ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.168 by root, Sat Dec 8 14:12:07 2007 UTC vs.
Revision 1.227 by root, Fri May 2 07:20:01 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 294
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 298
225#if __GNUC__ >= 3 299#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 302#else
236# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
240#endif 308#endif
241 309
242#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
244 319
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 322
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
250 325
251typedef ev_watcher *W; 326typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
254 329
330#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif
256 335
257#ifdef _WIN32 336#ifdef _WIN32
258# include "ev_win32.c" 337# include "ev_win32.c"
259#endif 338#endif
260 339
281 perror (msg); 360 perror (msg);
282 abort (); 361 abort ();
283 } 362 }
284} 363}
285 364
365static void *
366ev_realloc_emul (void *ptr, long size)
367{
368 /* some systems, notably openbsd and darwin, fail to properly
369 * implement realloc (x, 0) (as required by both ansi c-98 and
370 * the single unix specification, so work around them here.
371 */
372
373 if (size)
374 return realloc (ptr, size);
375
376 free (ptr);
377 return 0;
378}
379
286static void *(*alloc)(void *ptr, long size); 380static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 381
288void 382void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 383ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 384{
291 alloc = cb; 385 alloc = cb;
292} 386}
293 387
294inline_speed void * 388inline_speed void *
295ev_realloc (void *ptr, long size) 389ev_realloc (void *ptr, long size)
296{ 390{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 391 ptr = alloc (ptr, size);
298 392
299 if (!ptr && size) 393 if (!ptr && size)
300 { 394 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 395 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 396 abort ();
396{ 490{
397 return ev_rt_now; 491 return ev_rt_now;
398} 492}
399#endif 493#endif
400 494
495void
496ev_sleep (ev_tstamp delay)
497{
498 if (delay > 0.)
499 {
500#if EV_USE_NANOSLEEP
501 struct timespec ts;
502
503 ts.tv_sec = (time_t)delay;
504 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
505
506 nanosleep (&ts, 0);
507#elif defined(_WIN32)
508 Sleep ((unsigned long)(delay * 1e3));
509#else
510 struct timeval tv;
511
512 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514
515 select (0, 0, 0, 0, &tv);
516#endif
517 }
518}
519
520/*****************************************************************************/
521
401int inline_size 522int inline_size
402array_nextsize (int elem, int cur, int cnt) 523array_nextsize (int elem, int cur, int cnt)
403{ 524{
404 int ncur = cur + 1; 525 int ncur = cur + 1;
405 526
417 } 538 }
418 539
419 return ncur; 540 return ncur;
420} 541}
421 542
422inline_speed void * 543static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 544array_realloc (int elem, void *base, int *cur, int cnt)
424{ 545{
425 *cur = array_nextsize (elem, *cur, cnt); 546 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 547 return ev_realloc (base, elem * *cur);
427} 548}
452 573
453void noinline 574void noinline
454ev_feed_event (EV_P_ void *w, int revents) 575ev_feed_event (EV_P_ void *w, int revents)
455{ 576{
456 W w_ = (W)w; 577 W w_ = (W)w;
578 int pri = ABSPRI (w_);
457 579
458 if (expect_false (w_->pending)) 580 if (expect_false (w_->pending))
581 pendings [pri][w_->pending - 1].events |= revents;
582 else
459 { 583 {
584 w_->pending = ++pendingcnt [pri];
585 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
586 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 587 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 588 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 589}
469 590
470void inline_size 591void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 592queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 593{
473 int i; 594 int i;
474 595
475 for (i = 0; i < eventcnt; ++i) 596 for (i = 0; i < eventcnt; ++i)
522 { 643 {
523 int fd = fdchanges [i]; 644 int fd = fdchanges [i];
524 ANFD *anfd = anfds + fd; 645 ANFD *anfd = anfds + fd;
525 ev_io *w; 646 ev_io *w;
526 647
527 int events = 0; 648 unsigned char events = 0;
528 649
529 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 650 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
530 events |= w->events; 651 events |= (unsigned char)w->events;
531 652
532#if EV_SELECT_IS_WINSOCKET 653#if EV_SELECT_IS_WINSOCKET
533 if (events) 654 if (events)
534 { 655 {
535 unsigned long argp; 656 unsigned long argp;
657 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else
536 anfd->handle = _get_osfhandle (fd); 660 anfd->handle = _get_osfhandle (fd);
661 #endif
537 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
538 } 663 }
539#endif 664#endif
540 665
666 {
667 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify;
669
541 anfd->reify = 0; 670 anfd->reify = 0;
542
543 backend_modify (EV_A_ fd, anfd->events, events);
544 anfd->events = events; 671 anfd->events = events;
672
673 if (o_events != events || o_reify & EV_IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events);
675 }
545 } 676 }
546 677
547 fdchangecnt = 0; 678 fdchangecnt = 0;
548} 679}
549 680
550void inline_size 681void inline_size
551fd_change (EV_P_ int fd) 682fd_change (EV_P_ int fd, int flags)
552{ 683{
553 if (expect_false (anfds [fd].reify)) 684 unsigned char reify = anfds [fd].reify;
554 return;
555
556 anfds [fd].reify = 1; 685 anfds [fd].reify |= flags;
557 686
687 if (expect_true (!reify))
688 {
558 ++fdchangecnt; 689 ++fdchangecnt;
559 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
560 fdchanges [fdchangecnt - 1] = fd; 691 fdchanges [fdchangecnt - 1] = fd;
692 }
561} 693}
562 694
563void inline_speed 695void inline_speed
564fd_kill (EV_P_ int fd) 696fd_kill (EV_P_ int fd)
565{ 697{
616 748
617 for (fd = 0; fd < anfdmax; ++fd) 749 for (fd = 0; fd < anfdmax; ++fd)
618 if (anfds [fd].events) 750 if (anfds [fd].events)
619 { 751 {
620 anfds [fd].events = 0; 752 anfds [fd].events = 0;
621 fd_change (EV_A_ fd); 753 fd_change (EV_A_ fd, EV_IOFDSET | 1);
622 } 754 }
623} 755}
624 756
625/*****************************************************************************/ 757/*****************************************************************************/
626 758
759/* towards the root */
627void inline_speed 760void inline_speed
628upheap (WT *heap, int k) 761upheap (WT *heap, int k)
629{ 762{
630 WT w = heap [k]; 763 WT w = heap [k];
631 764
632 while (k && heap [k >> 1]->at > w->at) 765 while (k)
633 { 766 {
767 int p = (k - 1) >> 1;
768
769 if (heap [p]->at <= w->at)
770 break;
771
634 heap [k] = heap [k >> 1]; 772 heap [k] = heap [p];
635 ((W)heap [k])->active = k + 1; 773 ((W)heap [k])->active = k + 1;
636 k >>= 1; 774 k = p;
637 } 775 }
638 776
639 heap [k] = w; 777 heap [k] = w;
640 ((W)heap [k])->active = k + 1; 778 ((W)heap [k])->active = k + 1;
641
642} 779}
643 780
781/* away from the root */
644void inline_speed 782void inline_speed
645downheap (WT *heap, int N, int k) 783downheap (WT *heap, int N, int k)
646{ 784{
647 WT w = heap [k]; 785 WT w = heap [k];
648 786
649 while (k < (N >> 1)) 787 for (;;)
650 { 788 {
651 int j = k << 1; 789 int c = (k << 1) + 1;
652 790
653 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 791 if (c >= N)
654 ++j;
655
656 if (w->at <= heap [j]->at)
657 break; 792 break;
658 793
794 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
795 ? 1 : 0;
796
797 if (w->at <= heap [c]->at)
798 break;
799
659 heap [k] = heap [j]; 800 heap [k] = heap [c];
660 ((W)heap [k])->active = k + 1; 801 ((W)heap [k])->active = k + 1;
802
661 k = j; 803 k = c;
662 } 804 }
663 805
664 heap [k] = w; 806 heap [k] = w;
665 ((W)heap [k])->active = k + 1; 807 ((W)heap [k])->active = k + 1;
666} 808}
675/*****************************************************************************/ 817/*****************************************************************************/
676 818
677typedef struct 819typedef struct
678{ 820{
679 WL head; 821 WL head;
680 sig_atomic_t volatile gotsig; 822 EV_ATOMIC_T gotsig;
681} ANSIG; 823} ANSIG;
682 824
683static ANSIG *signals; 825static ANSIG *signals;
684static int signalmax; 826static int signalmax;
685 827
686static int sigpipe [2]; 828static EV_ATOMIC_T gotsig;
687static sig_atomic_t volatile gotsig;
688static ev_io sigev;
689 829
690void inline_size 830void inline_size
691signals_init (ANSIG *base, int count) 831signals_init (ANSIG *base, int count)
692{ 832{
693 while (count--) 833 while (count--)
697 837
698 ++base; 838 ++base;
699 } 839 }
700} 840}
701 841
702static void 842/*****************************************************************************/
703sighandler (int signum)
704{
705#if _WIN32
706 signal (signum, sighandler);
707#endif
708 843
709 signals [signum - 1].gotsig = 1;
710
711 if (!gotsig)
712 {
713 int old_errno = errno;
714 gotsig = 1;
715 write (sigpipe [1], &signum, 1);
716 errno = old_errno;
717 }
718}
719
720void noinline
721ev_feed_signal_event (EV_P_ int signum)
722{
723 WL w;
724
725#if EV_MULTIPLICITY
726 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
727#endif
728
729 --signum;
730
731 if (signum < 0 || signum >= signalmax)
732 return;
733
734 signals [signum].gotsig = 0;
735
736 for (w = signals [signum].head; w; w = w->next)
737 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
738}
739
740static void
741sigcb (EV_P_ ev_io *iow, int revents)
742{
743 int signum;
744
745 read (sigpipe [0], &revents, 1);
746 gotsig = 0;
747
748 for (signum = signalmax; signum--; )
749 if (signals [signum].gotsig)
750 ev_feed_signal_event (EV_A_ signum + 1);
751}
752
753void inline_size 844void inline_speed
754fd_intern (int fd) 845fd_intern (int fd)
755{ 846{
756#ifdef _WIN32 847#ifdef _WIN32
757 int arg = 1; 848 int arg = 1;
758 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 849 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
761 fcntl (fd, F_SETFL, O_NONBLOCK); 852 fcntl (fd, F_SETFL, O_NONBLOCK);
762#endif 853#endif
763} 854}
764 855
765static void noinline 856static void noinline
766siginit (EV_P) 857evpipe_init (EV_P)
767{ 858{
859 if (!ev_is_active (&pipeev))
860 {
861#if EV_USE_EVENTFD
862 if ((evfd = eventfd (0, 0)) >= 0)
863 {
864 evpipe [0] = -1;
865 fd_intern (evfd);
866 ev_io_set (&pipeev, evfd, EV_READ);
867 }
868 else
869#endif
870 {
871 while (pipe (evpipe))
872 syserr ("(libev) error creating signal/async pipe");
873
768 fd_intern (sigpipe [0]); 874 fd_intern (evpipe [0]);
769 fd_intern (sigpipe [1]); 875 fd_intern (evpipe [1]);
876 ev_io_set (&pipeev, evpipe [0], EV_READ);
877 }
770 878
771 ev_io_set (&sigev, sigpipe [0], EV_READ);
772 ev_io_start (EV_A_ &sigev); 879 ev_io_start (EV_A_ &pipeev);
773 ev_unref (EV_A); /* child watcher should not keep loop alive */ 880 ev_unref (EV_A); /* watcher should not keep loop alive */
881 }
882}
883
884void inline_size
885evpipe_write (EV_P_ EV_ATOMIC_T *flag)
886{
887 if (!*flag)
888 {
889 int old_errno = errno; /* save errno because write might clobber it */
890
891 *flag = 1;
892
893#if EV_USE_EVENTFD
894 if (evfd >= 0)
895 {
896 uint64_t counter = 1;
897 write (evfd, &counter, sizeof (uint64_t));
898 }
899 else
900#endif
901 write (evpipe [1], &old_errno, 1);
902
903 errno = old_errno;
904 }
905}
906
907static void
908pipecb (EV_P_ ev_io *iow, int revents)
909{
910#if EV_USE_EVENTFD
911 if (evfd >= 0)
912 {
913 uint64_t counter = 1;
914 read (evfd, &counter, sizeof (uint64_t));
915 }
916 else
917#endif
918 {
919 char dummy;
920 read (evpipe [0], &dummy, 1);
921 }
922
923 if (gotsig && ev_is_default_loop (EV_A))
924 {
925 int signum;
926 gotsig = 0;
927
928 for (signum = signalmax; signum--; )
929 if (signals [signum].gotsig)
930 ev_feed_signal_event (EV_A_ signum + 1);
931 }
932
933#if EV_ASYNC_ENABLE
934 if (gotasync)
935 {
936 int i;
937 gotasync = 0;
938
939 for (i = asynccnt; i--; )
940 if (asyncs [i]->sent)
941 {
942 asyncs [i]->sent = 0;
943 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
944 }
945 }
946#endif
774} 947}
775 948
776/*****************************************************************************/ 949/*****************************************************************************/
777 950
951static void
952ev_sighandler (int signum)
953{
954#if EV_MULTIPLICITY
955 struct ev_loop *loop = &default_loop_struct;
956#endif
957
958#if _WIN32
959 signal (signum, ev_sighandler);
960#endif
961
962 signals [signum - 1].gotsig = 1;
963 evpipe_write (EV_A_ &gotsig);
964}
965
966void noinline
967ev_feed_signal_event (EV_P_ int signum)
968{
969 WL w;
970
971#if EV_MULTIPLICITY
972 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
973#endif
974
975 --signum;
976
977 if (signum < 0 || signum >= signalmax)
978 return;
979
980 signals [signum].gotsig = 0;
981
982 for (w = signals [signum].head; w; w = w->next)
983 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
984}
985
986/*****************************************************************************/
987
778static ev_child *childs [EV_PID_HASHSIZE]; 988static WL childs [EV_PID_HASHSIZE];
779 989
780#ifndef _WIN32 990#ifndef _WIN32
781 991
782static ev_signal childev; 992static ev_signal childev;
783 993
994#ifndef WIFCONTINUED
995# define WIFCONTINUED(status) 0
996#endif
997
784void inline_speed 998void inline_speed
785child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 999child_reap (EV_P_ int chain, int pid, int status)
786{ 1000{
787 ev_child *w; 1001 ev_child *w;
1002 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
788 1003
789 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1004 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1005 {
790 if (w->pid == pid || !w->pid) 1006 if ((w->pid == pid || !w->pid)
1007 && (!traced || (w->flags & 1)))
791 { 1008 {
792 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1009 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
793 w->rpid = pid; 1010 w->rpid = pid;
794 w->rstatus = status; 1011 w->rstatus = status;
795 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1012 ev_feed_event (EV_A_ (W)w, EV_CHILD);
796 } 1013 }
1014 }
797} 1015}
798 1016
799#ifndef WCONTINUED 1017#ifndef WCONTINUED
800# define WCONTINUED 0 1018# define WCONTINUED 0
801#endif 1019#endif
810 if (!WCONTINUED 1028 if (!WCONTINUED
811 || errno != EINVAL 1029 || errno != EINVAL
812 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1030 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
813 return; 1031 return;
814 1032
815 /* make sure we are called again until all childs have been reaped */ 1033 /* make sure we are called again until all children have been reaped */
816 /* we need to do it this way so that the callback gets called before we continue */ 1034 /* we need to do it this way so that the callback gets called before we continue */
817 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1035 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
818 1036
819 child_reap (EV_A_ sw, pid, pid, status); 1037 child_reap (EV_A_ pid, pid, status);
820 if (EV_PID_HASHSIZE > 1) 1038 if (EV_PID_HASHSIZE > 1)
821 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1039 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
822} 1040}
823 1041
824#endif 1042#endif
825 1043
826/*****************************************************************************/ 1044/*****************************************************************************/
898} 1116}
899 1117
900unsigned int 1118unsigned int
901ev_embeddable_backends (void) 1119ev_embeddable_backends (void)
902{ 1120{
903 return EVBACKEND_EPOLL 1121 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
904 | EVBACKEND_KQUEUE 1122
905 | EVBACKEND_PORT; 1123 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1124 /* please fix it and tell me how to detect the fix */
1125 flags &= ~EVBACKEND_EPOLL;
1126
1127 return flags;
906} 1128}
907 1129
908unsigned int 1130unsigned int
909ev_backend (EV_P) 1131ev_backend (EV_P)
910{ 1132{
913 1135
914unsigned int 1136unsigned int
915ev_loop_count (EV_P) 1137ev_loop_count (EV_P)
916{ 1138{
917 return loop_count; 1139 return loop_count;
1140}
1141
1142void
1143ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1144{
1145 io_blocktime = interval;
1146}
1147
1148void
1149ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1150{
1151 timeout_blocktime = interval;
918} 1152}
919 1153
920static void noinline 1154static void noinline
921loop_init (EV_P_ unsigned int flags) 1155loop_init (EV_P_ unsigned int flags)
922{ 1156{
928 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1162 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
929 have_monotonic = 1; 1163 have_monotonic = 1;
930 } 1164 }
931#endif 1165#endif
932 1166
933 ev_rt_now = ev_time (); 1167 ev_rt_now = ev_time ();
934 mn_now = get_clock (); 1168 mn_now = get_clock ();
935 now_floor = mn_now; 1169 now_floor = mn_now;
936 rtmn_diff = ev_rt_now - mn_now; 1170 rtmn_diff = ev_rt_now - mn_now;
1171
1172 io_blocktime = 0.;
1173 timeout_blocktime = 0.;
1174 backend = 0;
1175 backend_fd = -1;
1176 gotasync = 0;
1177#if EV_USE_INOTIFY
1178 fs_fd = -2;
1179#endif
937 1180
938 /* pid check not overridable via env */ 1181 /* pid check not overridable via env */
939#ifndef _WIN32 1182#ifndef _WIN32
940 if (flags & EVFLAG_FORKCHECK) 1183 if (flags & EVFLAG_FORKCHECK)
941 curpid = getpid (); 1184 curpid = getpid ();
944 if (!(flags & EVFLAG_NOENV) 1187 if (!(flags & EVFLAG_NOENV)
945 && !enable_secure () 1188 && !enable_secure ()
946 && getenv ("LIBEV_FLAGS")) 1189 && getenv ("LIBEV_FLAGS"))
947 flags = atoi (getenv ("LIBEV_FLAGS")); 1190 flags = atoi (getenv ("LIBEV_FLAGS"));
948 1191
949 if (!(flags & 0x0000ffffUL)) 1192 if (!(flags & 0x0000ffffU))
950 flags |= ev_recommended_backends (); 1193 flags |= ev_recommended_backends ();
951
952 backend = 0;
953 backend_fd = -1;
954#if EV_USE_INOTIFY
955 fs_fd = -2;
956#endif
957 1194
958#if EV_USE_PORT 1195#if EV_USE_PORT
959 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1196 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
960#endif 1197#endif
961#if EV_USE_KQUEUE 1198#if EV_USE_KQUEUE
969#endif 1206#endif
970#if EV_USE_SELECT 1207#if EV_USE_SELECT
971 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1208 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
972#endif 1209#endif
973 1210
974 ev_init (&sigev, sigcb); 1211 ev_init (&pipeev, pipecb);
975 ev_set_priority (&sigev, EV_MAXPRI); 1212 ev_set_priority (&pipeev, EV_MAXPRI);
976 } 1213 }
977} 1214}
978 1215
979static void noinline 1216static void noinline
980loop_destroy (EV_P) 1217loop_destroy (EV_P)
981{ 1218{
982 int i; 1219 int i;
1220
1221 if (ev_is_active (&pipeev))
1222 {
1223 ev_ref (EV_A); /* signal watcher */
1224 ev_io_stop (EV_A_ &pipeev);
1225
1226#if EV_USE_EVENTFD
1227 if (evfd >= 0)
1228 close (evfd);
1229#endif
1230
1231 if (evpipe [0] >= 0)
1232 {
1233 close (evpipe [0]);
1234 close (evpipe [1]);
1235 }
1236 }
983 1237
984#if EV_USE_INOTIFY 1238#if EV_USE_INOTIFY
985 if (fs_fd >= 0) 1239 if (fs_fd >= 0)
986 close (fs_fd); 1240 close (fs_fd);
987#endif 1241#endif
1010 array_free (pending, [i]); 1264 array_free (pending, [i]);
1011#if EV_IDLE_ENABLE 1265#if EV_IDLE_ENABLE
1012 array_free (idle, [i]); 1266 array_free (idle, [i]);
1013#endif 1267#endif
1014 } 1268 }
1269
1270 ev_free (anfds); anfdmax = 0;
1015 1271
1016 /* have to use the microsoft-never-gets-it-right macro */ 1272 /* have to use the microsoft-never-gets-it-right macro */
1017 array_free (fdchange, EMPTY); 1273 array_free (fdchange, EMPTY);
1018 array_free (timer, EMPTY); 1274 array_free (timer, EMPTY);
1019#if EV_PERIODIC_ENABLE 1275#if EV_PERIODIC_ENABLE
1020 array_free (periodic, EMPTY); 1276 array_free (periodic, EMPTY);
1021#endif 1277#endif
1278#if EV_FORK_ENABLE
1279 array_free (fork, EMPTY);
1280#endif
1022 array_free (prepare, EMPTY); 1281 array_free (prepare, EMPTY);
1023 array_free (check, EMPTY); 1282 array_free (check, EMPTY);
1283#if EV_ASYNC_ENABLE
1284 array_free (async, EMPTY);
1285#endif
1024 1286
1025 backend = 0; 1287 backend = 0;
1026} 1288}
1027 1289
1290#if EV_USE_INOTIFY
1028void inline_size infy_fork (EV_P); 1291void inline_size infy_fork (EV_P);
1292#endif
1029 1293
1030void inline_size 1294void inline_size
1031loop_fork (EV_P) 1295loop_fork (EV_P)
1032{ 1296{
1033#if EV_USE_PORT 1297#if EV_USE_PORT
1041#endif 1305#endif
1042#if EV_USE_INOTIFY 1306#if EV_USE_INOTIFY
1043 infy_fork (EV_A); 1307 infy_fork (EV_A);
1044#endif 1308#endif
1045 1309
1046 if (ev_is_active (&sigev)) 1310 if (ev_is_active (&pipeev))
1047 { 1311 {
1048 /* default loop */ 1312 /* this "locks" the handlers against writing to the pipe */
1313 /* while we modify the fd vars */
1314 gotsig = 1;
1315#if EV_ASYNC_ENABLE
1316 gotasync = 1;
1317#endif
1049 1318
1050 ev_ref (EV_A); 1319 ev_ref (EV_A);
1051 ev_io_stop (EV_A_ &sigev); 1320 ev_io_stop (EV_A_ &pipeev);
1321
1322#if EV_USE_EVENTFD
1323 if (evfd >= 0)
1324 close (evfd);
1325#endif
1326
1327 if (evpipe [0] >= 0)
1328 {
1052 close (sigpipe [0]); 1329 close (evpipe [0]);
1053 close (sigpipe [1]); 1330 close (evpipe [1]);
1331 }
1054 1332
1055 while (pipe (sigpipe))
1056 syserr ("(libev) error creating pipe");
1057
1058 siginit (EV_A); 1333 evpipe_init (EV_A);
1334 /* now iterate over everything, in case we missed something */
1335 pipecb (EV_A_ &pipeev, EV_READ);
1059 } 1336 }
1060 1337
1061 postfork = 0; 1338 postfork = 0;
1062} 1339}
1063 1340
1085} 1362}
1086 1363
1087void 1364void
1088ev_loop_fork (EV_P) 1365ev_loop_fork (EV_P)
1089{ 1366{
1090 postfork = 1; 1367 postfork = 1; /* must be in line with ev_default_fork */
1091} 1368}
1092 1369
1093#endif 1370#endif
1094 1371
1095#if EV_MULTIPLICITY 1372#if EV_MULTIPLICITY
1098#else 1375#else
1099int 1376int
1100ev_default_loop (unsigned int flags) 1377ev_default_loop (unsigned int flags)
1101#endif 1378#endif
1102{ 1379{
1103 if (sigpipe [0] == sigpipe [1])
1104 if (pipe (sigpipe))
1105 return 0;
1106
1107 if (!ev_default_loop_ptr) 1380 if (!ev_default_loop_ptr)
1108 { 1381 {
1109#if EV_MULTIPLICITY 1382#if EV_MULTIPLICITY
1110 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1383 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1111#else 1384#else
1114 1387
1115 loop_init (EV_A_ flags); 1388 loop_init (EV_A_ flags);
1116 1389
1117 if (ev_backend (EV_A)) 1390 if (ev_backend (EV_A))
1118 { 1391 {
1119 siginit (EV_A);
1120
1121#ifndef _WIN32 1392#ifndef _WIN32
1122 ev_signal_init (&childev, childcb, SIGCHLD); 1393 ev_signal_init (&childev, childcb, SIGCHLD);
1123 ev_set_priority (&childev, EV_MAXPRI); 1394 ev_set_priority (&childev, EV_MAXPRI);
1124 ev_signal_start (EV_A_ &childev); 1395 ev_signal_start (EV_A_ &childev);
1125 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1396 ev_unref (EV_A); /* child watcher should not keep loop alive */
1142#ifndef _WIN32 1413#ifndef _WIN32
1143 ev_ref (EV_A); /* child watcher */ 1414 ev_ref (EV_A); /* child watcher */
1144 ev_signal_stop (EV_A_ &childev); 1415 ev_signal_stop (EV_A_ &childev);
1145#endif 1416#endif
1146 1417
1147 ev_ref (EV_A); /* signal watcher */
1148 ev_io_stop (EV_A_ &sigev);
1149
1150 close (sigpipe [0]); sigpipe [0] = 0;
1151 close (sigpipe [1]); sigpipe [1] = 0;
1152
1153 loop_destroy (EV_A); 1418 loop_destroy (EV_A);
1154} 1419}
1155 1420
1156void 1421void
1157ev_default_fork (void) 1422ev_default_fork (void)
1159#if EV_MULTIPLICITY 1424#if EV_MULTIPLICITY
1160 struct ev_loop *loop = ev_default_loop_ptr; 1425 struct ev_loop *loop = ev_default_loop_ptr;
1161#endif 1426#endif
1162 1427
1163 if (backend) 1428 if (backend)
1164 postfork = 1; 1429 postfork = 1; /* must be in line with ev_loop_fork */
1165} 1430}
1166 1431
1167/*****************************************************************************/ 1432/*****************************************************************************/
1168 1433
1169void 1434void
1195void inline_size 1460void inline_size
1196timers_reify (EV_P) 1461timers_reify (EV_P)
1197{ 1462{
1198 while (timercnt && ((WT)timers [0])->at <= mn_now) 1463 while (timercnt && ((WT)timers [0])->at <= mn_now)
1199 { 1464 {
1200 ev_timer *w = timers [0]; 1465 ev_timer *w = (ev_timer *)timers [0];
1201 1466
1202 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1467 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1203 1468
1204 /* first reschedule or stop timer */ 1469 /* first reschedule or stop timer */
1205 if (w->repeat) 1470 if (w->repeat)
1208 1473
1209 ((WT)w)->at += w->repeat; 1474 ((WT)w)->at += w->repeat;
1210 if (((WT)w)->at < mn_now) 1475 if (((WT)w)->at < mn_now)
1211 ((WT)w)->at = mn_now; 1476 ((WT)w)->at = mn_now;
1212 1477
1213 downheap ((WT *)timers, timercnt, 0); 1478 downheap (timers, timercnt, 0);
1214 } 1479 }
1215 else 1480 else
1216 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1481 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1217 1482
1218 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1483 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1223void inline_size 1488void inline_size
1224periodics_reify (EV_P) 1489periodics_reify (EV_P)
1225{ 1490{
1226 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1491 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1227 { 1492 {
1228 ev_periodic *w = periodics [0]; 1493 ev_periodic *w = (ev_periodic *)periodics [0];
1229 1494
1230 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1495 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1231 1496
1232 /* first reschedule or stop timer */ 1497 /* first reschedule or stop timer */
1233 if (w->reschedule_cb) 1498 if (w->reschedule_cb)
1234 { 1499 {
1235 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1500 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1236 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1501 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1237 downheap ((WT *)periodics, periodiccnt, 0); 1502 downheap (periodics, periodiccnt, 0);
1238 } 1503 }
1239 else if (w->interval) 1504 else if (w->interval)
1240 { 1505 {
1241 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1242 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1508 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1243 downheap ((WT *)periodics, periodiccnt, 0); 1509 downheap (periodics, periodiccnt, 0);
1244 } 1510 }
1245 else 1511 else
1246 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1512 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1247 1513
1248 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1514 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1255 int i; 1521 int i;
1256 1522
1257 /* adjust periodics after time jump */ 1523 /* adjust periodics after time jump */
1258 for (i = 0; i < periodiccnt; ++i) 1524 for (i = 0; i < periodiccnt; ++i)
1259 { 1525 {
1260 ev_periodic *w = periodics [i]; 1526 ev_periodic *w = (ev_periodic *)periodics [i];
1261 1527
1262 if (w->reschedule_cb) 1528 if (w->reschedule_cb)
1263 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1529 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1264 else if (w->interval) 1530 else if (w->interval)
1265 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1531 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1266 } 1532 }
1267 1533
1268 /* now rebuild the heap */ 1534 /* now rebuild the heap */
1269 for (i = periodiccnt >> 1; i--; ) 1535 for (i = periodiccnt >> 1; i--; )
1270 downheap ((WT *)periodics, periodiccnt, i); 1536 downheap (periodics, periodiccnt, i);
1271} 1537}
1272#endif 1538#endif
1273 1539
1274#if EV_IDLE_ENABLE 1540#if EV_IDLE_ENABLE
1275void inline_size 1541void inline_size
1292 } 1558 }
1293 } 1559 }
1294} 1560}
1295#endif 1561#endif
1296 1562
1297int inline_size 1563void inline_speed
1298time_update_monotonic (EV_P) 1564time_update (EV_P_ ev_tstamp max_block)
1299{ 1565{
1566 int i;
1567
1568#if EV_USE_MONOTONIC
1569 if (expect_true (have_monotonic))
1570 {
1571 ev_tstamp odiff = rtmn_diff;
1572
1300 mn_now = get_clock (); 1573 mn_now = get_clock ();
1301 1574
1575 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1576 /* interpolate in the meantime */
1302 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1577 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1303 { 1578 {
1304 ev_rt_now = rtmn_diff + mn_now; 1579 ev_rt_now = rtmn_diff + mn_now;
1305 return 0; 1580 return;
1306 } 1581 }
1307 else 1582
1308 {
1309 now_floor = mn_now; 1583 now_floor = mn_now;
1310 ev_rt_now = ev_time (); 1584 ev_rt_now = ev_time ();
1311 return 1;
1312 }
1313}
1314 1585
1315void inline_size 1586 /* loop a few times, before making important decisions.
1316time_update (EV_P) 1587 * on the choice of "4": one iteration isn't enough,
1317{ 1588 * in case we get preempted during the calls to
1318 int i; 1589 * ev_time and get_clock. a second call is almost guaranteed
1319 1590 * to succeed in that case, though. and looping a few more times
1320#if EV_USE_MONOTONIC 1591 * doesn't hurt either as we only do this on time-jumps or
1321 if (expect_true (have_monotonic)) 1592 * in the unlikely event of having been preempted here.
1322 { 1593 */
1323 if (time_update_monotonic (EV_A)) 1594 for (i = 4; --i; )
1324 { 1595 {
1325 ev_tstamp odiff = rtmn_diff;
1326
1327 /* loop a few times, before making important decisions.
1328 * on the choice of "4": one iteration isn't enough,
1329 * in case we get preempted during the calls to
1330 * ev_time and get_clock. a second call is almost guaranteed
1331 * to succeed in that case, though. and looping a few more times
1332 * doesn't hurt either as we only do this on time-jumps or
1333 * in the unlikely event of having been preempted here.
1334 */
1335 for (i = 4; --i; )
1336 {
1337 rtmn_diff = ev_rt_now - mn_now; 1596 rtmn_diff = ev_rt_now - mn_now;
1338 1597
1339 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1598 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1340 return; /* all is well */ 1599 return; /* all is well */
1341 1600
1342 ev_rt_now = ev_time (); 1601 ev_rt_now = ev_time ();
1343 mn_now = get_clock (); 1602 mn_now = get_clock ();
1344 now_floor = mn_now; 1603 now_floor = mn_now;
1345 } 1604 }
1346 1605
1347# if EV_PERIODIC_ENABLE 1606# if EV_PERIODIC_ENABLE
1348 periodics_reschedule (EV_A); 1607 periodics_reschedule (EV_A);
1349# endif 1608# endif
1350 /* no timer adjustment, as the monotonic clock doesn't jump */ 1609 /* no timer adjustment, as the monotonic clock doesn't jump */
1351 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1610 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1352 }
1353 } 1611 }
1354 else 1612 else
1355#endif 1613#endif
1356 { 1614 {
1357 ev_rt_now = ev_time (); 1615 ev_rt_now = ev_time ();
1358 1616
1359 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1617 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1360 { 1618 {
1361#if EV_PERIODIC_ENABLE 1619#if EV_PERIODIC_ENABLE
1362 periodics_reschedule (EV_A); 1620 periodics_reschedule (EV_A);
1363#endif 1621#endif
1364
1365 /* adjust timers. this is easy, as the offset is the same for all of them */ 1622 /* adjust timers. this is easy, as the offset is the same for all of them */
1366 for (i = 0; i < timercnt; ++i) 1623 for (i = 0; i < timercnt; ++i)
1367 ((WT)timers [i])->at += ev_rt_now - mn_now; 1624 ((WT)timers [i])->at += ev_rt_now - mn_now;
1368 } 1625 }
1369 1626
1386static int loop_done; 1643static int loop_done;
1387 1644
1388void 1645void
1389ev_loop (EV_P_ int flags) 1646ev_loop (EV_P_ int flags)
1390{ 1647{
1391 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1648 loop_done = EVUNLOOP_CANCEL;
1392 ? EVUNLOOP_ONE
1393 : EVUNLOOP_CANCEL;
1394 1649
1395 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1650 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1396 1651
1397 do 1652 do
1398 { 1653 {
1413 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1668 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1414 call_pending (EV_A); 1669 call_pending (EV_A);
1415 } 1670 }
1416#endif 1671#endif
1417 1672
1418 /* queue check watchers (and execute them) */ 1673 /* queue prepare watchers (and execute them) */
1419 if (expect_false (preparecnt)) 1674 if (expect_false (preparecnt))
1420 { 1675 {
1421 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1676 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1422 call_pending (EV_A); 1677 call_pending (EV_A);
1423 } 1678 }
1432 /* update fd-related kernel structures */ 1687 /* update fd-related kernel structures */
1433 fd_reify (EV_A); 1688 fd_reify (EV_A);
1434 1689
1435 /* calculate blocking time */ 1690 /* calculate blocking time */
1436 { 1691 {
1437 ev_tstamp block; 1692 ev_tstamp waittime = 0.;
1693 ev_tstamp sleeptime = 0.;
1438 1694
1439 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1695 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1440 block = 0.; /* do not block at all */
1441 else
1442 { 1696 {
1443 /* update time to cancel out callback processing overhead */ 1697 /* update time to cancel out callback processing overhead */
1444#if EV_USE_MONOTONIC
1445 if (expect_true (have_monotonic))
1446 time_update_monotonic (EV_A); 1698 time_update (EV_A_ 1e100);
1447 else
1448#endif
1449 {
1450 ev_rt_now = ev_time ();
1451 mn_now = ev_rt_now;
1452 }
1453 1699
1454 block = MAX_BLOCKTIME; 1700 waittime = MAX_BLOCKTIME;
1455 1701
1456 if (timercnt) 1702 if (timercnt)
1457 { 1703 {
1458 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1704 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge;
1459 if (block > to) block = to; 1705 if (waittime > to) waittime = to;
1460 } 1706 }
1461 1707
1462#if EV_PERIODIC_ENABLE 1708#if EV_PERIODIC_ENABLE
1463 if (periodiccnt) 1709 if (periodiccnt)
1464 { 1710 {
1465 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1711 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge;
1466 if (block > to) block = to; 1712 if (waittime > to) waittime = to;
1467 } 1713 }
1468#endif 1714#endif
1469 1715
1470 if (expect_false (block < 0.)) block = 0.; 1716 if (expect_false (waittime < timeout_blocktime))
1717 waittime = timeout_blocktime;
1718
1719 sleeptime = waittime - backend_fudge;
1720
1721 if (expect_true (sleeptime > io_blocktime))
1722 sleeptime = io_blocktime;
1723
1724 if (sleeptime)
1725 {
1726 ev_sleep (sleeptime);
1727 waittime -= sleeptime;
1728 }
1471 } 1729 }
1472 1730
1473 ++loop_count; 1731 ++loop_count;
1474 backend_poll (EV_A_ block); 1732 backend_poll (EV_A_ waittime);
1733
1734 /* update ev_rt_now, do magic */
1735 time_update (EV_A_ waittime + sleeptime);
1475 } 1736 }
1476
1477 /* update ev_rt_now, do magic */
1478 time_update (EV_A);
1479 1737
1480 /* queue pending timers and reschedule them */ 1738 /* queue pending timers and reschedule them */
1481 timers_reify (EV_A); /* relative timers called last */ 1739 timers_reify (EV_A); /* relative timers called last */
1482#if EV_PERIODIC_ENABLE 1740#if EV_PERIODIC_ENABLE
1483 periodics_reify (EV_A); /* absolute timers called first */ 1741 periodics_reify (EV_A); /* absolute timers called first */
1491 /* queue check watchers, to be executed first */ 1749 /* queue check watchers, to be executed first */
1492 if (expect_false (checkcnt)) 1750 if (expect_false (checkcnt))
1493 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1751 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1494 1752
1495 call_pending (EV_A); 1753 call_pending (EV_A);
1496
1497 } 1754 }
1498 while (expect_true (activecnt && !loop_done)); 1755 while (expect_true (
1756 activecnt
1757 && !loop_done
1758 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1759 ));
1499 1760
1500 if (loop_done == EVUNLOOP_ONE) 1761 if (loop_done == EVUNLOOP_ONE)
1501 loop_done = EVUNLOOP_CANCEL; 1762 loop_done = EVUNLOOP_CANCEL;
1502} 1763}
1503 1764
1545ev_clear_pending (EV_P_ void *w) 1806ev_clear_pending (EV_P_ void *w)
1546{ 1807{
1547 W w_ = (W)w; 1808 W w_ = (W)w;
1548 int pending = w_->pending; 1809 int pending = w_->pending;
1549 1810
1550 if (!pending) 1811 if (expect_true (pending))
1812 {
1813 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1814 w_->pending = 0;
1815 p->w = 0;
1816 return p->events;
1817 }
1818 else
1551 return 0; 1819 return 0;
1552
1553 w_->pending = 0;
1554 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1555 p->w = 0;
1556
1557 return p->events;
1558} 1820}
1559 1821
1560void inline_size 1822void inline_size
1561pri_adjust (EV_P_ W w) 1823pri_adjust (EV_P_ W w)
1562{ 1824{
1581 w->active = 0; 1843 w->active = 0;
1582} 1844}
1583 1845
1584/*****************************************************************************/ 1846/*****************************************************************************/
1585 1847
1586void 1848void noinline
1587ev_io_start (EV_P_ ev_io *w) 1849ev_io_start (EV_P_ ev_io *w)
1588{ 1850{
1589 int fd = w->fd; 1851 int fd = w->fd;
1590 1852
1591 if (expect_false (ev_is_active (w))) 1853 if (expect_false (ev_is_active (w)))
1593 1855
1594 assert (("ev_io_start called with negative fd", fd >= 0)); 1856 assert (("ev_io_start called with negative fd", fd >= 0));
1595 1857
1596 ev_start (EV_A_ (W)w, 1); 1858 ev_start (EV_A_ (W)w, 1);
1597 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1859 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1598 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1860 wlist_add (&anfds[fd].head, (WL)w);
1599 1861
1600 fd_change (EV_A_ fd); 1862 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1863 w->events &= ~EV_IOFDSET;
1601} 1864}
1602 1865
1603void 1866void noinline
1604ev_io_stop (EV_P_ ev_io *w) 1867ev_io_stop (EV_P_ ev_io *w)
1605{ 1868{
1606 clear_pending (EV_A_ (W)w); 1869 clear_pending (EV_A_ (W)w);
1607 if (expect_false (!ev_is_active (w))) 1870 if (expect_false (!ev_is_active (w)))
1608 return; 1871 return;
1609 1872
1610 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1873 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1611 1874
1612 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1875 wlist_del (&anfds[w->fd].head, (WL)w);
1613 ev_stop (EV_A_ (W)w); 1876 ev_stop (EV_A_ (W)w);
1614 1877
1615 fd_change (EV_A_ w->fd); 1878 fd_change (EV_A_ w->fd, 1);
1616} 1879}
1617 1880
1618void 1881void noinline
1619ev_timer_start (EV_P_ ev_timer *w) 1882ev_timer_start (EV_P_ ev_timer *w)
1620{ 1883{
1621 if (expect_false (ev_is_active (w))) 1884 if (expect_false (ev_is_active (w)))
1622 return; 1885 return;
1623 1886
1624 ((WT)w)->at += mn_now; 1887 ((WT)w)->at += mn_now;
1625 1888
1626 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1889 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1627 1890
1628 ev_start (EV_A_ (W)w, ++timercnt); 1891 ev_start (EV_A_ (W)w, ++timercnt);
1629 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1892 array_needsize (WT, timers, timermax, timercnt, EMPTY2);
1630 timers [timercnt - 1] = w; 1893 timers [timercnt - 1] = (WT)w;
1631 upheap ((WT *)timers, timercnt - 1); 1894 upheap (timers, timercnt - 1);
1632 1895
1633 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1896 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/
1634} 1897}
1635 1898
1636void 1899void noinline
1637ev_timer_stop (EV_P_ ev_timer *w) 1900ev_timer_stop (EV_P_ ev_timer *w)
1638{ 1901{
1639 clear_pending (EV_A_ (W)w); 1902 clear_pending (EV_A_ (W)w);
1640 if (expect_false (!ev_is_active (w))) 1903 if (expect_false (!ev_is_active (w)))
1641 return; 1904 return;
1642 1905
1643 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1906 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w));
1644 1907
1645 { 1908 {
1646 int active = ((W)w)->active; 1909 int active = ((W)w)->active;
1647 1910
1648 if (expect_true (--active < --timercnt)) 1911 if (expect_true (--active < --timercnt))
1649 { 1912 {
1650 timers [active] = timers [timercnt]; 1913 timers [active] = timers [timercnt];
1651 adjustheap ((WT *)timers, timercnt, active); 1914 adjustheap (timers, timercnt, active);
1652 } 1915 }
1653 } 1916 }
1654 1917
1655 ((WT)w)->at -= mn_now; 1918 ((WT)w)->at -= mn_now;
1656 1919
1657 ev_stop (EV_A_ (W)w); 1920 ev_stop (EV_A_ (W)w);
1658} 1921}
1659 1922
1660void 1923void noinline
1661ev_timer_again (EV_P_ ev_timer *w) 1924ev_timer_again (EV_P_ ev_timer *w)
1662{ 1925{
1663 if (ev_is_active (w)) 1926 if (ev_is_active (w))
1664 { 1927 {
1665 if (w->repeat) 1928 if (w->repeat)
1666 { 1929 {
1667 ((WT)w)->at = mn_now + w->repeat; 1930 ((WT)w)->at = mn_now + w->repeat;
1668 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1931 adjustheap (timers, timercnt, ((W)w)->active - 1);
1669 } 1932 }
1670 else 1933 else
1671 ev_timer_stop (EV_A_ w); 1934 ev_timer_stop (EV_A_ w);
1672 } 1935 }
1673 else if (w->repeat) 1936 else if (w->repeat)
1676 ev_timer_start (EV_A_ w); 1939 ev_timer_start (EV_A_ w);
1677 } 1940 }
1678} 1941}
1679 1942
1680#if EV_PERIODIC_ENABLE 1943#if EV_PERIODIC_ENABLE
1681void 1944void noinline
1682ev_periodic_start (EV_P_ ev_periodic *w) 1945ev_periodic_start (EV_P_ ev_periodic *w)
1683{ 1946{
1684 if (expect_false (ev_is_active (w))) 1947 if (expect_false (ev_is_active (w)))
1685 return; 1948 return;
1686 1949
1688 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1951 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1689 else if (w->interval) 1952 else if (w->interval)
1690 { 1953 {
1691 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1954 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1692 /* this formula differs from the one in periodic_reify because we do not always round up */ 1955 /* this formula differs from the one in periodic_reify because we do not always round up */
1693 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1956 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1694 } 1957 }
1958 else
1959 ((WT)w)->at = w->offset;
1695 1960
1696 ev_start (EV_A_ (W)w, ++periodiccnt); 1961 ev_start (EV_A_ (W)w, ++periodiccnt);
1697 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1962 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2);
1698 periodics [periodiccnt - 1] = w; 1963 periodics [periodiccnt - 1] = (WT)w;
1699 upheap ((WT *)periodics, periodiccnt - 1); 1964 upheap (periodics, periodiccnt - 1);
1700 1965
1701 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1966 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1702} 1967}
1703 1968
1704void 1969void noinline
1705ev_periodic_stop (EV_P_ ev_periodic *w) 1970ev_periodic_stop (EV_P_ ev_periodic *w)
1706{ 1971{
1707 clear_pending (EV_A_ (W)w); 1972 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 1973 if (expect_false (!ev_is_active (w)))
1709 return; 1974 return;
1710 1975
1711 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1976 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w));
1712 1977
1713 { 1978 {
1714 int active = ((W)w)->active; 1979 int active = ((W)w)->active;
1715 1980
1716 if (expect_true (--active < --periodiccnt)) 1981 if (expect_true (--active < --periodiccnt))
1717 { 1982 {
1718 periodics [active] = periodics [periodiccnt]; 1983 periodics [active] = periodics [periodiccnt];
1719 adjustheap ((WT *)periodics, periodiccnt, active); 1984 adjustheap (periodics, periodiccnt, active);
1720 } 1985 }
1721 } 1986 }
1722 1987
1723 ev_stop (EV_A_ (W)w); 1988 ev_stop (EV_A_ (W)w);
1724} 1989}
1725 1990
1726void 1991void noinline
1727ev_periodic_again (EV_P_ ev_periodic *w) 1992ev_periodic_again (EV_P_ ev_periodic *w)
1728{ 1993{
1729 /* TODO: use adjustheap and recalculation */ 1994 /* TODO: use adjustheap and recalculation */
1730 ev_periodic_stop (EV_A_ w); 1995 ev_periodic_stop (EV_A_ w);
1731 ev_periodic_start (EV_A_ w); 1996 ev_periodic_start (EV_A_ w);
1734 1999
1735#ifndef SA_RESTART 2000#ifndef SA_RESTART
1736# define SA_RESTART 0 2001# define SA_RESTART 0
1737#endif 2002#endif
1738 2003
1739void 2004void noinline
1740ev_signal_start (EV_P_ ev_signal *w) 2005ev_signal_start (EV_P_ ev_signal *w)
1741{ 2006{
1742#if EV_MULTIPLICITY 2007#if EV_MULTIPLICITY
1743 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2008 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1744#endif 2009#endif
1745 if (expect_false (ev_is_active (w))) 2010 if (expect_false (ev_is_active (w)))
1746 return; 2011 return;
1747 2012
1748 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2013 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1749 2014
2015 evpipe_init (EV_A);
2016
2017 {
2018#ifndef _WIN32
2019 sigset_t full, prev;
2020 sigfillset (&full);
2021 sigprocmask (SIG_SETMASK, &full, &prev);
2022#endif
2023
2024 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2025
2026#ifndef _WIN32
2027 sigprocmask (SIG_SETMASK, &prev, 0);
2028#endif
2029 }
2030
1750 ev_start (EV_A_ (W)w, 1); 2031 ev_start (EV_A_ (W)w, 1);
1751 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1752 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2032 wlist_add (&signals [w->signum - 1].head, (WL)w);
1753 2033
1754 if (!((WL)w)->next) 2034 if (!((WL)w)->next)
1755 { 2035 {
1756#if _WIN32 2036#if _WIN32
1757 signal (w->signum, sighandler); 2037 signal (w->signum, ev_sighandler);
1758#else 2038#else
1759 struct sigaction sa; 2039 struct sigaction sa;
1760 sa.sa_handler = sighandler; 2040 sa.sa_handler = ev_sighandler;
1761 sigfillset (&sa.sa_mask); 2041 sigfillset (&sa.sa_mask);
1762 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2042 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1763 sigaction (w->signum, &sa, 0); 2043 sigaction (w->signum, &sa, 0);
1764#endif 2044#endif
1765 } 2045 }
1766} 2046}
1767 2047
1768void 2048void noinline
1769ev_signal_stop (EV_P_ ev_signal *w) 2049ev_signal_stop (EV_P_ ev_signal *w)
1770{ 2050{
1771 clear_pending (EV_A_ (W)w); 2051 clear_pending (EV_A_ (W)w);
1772 if (expect_false (!ev_is_active (w))) 2052 if (expect_false (!ev_is_active (w)))
1773 return; 2053 return;
1774 2054
1775 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2055 wlist_del (&signals [w->signum - 1].head, (WL)w);
1776 ev_stop (EV_A_ (W)w); 2056 ev_stop (EV_A_ (W)w);
1777 2057
1778 if (!signals [w->signum - 1].head) 2058 if (!signals [w->signum - 1].head)
1779 signal (w->signum, SIG_DFL); 2059 signal (w->signum, SIG_DFL);
1780} 2060}
1787#endif 2067#endif
1788 if (expect_false (ev_is_active (w))) 2068 if (expect_false (ev_is_active (w)))
1789 return; 2069 return;
1790 2070
1791 ev_start (EV_A_ (W)w, 1); 2071 ev_start (EV_A_ (W)w, 1);
1792 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2072 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1793} 2073}
1794 2074
1795void 2075void
1796ev_child_stop (EV_P_ ev_child *w) 2076ev_child_stop (EV_P_ ev_child *w)
1797{ 2077{
1798 clear_pending (EV_A_ (W)w); 2078 clear_pending (EV_A_ (W)w);
1799 if (expect_false (!ev_is_active (w))) 2079 if (expect_false (!ev_is_active (w)))
1800 return; 2080 return;
1801 2081
1802 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2082 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1803 ev_stop (EV_A_ (W)w); 2083 ev_stop (EV_A_ (W)w);
1804} 2084}
1805 2085
1806#if EV_STAT_ENABLE 2086#if EV_STAT_ENABLE
1807 2087
2149 2429
2150#if EV_EMBED_ENABLE 2430#if EV_EMBED_ENABLE
2151void noinline 2431void noinline
2152ev_embed_sweep (EV_P_ ev_embed *w) 2432ev_embed_sweep (EV_P_ ev_embed *w)
2153{ 2433{
2154 ev_loop (w->loop, EVLOOP_NONBLOCK); 2434 ev_loop (w->other, EVLOOP_NONBLOCK);
2155} 2435}
2156 2436
2157static void 2437static void
2158embed_cb (EV_P_ ev_io *io, int revents) 2438embed_io_cb (EV_P_ ev_io *io, int revents)
2159{ 2439{
2160 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2440 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2161 2441
2162 if (ev_cb (w)) 2442 if (ev_cb (w))
2163 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2443 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2164 else 2444 else
2165 ev_embed_sweep (loop, w); 2445 ev_loop (w->other, EVLOOP_NONBLOCK);
2166} 2446}
2447
2448static void
2449embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2450{
2451 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2452
2453 {
2454 struct ev_loop *loop = w->other;
2455
2456 while (fdchangecnt)
2457 {
2458 fd_reify (EV_A);
2459 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2460 }
2461 }
2462}
2463
2464#if 0
2465static void
2466embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2467{
2468 ev_idle_stop (EV_A_ idle);
2469}
2470#endif
2167 2471
2168void 2472void
2169ev_embed_start (EV_P_ ev_embed *w) 2473ev_embed_start (EV_P_ ev_embed *w)
2170{ 2474{
2171 if (expect_false (ev_is_active (w))) 2475 if (expect_false (ev_is_active (w)))
2172 return; 2476 return;
2173 2477
2174 { 2478 {
2175 struct ev_loop *loop = w->loop; 2479 struct ev_loop *loop = w->other;
2176 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2480 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2177 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2178 } 2482 }
2179 2483
2180 ev_set_priority (&w->io, ev_priority (w)); 2484 ev_set_priority (&w->io, ev_priority (w));
2181 ev_io_start (EV_A_ &w->io); 2485 ev_io_start (EV_A_ &w->io);
2182 2486
2487 ev_prepare_init (&w->prepare, embed_prepare_cb);
2488 ev_set_priority (&w->prepare, EV_MINPRI);
2489 ev_prepare_start (EV_A_ &w->prepare);
2490
2491 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2492
2183 ev_start (EV_A_ (W)w, 1); 2493 ev_start (EV_A_ (W)w, 1);
2184} 2494}
2185 2495
2186void 2496void
2187ev_embed_stop (EV_P_ ev_embed *w) 2497ev_embed_stop (EV_P_ ev_embed *w)
2189 clear_pending (EV_A_ (W)w); 2499 clear_pending (EV_A_ (W)w);
2190 if (expect_false (!ev_is_active (w))) 2500 if (expect_false (!ev_is_active (w)))
2191 return; 2501 return;
2192 2502
2193 ev_io_stop (EV_A_ &w->io); 2503 ev_io_stop (EV_A_ &w->io);
2504 ev_prepare_stop (EV_A_ &w->prepare);
2194 2505
2195 ev_stop (EV_A_ (W)w); 2506 ev_stop (EV_A_ (W)w);
2196} 2507}
2197#endif 2508#endif
2198 2509
2223 2534
2224 ev_stop (EV_A_ (W)w); 2535 ev_stop (EV_A_ (W)w);
2225} 2536}
2226#endif 2537#endif
2227 2538
2539#if EV_ASYNC_ENABLE
2540void
2541ev_async_start (EV_P_ ev_async *w)
2542{
2543 if (expect_false (ev_is_active (w)))
2544 return;
2545
2546 evpipe_init (EV_A);
2547
2548 ev_start (EV_A_ (W)w, ++asynccnt);
2549 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2550 asyncs [asynccnt - 1] = w;
2551}
2552
2553void
2554ev_async_stop (EV_P_ ev_async *w)
2555{
2556 clear_pending (EV_A_ (W)w);
2557 if (expect_false (!ev_is_active (w)))
2558 return;
2559
2560 {
2561 int active = ((W)w)->active;
2562 asyncs [active - 1] = asyncs [--asynccnt];
2563 ((W)asyncs [active - 1])->active = active;
2564 }
2565
2566 ev_stop (EV_A_ (W)w);
2567}
2568
2569void
2570ev_async_send (EV_P_ ev_async *w)
2571{
2572 w->sent = 1;
2573 evpipe_write (EV_A_ &gotasync);
2574}
2575#endif
2576
2228/*****************************************************************************/ 2577/*****************************************************************************/
2229 2578
2230struct ev_once 2579struct ev_once
2231{ 2580{
2232 ev_io io; 2581 ev_io io;
2287 ev_timer_set (&once->to, timeout, 0.); 2636 ev_timer_set (&once->to, timeout, 0.);
2288 ev_timer_start (EV_A_ &once->to); 2637 ev_timer_start (EV_A_ &once->to);
2289 } 2638 }
2290} 2639}
2291 2640
2641#if EV_MULTIPLICITY
2642 #include "ev_wrap.h"
2643#endif
2644
2292#ifdef __cplusplus 2645#ifdef __cplusplus
2293} 2646}
2294#endif 2647#endif
2295 2648

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines