ void *w, int revents)
1434{ 2556{
1435 EV_CB_INVOKE ((W)w, revents); 2557 EV_CB_INVOKE ((W)w, revents);
1436} 2558}
1437 2559
1438void inline_speed 2560unsigned int
1439call_pending (EV_P) 2561ev_pending_count (EV_P)
2562{
2563 int pri;
2564 unsigned int count = 0;
2565
2566 for (pri = NUMPRI; pri--; )
2567 count += pendingcnt [pri];
2568
2569 return count;
2570}
2571
2572void noinline
2573ev_invoke_pending (EV_P)
1440{ 2574{
1441 int pri; 2575 int pri;
1442 2576
1443 for (pri = NUMPRI; pri--; ) 2577 for (pri = NUMPRI; pri--; )
1444 while (pendingcnt [pri]) 2578 while (pendingcnt [pri])
1445 { 2579 {
1446 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2580 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1447 2581
1448 if (expect_true (p->w))
1449 {
1450 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1451
1452 p->w->pending = 0; 2582 p->w->pending = 0;
1453 EV_CB_INVOKE (p->w, p->events); 2583 EV_CB_INVOKE (p->w, p->events);
1454 } 2584 EV_FREQUENT_CHECK;
1455 } 2585 }
1456} 2586}
1457 2587
1458void inline_size
1459timers_reify (EV_P)
1460{
1461 while (timercnt && ((WT)timers [0])->at <= mn_now)
1462 {
1463 ev_timer *w = (ev_timer *)timers [0];
1464
1465 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1466
1467 /* first reschedule or stop timer */
1468 if (w->repeat)
1469 {
1470 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1471
1472 ((WT)w)->at += w->repeat;
1473 if (((WT)w)->at < mn_now)
1474 ((WT)w)->at = mn_now;
1475
1476 downheap (timers, timercnt, 0);
1477 }
1478 else
1479 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1480
1481 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1482 }
1483}
1484
1485#if EV_PERIODIC_ENABLE
1486void inline_size
1487periodics_reify (EV_P)
1488{
1489 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1490 {
1491 ev_periodic *w = (ev_periodic *)periodics [0];
1492
1493 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1494
1495 /* first reschedule or stop timer */
1496 if (w->reschedule_cb)
1497 {
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1499 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1500 downheap (periodics, periodiccnt, 0);
1501 }
1502 else if (w->interval)
1503 {
1504 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1505 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1506 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1507 downheap (periodics, periodiccnt, 0);
1508 }
1509 else
1510 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1511
1512 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1513 }
1514}
1515
1516static void noinline
1517periodics_reschedule (EV_P)
1518{
1519 int i;
1520
1521 /* adjust periodics after time jump */
1522 for (i = 0; i < periodiccnt; ++i)
1523 {
1524 ev_periodic *w = (ev_periodic *)periodics [i];
1525
1526 if (w->reschedule_cb)
1527 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1528 else if (w->interval)
1529 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1530 }
1531
1532 /* now rebuild the heap */
1533 for (i = periodiccnt >> 1; i--; )
1534 downheap (periodics, periodiccnt, i);
1535}
1536#endif
1537
1538#if EV_IDLE_ENABLE 2588#if EV_IDLE_ENABLE
1539void inline_size 2589/* make idle watchers pending. this handles the "call-idle */
2590/* only when higher priorities are idle" logic */
2591inline_size void
1540idle_reify (EV_P) 2592idle_reify (EV_P)
1541{ 2593{
1542 if (expect_false (idleall)) 2594 if (expect_false (idleall))
1543 { 2595 {
1544 int pri; 2596 int pri;
1556 } 2608 }
1557 } 2609 }
1558} 2610}
1559#endif 2611#endif
1560 2612
1561void inline_speed 2613/* make timers pending */
2614inline_size void
2615timers_reify (EV_P)
2616{
2617 EV_FREQUENT_CHECK;
2618
2619 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2620 {
2621 do
2622 {
2623 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2624
2625 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2626
2627 /* first reschedule or stop timer */
2628 if (w->repeat)
2629 {
2630 ev_at (w) += w->repeat;
2631 if (ev_at (w) < mn_now)
2632 ev_at (w) = mn_now;
2633
2634 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2635
2636 ANHE_at_cache (timers [HEAP0]);
2637 downheap (timers, timercnt, HEAP0);
2638 }
2639 else
2640 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2641
2642 EV_FREQUENT_CHECK;
2643 feed_reverse (EV_A_ (W)w);
2644 }
2645 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2646
2647 feed_reverse_done (EV_A_ EV_TIMER);
2648 }
2649}
2650
2651#if EV_PERIODIC_ENABLE
2652
2653static void noinline
2654periodic_recalc (EV_P_ ev_periodic *w)
2655{
2656 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2657 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2658
2659 /* the above almost always errs on the low side */
2660 while (at <= ev_rt_now)
2661 {
2662 ev_tstamp nat = at + w->interval;
2663
2664 /* when resolution fails us, we use ev_rt_now */
2665 if (expect_false (nat == at))
2666 {
2667 at = ev_rt_now;
2668 break;
2669 }
2670
2671 at = nat;
2672 }
2673
2674 ev_at (w) = at;
2675}
2676
2677/* make periodics pending */
2678inline_size void
2679periodics_reify (EV_P)
2680{
2681 EV_FREQUENT_CHECK;
2682
2683 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2684 {
2685 int feed_count = 0;
2686
2687 do
2688 {
2689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2690
2691 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2692
2693 /* first reschedule or stop timer */
2694 if (w->reschedule_cb)
2695 {
2696 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2697
2698 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2699
2700 ANHE_at_cache (periodics [HEAP0]);
2701 downheap (periodics, periodiccnt, HEAP0);
2702 }
2703 else if (w->interval)
2704 {
2705 periodic_recalc (EV_A_ w);
2706 ANHE_at_cache (periodics [HEAP0]);
2707 downheap (periodics, periodiccnt, HEAP0);
2708 }
2709 else
2710 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2711
2712 EV_FREQUENT_CHECK;
2713 feed_reverse (EV_A_ (W)w);
2714 }
2715 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2716
2717 feed_reverse_done (EV_A_ EV_PERIODIC);
2718 }
2719}
2720
2721/* simply recalculate all periodics */
2722/* TODO: maybe ensure that at least one event happens when jumping forward? */
2723static void noinline ecb_cold
2724periodics_reschedule (EV_P)
2725{
2726 int i;
2727
2728 /* adjust periodics after time jump */
2729 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2730 {
2731 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2732
2733 if (w->reschedule_cb)
2734 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2735 else if (w->interval)
2736 periodic_recalc (EV_A_ w);
2737
2738 ANHE_at_cache (periodics [i]);
2739 }
2740
2741 reheap (periodics, periodiccnt);
2742}
2743#endif
2744
2745/* adjust all timers by a given offset */
2746static void noinline ecb_cold
2747timers_reschedule (EV_P_ ev_tstamp adjust)
2748{
2749 int i;
2750
2751 for (i = 0; i < timercnt; ++i)
2752 {
2753 ANHE *he = timers + i + HEAP0;
2754 ANHE_w (*he)->at += adjust;
2755 ANHE_at_cache (*he);
2756 }
2757}
2758
2759/* fetch new monotonic and realtime times from the kernel */
2760/* also detect if there was a timejump, and act accordingly */
2761inline_speed void
1562time_update (EV_P_ ev_tstamp max_block) 2762time_update (EV_P_ ev_tstamp max_block)
1563{ 2763{
1564 int i;
1565
1566#if EV_USE_MONOTONIC 2764#if EV_USE_MONOTONIC
1567 if (expect_true (have_monotonic)) 2765 if (expect_true (have_monotonic))
1568 { 2766 {
2767 int i;
1569 ev_tstamp odiff = rtmn_diff; 2768 ev_tstamp odiff = rtmn_diff;
1570 2769
1571 mn_now = get_clock (); 2770 mn_now = get_clock ();
1572 2771
1573 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2772 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1589 * doesn't hurt either as we only do this on time-jumps or 2788 * doesn't hurt either as we only do this on time-jumps or
1590 * in the unlikely event of having been preempted here. 2789 * in the unlikely event of having been preempted here.
1591 */ 2790 */
1592 for (i = 4; --i; ) 2791 for (i = 4; --i; )
1593 { 2792 {
2793 ev_tstamp diff;
1594 rtmn_diff = ev_rt_now - mn_now; 2794 rtmn_diff = ev_rt_now - mn_now;
1595 2795
1596 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2796 diff = odiff - rtmn_diff;
2797
2798 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1597 return; /* all is well */ 2799 return; /* all is well */
1598 2800
1599 ev_rt_now = ev_time (); 2801 ev_rt_now = ev_time ();
1600 mn_now = get_clock (); 2802 mn_now = get_clock ();
1601 now_floor = mn_now; 2803 now_floor = mn_now;
1602 } 2804 }
1603 2805
2806 /* no timer adjustment, as the monotonic clock doesn't jump */
2807 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1604# if EV_PERIODIC_ENABLE 2808# if EV_PERIODIC_ENABLE
1605 periodics_reschedule (EV_A); 2809 periodics_reschedule (EV_A);
1606# endif 2810# endif
1607 /* no timer adjustment, as the monotonic clock doesn't jump */
1608 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609 } 2811 }
1610 else 2812 else
1611#endif 2813#endif
1612 { 2814 {
1613 ev_rt_now = ev_time (); 2815 ev_rt_now = ev_time ();
1614 2816
1615 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2817 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1616 { 2818 {
2819 /* adjust timers. this is easy, as the offset is the same for all of them */
2820 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1617#if EV_PERIODIC_ENABLE 2821#if EV_PERIODIC_ENABLE
1618 periodics_reschedule (EV_A); 2822 periodics_reschedule (EV_A);
1619#endif 2823#endif
1620 /* adjust timers. this is easy, as the offset is the same for all of them */
1621 for (i = 0; i < timercnt; ++i)
1622 ((WT)timers [i])->at += ev_rt_now - mn_now;
1623 } 2824 }
1624 2825
1625 mn_now = ev_rt_now; 2826 mn_now = ev_rt_now;
1626 } 2827 }
1627} 2828}
1628 2829
1629void 2830void
1630ev_ref (EV_P)
1631{
1632 ++activecnt;
1633}
1634
1635void
1636ev_unref (EV_P)
1637{
1638 --activecnt;
1639}
1640
1641static int loop_done;
1642
1643void
1644ev_loop (EV_P_ int flags) 2831ev_run (EV_P_ int flags)
1645{ 2832{
2833#if EV_FEATURE_API
2834 ++loop_depth;
2835#endif
2836
2837 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2838
1646 loop_done = EVUNLOOP_CANCEL; 2839 loop_done = EVBREAK_CANCEL;
1647 2840
1648 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2841 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1649 2842
1650 do 2843 do
1651 { 2844 {
2845#if EV_VERIFY >= 2
2846 ev_verify (EV_A);
2847#endif
2848
1652#ifndef _WIN32 2849#ifndef _WIN32
1653 if (expect_false (curpid)) /* penalise the forking check even more */ 2850 if (expect_false (curpid)) /* penalise the forking check even more */
1654 if (expect_false (getpid () != curpid)) 2851 if (expect_false (getpid () != curpid))
1655 { 2852 {
1656 curpid = getpid (); 2853 curpid = getpid ();
1662 /* we might have forked, so queue fork handlers */ 2859 /* we might have forked, so queue fork handlers */
1663 if (expect_false (postfork)) 2860 if (expect_false (postfork))
1664 if (forkcnt) 2861 if (forkcnt)
1665 { 2862 {
1666 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2863 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1667 call_pending (EV_A); 2864 EV_INVOKE_PENDING;
1668 } 2865 }
1669#endif 2866#endif
1670 2867
2868#if EV_PREPARE_ENABLE
1671 /* queue prepare watchers (and execute them) */ 2869 /* queue prepare watchers (and execute them) */
1672 if (expect_false (preparecnt)) 2870 if (expect_false (preparecnt))
1673 { 2871 {
1674 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2872 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1675 call_pending (EV_A); 2873 EV_INVOKE_PENDING;
1676 } 2874 }
2875#endif
1677 2876
1678 if (expect_false (!activecnt)) 2877 if (expect_false (loop_done))
1679 break; 2878 break;
1680 2879
1681 /* we might have forked, so reify kernel state if necessary */ 2880 /* we might have forked, so reify kernel state if necessary */
1682 if (expect_false (postfork)) 2881 if (expect_false (postfork))
1683 loop_fork (EV_A); 2882 loop_fork (EV_A);
1688 /* calculate blocking time */ 2887 /* calculate blocking time */
1689 { 2888 {
1690 ev_tstamp waittime = 0.; 2889 ev_tstamp waittime = 0.;
1691 ev_tstamp sleeptime = 0.; 2890 ev_tstamp sleeptime = 0.;
1692 2891
2892 /* remember old timestamp for io_blocktime calculation */
2893 ev_tstamp prev_mn_now = mn_now;
2894
2895 /* update time to cancel out callback processing overhead */
2896 time_update (EV_A_ 1e100);
2897
2898 /* from now on, we want a pipe-wake-up */
2899 pipe_write_wanted = 1;
2900
2901 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
2902
1693 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2903 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1694 { 2904 {
1695 /* update time to cancel out callback processing overhead */
1696 time_update (EV_A_ 1e100);
1697
1698 waittime = MAX_BLOCKTIME; 2905 waittime = MAX_BLOCKTIME;
1699 2906
1700 if (timercnt) 2907 if (timercnt)
1701 { 2908 {
1702 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2909 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1703 if (waittime > to) waittime = to; 2910 if (waittime > to) waittime = to;
1704 } 2911 }
1705 2912
1706#if EV_PERIODIC_ENABLE 2913#if EV_PERIODIC_ENABLE
1707 if (periodiccnt) 2914 if (periodiccnt)
1708 { 2915 {
1709 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2916 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1710 if (waittime > to) waittime = to; 2917 if (waittime > to) waittime = to;
1711 } 2918 }
1712#endif 2919#endif
1713 2920
2921 /* don't let timeouts decrease the waittime below timeout_blocktime */
1714 if (expect_false (waittime < timeout_blocktime)) 2922 if (expect_false (waittime < timeout_blocktime))
1715 waittime = timeout_blocktime; 2923 waittime = timeout_blocktime;
1716 2924
1717 sleeptime = waittime - backend_fudge; 2925 /* at this point, we NEED to wait, so we have to ensure */
2926 /* to pass a minimum nonzero value to the backend */
2927 if (expect_false (waittime < backend_mintime))
2928 waittime = backend_mintime;
1718 2929
2930 /* extra check because io_blocktime is commonly 0 */
1719 if (expect_true (sleeptime > io_blocktime)) 2931 if (expect_false (io_blocktime))
1720 sleeptime = io_blocktime;
1721
1722 if (sleeptime)
1723 { 2932 {
2933 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2934
2935 if (sleeptime > waittime - backend_mintime)
2936 sleeptime = waittime - backend_mintime;
2937
2938 if (expect_true (sleeptime > 0.))
2939 {
1724 ev_sleep (sleeptime); 2940 ev_sleep (sleeptime);
1725 waittime -= sleeptime; 2941 waittime -= sleeptime;
2942 }
1726 } 2943 }
1727 } 2944 }
1728 2945
2946#if EV_FEATURE_API
1729 ++loop_count; 2947 ++loop_count;
2948#endif
2949 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1730 backend_poll (EV_A_ waittime); 2950 backend_poll (EV_A_ waittime);
2951 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
2952
2953 pipe_write_wanted = 0; /* just an optimsiation, no fence needed */
2954
2955 if (pipe_write_skipped)
2956 {
2957 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
2958 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
2959 }
2960
1731 2961
1732 /* update ev_rt_now, do magic */ 2962 /* update ev_rt_now, do magic */
1733 time_update (EV_A_ waittime + sleeptime); 2963 time_update (EV_A_ waittime + sleeptime);
1734 } 2964 }
1735 2965
1742#if EV_IDLE_ENABLE 2972#if EV_IDLE_ENABLE
1743 /* queue idle watchers unless other events are pending */ 2973 /* queue idle watchers unless other events are pending */
1744 idle_reify (EV_A); 2974 idle_reify (EV_A);
1745#endif 2975#endif
1746 2976
2977#if EV_CHECK_ENABLE
1747 /* queue check watchers, to be executed first */ 2978 /* queue check watchers, to be executed first */
1748 if (expect_false (checkcnt)) 2979 if (expect_false (checkcnt))
1749 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2980 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2981#endif
1750 2982
1751 call_pending (EV_A); 2983 EV_INVOKE_PENDING;
1752 } 2984 }
1753 while (expect_true ( 2985 while (expect_true (
1754 activecnt 2986 activecnt
1755 && !loop_done 2987 && !loop_done
1756 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2988 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1757 )); 2989 ));
1758 2990
1759 if (loop_done == EVUNLOOP_ONE) 2991 if (loop_done == EVBREAK_ONE)
1760 loop_done = EVUNLOOP_CANCEL; 2992 loop_done = EVBREAK_CANCEL;
2993
2994#if EV_FEATURE_API
2995 --loop_depth;
2996#endif
1761} 2997}
1762 2998
1763void 2999void
1764ev_unloop (EV_P_ int how) 3000ev_break (EV_P_ int how)
1765{ 3001{
1766 loop_done = how; 3002 loop_done = how;
1767} 3003}
1768 3004
3005void
3006ev_ref (EV_P)
3007{
3008 ++activecnt;
3009}
3010
3011void
3012ev_unref (EV_P)
3013{
3014 --activecnt;
3015}
3016
3017void
3018ev_now_update (EV_P)
3019{
3020 time_update (EV_A_ 1e100);
3021}
3022
3023void
3024ev_suspend (EV_P)
3025{
3026 ev_now_update (EV_A);
3027}
3028
3029void
3030ev_resume (EV_P)
3031{
3032 ev_tstamp mn_prev = mn_now;
3033
3034 ev_now_update (EV_A);
3035 timers_reschedule (EV_A_ mn_now - mn_prev);
3036#if EV_PERIODIC_ENABLE
3037 /* TODO: really do this? */
3038 periodics_reschedule (EV_A);
3039#endif
3040}
3041
1769/*****************************************************************************/ 3042/*****************************************************************************/
3043/* singly-linked list management, used when the expected list length is short */
1770 3044
1771void inline_size 3045inline_size void
1772wlist_add (WL *head, WL elem) 3046wlist_add (WL *head, WL elem)
1773{ 3047{
1774 elem->next = *head; 3048 elem->next = *head;
1775 *head = elem; 3049 *head = elem;
1776} 3050}
1777 3051
1778void inline_size 3052inline_size void
1779wlist_del (WL *head, WL elem) 3053wlist_del (WL *head, WL elem)
1780{ 3054{
1781 while (*head) 3055 while (*head)
1782 { 3056 {
1783 if (*head == elem) 3057 if (expect_true (*head == elem))
1784 { 3058 {
1785 *head = elem->next; 3059 *head = elem->next;
1786 return; 3060 break;
1787 } 3061 }
1788 3062
1789 head = &(*head)->next; 3063 head = &(*head)->next;
1790 } 3064 }
1791} 3065}
1792 3066
1793void inline_speed 3067/* internal, faster, version of ev_clear_pending */
3068inline_speed void
1794clear_pending (EV_P_ W w) 3069clear_pending (EV_P_ W w)
1795{ 3070{
1796 if (w->pending) 3071 if (w->pending)
1797 { 3072 {
1798 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3073 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1799 w->pending = 0; 3074 w->pending = 0;
1800 } 3075 }
1801} 3076}
1802 3077
1803int 3078int
1807 int pending = w_->pending; 3082 int pending = w_->pending;
1808 3083
1809 if (expect_true (pending)) 3084 if (expect_true (pending))
1810 { 3085 {
1811 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3086 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3087 p->w = (W)&pending_w;
1812 w_->pending = 0; 3088 w_->pending = 0;
1813 p->w = 0;
1814 return p->events; 3089 return p->events;
1815 } 3090 }
1816 else 3091 else
1817 return 0; 3092 return 0;
1818} 3093}
1819 3094
1820void inline_size 3095inline_size void
1821pri_adjust (EV_P_ W w) 3096pri_adjust (EV_P_ W w)
1822{ 3097{
1823 int pri = w->priority; 3098 int pri = ev_priority (w);
1824 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3099 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1825 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3100 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1826 w->priority = pri; 3101 ev_set_priority (w, pri);
1827} 3102}
1828 3103
1829void inline_speed 3104inline_speed void
1830ev_start (EV_P_ W w, int active) 3105ev_start (EV_P_ W w, int active)
1831{ 3106{
1832 pri_adjust (EV_A_ w); 3107 pri_adjust (EV_A_ w);
1833 w->active = active; 3108 w->active = active;
1834 ev_ref (EV_A); 3109 ev_ref (EV_A);
1835} 3110}
1836 3111
1837void inline_size 3112inline_size void
1838ev_stop (EV_P_ W w) 3113ev_stop (EV_P_ W w)
1839{ 3114{
1840 ev_unref (EV_A); 3115 ev_unref (EV_A);
1841 w->active = 0; 3116 w->active = 0;
1842} 3117}
1849 int fd = w->fd; 3124 int fd = w->fd;
1850 3125
1851 if (expect_false (ev_is_active (w))) 3126 if (expect_false (ev_is_active (w)))
1852 return; 3127 return;
1853 3128
1854 assert (("ev_io_start called with negative fd", fd >= 0)); 3129 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3130 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3131
3132 EV_FREQUENT_CHECK;
1855 3133
1856 ev_start (EV_A_ (W)w, 1); 3134 ev_start (EV_A_ (W)w, 1);
1857 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3135 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1858 wlist_add (&anfds[fd].head, (WL)w); 3136 wlist_add (&anfds[fd].head, (WL)w);
1859 3137
1860 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3138 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1861 w->events &= ~EV_IOFDSET; 3139 w->events &= ~EV__IOFDSET;
3140
3141 EV_FREQUENT_CHECK;
1862} 3142}
1863 3143
1864void noinline 3144void noinline
1865ev_io_stop (EV_P_ ev_io *w) 3145ev_io_stop (EV_P_ ev_io *w)
1866{ 3146{
1867 clear_pending (EV_A_ (W)w); 3147 clear_pending (EV_A_ (W)w);
1868 if (expect_false (!ev_is_active (w))) 3148 if (expect_false (!ev_is_active (w)))
1869 return; 3149 return;
1870 3150
1871 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3151 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3152
3153 EV_FREQUENT_CHECK;
1872 3154
1873 wlist_del (&anfds[w->fd].head, (WL)w); 3155 wlist_del (&anfds[w->fd].head, (WL)w);
1874 ev_stop (EV_A_ (W)w); 3156 ev_stop (EV_A_ (W)w);
1875 3157
1876 fd_change (EV_A_ w->fd, 1); 3158 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3159
3160 EV_FREQUENT_CHECK;
1877} 3161}
1878 3162
1879void noinline 3163void noinline
1880ev_timer_start (EV_P_ ev_timer *w) 3164ev_timer_start (EV_P_ ev_timer *w)
1881{ 3165{
1882 if (expect_false (ev_is_active (w))) 3166 if (expect_false (ev_is_active (w)))
1883 return; 3167 return;
1884 3168
1885 ((WT)w)->at += mn_now; 3169 ev_at (w) += mn_now;
1886 3170
1887 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3171 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1888 3172
3173 EV_FREQUENT_CHECK;
3174
3175 ++timercnt;
1889 ev_start (EV_A_ (W)w, ++timercnt); 3176 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1890 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 3177 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1891 timers [timercnt - 1] = (WT)w; 3178 ANHE_w (timers [ev_active (w)]) = (WT)w;
1892 upheap (timers, timercnt - 1); 3179 ANHE_at_cache (timers [ev_active (w)]);
3180 upheap (timers, ev_active (w));
1893 3181
3182 EV_FREQUENT_CHECK;
3183
1894 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 3184 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1895} 3185}
1896 3186
1897void noinline 3187void noinline
1898ev_timer_stop (EV_P_ ev_timer *w) 3188ev_timer_stop (EV_P_ ev_timer *w)
1899{ 3189{
1900 clear_pending (EV_A_ (W)w); 3190 clear_pending (EV_A_ (W)w);
1901 if (expect_false (!ev_is_active (w))) 3191 if (expect_false (!ev_is_active (w)))
1902 return; 3192 return;
1903 3193
1904 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 3194 EV_FREQUENT_CHECK;
1905 3195
1906 { 3196 {
1907 int active = ((W)w)->active; 3197 int active = ev_active (w);
1908 3198
3199 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3200
3201 --timercnt;
3202
1909 if (expect_true (--active < --timercnt)) 3203 if (expect_true (active < timercnt + HEAP0))
1910 { 3204 {
1911 timers [active] = timers [timercnt]; 3205 timers [active] = timers [timercnt + HEAP0];
1912 adjustheap (timers, timercnt, active); 3206 adjustheap (timers, timercnt, active);
1913 } 3207 }
1914 } 3208 }
1915 3209
1916 ((WT)w)->at -= mn_now; 3210 ev_at (w) -= mn_now;
1917 3211
1918 ev_stop (EV_A_ (W)w); 3212 ev_stop (EV_A_ (W)w);
3213
3214 EV_FREQUENT_CHECK;
1919} 3215}
1920 3216
1921void noinline 3217void noinline
1922ev_timer_again (EV_P_ ev_timer *w) 3218ev_timer_again (EV_P_ ev_timer *w)
1923{ 3219{
3220 EV_FREQUENT_CHECK;
3221
1924 if (ev_is_active (w)) 3222 if (ev_is_active (w))
1925 { 3223 {
1926 if (w->repeat) 3224 if (w->repeat)
1927 { 3225 {
1928 ((WT)w)->at = mn_now + w->repeat; 3226 ev_at (w) = mn_now + w->repeat;
3227 ANHE_at_cache (timers [ev_active (w)]);
1929 adjustheap (timers, timercnt, ((W)w)->active - 1); 3228 adjustheap (timers, timercnt, ev_active (w));
1930 } 3229 }
1931 else 3230 else
1932 ev_timer_stop (EV_A_ w); 3231 ev_timer_stop (EV_A_ w);
1933 } 3232 }
1934 else if (w->repeat) 3233 else if (w->repeat)
1935 { 3234 {
1936 w->at = w->repeat; 3235 ev_at (w) = w->repeat;
1937 ev_timer_start (EV_A_ w); 3236 ev_timer_start (EV_A_ w);
1938 } 3237 }
3238
3239 EV_FREQUENT_CHECK;
3240}
3241
3242ev_tstamp
3243ev_timer_remaining (EV_P_ ev_timer *w)
3244{
3245 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1939} 3246}
1940 3247
1941#if EV_PERIODIC_ENABLE 3248#if EV_PERIODIC_ENABLE
1942void noinline 3249void noinline
1943ev_periodic_start (EV_P_ ev_periodic *w) 3250ev_periodic_start (EV_P_ ev_periodic *w)
1944{ 3251{
1945 if (expect_false (ev_is_active (w))) 3252 if (expect_false (ev_is_active (w)))
1946 return; 3253 return;
1947 3254
1948 if (w->reschedule_cb) 3255 if (w->reschedule_cb)
1949 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 3256 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1950 else if (w->interval) 3257 else if (w->interval)
1951 { 3258 {
1952 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3259 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1953 /* this formula differs from the one in periodic_reify because we do not always round up */ 3260 periodic_recalc (EV_A_ w);
1954 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1955 } 3261 }
1956 else 3262 else
1957 ((WT)w)->at = w->offset; 3263 ev_at (w) = w->offset;
1958 3264
3265 EV_FREQUENT_CHECK;
3266
3267 ++periodiccnt;
1959 ev_start (EV_A_ (W)w, ++periodiccnt); 3268 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1960 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 3269 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1961 periodics [periodiccnt - 1] = (WT)w; 3270 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1962 upheap (periodics, periodiccnt - 1); 3271 ANHE_at_cache (periodics [ev_active (w)]);
3272 upheap (periodics, ev_active (w));
1963 3273
3274 EV_FREQUENT_CHECK;
3275
1964 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3276 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1965} 3277}
1966 3278
1967void noinline 3279void noinline
1968ev_periodic_stop (EV_P_ ev_periodic *w) 3280ev_periodic_stop (EV_P_ ev_periodic *w)
1969{ 3281{
1970 clear_pending (EV_A_ (W)w); 3282 clear_pending (EV_A_ (W)w);
1971 if (expect_false (!ev_is_active (w))) 3283 if (expect_false (!ev_is_active (w)))
1972 return; 3284 return;
1973 3285
1974 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 3286 EV_FREQUENT_CHECK;
1975 3287
1976 { 3288 {
1977 int active = ((W)w)->active; 3289 int active = ev_active (w);
1978 3290
3291 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3292
3293 --periodiccnt;
3294
1979 if (expect_true (--active < --periodiccnt)) 3295 if (expect_true (active < periodiccnt + HEAP0))
1980 { 3296 {
1981 periodics [active] = periodics [periodiccnt]; 3297 periodics [active] = periodics [periodiccnt + HEAP0];
1982 adjustheap (periodics, periodiccnt, active); 3298 adjustheap (periodics, periodiccnt, active);
1983 } 3299 }
1984 } 3300 }
1985 3301
1986 ev_stop (EV_A_ (W)w); 3302 ev_stop (EV_A_ (W)w);
3303
3304 EV_FREQUENT_CHECK;
1987} 3305}
1988 3306
1989void noinline 3307void noinline
1990ev_periodic_again (EV_P_ ev_periodic *w) 3308ev_periodic_again (EV_P_ ev_periodic *w)
1991{ 3309{
1997 3315
1998#ifndef SA_RESTART 3316#ifndef SA_RESTART
1999# define SA_RESTART 0 3317# define SA_RESTART 0
2000#endif 3318#endif
2001 3319
3320#if EV_SIGNAL_ENABLE
3321
2002void noinline 3322void noinline
2003ev_signal_start (EV_P_ ev_signal *w) 3323ev_signal_start (EV_P_ ev_signal *w)
2004{ 3324{
2005#if EV_MULTIPLICITY
2006 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2007#endif
2008 if (expect_false (ev_is_active (w))) 3325 if (expect_false (ev_is_active (w)))
2009 return; 3326 return;
2010 3327
2011 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3328 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2012 3329
2013 evpipe_init (EV_A); 3330#if EV_MULTIPLICITY
3331 assert (("libev: a signal must not be attached to two different loops",
3332 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2014 3333
3334 signals [w->signum - 1].loop = EV_A;
3335#endif
3336
3337 EV_FREQUENT_CHECK;
3338
3339#if EV_USE_SIGNALFD
3340 if (sigfd == -2)
2015 { 3341 {
2016#ifndef _WIN32 3342 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2017 sigset_t full, prev; 3343 if (sigfd < 0 && errno == EINVAL)
2018 sigfillset (&full); 3344 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2019 sigprocmask (SIG_SETMASK, &full, &prev);
2020#endif
2021 3345
2022 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3346 if (sigfd >= 0)
3347 {
3348 fd_intern (sigfd); /* doing it twice will not hurt */
2023 3349
2024#ifndef _WIN32 3350 sigemptyset (&sigfd_set);
2025 sigprocmask (SIG_SETMASK, &prev, 0); 3351
2026#endif 3352 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3353 ev_set_priority (&sigfd_w, EV_MAXPRI);
3354 ev_io_start (EV_A_ &sigfd_w);
3355 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3356 }
2027 } 3357 }
3358
3359 if (sigfd >= 0)
3360 {
3361 /* TODO: check .head */
3362 sigaddset (&sigfd_set, w->signum);
3363 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3364
3365 signalfd (sigfd, &sigfd_set, 0);
3366 }
3367#endif
2028 3368
2029 ev_start (EV_A_ (W)w, 1); 3369 ev_start (EV_A_ (W)w, 1);
2030 wlist_add (&signals [w->signum - 1].head, (WL)w); 3370 wlist_add (&signals [w->signum - 1].head, (WL)w);
2031 3371
2032 if (!((WL)w)->next) 3372 if (!((WL)w)->next)
3373# if EV_USE_SIGNALFD
3374 if (sigfd < 0) /*TODO*/
3375# endif
2033 { 3376 {
2034#if _WIN32 3377# ifdef _WIN32
3378 evpipe_init (EV_A);
3379
2035 signal (w->signum, ev_sighandler); 3380 signal (w->signum, ev_sighandler);
2036#else 3381# else
2037 struct sigaction sa; 3382 struct sigaction sa;
3383
3384 evpipe_init (EV_A);
3385
2038 sa.sa_handler = ev_sighandler; 3386 sa.sa_handler = ev_sighandler;
2039 sigfillset (&sa.sa_mask); 3387 sigfillset (&sa.sa_mask);
2040 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3388 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2041 sigaction (w->signum, &sa, 0); 3389 sigaction (w->signum, &sa, 0);
3390
3391 if (origflags & EVFLAG_NOSIGMASK)
3392 {
3393 sigemptyset (&sa.sa_mask);
3394 sigaddset (&sa.sa_mask, w->signum);
3395 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3396 }
2042#endif 3397#endif
2043 } 3398 }
3399
3400 EV_FREQUENT_CHECK;
2044} 3401}
2045 3402
2046void noinline 3403void noinline
2047ev_signal_stop (EV_P_ ev_signal *w) 3404ev_signal_stop (EV_P_ ev_signal *w)
2048{ 3405{
2049 clear_pending (EV_A_ (W)w); 3406 clear_pending (EV_A_ (W)w);
2050 if (expect_false (!ev_is_active (w))) 3407 if (expect_false (!ev_is_active (w)))
2051 return; 3408 return;
2052 3409
3410 EV_FREQUENT_CHECK;
3411
2053 wlist_del (&signals [w->signum - 1].head, (WL)w); 3412 wlist_del (&signals [w->signum - 1].head, (WL)w);
2054 ev_stop (EV_A_ (W)w); 3413 ev_stop (EV_A_ (W)w);
2055 3414
2056 if (!signals [w->signum - 1].head) 3415 if (!signals [w->signum - 1].head)
3416 {
3417#if EV_MULTIPLICITY
3418 signals [w->signum - 1].loop = 0; /* unattach from signal */
3419#endif
3420#if EV_USE_SIGNALFD
3421 if (sigfd >= 0)
3422 {
3423 sigset_t ss;
3424
3425 sigemptyset (&ss);
3426 sigaddset (&ss, w->signum);
3427 sigdelset (&sigfd_set, w->signum);
3428
3429 signalfd (sigfd, &sigfd_set, 0);
3430 sigprocmask (SIG_UNBLOCK, &ss, 0);
3431 }
3432 else
3433#endif
2057 signal (w->signum, SIG_DFL); 3434 signal (w->signum, SIG_DFL);
3435 }
3436
3437 EV_FREQUENT_CHECK;
2058} 3438}
3439
3440#endif
3441
3442#if EV_CHILD_ENABLE
2059 3443
2060void 3444void
2061ev_child_start (EV_P_ ev_child *w) 3445ev_child_start (EV_P_ ev_child *w)
2062{ 3446{
2063#if EV_MULTIPLICITY 3447#if EV_MULTIPLICITY
2064 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3448 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2065#endif 3449#endif
2066 if (expect_false (ev_is_active (w))) 3450 if (expect_false (ev_is_active (w)))
2067 return; 3451 return;
2068 3452
3453 EV_FREQUENT_CHECK;
3454
2069 ev_start (EV_A_ (W)w, 1); 3455 ev_start (EV_A_ (W)w, 1);
2070 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3456 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3457
3458 EV_FREQUENT_CHECK;
2071} 3459}
2072 3460
2073void 3461void
2074ev_child_stop (EV_P_ ev_child *w) 3462ev_child_stop (EV_P_ ev_child *w)
2075{ 3463{
2076 clear_pending (EV_A_ (W)w); 3464 clear_pending (EV_A_ (W)w);
2077 if (expect_false (!ev_is_active (w))) 3465 if (expect_false (!ev_is_active (w)))
2078 return; 3466 return;
2079 3467
3468 EV_FREQUENT_CHECK;
3469
2080 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3470 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2081 ev_stop (EV_A_ (W)w); 3471 ev_stop (EV_A_ (W)w);
3472
3473 EV_FREQUENT_CHECK;
2082} 3474}
3475
3476#endif
2083 3477
2084#if EV_STAT_ENABLE 3478#if EV_STAT_ENABLE
2085 3479
2086# ifdef _WIN32 3480# ifdef _WIN32
2087# undef lstat 3481# undef lstat
2088# define lstat(a,b) _stati64 (a,b) 3482# define lstat(a,b) _stati64 (a,b)
2089# endif 3483# endif
2090 3484
2091#define DEF_STAT_INTERVAL 5.0074891 3485#define DEF_STAT_INTERVAL 5.0074891
3486#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2092#define MIN_STAT_INTERVAL 0.1074891 3487#define MIN_STAT_INTERVAL 0.1074891
2093 3488
2094static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3489static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2095 3490
2096#if EV_USE_INOTIFY 3491#if EV_USE_INOTIFY
2097# define EV_INOTIFY_BUFSIZE 8192 3492
3493/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3494# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2098 3495
2099static void noinline 3496static void noinline
2100infy_add (EV_P_ ev_stat *w) 3497infy_add (EV_P_ ev_stat *w)
2101{ 3498{
2102 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3499 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2103 3500
2104 if (w->wd < 0) 3501 if (w->wd >= 0)
3502 {
3503 struct statfs sfs;
3504
3505 /* now local changes will be tracked by inotify, but remote changes won't */
3506 /* unless the filesystem is known to be local, we therefore still poll */
3507 /* also do poll on <2.6.25, but with normal frequency */
3508
3509 if (!fs_2625)
3510 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3511 else if (!statfs (w->path, &sfs)
3512 && (sfs.f_type == 0x1373 /* devfs */
3513 || sfs.f_type == 0xEF53 /* ext2/3 */
3514 || sfs.f_type == 0x3153464a /* jfs */
3515 || sfs.f_type == 0x52654973 /* reiser3 */
3516 || sfs.f_type == 0x01021994 /* tempfs */
3517 || sfs.f_type == 0x58465342 /* xfs */))
3518 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3519 else
3520 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2105 { 3521 }
2106 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3522 else
3523 {
3524 /* can't use inotify, continue to stat */
3525 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2107 3526
2108 /* monitor some parent directory for speedup hints */ 3527 /* if path is not there, monitor some parent directory for speedup hints */
3528 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3529 /* but an efficiency issue only */
2109 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3530 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2110 { 3531 {
2111 char path [4096]; 3532 char path [4096];
2112 strcpy (path, w->path); 3533 strcpy (path, w->path);
2113 3534
2116 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3537 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2117 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3538 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2118 3539
2119 char *pend = strrchr (path, '/'); 3540 char *pend = strrchr (path, '/');
2120 3541
2121 if (!pend) 3542 if (!pend || pend == path)
2122 break; /* whoops, no '/', complain to your admin */ 3543 break;
2123 3544
2124 *pend = 0; 3545 *pend = 0;
2125 w->wd = inotify_add_watch (fs_fd, path, mask); 3546 w->wd = inotify_add_watch (fs_fd, path, mask);
2126 } 3547 }
2127 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3548 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2128 } 3549 }
2129 } 3550 }
2130 else
2131 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2132 3551
2133 if (w->wd >= 0) 3552 if (w->wd >= 0)
2134 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3553 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3554
3555 /* now re-arm timer, if required */
3556 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3557 ev_timer_again (EV_A_ &w->timer);
3558 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2135} 3559}
2136 3560
2137static void noinline 3561static void noinline
2138infy_del (EV_P_ ev_stat *w) 3562infy_del (EV_P_ ev_stat *w)
2139{ 3563{
2142 3566
2143 if (wd < 0) 3567 if (wd < 0)
2144 return; 3568 return;
2145 3569
2146 w->wd = -2; 3570 w->wd = -2;
2147 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3571 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2148 wlist_del (&fs_hash [slot].head, (WL)w); 3572 wlist_del (&fs_hash [slot].head, (WL)w);
2149 3573
2150 /* remove this watcher, if others are watching it, they will rearm */ 3574 /* remove this watcher, if others are watching it, they will rearm */
2151 inotify_rm_watch (fs_fd, wd); 3575 inotify_rm_watch (fs_fd, wd);
2152} 3576}
2153 3577
2154static void noinline 3578static void noinline
2155infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3579infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2156{ 3580{
2157 if (slot < 0) 3581 if (slot < 0)
2158 /* overflow, need to check for all hahs slots */ 3582 /* overflow, need to check for all hash slots */
2159 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3583 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2160 infy_wd (EV_A_ slot, wd, ev); 3584 infy_wd (EV_A_ slot, wd, ev);
2161 else 3585 else
2162 { 3586 {
2163 WL w_; 3587 WL w_;
2164 3588
2165 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3589 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2166 { 3590 {
2167 ev_stat *w = (ev_stat *)w_; 3591 ev_stat *w = (ev_stat *)w_;
2168 w_ = w_->next; /* lets us remove this watcher and all before it */ 3592 w_ = w_->next; /* lets us remove this watcher and all before it */
2169 3593
2170 if (w->wd == wd || wd == -1) 3594 if (w->wd == wd || wd == -1)
2171 { 3595 {
2172 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3596 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2173 { 3597 {
3598 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2174 w->wd = -1; 3599 w->wd = -1;
2175 infy_add (EV_A_ w); /* re-add, no matter what */ 3600 infy_add (EV_A_ w); /* re-add, no matter what */
2176 } 3601 }
2177 3602
2178 stat_timer_cb (EV_A_ &w->timer, 0); 3603 stat_timer_cb (EV_A_ &w->timer, 0);
2183 3608
2184static void 3609static void
2185infy_cb (EV_P_ ev_io *w, int revents) 3610infy_cb (EV_P_ ev_io *w, int revents)
2186{ 3611{
2187 char buf [EV_INOTIFY_BUFSIZE]; 3612 char buf [EV_INOTIFY_BUFSIZE];
2188 struct inotify_event *ev = (struct inotify_event *)buf;
2189 int ofs; 3613 int ofs;
2190 int len = read (fs_fd, buf, sizeof (buf)); 3614 int len = read (fs_fd, buf, sizeof (buf));
2191 3615
2192 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3616 for (ofs = 0; ofs < len; )
3617 {
3618 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2193 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3619 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3620 ofs += sizeof (struct inotify_event) + ev->len;
3621 }
2194} 3622}
2195 3623
2196void inline_size 3624inline_size void ecb_cold
3625ev_check_2625 (EV_P)
3626{
3627 /* kernels < 2.6.25 are borked
3628 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3629 */
3630 if (ev_linux_version () < 0x020619)
3631 return;
3632
3633 fs_2625 = 1;
3634}
3635
3636inline_size int
3637infy_newfd (void)
3638{
3639#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3640 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3641 if (fd >= 0)
3642 return fd;
3643#endif
3644 return inotify_init ();
3645}
3646
3647inline_size void
2197infy_init (EV_P) 3648infy_init (EV_P)
2198{ 3649{
2199 if (fs_fd != -2) 3650 if (fs_fd != -2)
2200 return; 3651 return;
2201 3652
3653 fs_fd = -1;
3654
3655 ev_check_2625 (EV_A);
3656
2202 fs_fd = inotify_init (); 3657 fs_fd = infy_newfd ();
2203 3658
2204 if (fs_fd >= 0) 3659 if (fs_fd >= 0)
2205 { 3660 {
3661 fd_intern (fs_fd);
2206 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3662 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2207 ev_set_priority (&fs_w, EV_MAXPRI); 3663 ev_set_priority (&fs_w, EV_MAXPRI);
2208 ev_io_start (EV_A_ &fs_w); 3664 ev_io_start (EV_A_ &fs_w);
3665 ev_unref (EV_A);
2209 } 3666 }
2210} 3667}
2211 3668
2212void inline_size 3669inline_size void
2213infy_fork (EV_P) 3670infy_fork (EV_P)
2214{ 3671{
2215 int slot; 3672 int slot;
2216 3673
2217 if (fs_fd < 0) 3674 if (fs_fd < 0)
2218 return; 3675 return;
2219 3676
3677 ev_ref (EV_A);
3678 ev_io_stop (EV_A_ &fs_w);
2220 close (fs_fd); 3679 close (fs_fd);
2221 fs_fd = inotify_init (); 3680 fs_fd = infy_newfd ();
2222 3681
3682 if (fs_fd >= 0)
3683 {
3684 fd_intern (fs_fd);
3685 ev_io_set (&fs_w, fs_fd, EV_READ);
3686 ev_io_start (EV_A_ &fs_w);
3687 ev_unref (EV_A);
3688 }
3689
2223 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3690 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2224 { 3691 {
2225 WL w_ = fs_hash [slot].head; 3692 WL w_ = fs_hash [slot].head;
2226 fs_hash [slot].head = 0; 3693 fs_hash [slot].head = 0;
2227 3694
2228 while (w_) 3695 while (w_)
2233 w->wd = -1; 3700 w->wd = -1;
2234 3701
2235 if (fs_fd >= 0) 3702 if (fs_fd >= 0)
2236 infy_add (EV_A_ w); /* re-add, no matter what */ 3703 infy_add (EV_A_ w); /* re-add, no matter what */
2237 else 3704 else
3705 {
3706 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3707 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2238 ev_timer_start (EV_A_ &w->timer); 3708 ev_timer_again (EV_A_ &w->timer);
3709 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3710 }
2239 } 3711 }
2240
2241 } 3712 }
2242} 3713}
2243 3714
3715#endif
3716
3717#ifdef _WIN32
3718# define EV_LSTAT(p,b) _stati64 (p, b)
3719#else
3720# define EV_LSTAT(p,b) lstat (p, b)
2244#endif 3721#endif
2245 3722
2246void 3723void
2247ev_stat_stat (EV_P_ ev_stat *w) 3724ev_stat_stat (EV_P_ ev_stat *w)
2248{ 3725{
2255static void noinline 3732static void noinline
2256stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3733stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2257{ 3734{
2258 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3735 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2259 3736
2260 /* we copy this here each the time so that */ 3737 ev_statdata prev = w->attr;
2261 /* prev has the old value when the callback gets invoked */
2262 w->prev = w->attr;
2263 ev_stat_stat (EV_A_ w); 3738 ev_stat_stat (EV_A_ w);
2264 3739
2265 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3740 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2266 if ( 3741 if (
2267 w->prev.st_dev != w->attr.st_dev 3742 prev.st_dev != w->attr.st_dev
2268 || w->prev.st_ino != w->attr.st_ino 3743 || prev.st_ino != w->attr.st_ino
2269 || w->prev.st_mode != w->attr.st_mode 3744 || prev.st_mode != w->attr.st_mode
2270 || w->prev.st_nlink != w->attr.st_nlink 3745 || prev.st_nlink != w->attr.st_nlink
2271 || w->prev.st_uid != w->attr.st_uid 3746 || prev.st_uid != w->attr.st_uid
2272 || w->prev.st_gid != w->attr.st_gid 3747 || prev.st_gid != w->attr.st_gid
2273 || w->prev.st_rdev != w->attr.st_rdev 3748 || prev.st_rdev != w->attr.st_rdev
2274 || w->prev.st_size != w->attr.st_size 3749 || prev.st_size != w->attr.st_size
2275 || w->prev.st_atime != w->attr.st_atime 3750 || prev.st_atime != w->attr.st_atime
2276 || w->prev.st_mtime != w->attr.st_mtime 3751 || prev.st_mtime != w->attr.st_mtime
2277 || w->prev.st_ctime != w->attr.st_ctime 3752 || prev.st_ctime != w->attr.st_ctime
2278 ) { 3753 ) {
3754 /* we only update w->prev on actual differences */
3755 /* in case we test more often than invoke the callback, */
3756 /* to ensure that prev is always different to attr */
3757 w->prev = prev;
3758
2279 #if EV_USE_INOTIFY 3759 #if EV_USE_INOTIFY
3760 if (fs_fd >= 0)
3761 {
2280 infy_del (EV_A_ w); 3762 infy_del (EV_A_ w);
2281 infy_add (EV_A_ w); 3763 infy_add (EV_A_ w);
2282 ev_stat_stat (EV_A_ w); /* avoid race... */ 3764 ev_stat_stat (EV_A_ w); /* avoid race... */
3765 }
2283 #endif 3766 #endif
2284 3767
2285 ev_feed_event (EV_A_ w, EV_STAT); 3768 ev_feed_event (EV_A_ w, EV_STAT);
2286 } 3769 }
2287} 3770}
2290ev_stat_start (EV_P_ ev_stat *w) 3773ev_stat_start (EV_P_ ev_stat *w)
2291{ 3774{
2292 if (expect_false (ev_is_active (w))) 3775 if (expect_false (ev_is_active (w)))
2293 return; 3776 return;
2294 3777
2295 /* since we use memcmp, we need to clear any padding data etc. */
2296 memset (&w->prev, 0, sizeof (ev_statdata));
2297 memset (&w->attr, 0, sizeof (ev_statdata));
2298
2299 ev_stat_stat (EV_A_ w); 3778 ev_stat_stat (EV_A_ w);
2300 3779
3780 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2301 if (w->interval < MIN_STAT_INTERVAL) 3781 w->interval = MIN_STAT_INTERVAL;
2302 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2303 3782
2304 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3783 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2305 ev_set_priority (&w->timer, ev_priority (w)); 3784 ev_set_priority (&w->timer, ev_priority (w));
2306 3785
2307#if EV_USE_INOTIFY 3786#if EV_USE_INOTIFY
2308 infy_init (EV_A); 3787 infy_init (EV_A);
2309 3788
2310 if (fs_fd >= 0) 3789 if (fs_fd >= 0)
2311 infy_add (EV_A_ w); 3790 infy_add (EV_A_ w);
2312 else 3791 else
2313#endif 3792#endif
3793 {
2314 ev_timer_start (EV_A_ &w->timer); 3794 ev_timer_again (EV_A_ &w->timer);
3795 ev_unref (EV_A);
3796 }
2315 3797
2316 ev_start (EV_A_ (W)w, 1); 3798 ev_start (EV_A_ (W)w, 1);
3799
3800 EV_FREQUENT_CHECK;
2317} 3801}
2318 3802
2319void 3803void
2320ev_stat_stop (EV_P_ ev_stat *w) 3804ev_stat_stop (EV_P_ ev_stat *w)
2321{ 3805{
2322 clear_pending (EV_A_ (W)w); 3806 clear_pending (EV_A_ (W)w);
2323 if (expect_false (!ev_is_active (w))) 3807 if (expect_false (!ev_is_active (w)))
2324 return; 3808 return;
2325 3809
3810 EV_FREQUENT_CHECK;
3811
2326#if EV_USE_INOTIFY 3812#if EV_USE_INOTIFY
2327 infy_del (EV_A_ w); 3813 infy_del (EV_A_ w);
2328#endif 3814#endif
3815
3816 if (ev_is_active (&w->timer))
3817 {
3818 ev_ref (EV_A);
2329 ev_timer_stop (EV_A_ &w->timer); 3819 ev_timer_stop (EV_A_ &w->timer);
3820 }
2330 3821
2331 ev_stop (EV_A_ (W)w); 3822 ev_stop (EV_A_ (W)w);
3823
3824 EV_FREQUENT_CHECK;
2332} 3825}
2333#endif 3826#endif
2334 3827
2335#if EV_IDLE_ENABLE 3828#if EV_IDLE_ENABLE
2336void 3829void
2339 if (expect_false (ev_is_active (w))) 3832 if (expect_false (ev_is_active (w)))
2340 return; 3833 return;
2341 3834
2342 pri_adjust (EV_A_ (W)w); 3835 pri_adjust (EV_A_ (W)w);
2343 3836
3837 EV_FREQUENT_CHECK;
3838
2344 { 3839 {
2345 int active = ++idlecnt [ABSPRI (w)]; 3840 int active = ++idlecnt [ABSPRI (w)];
2346 3841
2347 ++idleall; 3842 ++idleall;
2348 ev_start (EV_A_ (W)w, active); 3843 ev_start (EV_A_ (W)w, active);
2349 3844
2350 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3845 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2351 idles [ABSPRI (w)][active - 1] = w; 3846 idles [ABSPRI (w)][active - 1] = w;
2352 } 3847 }
3848
3849 EV_FREQUENT_CHECK;
2353} 3850}
2354 3851
2355void 3852void
2356ev_idle_stop (EV_P_ ev_idle *w) 3853ev_idle_stop (EV_P_ ev_idle *w)
2357{ 3854{
2358 clear_pending (EV_A_ (W)w); 3855 clear_pending (EV_A_ (W)w);
2359 if (expect_false (!ev_is_active (w))) 3856 if (expect_false (!ev_is_active (w)))
2360 return; 3857 return;
2361 3858
3859 EV_FREQUENT_CHECK;
3860
2362 { 3861 {
2363 int active = ((W)w)->active; 3862 int active = ev_active (w);
2364 3863
2365 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3864 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2366 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3865 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2367 3866
2368 ev_stop (EV_A_ (W)w); 3867 ev_stop (EV_A_ (W)w);
2369 --idleall; 3868 --idleall;
2370 } 3869 }
2371}
2372#endif
2373 3870
3871 EV_FREQUENT_CHECK;
3872}
3873#endif
3874
3875#if EV_PREPARE_ENABLE
2374void 3876void
2375ev_prepare_start (EV_P_ ev_prepare *w) 3877ev_prepare_start (EV_P_ ev_prepare *w)
2376{ 3878{
2377 if (expect_false (ev_is_active (w))) 3879 if (expect_false (ev_is_active (w)))
2378 return; 3880 return;
3881
3882 EV_FREQUENT_CHECK;
2379 3883
2380 ev_start (EV_A_ (W)w, ++preparecnt); 3884 ev_start (EV_A_ (W)w, ++preparecnt);
2381 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3885 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2382 prepares [preparecnt - 1] = w; 3886 prepares [preparecnt - 1] = w;
3887
3888 EV_FREQUENT_CHECK;
2383} 3889}
2384 3890
2385void 3891void
2386ev_prepare_stop (EV_P_ ev_prepare *w) 3892ev_prepare_stop (EV_P_ ev_prepare *w)
2387{ 3893{
2388 clear_pending (EV_A_ (W)w); 3894 clear_pending (EV_A_ (W)w);
2389 if (expect_false (!ev_is_active (w))) 3895 if (expect_false (!ev_is_active (w)))
2390 return; 3896 return;
2391 3897
3898 EV_FREQUENT_CHECK;
3899
2392 { 3900 {
2393 int active = ((W)w)->active; 3901 int active = ev_active (w);
3902
2394 prepares [active - 1] = prepares [--preparecnt]; 3903 prepares [active - 1] = prepares [--preparecnt];
2395 ((W)prepares [active - 1])->active = active; 3904 ev_active (prepares [active - 1]) = active;
2396 } 3905 }
2397 3906
2398 ev_stop (EV_A_ (W)w); 3907 ev_stop (EV_A_ (W)w);
2399}
2400 3908
3909 EV_FREQUENT_CHECK;
3910}
3911#endif
3912
3913#if EV_CHECK_ENABLE
2401void 3914void
2402ev_check_start (EV_P_ ev_check *w) 3915ev_check_start (EV_P_ ev_check *w)
2403{ 3916{
2404 if (expect_false (ev_is_active (w))) 3917 if (expect_false (ev_is_active (w)))
2405 return; 3918 return;
3919
3920 EV_FREQUENT_CHECK;
2406 3921
2407 ev_start (EV_A_ (W)w, ++checkcnt); 3922 ev_start (EV_A_ (W)w, ++checkcnt);
2408 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3923 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2409 checks [checkcnt - 1] = w; 3924 checks [checkcnt - 1] = w;
3925
3926 EV_FREQUENT_CHECK;
2410} 3927}
2411 3928
2412void 3929void
2413ev_check_stop (EV_P_ ev_check *w) 3930ev_check_stop (EV_P_ ev_check *w)
2414{ 3931{
2415 clear_pending (EV_A_ (W)w); 3932 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w))) 3933 if (expect_false (!ev_is_active (w)))
2417 return; 3934 return;
2418 3935
3936 EV_FREQUENT_CHECK;
3937
2419 { 3938 {
2420 int active = ((W)w)->active; 3939 int active = ev_active (w);
3940
2421 checks [active - 1] = checks [--checkcnt]; 3941 checks [active - 1] = checks [--checkcnt];
2422 ((W)checks [active - 1])->active = active; 3942 ev_active (checks [active - 1]) = active;
2423 } 3943 }
2424 3944
2425 ev_stop (EV_A_ (W)w); 3945 ev_stop (EV_A_ (W)w);
3946
3947 EV_FREQUENT_CHECK;
2426} 3948}
3949#endif
2427 3950
2428#if EV_EMBED_ENABLE 3951#if EV_EMBED_ENABLE
2429void noinline 3952void noinline
2430ev_embed_sweep (EV_P_ ev_embed *w) 3953ev_embed_sweep (EV_P_ ev_embed *w)
2431{ 3954{
2432 ev_loop (w->other, EVLOOP_NONBLOCK); 3955 ev_run (w->other, EVRUN_NOWAIT);
2433} 3956}
2434 3957
2435static void 3958static void
2436embed_io_cb (EV_P_ ev_io *io, int revents) 3959embed_io_cb (EV_P_ ev_io *io, int revents)
2437{ 3960{
2438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 3961 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2439 3962
2440 if (ev_cb (w)) 3963 if (ev_cb (w))
2441 ev_feed_event (EV_A_ (W)w, EV_EMBED); 3964 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2442 else 3965 else
2443 ev_loop (w->other, EVLOOP_NONBLOCK); 3966 ev_run (w->other, EVRUN_NOWAIT);
2444} 3967}
2445 3968
2446static void 3969static void
2447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3970embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2448{ 3971{
2449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3972 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2450 3973
2451 { 3974 {
2452 struct ev_loop *loop = w->other; 3975 EV_P = w->other;
2453 3976
2454 while (fdchangecnt) 3977 while (fdchangecnt)
2455 { 3978 {
2456 fd_reify (EV_A); 3979 fd_reify (EV_A);
2457 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3980 ev_run (EV_A_ EVRUN_NOWAIT);
2458 } 3981 }
2459 } 3982 }
3983}
3984
3985static void
3986embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3987{
3988 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3989
3990 ev_embed_stop (EV_A_ w);
3991
3992 {
3993 EV_P = w->other;
3994
3995 ev_loop_fork (EV_A);
3996 ev_run (EV_A_ EVRUN_NOWAIT);
3997 }
3998
3999 ev_embed_start (EV_A_ w);
2460} 4000}
2461 4001
2462#if 0 4002#if 0
2463static void 4003static void
2464embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4004embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2472{ 4012{
2473 if (expect_false (ev_is_active (w))) 4013 if (expect_false (ev_is_active (w)))
2474 return; 4014 return;
2475 4015
2476 { 4016 {
2477 struct ev_loop *loop = w->other; 4017 EV_P = w->other;
2478 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4018 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4019 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2480 } 4020 }
4021
4022 EV_FREQUENT_CHECK;
2481 4023
2482 ev_set_priority (&w->io, ev_priority (w)); 4024 ev_set_priority (&w->io, ev_priority (w));
2483 ev_io_start (EV_A_ &w->io); 4025 ev_io_start (EV_A_ &w->io);
2484 4026
2485 ev_prepare_init (&w->prepare, embed_prepare_cb); 4027 ev_prepare_init (&w->prepare, embed_prepare_cb);
2486 ev_set_priority (&w->prepare, EV_MINPRI); 4028 ev_set_priority (&w->prepare, EV_MINPRI);
2487 ev_prepare_start (EV_A_ &w->prepare); 4029 ev_prepare_start (EV_A_ &w->prepare);
2488 4030
4031 ev_fork_init (&w->fork, embed_fork_cb);
4032 ev_fork_start (EV_A_ &w->fork);
4033
2489 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4034 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2490 4035
2491 ev_start (EV_A_ (W)w, 1); 4036 ev_start (EV_A_ (W)w, 1);
4037
4038 EV_FREQUENT_CHECK;
2492} 4039}
2493 4040
2494void 4041void
2495ev_embed_stop (EV_P_ ev_embed *w) 4042ev_embed_stop (EV_P_ ev_embed *w)
2496{ 4043{
2497 clear_pending (EV_A_ (W)w); 4044 clear_pending (EV_A_ (W)w);
2498 if (expect_false (!ev_is_active (w))) 4045 if (expect_false (!ev_is_active (w)))
2499 return; 4046 return;
2500 4047
4048 EV_FREQUENT_CHECK;
4049
2501 ev_io_stop (EV_A_ &w->io); 4050 ev_io_stop (EV_A_ &w->io);
2502 ev_prepare_stop (EV_A_ &w->prepare); 4051 ev_prepare_stop (EV_A_ &w->prepare);
4052 ev_fork_stop (EV_A_ &w->fork);
2503 4053
2504 ev_stop (EV_A_ (W)w); 4054 ev_stop (EV_A_ (W)w);
4055
4056 EV_FREQUENT_CHECK;
2505} 4057}
2506#endif 4058#endif
2507 4059
2508#if EV_FORK_ENABLE 4060#if EV_FORK_ENABLE
2509void 4061void
2510ev_fork_start (EV_P_ ev_fork *w) 4062ev_fork_start (EV_P_ ev_fork *w)
2511{ 4063{
2512 if (expect_false (ev_is_active (w))) 4064 if (expect_false (ev_is_active (w)))
2513 return; 4065 return;
2514 4066
4067 EV_FREQUENT_CHECK;
4068
2515 ev_start (EV_A_ (W)w, ++forkcnt); 4069 ev_start (EV_A_ (W)w, ++forkcnt);
2516 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4070 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2517 forks [forkcnt - 1] = w; 4071 forks [forkcnt - 1] = w;
4072
4073 EV_FREQUENT_CHECK;
2518} 4074}
2519 4075
2520void 4076void
2521ev_fork_stop (EV_P_ ev_fork *w) 4077ev_fork_stop (EV_P_ ev_fork *w)
2522{ 4078{
2523 clear_pending (EV_A_ (W)w); 4079 clear_pending (EV_A_ (W)w);
2524 if (expect_false (!ev_is_active (w))) 4080 if (expect_false (!ev_is_active (w)))
2525 return; 4081 return;
2526 4082
4083 EV_FREQUENT_CHECK;
4084
2527 { 4085 {
2528 int active = ((W)w)->active; 4086 int active = ev_active (w);
4087
2529 forks [active - 1] = forks [--forkcnt]; 4088 forks [active - 1] = forks [--forkcnt];
2530 ((W)forks [active - 1])->active = active; 4089 ev_active (forks [active - 1]) = active;
2531 } 4090 }
2532 4091
2533 ev_stop (EV_A_ (W)w); 4092 ev_stop (EV_A_ (W)w);
4093
4094 EV_FREQUENT_CHECK;
4095}
4096#endif
4097
4098#if EV_CLEANUP_ENABLE
4099void
4100ev_cleanup_start (EV_P_ ev_cleanup *w)
4101{
4102 if (expect_false (ev_is_active (w)))
4103 return;
4104
4105 EV_FREQUENT_CHECK;
4106
4107 ev_start (EV_A_ (W)w, ++cleanupcnt);
4108 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4109 cleanups [cleanupcnt - 1] = w;
4110
4111 /* cleanup watchers should never keep a refcount on the loop */
4112 ev_unref (EV_A);
4113 EV_FREQUENT_CHECK;
4114}
4115
4116void
4117ev_cleanup_stop (EV_P_ ev_cleanup *w)
4118{
4119 clear_pending (EV_A_ (W)w);
4120 if (expect_false (!ev_is_active (w)))
4121 return;
4122
4123 EV_FREQUENT_CHECK;
4124 ev_ref (EV_A);
4125
4126 {
4127 int active = ev_active (w);
4128
4129 cleanups [active - 1] = cleanups [--cleanupcnt];
4130 ev_active (cleanups [active - 1]) = active;
4131 }
4132
4133 ev_stop (EV_A_ (W)w);
4134
4135 EV_FREQUENT_CHECK;
2534} 4136}
2535#endif 4137#endif
2536 4138
2537#if EV_ASYNC_ENABLE 4139#if EV_ASYNC_ENABLE
2538void 4140void
2539ev_async_start (EV_P_ ev_async *w) 4141ev_async_start (EV_P_ ev_async *w)
2540{ 4142{
2541 if (expect_false (ev_is_active (w))) 4143 if (expect_false (ev_is_active (w)))
2542 return; 4144 return;
2543 4145
4146 w->sent = 0;
4147
2544 evpipe_init (EV_A); 4148 evpipe_init (EV_A);
4149
4150 EV_FREQUENT_CHECK;
2545 4151
2546 ev_start (EV_A_ (W)w, ++asynccnt); 4152 ev_start (EV_A_ (W)w, ++asynccnt);
2547 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4153 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2548 asyncs [asynccnt - 1] = w; 4154 asyncs [asynccnt - 1] = w;
4155
4156 EV_FREQUENT_CHECK;
2549} 4157}
2550 4158
2551void 4159void
2552ev_async_stop (EV_P_ ev_async *w) 4160ev_async_stop (EV_P_ ev_async *w)
2553{ 4161{
2554 clear_pending (EV_A_ (W)w); 4162 clear_pending (EV_A_ (W)w);
2555 if (expect_false (!ev_is_active (w))) 4163 if (expect_false (!ev_is_active (w)))
2556 return; 4164 return;
2557 4165
4166 EV_FREQUENT_CHECK;
4167
2558 { 4168 {
2559 int active = ((W)w)->active; 4169 int active = ev_active (w);
4170
2560 asyncs [active - 1] = asyncs [--asynccnt]; 4171 asyncs [active - 1] = asyncs [--asynccnt];
2561 ((W)asyncs [active - 1])->active = active; 4172 ev_active (asyncs [active - 1]) = active;
2562 } 4173 }
2563 4174
2564 ev_stop (EV_A_ (W)w); 4175 ev_stop (EV_A_ (W)w);
4176
4177 EV_FREQUENT_CHECK;
2565} 4178}
2566 4179
2567void 4180void
2568ev_async_send (EV_P_ ev_async *w) 4181ev_async_send (EV_P_ ev_async *w)
2569{ 4182{
2570 w->sent = 1; 4183 w->sent = 1;
2571 evpipe_write (EV_A_ &gotasync); 4184 evpipe_write (EV_A_ &async_pending);
2572} 4185}
2573#endif 4186#endif
2574 4187
2575/*****************************************************************************/ 4188/*****************************************************************************/
2576 4189
2586once_cb (EV_P_ struct ev_once *once, int revents) 4199once_cb (EV_P_ struct ev_once *once, int revents)
2587{ 4200{
2588 void (*cb)(int revents, void *arg) = once->cb; 4201 void (*cb)(int revents, void *arg) = once->cb;
2589 void *arg = once->arg; 4202 void *arg = once->arg;
2590 4203
2591 ev_io_stop (EV_A_ &once->io); 4204 ev_io_stop (EV_A_ &once->io);
2592 ev_timer_stop (EV_A_ &once->to); 4205 ev_timer_stop (EV_A_ &once->to);
2593 ev_free (once); 4206 ev_free (once);
2594 4207
2595 cb (revents, arg); 4208 cb (revents, arg);
2596} 4209}
2597 4210
2598static void 4211static void
2599once_cb_io (EV_P_ ev_io *w, int revents) 4212once_cb_io (EV_P_ ev_io *w, int revents)
2600{ 4213{
2601 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4214 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4215
4216 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2602} 4217}
2603 4218
2604static void 4219static void
2605once_cb_to (EV_P_ ev_timer *w, int revents) 4220once_cb_to (EV_P_ ev_timer *w, int revents)
2606{ 4221{
2607 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4222 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4223
4224 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2608} 4225}
2609 4226
2610void 4227void
2611ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4228ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2612{ 4229{
2613 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4230 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2614 4231
2615 if (expect_false (!once)) 4232 if (expect_false (!once))
2616 { 4233 {
2617 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4234 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2618 return; 4235 return;
2619 } 4236 }
2620 4237
2621 once->cb = cb; 4238 once->cb = cb;
2622 once->arg = arg; 4239 once->arg = arg;
2634 ev_timer_set (&once->to, timeout, 0.); 4251 ev_timer_set (&once->to, timeout, 0.);
2635 ev_timer_start (EV_A_ &once->to); 4252 ev_timer_start (EV_A_ &once->to);
2636 } 4253 }
2637} 4254}
2638 4255
4256/*****************************************************************************/
4257
4258#if EV_WALK_ENABLE
4259void ecb_cold
4260ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4261{
4262 int i, j;
4263 ev_watcher_list *wl, *wn;
4264
4265 if (types & (EV_IO | EV_EMBED))
4266 for (i = 0; i < anfdmax; ++i)
4267 for (wl = anfds [i].head; wl; )
4268 {
4269 wn = wl->next;
4270
4271#if EV_EMBED_ENABLE
4272 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4273 {
4274 if (types & EV_EMBED)
4275 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4276 }
4277 else
4278#endif
4279#if EV_USE_INOTIFY
4280 if (ev_cb ((ev_io *)wl) == infy_cb)
4281 ;
4282 else
4283#endif
4284 if ((ev_io *)wl != &pipe_w)
4285 if (types & EV_IO)
4286 cb (EV_A_ EV_IO, wl);
4287
4288 wl = wn;
4289 }
4290
4291 if (types & (EV_TIMER | EV_STAT))
4292 for (i = timercnt + HEAP0; i-- > HEAP0; )
4293#if EV_STAT_ENABLE
4294 /*TODO: timer is not always active*/
4295 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4296 {
4297 if (types & EV_STAT)
4298 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4299 }
4300 else
4301#endif
4302 if (types & EV_TIMER)
4303 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4304
4305#if EV_PERIODIC_ENABLE
4306 if (types & EV_PERIODIC)
4307 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4308 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4309#endif
4310
4311#if EV_IDLE_ENABLE
4312 if (types & EV_IDLE)
4313 for (j = NUMPRI; j--; )
4314 for (i = idlecnt [j]; i--; )
4315 cb (EV_A_ EV_IDLE, idles [j][i]);
4316#endif
4317
4318#if EV_FORK_ENABLE
4319 if (types & EV_FORK)
4320 for (i = forkcnt; i--; )
4321 if (ev_cb (forks [i]) != embed_fork_cb)
4322 cb (EV_A_ EV_FORK, forks [i]);
4323#endif
4324
4325#if EV_ASYNC_ENABLE
4326 if (types & EV_ASYNC)
4327 for (i = asynccnt; i--; )
4328 cb (EV_A_ EV_ASYNC, asyncs [i]);
4329#endif
4330
4331#if EV_PREPARE_ENABLE
4332 if (types & EV_PREPARE)
4333 for (i = preparecnt; i--; )
4334# if EV_EMBED_ENABLE
4335 if (ev_cb (prepares [i]) != embed_prepare_cb)
4336# endif
4337 cb (EV_A_ EV_PREPARE, prepares [i]);
4338#endif
4339
4340#if EV_CHECK_ENABLE
4341 if (types & EV_CHECK)
4342 for (i = checkcnt; i--; )
4343 cb (EV_A_ EV_CHECK, checks [i]);
4344#endif
4345
4346#if EV_SIGNAL_ENABLE
4347 if (types & EV_SIGNAL)
4348 for (i = 0; i < EV_NSIG - 1; ++i)
4349 for (wl = signals [i].head; wl; )
4350 {
4351 wn = wl->next;
4352 cb (EV_A_ EV_SIGNAL, wl);
4353 wl = wn;
4354 }
4355#endif
4356
4357#if EV_CHILD_ENABLE
4358 if (types & EV_CHILD)
4359 for (i = (EV_PID_HASHSIZE); i--; )
4360 for (wl = childs [i]; wl; )
4361 {
4362 wn = wl->next;
4363 cb (EV_A_ EV_CHILD, wl);
4364 wl = wn;
4365 }
4366#endif
4367/* EV_STAT 0x00001000 /* stat data changed */
4368/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4369}
4370#endif
4371
2639#if EV_MULTIPLICITY 4372#if EV_MULTIPLICITY
2640 #include "ev_wrap.h" 4373 #include "ev_wrap.h"
2641#endif 4374#endif
2642 4375
2643#ifdef __cplusplus 4376EV_CPP(})
2644}
2645#endif
2646 4377

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines