ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.64 by root, Sun Nov 4 23:14:11 2007 UTC vs.
Revision 1.226 by root, Fri Apr 18 17:16:44 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <unistd.h>
60#include <fcntl.h> 136#include <fcntl.h>
61#include <signal.h>
62#include <stddef.h> 137#include <stddef.h>
63 138
64#include <stdio.h> 139#include <stdio.h>
65 140
66#include <assert.h> 141#include <assert.h>
67#include <errno.h> 142#include <errno.h>
68#include <sys/types.h> 143#include <sys/types.h>
144#include <time.h>
145
146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
69#ifndef WIN32 154#ifndef _WIN32
155# include <sys/time.h>
70# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
71#endif 163# endif
72#include <sys/time.h> 164#endif
73#include <time.h>
74 165
75/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
76 167
77#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
78# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
79#endif 178#endif
80 179
81#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
83#endif 182#endif
84 183
85#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
87#endif 190#endif
88 191
89#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
90# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
91#endif 198#endif
92 199
93#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
95#endif 202#endif
96 203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
97#ifndef EV_USE_WIN32 208#ifndef EV_USE_INOTIFY
98# ifdef WIN32 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
99# define EV_USE_WIN32 1 210# define EV_USE_INOTIFY 1
100# else 211# else
101# define EV_USE_WIN32 0 212# define EV_USE_INOTIFY 0
102# endif 213# endif
103#endif 214#endif
104 215
105#ifndef EV_USE_REALTIME 216#ifndef EV_PID_HASHSIZE
106# define EV_USE_REALTIME 1 217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
107#endif 221# endif
222#endif
108 223
109/**/ 224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
110 241
111#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
114#endif 245#endif
116#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
119#endif 250#endif
120 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
121/**/ 283/**/
122 284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
127 298
128#include "ev.h"
129
130#if __GNUC__ >= 3 299#if __GNUC__ >= 4
131# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline 301# define noinline __attribute__ ((noinline))
133#else 302#else
134# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
135# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
136#endif 308#endif
137 309
138#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
140 319
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
143 322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
144typedef struct ev_watcher *W; 326typedef ev_watcher *W;
145typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
146typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
147 329
330#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif
335
336#ifdef _WIN32
337# include "ev_win32.c"
338#endif
149 339
150/*****************************************************************************/ 340/*****************************************************************************/
151 341
342static void (*syserr_cb)(const char *msg);
343
344void
345ev_set_syserr_cb (void (*cb)(const char *msg))
346{
347 syserr_cb = cb;
348}
349
350static void noinline
351syserr (const char *msg)
352{
353 if (!msg)
354 msg = "(libev) system error";
355
356 if (syserr_cb)
357 syserr_cb (msg);
358 else
359 {
360 perror (msg);
361 abort ();
362 }
363}
364
365static void *
366ev_realloc_emul (void *ptr, long size)
367{
368 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and
370 * the single unix specification, so work around them here.
371 */
372
373 if (size)
374 return realloc (ptr, size);
375
376 free (ptr);
377 return 0;
378}
379
380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
381
382void
383ev_set_allocator (void *(*cb)(void *ptr, long size))
384{
385 alloc = cb;
386}
387
388inline_speed void *
389ev_realloc (void *ptr, long size)
390{
391 ptr = alloc (ptr, size);
392
393 if (!ptr && size)
394 {
395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
396 abort ();
397 }
398
399 return ptr;
400}
401
402#define ev_malloc(size) ev_realloc (0, (size))
403#define ev_free(ptr) ev_realloc ((ptr), 0)
404
405/*****************************************************************************/
406
152typedef struct 407typedef struct
153{ 408{
154 struct ev_watcher_list *head; 409 WL head;
155 unsigned char events; 410 unsigned char events;
156 unsigned char reify; 411 unsigned char reify;
412#if EV_SELECT_IS_WINSOCKET
413 SOCKET handle;
414#endif
157} ANFD; 415} ANFD;
158 416
159typedef struct 417typedef struct
160{ 418{
161 W w; 419 W w;
162 int events; 420 int events;
163} ANPENDING; 421} ANPENDING;
164 422
423#if EV_USE_INOTIFY
424typedef struct
425{
426 WL head;
427} ANFS;
428#endif
429
165#if EV_MULTIPLICITY 430#if EV_MULTIPLICITY
166 431
167struct ev_loop 432 struct ev_loop
168{ 433 {
434 ev_tstamp ev_rt_now;
435 #define ev_rt_now ((loop)->ev_rt_now)
169# define VAR(name,decl) decl; 436 #define VAR(name,decl) decl;
170# include "ev_vars.h" 437 #include "ev_vars.h"
171};
172# undef VAR 438 #undef VAR
439 };
173# include "ev_wrap.h" 440 #include "ev_wrap.h"
441
442 static struct ev_loop default_loop_struct;
443 struct ev_loop *ev_default_loop_ptr;
174 444
175#else 445#else
176 446
447 ev_tstamp ev_rt_now;
177# define VAR(name,decl) static decl; 448 #define VAR(name,decl) static decl;
178# include "ev_vars.h" 449 #include "ev_vars.h"
179# undef VAR 450 #undef VAR
451
452 static int ev_default_loop_ptr;
180 453
181#endif 454#endif
182 455
183/*****************************************************************************/ 456/*****************************************************************************/
184 457
185inline ev_tstamp 458ev_tstamp
186ev_time (void) 459ev_time (void)
187{ 460{
188#if EV_USE_REALTIME 461#if EV_USE_REALTIME
189 struct timespec ts; 462 struct timespec ts;
190 clock_gettime (CLOCK_REALTIME, &ts); 463 clock_gettime (CLOCK_REALTIME, &ts);
194 gettimeofday (&tv, 0); 467 gettimeofday (&tv, 0);
195 return tv.tv_sec + tv.tv_usec * 1e-6; 468 return tv.tv_sec + tv.tv_usec * 1e-6;
196#endif 469#endif
197} 470}
198 471
199inline ev_tstamp 472ev_tstamp inline_size
200get_clock (void) 473get_clock (void)
201{ 474{
202#if EV_USE_MONOTONIC 475#if EV_USE_MONOTONIC
203 if (expect_true (have_monotonic)) 476 if (expect_true (have_monotonic))
204 { 477 {
209#endif 482#endif
210 483
211 return ev_time (); 484 return ev_time ();
212} 485}
213 486
487#if EV_MULTIPLICITY
214ev_tstamp 488ev_tstamp
215ev_now (EV_P) 489ev_now (EV_P)
216{ 490{
217 return rt_now; 491 return ev_rt_now;
218} 492}
493#endif
219 494
220#define array_roundsize(base,n) ((n) | 4 & ~3) 495void
221 496ev_sleep (ev_tstamp delay)
222#define array_needsize(base,cur,cnt,init) \ 497{
223 if (expect_false ((cnt) > cur)) \ 498 if (delay > 0.)
224 { \
225 int newcnt = cur; \
226 do \
227 { \
228 newcnt = array_roundsize (base, newcnt << 1); \
229 } \
230 while ((cnt) > newcnt); \
231 \
232 base = realloc (base, sizeof (*base) * (newcnt)); \
233 init (base + cur, newcnt - cur); \
234 cur = newcnt; \
235 } 499 {
500#if EV_USE_NANOSLEEP
501 struct timespec ts;
502
503 ts.tv_sec = (time_t)delay;
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0);
507#elif defined(_WIN32)
508 Sleep ((unsigned long)(delay * 1e3));
509#else
510 struct timeval tv;
511
512 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514
515 select (0, 0, 0, 0, &tv);
516#endif
517 }
518}
236 519
237/*****************************************************************************/ 520/*****************************************************************************/
238 521
239static void 522int inline_size
523array_nextsize (int elem, int cur, int cnt)
524{
525 int ncur = cur + 1;
526
527 do
528 ncur <<= 1;
529 while (cnt > ncur);
530
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096)
533 {
534 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
536 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem;
538 }
539
540 return ncur;
541}
542
543static noinline void *
544array_realloc (int elem, void *base, int *cur, int cnt)
545{
546 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur);
548}
549
550#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \
552 { \
553 int ocur_ = (cur); \
554 (base) = (type *)array_realloc \
555 (sizeof (type), (base), &(cur), (cnt)); \
556 init ((base) + (ocur_), (cur) - ocur_); \
557 }
558
559#if 0
560#define array_slim(type,stem) \
561 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
562 { \
563 stem ## max = array_roundsize (stem ## cnt >> 1); \
564 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
566 }
567#endif
568
569#define array_free(stem, idx) \
570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
571
572/*****************************************************************************/
573
574void noinline
575ev_feed_event (EV_P_ void *w, int revents)
576{
577 W w_ = (W)w;
578 int pri = ABSPRI (w_);
579
580 if (expect_false (w_->pending))
581 pendings [pri][w_->pending - 1].events |= revents;
582 else
583 {
584 w_->pending = ++pendingcnt [pri];
585 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
586 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents;
588 }
589}
590
591void inline_speed
592queue_events (EV_P_ W *events, int eventcnt, int type)
593{
594 int i;
595
596 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type);
598}
599
600/*****************************************************************************/
601
602void inline_size
240anfds_init (ANFD *base, int count) 603anfds_init (ANFD *base, int count)
241{ 604{
242 while (count--) 605 while (count--)
243 { 606 {
244 base->head = 0; 607 base->head = 0;
247 610
248 ++base; 611 ++base;
249 } 612 }
250} 613}
251 614
252static void 615void inline_speed
253event (EV_P_ W w, int events)
254{
255 if (w->pending)
256 {
257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 return;
259 }
260
261 w->pending = ++pendingcnt [ABSPRI (w)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263 pendings [ABSPRI (w)][w->pending - 1].w = w;
264 pendings [ABSPRI (w)][w->pending - 1].events = events;
265}
266
267static void
268queue_events (EV_P_ W *events, int eventcnt, int type)
269{
270 int i;
271
272 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type);
274}
275
276static void
277fd_event (EV_P_ int fd, int events) 616fd_event (EV_P_ int fd, int revents)
278{ 617{
279 ANFD *anfd = anfds + fd; 618 ANFD *anfd = anfds + fd;
280 struct ev_io *w; 619 ev_io *w;
281 620
282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 621 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
283 { 622 {
284 int ev = w->events & events; 623 int ev = w->events & revents;
285 624
286 if (ev) 625 if (ev)
287 event (EV_A_ (W)w, ev); 626 ev_feed_event (EV_A_ (W)w, ev);
288 } 627 }
289} 628}
290 629
291/*****************************************************************************/ 630void
631ev_feed_fd_event (EV_P_ int fd, int revents)
632{
633 if (fd >= 0 && fd < anfdmax)
634 fd_event (EV_A_ fd, revents);
635}
292 636
293static void 637void inline_size
294fd_reify (EV_P) 638fd_reify (EV_P)
295{ 639{
296 int i; 640 int i;
297 641
298 for (i = 0; i < fdchangecnt; ++i) 642 for (i = 0; i < fdchangecnt; ++i)
299 { 643 {
300 int fd = fdchanges [i]; 644 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd; 645 ANFD *anfd = anfds + fd;
302 struct ev_io *w; 646 ev_io *w;
303 647
304 int events = 0; 648 unsigned char events = 0;
305 649
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
307 events |= w->events; 651 events |= (unsigned char)w->events;
308 652
653#if EV_SELECT_IS_WINSOCKET
654 if (events)
655 {
656 unsigned long argp;
657 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else
660 anfd->handle = _get_osfhandle (fd);
661 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
663 }
664#endif
665
666 {
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
309 anfd->reify = 0; 670 anfd->reify = 0;
310
311 method_modify (EV_A_ fd, anfd->events, events);
312 anfd->events = events; 671 anfd->events = events;
672
673 if (o_events != events || o_reify & EV_IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events);
675 }
313 } 676 }
314 677
315 fdchangecnt = 0; 678 fdchangecnt = 0;
316} 679}
317 680
318static void 681void inline_size
319fd_change (EV_P_ int fd) 682fd_change (EV_P_ int fd, int flags)
320{ 683{
321 if (anfds [fd].reify || fdchangecnt < 0) 684 unsigned char reify = anfds [fd].reify;
322 return;
323
324 anfds [fd].reify = 1; 685 anfds [fd].reify |= flags;
325 686
687 if (expect_true (!reify))
688 {
326 ++fdchangecnt; 689 ++fdchangecnt;
327 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
328 fdchanges [fdchangecnt - 1] = fd; 691 fdchanges [fdchangecnt - 1] = fd;
692 }
329} 693}
330 694
331static void 695void inline_speed
332fd_kill (EV_P_ int fd) 696fd_kill (EV_P_ int fd)
333{ 697{
334 struct ev_io *w; 698 ev_io *w;
335 699
336 while ((w = (struct ev_io *)anfds [fd].head)) 700 while ((w = (ev_io *)anfds [fd].head))
337 { 701 {
338 ev_io_stop (EV_A_ w); 702 ev_io_stop (EV_A_ w);
339 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
340 } 704 }
705}
706
707int inline_size
708fd_valid (int fd)
709{
710#ifdef _WIN32
711 return _get_osfhandle (fd) != -1;
712#else
713 return fcntl (fd, F_GETFD) != -1;
714#endif
341} 715}
342 716
343/* called on EBADF to verify fds */ 717/* called on EBADF to verify fds */
344static void 718static void noinline
345fd_ebadf (EV_P) 719fd_ebadf (EV_P)
346{ 720{
347 int fd; 721 int fd;
348 722
349 for (fd = 0; fd < anfdmax; ++fd) 723 for (fd = 0; fd < anfdmax; ++fd)
350 if (anfds [fd].events) 724 if (anfds [fd].events)
351 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 725 if (!fd_valid (fd) == -1 && errno == EBADF)
352 fd_kill (EV_A_ fd); 726 fd_kill (EV_A_ fd);
353} 727}
354 728
355/* called on ENOMEM in select/poll to kill some fds and retry */ 729/* called on ENOMEM in select/poll to kill some fds and retry */
356static void 730static void noinline
357fd_enomem (EV_P) 731fd_enomem (EV_P)
358{ 732{
359 int fd; 733 int fd;
360 734
361 for (fd = anfdmax; fd--; ) 735 for (fd = anfdmax; fd--; )
362 if (anfds [fd].events) 736 if (anfds [fd].events)
363 { 737 {
364 close (fd);
365 fd_kill (EV_A_ fd); 738 fd_kill (EV_A_ fd);
366 return; 739 return;
367 } 740 }
368} 741}
369 742
370/* susually called after fork if method needs to re-arm all fds from scratch */ 743/* usually called after fork if backend needs to re-arm all fds from scratch */
371static void 744static void noinline
372fd_rearm_all (EV_P) 745fd_rearm_all (EV_P)
373{ 746{
374 int fd; 747 int fd;
375 748
376 /* this should be highly optimised to not do anything but set a flag */
377 for (fd = 0; fd < anfdmax; ++fd) 749 for (fd = 0; fd < anfdmax; ++fd)
378 if (anfds [fd].events) 750 if (anfds [fd].events)
379 { 751 {
380 anfds [fd].events = 0; 752 anfds [fd].events = 0;
381 fd_change (EV_A_ fd); 753 fd_change (EV_A_ fd, EV_IOFDSET | 1);
382 } 754 }
383} 755}
384 756
385/*****************************************************************************/ 757/*****************************************************************************/
386 758
387static void 759void inline_speed
388upheap (WT *heap, int k) 760upheap (WT *heap, int k)
389{ 761{
390 WT w = heap [k]; 762 WT w = heap [k];
391 763
392 while (k && heap [k >> 1]->at > w->at) 764 while (k)
393 { 765 {
766 int p = (k - 1) >> 1;
767
768 if (heap [p]->at <= w->at)
769 break;
770
394 heap [k] = heap [k >> 1]; 771 heap [k] = heap [p];
395 ((W)heap [k])->active = k + 1; 772 ((W)heap [k])->active = k + 1;
396 k >>= 1; 773 k = p;
397 } 774 }
398 775
399 heap [k] = w; 776 heap [k] = w;
400 ((W)heap [k])->active = k + 1; 777 ((W)heap [k])->active = k + 1;
401
402} 778}
403 779
404static void 780void inline_speed
405downheap (WT *heap, int N, int k) 781downheap (WT *heap, int N, int k)
406{ 782{
407 WT w = heap [k]; 783 WT w = heap [k];
408 784
409 while (k < (N >> 1)) 785 for (;;)
410 { 786 {
411 int j = k << 1; 787 int c = (k << 1) + 1;
412 788
413 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 789 if (c >= N)
414 ++j;
415
416 if (w->at <= heap [j]->at)
417 break; 790 break;
418 791
792 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
793 ? 1 : 0;
794
795 if (w->at <= heap [c]->at)
796 break;
797
419 heap [k] = heap [j]; 798 heap [k] = heap [c];
420 ((W)heap [k])->active = k + 1; 799 ((W)heap [k])->active = k + 1;
800
421 k = j; 801 k = c;
422 } 802 }
423 803
424 heap [k] = w; 804 heap [k] = w;
425 ((W)heap [k])->active = k + 1; 805 ((W)heap [k])->active = k + 1;
426} 806}
427 807
808void inline_size
809adjustheap (WT *heap, int N, int k)
810{
811 upheap (heap, k);
812 downheap (heap, N, k);
813}
814
428/*****************************************************************************/ 815/*****************************************************************************/
429 816
430typedef struct 817typedef struct
431{ 818{
432 struct ev_watcher_list *head; 819 WL head;
433 sig_atomic_t volatile gotsig; 820 EV_ATOMIC_T gotsig;
434} ANSIG; 821} ANSIG;
435 822
436static ANSIG *signals; 823static ANSIG *signals;
437static int signalmax; 824static int signalmax;
438 825
439static int sigpipe [2]; 826static EV_ATOMIC_T gotsig;
440static sig_atomic_t volatile gotsig;
441static struct ev_io sigev;
442 827
443static void 828void inline_size
444signals_init (ANSIG *base, int count) 829signals_init (ANSIG *base, int count)
445{ 830{
446 while (count--) 831 while (count--)
447 { 832 {
448 base->head = 0; 833 base->head = 0;
450 835
451 ++base; 836 ++base;
452 } 837 }
453} 838}
454 839
840/*****************************************************************************/
841
842void inline_speed
843fd_intern (int fd)
844{
845#ifdef _WIN32
846 int arg = 1;
847 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
848#else
849 fcntl (fd, F_SETFD, FD_CLOEXEC);
850 fcntl (fd, F_SETFL, O_NONBLOCK);
851#endif
852}
853
854static void noinline
855evpipe_init (EV_P)
856{
857 if (!ev_is_active (&pipeev))
858 {
859#if EV_USE_EVENTFD
860 if ((evfd = eventfd (0, 0)) >= 0)
861 {
862 evpipe [0] = -1;
863 fd_intern (evfd);
864 ev_io_set (&pipeev, evfd, EV_READ);
865 }
866 else
867#endif
868 {
869 while (pipe (evpipe))
870 syserr ("(libev) error creating signal/async pipe");
871
872 fd_intern (evpipe [0]);
873 fd_intern (evpipe [1]);
874 ev_io_set (&pipeev, evpipe [0], EV_READ);
875 }
876
877 ev_io_start (EV_A_ &pipeev);
878 ev_unref (EV_A); /* watcher should not keep loop alive */
879 }
880}
881
882void inline_size
883evpipe_write (EV_P_ EV_ATOMIC_T *flag)
884{
885 if (!*flag)
886 {
887 int old_errno = errno; /* save errno because write might clobber it */
888
889 *flag = 1;
890
891#if EV_USE_EVENTFD
892 if (evfd >= 0)
893 {
894 uint64_t counter = 1;
895 write (evfd, &counter, sizeof (uint64_t));
896 }
897 else
898#endif
899 write (evpipe [1], &old_errno, 1);
900
901 errno = old_errno;
902 }
903}
904
455static void 905static void
906pipecb (EV_P_ ev_io *iow, int revents)
907{
908#if EV_USE_EVENTFD
909 if (evfd >= 0)
910 {
911 uint64_t counter = 1;
912 read (evfd, &counter, sizeof (uint64_t));
913 }
914 else
915#endif
916 {
917 char dummy;
918 read (evpipe [0], &dummy, 1);
919 }
920
921 if (gotsig && ev_is_default_loop (EV_A))
922 {
923 int signum;
924 gotsig = 0;
925
926 for (signum = signalmax; signum--; )
927 if (signals [signum].gotsig)
928 ev_feed_signal_event (EV_A_ signum + 1);
929 }
930
931#if EV_ASYNC_ENABLE
932 if (gotasync)
933 {
934 int i;
935 gotasync = 0;
936
937 for (i = asynccnt; i--; )
938 if (asyncs [i]->sent)
939 {
940 asyncs [i]->sent = 0;
941 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
942 }
943 }
944#endif
945}
946
947/*****************************************************************************/
948
949static void
456sighandler (int signum) 950ev_sighandler (int signum)
457{ 951{
952#if EV_MULTIPLICITY
953 struct ev_loop *loop = &default_loop_struct;
954#endif
955
956#if _WIN32
957 signal (signum, ev_sighandler);
958#endif
959
458 signals [signum - 1].gotsig = 1; 960 signals [signum - 1].gotsig = 1;
459 961 evpipe_write (EV_A_ &gotsig);
460 if (!gotsig)
461 {
462 int old_errno = errno;
463 gotsig = 1;
464 write (sigpipe [1], &signum, 1);
465 errno = old_errno;
466 }
467} 962}
468 963
469static void 964void noinline
470sigcb (EV_P_ struct ev_io *iow, int revents) 965ev_feed_signal_event (EV_P_ int signum)
471{ 966{
472 struct ev_watcher_list *w; 967 WL w;
968
969#if EV_MULTIPLICITY
970 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
971#endif
972
473 int signum; 973 --signum;
474 974
475 read (sigpipe [0], &revents, 1); 975 if (signum < 0 || signum >= signalmax)
476 gotsig = 0; 976 return;
477 977
478 for (signum = signalmax; signum--; )
479 if (signals [signum].gotsig)
480 {
481 signals [signum].gotsig = 0; 978 signals [signum].gotsig = 0;
482 979
483 for (w = signals [signum].head; w; w = w->next) 980 for (w = signals [signum].head; w; w = w->next)
484 event (EV_A_ (W)w, EV_SIGNAL); 981 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
485 }
486}
487
488static void
489siginit (EV_P)
490{
491#ifndef WIN32
492 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
493 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
494
495 /* rather than sort out wether we really need nb, set it */
496 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
497 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
498#endif
499
500 ev_io_set (&sigev, sigpipe [0], EV_READ);
501 ev_io_start (EV_A_ &sigev);
502 ev_unref (EV_A); /* child watcher should not keep loop alive */
503} 982}
504 983
505/*****************************************************************************/ 984/*****************************************************************************/
506 985
986static WL childs [EV_PID_HASHSIZE];
987
507#ifndef WIN32 988#ifndef _WIN32
508 989
509static struct ev_child *childs [PID_HASHSIZE];
510static struct ev_signal childev; 990static ev_signal childev;
991
992#ifndef WIFCONTINUED
993# define WIFCONTINUED(status) 0
994#endif
995
996void inline_speed
997child_reap (EV_P_ int chain, int pid, int status)
998{
999 ev_child *w;
1000 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1001
1002 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1003 {
1004 if ((w->pid == pid || !w->pid)
1005 && (!traced || (w->flags & 1)))
1006 {
1007 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1008 w->rpid = pid;
1009 w->rstatus = status;
1010 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1011 }
1012 }
1013}
511 1014
512#ifndef WCONTINUED 1015#ifndef WCONTINUED
513# define WCONTINUED 0 1016# define WCONTINUED 0
514#endif 1017#endif
515 1018
516static void 1019static void
517child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
518{
519 struct ev_child *w;
520
521 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
522 if (w->pid == pid || !w->pid)
523 {
524 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
525 w->rpid = pid;
526 w->rstatus = status;
527 event (EV_A_ (W)w, EV_CHILD);
528 }
529}
530
531static void
532childcb (EV_P_ struct ev_signal *sw, int revents) 1020childcb (EV_P_ ev_signal *sw, int revents)
533{ 1021{
534 int pid, status; 1022 int pid, status;
535 1023
1024 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
536 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1025 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
537 { 1026 if (!WCONTINUED
1027 || errno != EINVAL
1028 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1029 return;
1030
538 /* make sure we are called again until all childs have been reaped */ 1031 /* make sure we are called again until all children have been reaped */
1032 /* we need to do it this way so that the callback gets called before we continue */
539 event (EV_A_ (W)sw, EV_SIGNAL); 1033 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
540 1034
541 child_reap (EV_A_ sw, pid, pid, status); 1035 child_reap (EV_A_ pid, pid, status);
1036 if (EV_PID_HASHSIZE > 1)
542 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1037 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
543 }
544} 1038}
545 1039
546#endif 1040#endif
547 1041
548/*****************************************************************************/ 1042/*****************************************************************************/
549 1043
1044#if EV_USE_PORT
1045# include "ev_port.c"
1046#endif
550#if EV_USE_KQUEUE 1047#if EV_USE_KQUEUE
551# include "ev_kqueue.c" 1048# include "ev_kqueue.c"
552#endif 1049#endif
553#if EV_USE_EPOLL 1050#if EV_USE_EPOLL
554# include "ev_epoll.c" 1051# include "ev_epoll.c"
571{ 1068{
572 return EV_VERSION_MINOR; 1069 return EV_VERSION_MINOR;
573} 1070}
574 1071
575/* return true if we are running with elevated privileges and should ignore env variables */ 1072/* return true if we are running with elevated privileges and should ignore env variables */
576static int 1073int inline_size
577enable_secure (void) 1074enable_secure (void)
578{ 1075{
579#ifdef WIN32 1076#ifdef _WIN32
580 return 0; 1077 return 0;
581#else 1078#else
582 return getuid () != geteuid () 1079 return getuid () != geteuid ()
583 || getgid () != getegid (); 1080 || getgid () != getegid ();
584#endif 1081#endif
585} 1082}
586 1083
587int 1084unsigned int
588ev_method (EV_P) 1085ev_supported_backends (void)
589{ 1086{
590 return method; 1087 unsigned int flags = 0;
591}
592 1088
593static void 1089 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
594loop_init (EV_P_ int methods) 1090 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1091 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1092 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1093 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1094
1095 return flags;
1096}
1097
1098unsigned int
1099ev_recommended_backends (void)
595{ 1100{
596 if (!method) 1101 unsigned int flags = ev_supported_backends ();
1102
1103#ifndef __NetBSD__
1104 /* kqueue is borked on everything but netbsd apparently */
1105 /* it usually doesn't work correctly on anything but sockets and pipes */
1106 flags &= ~EVBACKEND_KQUEUE;
1107#endif
1108#ifdef __APPLE__
1109 // flags &= ~EVBACKEND_KQUEUE; for documentation
1110 flags &= ~EVBACKEND_POLL;
1111#endif
1112
1113 return flags;
1114}
1115
1116unsigned int
1117ev_embeddable_backends (void)
1118{
1119 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1120
1121 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1122 /* please fix it and tell me how to detect the fix */
1123 flags &= ~EVBACKEND_EPOLL;
1124
1125 return flags;
1126}
1127
1128unsigned int
1129ev_backend (EV_P)
1130{
1131 return backend;
1132}
1133
1134unsigned int
1135ev_loop_count (EV_P)
1136{
1137 return loop_count;
1138}
1139
1140void
1141ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1142{
1143 io_blocktime = interval;
1144}
1145
1146void
1147ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 timeout_blocktime = interval;
1150}
1151
1152static void noinline
1153loop_init (EV_P_ unsigned int flags)
1154{
1155 if (!backend)
597 { 1156 {
598#if EV_USE_MONOTONIC 1157#if EV_USE_MONOTONIC
599 { 1158 {
600 struct timespec ts; 1159 struct timespec ts;
601 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1160 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
602 have_monotonic = 1; 1161 have_monotonic = 1;
603 } 1162 }
604#endif 1163#endif
605 1164
606 rt_now = ev_time (); 1165 ev_rt_now = ev_time ();
607 mn_now = get_clock (); 1166 mn_now = get_clock ();
608 now_floor = mn_now; 1167 now_floor = mn_now;
609 rtmn_diff = rt_now - mn_now; 1168 rtmn_diff = ev_rt_now - mn_now;
610 1169
611 if (methods == EVMETHOD_AUTO) 1170 io_blocktime = 0.;
612 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1171 timeout_blocktime = 0.;
1172 backend = 0;
1173 backend_fd = -1;
1174 gotasync = 0;
1175#if EV_USE_INOTIFY
1176 fs_fd = -2;
1177#endif
1178
1179 /* pid check not overridable via env */
1180#ifndef _WIN32
1181 if (flags & EVFLAG_FORKCHECK)
1182 curpid = getpid ();
1183#endif
1184
1185 if (!(flags & EVFLAG_NOENV)
1186 && !enable_secure ()
1187 && getenv ("LIBEV_FLAGS"))
613 methods = atoi (getenv ("LIBEV_METHODS")); 1188 flags = atoi (getenv ("LIBEV_FLAGS"));
614 else
615 methods = EVMETHOD_ANY;
616 1189
617 method = 0; 1190 if (!(flags & 0x0000ffffU))
618#if EV_USE_WIN32 1191 flags |= ev_recommended_backends ();
619 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1192
1193#if EV_USE_PORT
1194 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
620#endif 1195#endif
621#if EV_USE_KQUEUE 1196#if EV_USE_KQUEUE
622 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1197 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
623#endif 1198#endif
624#if EV_USE_EPOLL 1199#if EV_USE_EPOLL
625 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1200 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
626#endif 1201#endif
627#if EV_USE_POLL 1202#if EV_USE_POLL
628 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1203 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
629#endif 1204#endif
630#if EV_USE_SELECT 1205#if EV_USE_SELECT
631 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1206 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
632#endif 1207#endif
633 }
634}
635 1208
636void 1209 ev_init (&pipeev, pipecb);
1210 ev_set_priority (&pipeev, EV_MAXPRI);
1211 }
1212}
1213
1214static void noinline
637loop_destroy (EV_P) 1215loop_destroy (EV_P)
638{ 1216{
1217 int i;
1218
1219 if (ev_is_active (&pipeev))
1220 {
1221 ev_ref (EV_A); /* signal watcher */
1222 ev_io_stop (EV_A_ &pipeev);
1223
1224#if EV_USE_EVENTFD
1225 if (evfd >= 0)
1226 close (evfd);
1227#endif
1228
1229 if (evpipe [0] >= 0)
1230 {
1231 close (evpipe [0]);
1232 close (evpipe [1]);
1233 }
1234 }
1235
639#if EV_USE_WIN32 1236#if EV_USE_INOTIFY
640 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1237 if (fs_fd >= 0)
1238 close (fs_fd);
1239#endif
1240
1241 if (backend_fd >= 0)
1242 close (backend_fd);
1243
1244#if EV_USE_PORT
1245 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
641#endif 1246#endif
642#if EV_USE_KQUEUE 1247#if EV_USE_KQUEUE
643 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1248 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
644#endif 1249#endif
645#if EV_USE_EPOLL 1250#if EV_USE_EPOLL
646 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1251 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
647#endif 1252#endif
648#if EV_USE_POLL 1253#if EV_USE_POLL
649 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1254 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
650#endif 1255#endif
651#if EV_USE_SELECT 1256#if EV_USE_SELECT
652 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1257 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
653#endif 1258#endif
654 1259
655 method = 0; 1260 for (i = NUMPRI; i--; )
656 /*TODO*/ 1261 {
657} 1262 array_free (pending, [i]);
1263#if EV_IDLE_ENABLE
1264 array_free (idle, [i]);
1265#endif
1266 }
658 1267
659void 1268 ev_free (anfds); anfdmax = 0;
1269
1270 /* have to use the microsoft-never-gets-it-right macro */
1271 array_free (fdchange, EMPTY);
1272 array_free (timer, EMPTY);
1273#if EV_PERIODIC_ENABLE
1274 array_free (periodic, EMPTY);
1275#endif
1276#if EV_FORK_ENABLE
1277 array_free (fork, EMPTY);
1278#endif
1279 array_free (prepare, EMPTY);
1280 array_free (check, EMPTY);
1281#if EV_ASYNC_ENABLE
1282 array_free (async, EMPTY);
1283#endif
1284
1285 backend = 0;
1286}
1287
1288#if EV_USE_INOTIFY
1289void inline_size infy_fork (EV_P);
1290#endif
1291
1292void inline_size
660loop_fork (EV_P) 1293loop_fork (EV_P)
661{ 1294{
662 /*TODO*/ 1295#if EV_USE_PORT
1296 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1297#endif
1298#if EV_USE_KQUEUE
1299 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1300#endif
663#if EV_USE_EPOLL 1301#if EV_USE_EPOLL
664 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1302 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
665#endif 1303#endif
666#if EV_USE_KQUEUE 1304#if EV_USE_INOTIFY
667 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1305 infy_fork (EV_A);
668#endif 1306#endif
1307
1308 if (ev_is_active (&pipeev))
1309 {
1310 /* this "locks" the handlers against writing to the pipe */
1311 /* while we modify the fd vars */
1312 gotsig = 1;
1313#if EV_ASYNC_ENABLE
1314 gotasync = 1;
1315#endif
1316
1317 ev_ref (EV_A);
1318 ev_io_stop (EV_A_ &pipeev);
1319
1320#if EV_USE_EVENTFD
1321 if (evfd >= 0)
1322 close (evfd);
1323#endif
1324
1325 if (evpipe [0] >= 0)
1326 {
1327 close (evpipe [0]);
1328 close (evpipe [1]);
1329 }
1330
1331 evpipe_init (EV_A);
1332 /* now iterate over everything, in case we missed something */
1333 pipecb (EV_A_ &pipeev, EV_READ);
1334 }
1335
1336 postfork = 0;
669} 1337}
670 1338
671#if EV_MULTIPLICITY 1339#if EV_MULTIPLICITY
672struct ev_loop * 1340struct ev_loop *
673ev_loop_new (int methods) 1341ev_loop_new (unsigned int flags)
674{ 1342{
675 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop)); 1343 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
676 1344
1345 memset (loop, 0, sizeof (struct ev_loop));
1346
677 loop_init (EV_A_ methods); 1347 loop_init (EV_A_ flags);
678 1348
679 if (ev_method (EV_A)) 1349 if (ev_backend (EV_A))
680 return loop; 1350 return loop;
681 1351
682 return 0; 1352 return 0;
683} 1353}
684 1354
685void 1355void
686ev_loop_destroy (EV_P) 1356ev_loop_destroy (EV_P)
687{ 1357{
688 loop_destroy (EV_A); 1358 loop_destroy (EV_A);
689 free (loop); 1359 ev_free (loop);
690} 1360}
691 1361
692void 1362void
693ev_loop_fork (EV_P) 1363ev_loop_fork (EV_P)
694{ 1364{
695 loop_fork (EV_A); 1365 postfork = 1; /* must be in line with ev_default_fork */
696} 1366}
697 1367
698#endif 1368#endif
699 1369
700#if EV_MULTIPLICITY 1370#if EV_MULTIPLICITY
701struct ev_loop default_loop_struct;
702static struct ev_loop *default_loop;
703
704struct ev_loop * 1371struct ev_loop *
1372ev_default_loop_init (unsigned int flags)
705#else 1373#else
706static int default_loop;
707
708int 1374int
1375ev_default_loop (unsigned int flags)
709#endif 1376#endif
710ev_default_loop (int methods)
711{ 1377{
712 if (sigpipe [0] == sigpipe [1])
713 if (pipe (sigpipe))
714 return 0;
715
716 if (!default_loop) 1378 if (!ev_default_loop_ptr)
717 { 1379 {
718#if EV_MULTIPLICITY 1380#if EV_MULTIPLICITY
719 struct ev_loop *loop = default_loop = &default_loop_struct; 1381 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
720#else 1382#else
721 default_loop = 1; 1383 ev_default_loop_ptr = 1;
722#endif 1384#endif
723 1385
724 loop_init (EV_A_ methods); 1386 loop_init (EV_A_ flags);
725 1387
726 if (ev_method (EV_A)) 1388 if (ev_backend (EV_A))
727 { 1389 {
728 ev_watcher_init (&sigev, sigcb);
729 ev_set_priority (&sigev, EV_MAXPRI);
730 siginit (EV_A);
731
732#ifndef WIN32 1390#ifndef _WIN32
733 ev_signal_init (&childev, childcb, SIGCHLD); 1391 ev_signal_init (&childev, childcb, SIGCHLD);
734 ev_set_priority (&childev, EV_MAXPRI); 1392 ev_set_priority (&childev, EV_MAXPRI);
735 ev_signal_start (EV_A_ &childev); 1393 ev_signal_start (EV_A_ &childev);
736 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1394 ev_unref (EV_A); /* child watcher should not keep loop alive */
737#endif 1395#endif
738 } 1396 }
739 else 1397 else
740 default_loop = 0; 1398 ev_default_loop_ptr = 0;
741 } 1399 }
742 1400
743 return default_loop; 1401 return ev_default_loop_ptr;
744} 1402}
745 1403
746void 1404void
747ev_default_destroy (void) 1405ev_default_destroy (void)
748{ 1406{
749#if EV_MULTIPLICITY 1407#if EV_MULTIPLICITY
750 struct ev_loop *loop = default_loop; 1408 struct ev_loop *loop = ev_default_loop_ptr;
751#endif 1409#endif
752 1410
1411#ifndef _WIN32
753 ev_ref (EV_A); /* child watcher */ 1412 ev_ref (EV_A); /* child watcher */
754 ev_signal_stop (EV_A_ &childev); 1413 ev_signal_stop (EV_A_ &childev);
755 1414#endif
756 ev_ref (EV_A); /* signal watcher */
757 ev_io_stop (EV_A_ &sigev);
758
759 close (sigpipe [0]); sigpipe [0] = 0;
760 close (sigpipe [1]); sigpipe [1] = 0;
761 1415
762 loop_destroy (EV_A); 1416 loop_destroy (EV_A);
763} 1417}
764 1418
765void 1419void
766ev_default_fork (void) 1420ev_default_fork (void)
767{ 1421{
768#if EV_MULTIPLICITY 1422#if EV_MULTIPLICITY
769 struct ev_loop *loop = default_loop; 1423 struct ev_loop *loop = ev_default_loop_ptr;
770#endif 1424#endif
771 1425
772 loop_fork (EV_A); 1426 if (backend)
773 1427 postfork = 1; /* must be in line with ev_loop_fork */
774 ev_io_stop (EV_A_ &sigev);
775 close (sigpipe [0]);
776 close (sigpipe [1]);
777 pipe (sigpipe);
778
779 ev_ref (EV_A); /* signal watcher */
780 siginit (EV_A);
781} 1428}
782 1429
783/*****************************************************************************/ 1430/*****************************************************************************/
784 1431
785static void 1432void
1433ev_invoke (EV_P_ void *w, int revents)
1434{
1435 EV_CB_INVOKE ((W)w, revents);
1436}
1437
1438void inline_speed
786call_pending (EV_P) 1439call_pending (EV_P)
787{ 1440{
788 int pri; 1441 int pri;
789 1442
790 for (pri = NUMPRI; pri--; ) 1443 for (pri = NUMPRI; pri--; )
791 while (pendingcnt [pri]) 1444 while (pendingcnt [pri])
792 { 1445 {
793 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1446 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
794 1447
795 if (p->w) 1448 if (expect_true (p->w))
796 { 1449 {
1450 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1451
797 p->w->pending = 0; 1452 p->w->pending = 0;
798 1453 EV_CB_INVOKE (p->w, p->events);
799 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
800 } 1454 }
801 } 1455 }
802} 1456}
803 1457
804static void 1458void inline_size
805timers_reify (EV_P) 1459timers_reify (EV_P)
806{ 1460{
807 while (timercnt && ((WT)timers [0])->at <= mn_now) 1461 while (timercnt && ((WT)timers [0])->at <= mn_now)
808 { 1462 {
809 struct ev_timer *w = timers [0]; 1463 ev_timer *w = (ev_timer *)timers [0];
810 1464
811 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1465 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
812 1466
813 /* first reschedule or stop timer */ 1467 /* first reschedule or stop timer */
814 if (w->repeat) 1468 if (w->repeat)
815 { 1469 {
816 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1470 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1471
817 ((WT)w)->at = mn_now + w->repeat; 1472 ((WT)w)->at += w->repeat;
1473 if (((WT)w)->at < mn_now)
1474 ((WT)w)->at = mn_now;
1475
818 downheap ((WT *)timers, timercnt, 0); 1476 downheap (timers, timercnt, 0);
819 } 1477 }
820 else 1478 else
821 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1479 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
822 1480
823 event (EV_A_ (W)w, EV_TIMEOUT); 1481 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
824 } 1482 }
825} 1483}
826 1484
827static void 1485#if EV_PERIODIC_ENABLE
1486void inline_size
828periodics_reify (EV_P) 1487periodics_reify (EV_P)
829{ 1488{
830 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1489 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
831 { 1490 {
832 struct ev_periodic *w = periodics [0]; 1491 ev_periodic *w = (ev_periodic *)periodics [0];
833 1492
834 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1493 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
835 1494
836 /* first reschedule or stop timer */ 1495 /* first reschedule or stop timer */
837 if (w->interval) 1496 if (w->reschedule_cb)
838 { 1497 {
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1499 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1500 downheap (periodics, periodiccnt, 0);
1501 }
1502 else if (w->interval)
1503 {
839 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1504 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1505 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
840 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1506 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
841 downheap ((WT *)periodics, periodiccnt, 0); 1507 downheap (periodics, periodiccnt, 0);
842 } 1508 }
843 else 1509 else
844 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1510 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
845 1511
846 event (EV_A_ (W)w, EV_PERIODIC); 1512 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
847 } 1513 }
848} 1514}
849 1515
850static void 1516static void noinline
851periodics_reschedule (EV_P) 1517periodics_reschedule (EV_P)
852{ 1518{
853 int i; 1519 int i;
854 1520
855 /* adjust periodics after time jump */ 1521 /* adjust periodics after time jump */
856 for (i = 0; i < periodiccnt; ++i) 1522 for (i = 0; i < periodiccnt; ++i)
857 { 1523 {
858 struct ev_periodic *w = periodics [i]; 1524 ev_periodic *w = (ev_periodic *)periodics [i];
859 1525
1526 if (w->reschedule_cb)
1527 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
860 if (w->interval) 1528 else if (w->interval)
1529 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1530 }
1531
1532 /* now rebuild the heap */
1533 for (i = periodiccnt >> 1; i--; )
1534 downheap (periodics, periodiccnt, i);
1535}
1536#endif
1537
1538#if EV_IDLE_ENABLE
1539void inline_size
1540idle_reify (EV_P)
1541{
1542 if (expect_false (idleall))
1543 {
1544 int pri;
1545
1546 for (pri = NUMPRI; pri--; )
861 { 1547 {
862 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1548 if (pendingcnt [pri])
1549 break;
863 1550
864 if (fabs (diff) >= 1e-4) 1551 if (idlecnt [pri])
865 { 1552 {
866 ev_periodic_stop (EV_A_ w); 1553 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
867 ev_periodic_start (EV_A_ w); 1554 break;
868
869 i = 0; /* restart loop, inefficient, but time jumps should be rare */
870 } 1555 }
871 } 1556 }
872 } 1557 }
873} 1558}
1559#endif
874 1560
875inline int 1561void inline_speed
876time_update_monotonic (EV_P) 1562time_update (EV_P_ ev_tstamp max_block)
877{
878 mn_now = get_clock ();
879
880 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
881 {
882 rt_now = rtmn_diff + mn_now;
883 return 0;
884 }
885 else
886 {
887 now_floor = mn_now;
888 rt_now = ev_time ();
889 return 1;
890 }
891}
892
893static void
894time_update (EV_P)
895{ 1563{
896 int i; 1564 int i;
897 1565
898#if EV_USE_MONOTONIC 1566#if EV_USE_MONOTONIC
899 if (expect_true (have_monotonic)) 1567 if (expect_true (have_monotonic))
900 { 1568 {
901 if (time_update_monotonic (EV_A)) 1569 ev_tstamp odiff = rtmn_diff;
1570
1571 mn_now = get_clock ();
1572
1573 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1574 /* interpolate in the meantime */
1575 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
902 { 1576 {
903 ev_tstamp odiff = rtmn_diff; 1577 ev_rt_now = rtmn_diff + mn_now;
1578 return;
1579 }
904 1580
1581 now_floor = mn_now;
1582 ev_rt_now = ev_time ();
1583
905 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1584 /* loop a few times, before making important decisions.
1585 * on the choice of "4": one iteration isn't enough,
1586 * in case we get preempted during the calls to
1587 * ev_time and get_clock. a second call is almost guaranteed
1588 * to succeed in that case, though. and looping a few more times
1589 * doesn't hurt either as we only do this on time-jumps or
1590 * in the unlikely event of having been preempted here.
1591 */
1592 for (i = 4; --i; )
906 { 1593 {
907 rtmn_diff = rt_now - mn_now; 1594 rtmn_diff = ev_rt_now - mn_now;
908 1595
909 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1596 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
910 return; /* all is well */ 1597 return; /* all is well */
911 1598
912 rt_now = ev_time (); 1599 ev_rt_now = ev_time ();
913 mn_now = get_clock (); 1600 mn_now = get_clock ();
914 now_floor = mn_now; 1601 now_floor = mn_now;
915 } 1602 }
916 1603
1604# if EV_PERIODIC_ENABLE
1605 periodics_reschedule (EV_A);
1606# endif
1607 /* no timer adjustment, as the monotonic clock doesn't jump */
1608 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609 }
1610 else
1611#endif
1612 {
1613 ev_rt_now = ev_time ();
1614
1615 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1616 {
1617#if EV_PERIODIC_ENABLE
917 periodics_reschedule (EV_A); 1618 periodics_reschedule (EV_A);
918 /* no timer adjustment, as the monotonic clock doesn't jump */ 1619#endif
919 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1620 /* adjust timers. this is easy, as the offset is the same for all of them */
1621 for (i = 0; i < timercnt; ++i)
1622 ((WT)timers [i])->at += ev_rt_now - mn_now;
920 } 1623 }
921 }
922 else
923#endif
924 {
925 rt_now = ev_time ();
926 1624
927 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
928 {
929 periodics_reschedule (EV_A);
930
931 /* adjust timers. this is easy, as the offset is the same for all */
932 for (i = 0; i < timercnt; ++i)
933 ((WT)timers [i])->at += rt_now - mn_now;
934 }
935
936 mn_now = rt_now; 1625 mn_now = ev_rt_now;
937 } 1626 }
938} 1627}
939 1628
940void 1629void
941ev_ref (EV_P) 1630ev_ref (EV_P)
952static int loop_done; 1641static int loop_done;
953 1642
954void 1643void
955ev_loop (EV_P_ int flags) 1644ev_loop (EV_P_ int flags)
956{ 1645{
957 double block; 1646 loop_done = EVUNLOOP_CANCEL;
958 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1647
1648 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
959 1649
960 do 1650 do
961 { 1651 {
1652#ifndef _WIN32
1653 if (expect_false (curpid)) /* penalise the forking check even more */
1654 if (expect_false (getpid () != curpid))
1655 {
1656 curpid = getpid ();
1657 postfork = 1;
1658 }
1659#endif
1660
1661#if EV_FORK_ENABLE
1662 /* we might have forked, so queue fork handlers */
1663 if (expect_false (postfork))
1664 if (forkcnt)
1665 {
1666 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1667 call_pending (EV_A);
1668 }
1669#endif
1670
962 /* queue check watchers (and execute them) */ 1671 /* queue prepare watchers (and execute them) */
963 if (expect_false (preparecnt)) 1672 if (expect_false (preparecnt))
964 { 1673 {
965 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1674 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
966 call_pending (EV_A); 1675 call_pending (EV_A);
967 } 1676 }
968 1677
1678 if (expect_false (!activecnt))
1679 break;
1680
1681 /* we might have forked, so reify kernel state if necessary */
1682 if (expect_false (postfork))
1683 loop_fork (EV_A);
1684
969 /* update fd-related kernel structures */ 1685 /* update fd-related kernel structures */
970 fd_reify (EV_A); 1686 fd_reify (EV_A);
971 1687
972 /* calculate blocking time */ 1688 /* calculate blocking time */
1689 {
1690 ev_tstamp waittime = 0.;
1691 ev_tstamp sleeptime = 0.;
973 1692
974 /* we only need this for !monotonic clockor timers, but as we basically 1693 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
975 always have timers, we just calculate it always */
976#if EV_USE_MONOTONIC
977 if (expect_true (have_monotonic))
978 time_update_monotonic (EV_A);
979 else
980#endif
981 { 1694 {
982 rt_now = ev_time (); 1695 /* update time to cancel out callback processing overhead */
983 mn_now = rt_now; 1696 time_update (EV_A_ 1e100);
984 }
985 1697
986 if (flags & EVLOOP_NONBLOCK || idlecnt)
987 block = 0.;
988 else
989 {
990 block = MAX_BLOCKTIME; 1698 waittime = MAX_BLOCKTIME;
991 1699
992 if (timercnt) 1700 if (timercnt)
993 { 1701 {
994 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1702 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
995 if (block > to) block = to; 1703 if (waittime > to) waittime = to;
996 } 1704 }
997 1705
1706#if EV_PERIODIC_ENABLE
998 if (periodiccnt) 1707 if (periodiccnt)
999 { 1708 {
1000 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1709 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1001 if (block > to) block = to; 1710 if (waittime > to) waittime = to;
1002 } 1711 }
1712#endif
1003 1713
1004 if (block < 0.) block = 0.; 1714 if (expect_false (waittime < timeout_blocktime))
1715 waittime = timeout_blocktime;
1716
1717 sleeptime = waittime - backend_fudge;
1718
1719 if (expect_true (sleeptime > io_blocktime))
1720 sleeptime = io_blocktime;
1721
1722 if (sleeptime)
1723 {
1724 ev_sleep (sleeptime);
1725 waittime -= sleeptime;
1726 }
1005 } 1727 }
1006 1728
1007 method_poll (EV_A_ block); 1729 ++loop_count;
1730 backend_poll (EV_A_ waittime);
1008 1731
1009 /* update rt_now, do magic */ 1732 /* update ev_rt_now, do magic */
1010 time_update (EV_A); 1733 time_update (EV_A_ waittime + sleeptime);
1734 }
1011 1735
1012 /* queue pending timers and reschedule them */ 1736 /* queue pending timers and reschedule them */
1013 timers_reify (EV_A); /* relative timers called last */ 1737 timers_reify (EV_A); /* relative timers called last */
1738#if EV_PERIODIC_ENABLE
1014 periodics_reify (EV_A); /* absolute timers called first */ 1739 periodics_reify (EV_A); /* absolute timers called first */
1740#endif
1015 1741
1742#if EV_IDLE_ENABLE
1016 /* queue idle watchers unless io or timers are pending */ 1743 /* queue idle watchers unless other events are pending */
1017 if (!pendingcnt) 1744 idle_reify (EV_A);
1018 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1745#endif
1019 1746
1020 /* queue check watchers, to be executed first */ 1747 /* queue check watchers, to be executed first */
1021 if (checkcnt) 1748 if (expect_false (checkcnt))
1022 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1749 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1023 1750
1024 call_pending (EV_A); 1751 call_pending (EV_A);
1025 } 1752 }
1026 while (activecnt && !loop_done); 1753 while (expect_true (
1754 activecnt
1755 && !loop_done
1756 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1757 ));
1027 1758
1028 if (loop_done != 2) 1759 if (loop_done == EVUNLOOP_ONE)
1029 loop_done = 0; 1760 loop_done = EVUNLOOP_CANCEL;
1030} 1761}
1031 1762
1032void 1763void
1033ev_unloop (EV_P_ int how) 1764ev_unloop (EV_P_ int how)
1034{ 1765{
1035 loop_done = how; 1766 loop_done = how;
1036} 1767}
1037 1768
1038/*****************************************************************************/ 1769/*****************************************************************************/
1039 1770
1040inline void 1771void inline_size
1041wlist_add (WL *head, WL elem) 1772wlist_add (WL *head, WL elem)
1042{ 1773{
1043 elem->next = *head; 1774 elem->next = *head;
1044 *head = elem; 1775 *head = elem;
1045} 1776}
1046 1777
1047inline void 1778void inline_size
1048wlist_del (WL *head, WL elem) 1779wlist_del (WL *head, WL elem)
1049{ 1780{
1050 while (*head) 1781 while (*head)
1051 { 1782 {
1052 if (*head == elem) 1783 if (*head == elem)
1057 1788
1058 head = &(*head)->next; 1789 head = &(*head)->next;
1059 } 1790 }
1060} 1791}
1061 1792
1062inline void 1793void inline_speed
1063ev_clear_pending (EV_P_ W w) 1794clear_pending (EV_P_ W w)
1064{ 1795{
1065 if (w->pending) 1796 if (w->pending)
1066 { 1797 {
1067 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1798 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1068 w->pending = 0; 1799 w->pending = 0;
1069 } 1800 }
1070} 1801}
1071 1802
1072inline void 1803int
1804ev_clear_pending (EV_P_ void *w)
1805{
1806 W w_ = (W)w;
1807 int pending = w_->pending;
1808
1809 if (expect_true (pending))
1810 {
1811 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1812 w_->pending = 0;
1813 p->w = 0;
1814 return p->events;
1815 }
1816 else
1817 return 0;
1818}
1819
1820void inline_size
1821pri_adjust (EV_P_ W w)
1822{
1823 int pri = w->priority;
1824 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1825 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1826 w->priority = pri;
1827}
1828
1829void inline_speed
1073ev_start (EV_P_ W w, int active) 1830ev_start (EV_P_ W w, int active)
1074{ 1831{
1075 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1832 pri_adjust (EV_A_ w);
1076 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1077
1078 w->active = active; 1833 w->active = active;
1079 ev_ref (EV_A); 1834 ev_ref (EV_A);
1080} 1835}
1081 1836
1082inline void 1837void inline_size
1083ev_stop (EV_P_ W w) 1838ev_stop (EV_P_ W w)
1084{ 1839{
1085 ev_unref (EV_A); 1840 ev_unref (EV_A);
1086 w->active = 0; 1841 w->active = 0;
1087} 1842}
1088 1843
1089/*****************************************************************************/ 1844/*****************************************************************************/
1090 1845
1091void 1846void noinline
1092ev_io_start (EV_P_ struct ev_io *w) 1847ev_io_start (EV_P_ ev_io *w)
1093{ 1848{
1094 int fd = w->fd; 1849 int fd = w->fd;
1095 1850
1096 if (ev_is_active (w)) 1851 if (expect_false (ev_is_active (w)))
1097 return; 1852 return;
1098 1853
1099 assert (("ev_io_start called with negative fd", fd >= 0)); 1854 assert (("ev_io_start called with negative fd", fd >= 0));
1100 1855
1101 ev_start (EV_A_ (W)w, 1); 1856 ev_start (EV_A_ (W)w, 1);
1102 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1857 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1103 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1858 wlist_add (&anfds[fd].head, (WL)w);
1104 1859
1105 fd_change (EV_A_ fd); 1860 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1861 w->events &= ~EV_IOFDSET;
1106} 1862}
1107 1863
1108void 1864void noinline
1109ev_io_stop (EV_P_ struct ev_io *w) 1865ev_io_stop (EV_P_ ev_io *w)
1110{ 1866{
1111 ev_clear_pending (EV_A_ (W)w); 1867 clear_pending (EV_A_ (W)w);
1112 if (!ev_is_active (w)) 1868 if (expect_false (!ev_is_active (w)))
1113 return; 1869 return;
1114 1870
1871 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1872
1115 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1873 wlist_del (&anfds[w->fd].head, (WL)w);
1116 ev_stop (EV_A_ (W)w); 1874 ev_stop (EV_A_ (W)w);
1117 1875
1118 fd_change (EV_A_ w->fd); 1876 fd_change (EV_A_ w->fd, 1);
1119} 1877}
1120 1878
1121void 1879void noinline
1122ev_timer_start (EV_P_ struct ev_timer *w) 1880ev_timer_start (EV_P_ ev_timer *w)
1123{ 1881{
1124 if (ev_is_active (w)) 1882 if (expect_false (ev_is_active (w)))
1125 return; 1883 return;
1126 1884
1127 ((WT)w)->at += mn_now; 1885 ((WT)w)->at += mn_now;
1128 1886
1129 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1887 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1130 1888
1131 ev_start (EV_A_ (W)w, ++timercnt); 1889 ev_start (EV_A_ (W)w, ++timercnt);
1132 array_needsize (timers, timermax, timercnt, ); 1890 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1133 timers [timercnt - 1] = w; 1891 timers [timercnt - 1] = (WT)w;
1134 upheap ((WT *)timers, timercnt - 1); 1892 upheap (timers, timercnt - 1);
1135 1893
1136 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1894 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1137} 1895}
1138 1896
1139void 1897void noinline
1140ev_timer_stop (EV_P_ struct ev_timer *w) 1898ev_timer_stop (EV_P_ ev_timer *w)
1141{ 1899{
1142 ev_clear_pending (EV_A_ (W)w); 1900 clear_pending (EV_A_ (W)w);
1143 if (!ev_is_active (w)) 1901 if (expect_false (!ev_is_active (w)))
1144 return; 1902 return;
1145 1903
1146 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1904 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1147 1905
1148 if (((W)w)->active < timercnt--) 1906 {
1907 int active = ((W)w)->active;
1908
1909 if (expect_true (--active < --timercnt))
1149 { 1910 {
1150 timers [((W)w)->active - 1] = timers [timercnt]; 1911 timers [active] = timers [timercnt];
1151 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1912 adjustheap (timers, timercnt, active);
1152 } 1913 }
1914 }
1153 1915
1154 ((WT)w)->at = w->repeat; 1916 ((WT)w)->at -= mn_now;
1155 1917
1156 ev_stop (EV_A_ (W)w); 1918 ev_stop (EV_A_ (W)w);
1157} 1919}
1158 1920
1159void 1921void noinline
1160ev_timer_again (EV_P_ struct ev_timer *w) 1922ev_timer_again (EV_P_ ev_timer *w)
1161{ 1923{
1162 if (ev_is_active (w)) 1924 if (ev_is_active (w))
1163 { 1925 {
1164 if (w->repeat) 1926 if (w->repeat)
1165 { 1927 {
1166 ((WT)w)->at = mn_now + w->repeat; 1928 ((WT)w)->at = mn_now + w->repeat;
1167 downheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1929 adjustheap (timers, timercnt, ((W)w)->active - 1);
1168 } 1930 }
1169 else 1931 else
1170 ev_timer_stop (EV_A_ w); 1932 ev_timer_stop (EV_A_ w);
1171 } 1933 }
1172 else if (w->repeat) 1934 else if (w->repeat)
1935 {
1936 w->at = w->repeat;
1173 ev_timer_start (EV_A_ w); 1937 ev_timer_start (EV_A_ w);
1938 }
1174} 1939}
1175 1940
1176void 1941#if EV_PERIODIC_ENABLE
1942void noinline
1177ev_periodic_start (EV_P_ struct ev_periodic *w) 1943ev_periodic_start (EV_P_ ev_periodic *w)
1178{ 1944{
1179 if (ev_is_active (w)) 1945 if (expect_false (ev_is_active (w)))
1180 return; 1946 return;
1181 1947
1948 if (w->reschedule_cb)
1949 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1950 else if (w->interval)
1951 {
1182 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1952 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1183
1184 /* this formula differs from the one in periodic_reify because we do not always round up */ 1953 /* this formula differs from the one in periodic_reify because we do not always round up */
1185 if (w->interval)
1186 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1954 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1955 }
1956 else
1957 ((WT)w)->at = w->offset;
1187 1958
1188 ev_start (EV_A_ (W)w, ++periodiccnt); 1959 ev_start (EV_A_ (W)w, ++periodiccnt);
1189 array_needsize (periodics, periodicmax, periodiccnt, ); 1960 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1190 periodics [periodiccnt - 1] = w; 1961 periodics [periodiccnt - 1] = (WT)w;
1191 upheap ((WT *)periodics, periodiccnt - 1); 1962 upheap (periodics, periodiccnt - 1);
1192 1963
1193 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1964 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1194} 1965}
1195 1966
1196void 1967void noinline
1197ev_periodic_stop (EV_P_ struct ev_periodic *w) 1968ev_periodic_stop (EV_P_ ev_periodic *w)
1198{ 1969{
1199 ev_clear_pending (EV_A_ (W)w); 1970 clear_pending (EV_A_ (W)w);
1200 if (!ev_is_active (w)) 1971 if (expect_false (!ev_is_active (w)))
1201 return; 1972 return;
1202 1973
1203 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1974 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1204 1975
1205 if (((W)w)->active < periodiccnt--) 1976 {
1977 int active = ((W)w)->active;
1978
1979 if (expect_true (--active < --periodiccnt))
1206 { 1980 {
1207 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1981 periodics [active] = periodics [periodiccnt];
1208 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1982 adjustheap (periodics, periodiccnt, active);
1209 } 1983 }
1984 }
1210 1985
1211 ev_stop (EV_A_ (W)w); 1986 ev_stop (EV_A_ (W)w);
1212} 1987}
1213 1988
1214void 1989void noinline
1215ev_idle_start (EV_P_ struct ev_idle *w) 1990ev_periodic_again (EV_P_ ev_periodic *w)
1216{ 1991{
1217 if (ev_is_active (w)) 1992 /* TODO: use adjustheap and recalculation */
1218 return;
1219
1220 ev_start (EV_A_ (W)w, ++idlecnt);
1221 array_needsize (idles, idlemax, idlecnt, );
1222 idles [idlecnt - 1] = w;
1223}
1224
1225void
1226ev_idle_stop (EV_P_ struct ev_idle *w)
1227{
1228 ev_clear_pending (EV_A_ (W)w);
1229 if (ev_is_active (w))
1230 return;
1231
1232 idles [((W)w)->active - 1] = idles [--idlecnt];
1233 ev_stop (EV_A_ (W)w); 1993 ev_periodic_stop (EV_A_ w);
1994 ev_periodic_start (EV_A_ w);
1234} 1995}
1235 1996#endif
1236void
1237ev_prepare_start (EV_P_ struct ev_prepare *w)
1238{
1239 if (ev_is_active (w))
1240 return;
1241
1242 ev_start (EV_A_ (W)w, ++preparecnt);
1243 array_needsize (prepares, preparemax, preparecnt, );
1244 prepares [preparecnt - 1] = w;
1245}
1246
1247void
1248ev_prepare_stop (EV_P_ struct ev_prepare *w)
1249{
1250 ev_clear_pending (EV_A_ (W)w);
1251 if (ev_is_active (w))
1252 return;
1253
1254 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1255 ev_stop (EV_A_ (W)w);
1256}
1257
1258void
1259ev_check_start (EV_P_ struct ev_check *w)
1260{
1261 if (ev_is_active (w))
1262 return;
1263
1264 ev_start (EV_A_ (W)w, ++checkcnt);
1265 array_needsize (checks, checkmax, checkcnt, );
1266 checks [checkcnt - 1] = w;
1267}
1268
1269void
1270ev_check_stop (EV_P_ struct ev_check *w)
1271{
1272 ev_clear_pending (EV_A_ (W)w);
1273 if (ev_is_active (w))
1274 return;
1275
1276 checks [((W)w)->active - 1] = checks [--checkcnt];
1277 ev_stop (EV_A_ (W)w);
1278}
1279 1997
1280#ifndef SA_RESTART 1998#ifndef SA_RESTART
1281# define SA_RESTART 0 1999# define SA_RESTART 0
1282#endif 2000#endif
1283 2001
1284void 2002void noinline
1285ev_signal_start (EV_P_ struct ev_signal *w) 2003ev_signal_start (EV_P_ ev_signal *w)
1286{ 2004{
1287#if EV_MULTIPLICITY 2005#if EV_MULTIPLICITY
1288 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2006 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1289#endif 2007#endif
1290 if (ev_is_active (w)) 2008 if (expect_false (ev_is_active (w)))
1291 return; 2009 return;
1292 2010
1293 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2011 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1294 2012
2013 evpipe_init (EV_A);
2014
2015 {
2016#ifndef _WIN32
2017 sigset_t full, prev;
2018 sigfillset (&full);
2019 sigprocmask (SIG_SETMASK, &full, &prev);
2020#endif
2021
2022 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2023
2024#ifndef _WIN32
2025 sigprocmask (SIG_SETMASK, &prev, 0);
2026#endif
2027 }
2028
1295 ev_start (EV_A_ (W)w, 1); 2029 ev_start (EV_A_ (W)w, 1);
1296 array_needsize (signals, signalmax, w->signum, signals_init);
1297 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2030 wlist_add (&signals [w->signum - 1].head, (WL)w);
1298 2031
1299 if (!((WL)w)->next) 2032 if (!((WL)w)->next)
1300 { 2033 {
2034#if _WIN32
2035 signal (w->signum, ev_sighandler);
2036#else
1301 struct sigaction sa; 2037 struct sigaction sa;
1302 sa.sa_handler = sighandler; 2038 sa.sa_handler = ev_sighandler;
1303 sigfillset (&sa.sa_mask); 2039 sigfillset (&sa.sa_mask);
1304 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2040 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1305 sigaction (w->signum, &sa, 0); 2041 sigaction (w->signum, &sa, 0);
2042#endif
1306 } 2043 }
1307} 2044}
1308 2045
1309void 2046void noinline
1310ev_signal_stop (EV_P_ struct ev_signal *w) 2047ev_signal_stop (EV_P_ ev_signal *w)
1311{ 2048{
1312 ev_clear_pending (EV_A_ (W)w); 2049 clear_pending (EV_A_ (W)w);
1313 if (!ev_is_active (w)) 2050 if (expect_false (!ev_is_active (w)))
1314 return; 2051 return;
1315 2052
1316 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2053 wlist_del (&signals [w->signum - 1].head, (WL)w);
1317 ev_stop (EV_A_ (W)w); 2054 ev_stop (EV_A_ (W)w);
1318 2055
1319 if (!signals [w->signum - 1].head) 2056 if (!signals [w->signum - 1].head)
1320 signal (w->signum, SIG_DFL); 2057 signal (w->signum, SIG_DFL);
1321} 2058}
1322 2059
1323void 2060void
1324ev_child_start (EV_P_ struct ev_child *w) 2061ev_child_start (EV_P_ ev_child *w)
1325{ 2062{
1326#if EV_MULTIPLICITY 2063#if EV_MULTIPLICITY
1327 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2064 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1328#endif 2065#endif
1329 if (ev_is_active (w)) 2066 if (expect_false (ev_is_active (w)))
1330 return; 2067 return;
1331 2068
1332 ev_start (EV_A_ (W)w, 1); 2069 ev_start (EV_A_ (W)w, 1);
1333 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2070 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1334} 2071}
1335 2072
1336void 2073void
1337ev_child_stop (EV_P_ struct ev_child *w) 2074ev_child_stop (EV_P_ ev_child *w)
1338{ 2075{
1339 ev_clear_pending (EV_A_ (W)w); 2076 clear_pending (EV_A_ (W)w);
1340 if (ev_is_active (w)) 2077 if (expect_false (!ev_is_active (w)))
1341 return; 2078 return;
1342 2079
1343 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2080 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1344 ev_stop (EV_A_ (W)w); 2081 ev_stop (EV_A_ (W)w);
1345} 2082}
1346 2083
2084#if EV_STAT_ENABLE
2085
2086# ifdef _WIN32
2087# undef lstat
2088# define lstat(a,b) _stati64 (a,b)
2089# endif
2090
2091#define DEF_STAT_INTERVAL 5.0074891
2092#define MIN_STAT_INTERVAL 0.1074891
2093
2094static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2095
2096#if EV_USE_INOTIFY
2097# define EV_INOTIFY_BUFSIZE 8192
2098
2099static void noinline
2100infy_add (EV_P_ ev_stat *w)
2101{
2102 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2103
2104 if (w->wd < 0)
2105 {
2106 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2107
2108 /* monitor some parent directory for speedup hints */
2109 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2110 {
2111 char path [4096];
2112 strcpy (path, w->path);
2113
2114 do
2115 {
2116 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2117 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2118
2119 char *pend = strrchr (path, '/');
2120
2121 if (!pend)
2122 break; /* whoops, no '/', complain to your admin */
2123
2124 *pend = 0;
2125 w->wd = inotify_add_watch (fs_fd, path, mask);
2126 }
2127 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2128 }
2129 }
2130 else
2131 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2132
2133 if (w->wd >= 0)
2134 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2135}
2136
2137static void noinline
2138infy_del (EV_P_ ev_stat *w)
2139{
2140 int slot;
2141 int wd = w->wd;
2142
2143 if (wd < 0)
2144 return;
2145
2146 w->wd = -2;
2147 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2148 wlist_del (&fs_hash [slot].head, (WL)w);
2149
2150 /* remove this watcher, if others are watching it, they will rearm */
2151 inotify_rm_watch (fs_fd, wd);
2152}
2153
2154static void noinline
2155infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2156{
2157 if (slot < 0)
2158 /* overflow, need to check for all hahs slots */
2159 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2160 infy_wd (EV_A_ slot, wd, ev);
2161 else
2162 {
2163 WL w_;
2164
2165 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2166 {
2167 ev_stat *w = (ev_stat *)w_;
2168 w_ = w_->next; /* lets us remove this watcher and all before it */
2169
2170 if (w->wd == wd || wd == -1)
2171 {
2172 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2173 {
2174 w->wd = -1;
2175 infy_add (EV_A_ w); /* re-add, no matter what */
2176 }
2177
2178 stat_timer_cb (EV_A_ &w->timer, 0);
2179 }
2180 }
2181 }
2182}
2183
2184static void
2185infy_cb (EV_P_ ev_io *w, int revents)
2186{
2187 char buf [EV_INOTIFY_BUFSIZE];
2188 struct inotify_event *ev = (struct inotify_event *)buf;
2189 int ofs;
2190 int len = read (fs_fd, buf, sizeof (buf));
2191
2192 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2193 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2194}
2195
2196void inline_size
2197infy_init (EV_P)
2198{
2199 if (fs_fd != -2)
2200 return;
2201
2202 fs_fd = inotify_init ();
2203
2204 if (fs_fd >= 0)
2205 {
2206 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2207 ev_set_priority (&fs_w, EV_MAXPRI);
2208 ev_io_start (EV_A_ &fs_w);
2209 }
2210}
2211
2212void inline_size
2213infy_fork (EV_P)
2214{
2215 int slot;
2216
2217 if (fs_fd < 0)
2218 return;
2219
2220 close (fs_fd);
2221 fs_fd = inotify_init ();
2222
2223 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2224 {
2225 WL w_ = fs_hash [slot].head;
2226 fs_hash [slot].head = 0;
2227
2228 while (w_)
2229 {
2230 ev_stat *w = (ev_stat *)w_;
2231 w_ = w_->next; /* lets us add this watcher */
2232
2233 w->wd = -1;
2234
2235 if (fs_fd >= 0)
2236 infy_add (EV_A_ w); /* re-add, no matter what */
2237 else
2238 ev_timer_start (EV_A_ &w->timer);
2239 }
2240
2241 }
2242}
2243
2244#endif
2245
2246void
2247ev_stat_stat (EV_P_ ev_stat *w)
2248{
2249 if (lstat (w->path, &w->attr) < 0)
2250 w->attr.st_nlink = 0;
2251 else if (!w->attr.st_nlink)
2252 w->attr.st_nlink = 1;
2253}
2254
2255static void noinline
2256stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2257{
2258 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2259
2260 /* we copy this here each the time so that */
2261 /* prev has the old value when the callback gets invoked */
2262 w->prev = w->attr;
2263 ev_stat_stat (EV_A_ w);
2264
2265 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2266 if (
2267 w->prev.st_dev != w->attr.st_dev
2268 || w->prev.st_ino != w->attr.st_ino
2269 || w->prev.st_mode != w->attr.st_mode
2270 || w->prev.st_nlink != w->attr.st_nlink
2271 || w->prev.st_uid != w->attr.st_uid
2272 || w->prev.st_gid != w->attr.st_gid
2273 || w->prev.st_rdev != w->attr.st_rdev
2274 || w->prev.st_size != w->attr.st_size
2275 || w->prev.st_atime != w->attr.st_atime
2276 || w->prev.st_mtime != w->attr.st_mtime
2277 || w->prev.st_ctime != w->attr.st_ctime
2278 ) {
2279 #if EV_USE_INOTIFY
2280 infy_del (EV_A_ w);
2281 infy_add (EV_A_ w);
2282 ev_stat_stat (EV_A_ w); /* avoid race... */
2283 #endif
2284
2285 ev_feed_event (EV_A_ w, EV_STAT);
2286 }
2287}
2288
2289void
2290ev_stat_start (EV_P_ ev_stat *w)
2291{
2292 if (expect_false (ev_is_active (w)))
2293 return;
2294
2295 /* since we use memcmp, we need to clear any padding data etc. */
2296 memset (&w->prev, 0, sizeof (ev_statdata));
2297 memset (&w->attr, 0, sizeof (ev_statdata));
2298
2299 ev_stat_stat (EV_A_ w);
2300
2301 if (w->interval < MIN_STAT_INTERVAL)
2302 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2303
2304 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2305 ev_set_priority (&w->timer, ev_priority (w));
2306
2307#if EV_USE_INOTIFY
2308 infy_init (EV_A);
2309
2310 if (fs_fd >= 0)
2311 infy_add (EV_A_ w);
2312 else
2313#endif
2314 ev_timer_start (EV_A_ &w->timer);
2315
2316 ev_start (EV_A_ (W)w, 1);
2317}
2318
2319void
2320ev_stat_stop (EV_P_ ev_stat *w)
2321{
2322 clear_pending (EV_A_ (W)w);
2323 if (expect_false (!ev_is_active (w)))
2324 return;
2325
2326#if EV_USE_INOTIFY
2327 infy_del (EV_A_ w);
2328#endif
2329 ev_timer_stop (EV_A_ &w->timer);
2330
2331 ev_stop (EV_A_ (W)w);
2332}
2333#endif
2334
2335#if EV_IDLE_ENABLE
2336void
2337ev_idle_start (EV_P_ ev_idle *w)
2338{
2339 if (expect_false (ev_is_active (w)))
2340 return;
2341
2342 pri_adjust (EV_A_ (W)w);
2343
2344 {
2345 int active = ++idlecnt [ABSPRI (w)];
2346
2347 ++idleall;
2348 ev_start (EV_A_ (W)w, active);
2349
2350 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2351 idles [ABSPRI (w)][active - 1] = w;
2352 }
2353}
2354
2355void
2356ev_idle_stop (EV_P_ ev_idle *w)
2357{
2358 clear_pending (EV_A_ (W)w);
2359 if (expect_false (!ev_is_active (w)))
2360 return;
2361
2362 {
2363 int active = ((W)w)->active;
2364
2365 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2366 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2367
2368 ev_stop (EV_A_ (W)w);
2369 --idleall;
2370 }
2371}
2372#endif
2373
2374void
2375ev_prepare_start (EV_P_ ev_prepare *w)
2376{
2377 if (expect_false (ev_is_active (w)))
2378 return;
2379
2380 ev_start (EV_A_ (W)w, ++preparecnt);
2381 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2382 prepares [preparecnt - 1] = w;
2383}
2384
2385void
2386ev_prepare_stop (EV_P_ ev_prepare *w)
2387{
2388 clear_pending (EV_A_ (W)w);
2389 if (expect_false (!ev_is_active (w)))
2390 return;
2391
2392 {
2393 int active = ((W)w)->active;
2394 prepares [active - 1] = prepares [--preparecnt];
2395 ((W)prepares [active - 1])->active = active;
2396 }
2397
2398 ev_stop (EV_A_ (W)w);
2399}
2400
2401void
2402ev_check_start (EV_P_ ev_check *w)
2403{
2404 if (expect_false (ev_is_active (w)))
2405 return;
2406
2407 ev_start (EV_A_ (W)w, ++checkcnt);
2408 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2409 checks [checkcnt - 1] = w;
2410}
2411
2412void
2413ev_check_stop (EV_P_ ev_check *w)
2414{
2415 clear_pending (EV_A_ (W)w);
2416 if (expect_false (!ev_is_active (w)))
2417 return;
2418
2419 {
2420 int active = ((W)w)->active;
2421 checks [active - 1] = checks [--checkcnt];
2422 ((W)checks [active - 1])->active = active;
2423 }
2424
2425 ev_stop (EV_A_ (W)w);
2426}
2427
2428#if EV_EMBED_ENABLE
2429void noinline
2430ev_embed_sweep (EV_P_ ev_embed *w)
2431{
2432 ev_loop (w->other, EVLOOP_NONBLOCK);
2433}
2434
2435static void
2436embed_io_cb (EV_P_ ev_io *io, int revents)
2437{
2438 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2439
2440 if (ev_cb (w))
2441 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2442 else
2443 ev_loop (w->other, EVLOOP_NONBLOCK);
2444}
2445
2446static void
2447embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2448{
2449 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2450
2451 {
2452 struct ev_loop *loop = w->other;
2453
2454 while (fdchangecnt)
2455 {
2456 fd_reify (EV_A);
2457 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2458 }
2459 }
2460}
2461
2462#if 0
2463static void
2464embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2465{
2466 ev_idle_stop (EV_A_ idle);
2467}
2468#endif
2469
2470void
2471ev_embed_start (EV_P_ ev_embed *w)
2472{
2473 if (expect_false (ev_is_active (w)))
2474 return;
2475
2476 {
2477 struct ev_loop *loop = w->other;
2478 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2479 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2480 }
2481
2482 ev_set_priority (&w->io, ev_priority (w));
2483 ev_io_start (EV_A_ &w->io);
2484
2485 ev_prepare_init (&w->prepare, embed_prepare_cb);
2486 ev_set_priority (&w->prepare, EV_MINPRI);
2487 ev_prepare_start (EV_A_ &w->prepare);
2488
2489 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2490
2491 ev_start (EV_A_ (W)w, 1);
2492}
2493
2494void
2495ev_embed_stop (EV_P_ ev_embed *w)
2496{
2497 clear_pending (EV_A_ (W)w);
2498 if (expect_false (!ev_is_active (w)))
2499 return;
2500
2501 ev_io_stop (EV_A_ &w->io);
2502 ev_prepare_stop (EV_A_ &w->prepare);
2503
2504 ev_stop (EV_A_ (W)w);
2505}
2506#endif
2507
2508#if EV_FORK_ENABLE
2509void
2510ev_fork_start (EV_P_ ev_fork *w)
2511{
2512 if (expect_false (ev_is_active (w)))
2513 return;
2514
2515 ev_start (EV_A_ (W)w, ++forkcnt);
2516 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2517 forks [forkcnt - 1] = w;
2518}
2519
2520void
2521ev_fork_stop (EV_P_ ev_fork *w)
2522{
2523 clear_pending (EV_A_ (W)w);
2524 if (expect_false (!ev_is_active (w)))
2525 return;
2526
2527 {
2528 int active = ((W)w)->active;
2529 forks [active - 1] = forks [--forkcnt];
2530 ((W)forks [active - 1])->active = active;
2531 }
2532
2533 ev_stop (EV_A_ (W)w);
2534}
2535#endif
2536
2537#if EV_ASYNC_ENABLE
2538void
2539ev_async_start (EV_P_ ev_async *w)
2540{
2541 if (expect_false (ev_is_active (w)))
2542 return;
2543
2544 evpipe_init (EV_A);
2545
2546 ev_start (EV_A_ (W)w, ++asynccnt);
2547 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2548 asyncs [asynccnt - 1] = w;
2549}
2550
2551void
2552ev_async_stop (EV_P_ ev_async *w)
2553{
2554 clear_pending (EV_A_ (W)w);
2555 if (expect_false (!ev_is_active (w)))
2556 return;
2557
2558 {
2559 int active = ((W)w)->active;
2560 asyncs [active - 1] = asyncs [--asynccnt];
2561 ((W)asyncs [active - 1])->active = active;
2562 }
2563
2564 ev_stop (EV_A_ (W)w);
2565}
2566
2567void
2568ev_async_send (EV_P_ ev_async *w)
2569{
2570 w->sent = 1;
2571 evpipe_write (EV_A_ &gotasync);
2572}
2573#endif
2574
1347/*****************************************************************************/ 2575/*****************************************************************************/
1348 2576
1349struct ev_once 2577struct ev_once
1350{ 2578{
1351 struct ev_io io; 2579 ev_io io;
1352 struct ev_timer to; 2580 ev_timer to;
1353 void (*cb)(int revents, void *arg); 2581 void (*cb)(int revents, void *arg);
1354 void *arg; 2582 void *arg;
1355}; 2583};
1356 2584
1357static void 2585static void
1360 void (*cb)(int revents, void *arg) = once->cb; 2588 void (*cb)(int revents, void *arg) = once->cb;
1361 void *arg = once->arg; 2589 void *arg = once->arg;
1362 2590
1363 ev_io_stop (EV_A_ &once->io); 2591 ev_io_stop (EV_A_ &once->io);
1364 ev_timer_stop (EV_A_ &once->to); 2592 ev_timer_stop (EV_A_ &once->to);
1365 free (once); 2593 ev_free (once);
1366 2594
1367 cb (revents, arg); 2595 cb (revents, arg);
1368} 2596}
1369 2597
1370static void 2598static void
1371once_cb_io (EV_P_ struct ev_io *w, int revents) 2599once_cb_io (EV_P_ ev_io *w, int revents)
1372{ 2600{
1373 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2601 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1374} 2602}
1375 2603
1376static void 2604static void
1377once_cb_to (EV_P_ struct ev_timer *w, int revents) 2605once_cb_to (EV_P_ ev_timer *w, int revents)
1378{ 2606{
1379 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2607 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1380} 2608}
1381 2609
1382void 2610void
1383ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2611ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1384{ 2612{
1385 struct ev_once *once = malloc (sizeof (struct ev_once)); 2613 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1386 2614
1387 if (!once) 2615 if (expect_false (!once))
2616 {
1388 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2617 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1389 else 2618 return;
1390 { 2619 }
2620
1391 once->cb = cb; 2621 once->cb = cb;
1392 once->arg = arg; 2622 once->arg = arg;
1393 2623
1394 ev_watcher_init (&once->io, once_cb_io); 2624 ev_init (&once->io, once_cb_io);
1395 if (fd >= 0) 2625 if (fd >= 0)
1396 { 2626 {
1397 ev_io_set (&once->io, fd, events); 2627 ev_io_set (&once->io, fd, events);
1398 ev_io_start (EV_A_ &once->io); 2628 ev_io_start (EV_A_ &once->io);
1399 } 2629 }
1400 2630
1401 ev_watcher_init (&once->to, once_cb_to); 2631 ev_init (&once->to, once_cb_to);
1402 if (timeout >= 0.) 2632 if (timeout >= 0.)
1403 { 2633 {
1404 ev_timer_set (&once->to, timeout, 0.); 2634 ev_timer_set (&once->to, timeout, 0.);
1405 ev_timer_start (EV_A_ &once->to); 2635 ev_timer_start (EV_A_ &once->to);
1406 }
1407 } 2636 }
1408} 2637}
1409 2638
2639#if EV_MULTIPLICITY
2640 #include "ev_wrap.h"
2641#endif
2642
2643#ifdef __cplusplus
2644}
2645#endif
2646

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines