ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.227 by root, Fri May 2 07:20:01 2008 UTC vs.
Revision 1.256 by root, Thu Jun 19 06:53:49 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 242# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 243# define EV_USE_EVENTFD 1
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
247#endif
248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 265#endif
239 266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
279} 306}
280# endif 307# endif
281#endif 308#endif
282 309
283/**/ 310/**/
311
312#if EV_VERIFY >= 3
313# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
314#else
315# define EV_FREQUENT_CHECK do { } while (0)
316#endif
284 317
285/* 318/*
286 * This is used to avoid floating point rounding problems. 319 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 320 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 321 * to ensure progress, time-wise, even when rounding
325 358
326typedef ev_watcher *W; 359typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 360typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 361typedef ev_watcher_time *WT;
329 362
363#define ev_active(w) ((W)(w))->active
364#define ev_at(w) ((WT)(w))->at
365
330#if EV_USE_MONOTONIC 366#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 367/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 368/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 369static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 370#endif
419 W w; 455 W w;
420 int events; 456 int events;
421} ANPENDING; 457} ANPENDING;
422 458
423#if EV_USE_INOTIFY 459#if EV_USE_INOTIFY
460/* hash table entry per inotify-id */
424typedef struct 461typedef struct
425{ 462{
426 WL head; 463 WL head;
427} ANFS; 464} ANFS;
465#endif
466
467/* Heap Entry */
468#if EV_HEAP_CACHE_AT
469 typedef struct {
470 ev_tstamp at;
471 WT w;
472 } ANHE;
473
474 #define ANHE_w(he) (he).w /* access watcher, read-write */
475 #define ANHE_at(he) (he).at /* access cached at, read-only */
476 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
477#else
478 typedef WT ANHE;
479
480 #define ANHE_w(he) (he)
481 #define ANHE_at(he) (he)->at
482 #define ANHE_at_cache(he)
428#endif 483#endif
429 484
430#if EV_MULTIPLICITY 485#if EV_MULTIPLICITY
431 486
432 struct ev_loop 487 struct ev_loop
517 } 572 }
518} 573}
519 574
520/*****************************************************************************/ 575/*****************************************************************************/
521 576
577#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
578
522int inline_size 579int inline_size
523array_nextsize (int elem, int cur, int cnt) 580array_nextsize (int elem, int cur, int cnt)
524{ 581{
525 int ncur = cur + 1; 582 int ncur = cur + 1;
526 583
527 do 584 do
528 ncur <<= 1; 585 ncur <<= 1;
529 while (cnt > ncur); 586 while (cnt > ncur);
530 587
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 588 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 589 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 590 {
534 ncur *= elem; 591 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 592 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 593 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 594 ncur /= elem;
538 } 595 }
539 596
540 return ncur; 597 return ncur;
651 events |= (unsigned char)w->events; 708 events |= (unsigned char)w->events;
652 709
653#if EV_SELECT_IS_WINSOCKET 710#if EV_SELECT_IS_WINSOCKET
654 if (events) 711 if (events)
655 { 712 {
656 unsigned long argp; 713 unsigned long arg;
657 #ifdef EV_FD_TO_WIN32_HANDLE 714 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 715 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else 716 #else
660 anfd->handle = _get_osfhandle (fd); 717 anfd->handle = _get_osfhandle (fd);
661 #endif 718 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 719 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
663 } 720 }
664#endif 721#endif
665 722
666 { 723 {
667 unsigned char o_events = anfd->events; 724 unsigned char o_events = anfd->events;
720{ 777{
721 int fd; 778 int fd;
722 779
723 for (fd = 0; fd < anfdmax; ++fd) 780 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 781 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 782 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 783 fd_kill (EV_A_ fd);
727} 784}
728 785
729/* called on ENOMEM in select/poll to kill some fds and retry */ 786/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 787static void noinline
754 } 811 }
755} 812}
756 813
757/*****************************************************************************/ 814/*****************************************************************************/
758 815
816/*
817 * the heap functions want a real array index. array index 0 uis guaranteed to not
818 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
819 * the branching factor of the d-tree.
820 */
821
822/*
823 * at the moment we allow libev the luxury of two heaps,
824 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
825 * which is more cache-efficient.
826 * the difference is about 5% with 50000+ watchers.
827 */
828#if EV_USE_4HEAP
829
830#define DHEAP 4
831#define HEAP0 (DHEAP - 1) /* index of first element in heap */
832#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
833#define UPHEAP_DONE(p,k) ((p) == (k))
834
835/* away from the root */
836void inline_speed
837downheap (ANHE *heap, int N, int k)
838{
839 ANHE he = heap [k];
840 ANHE *E = heap + N + HEAP0;
841
842 for (;;)
843 {
844 ev_tstamp minat;
845 ANHE *minpos;
846 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
847
848 /* find minimum child */
849 if (expect_true (pos + DHEAP - 1 < E))
850 {
851 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
854 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
855 }
856 else if (pos < E)
857 {
858 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
859 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
860 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
861 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
862 }
863 else
864 break;
865
866 if (ANHE_at (he) <= minat)
867 break;
868
869 heap [k] = *minpos;
870 ev_active (ANHE_w (*minpos)) = k;
871
872 k = minpos - heap;
873 }
874
875 heap [k] = he;
876 ev_active (ANHE_w (he)) = k;
877}
878
879#else /* 4HEAP */
880
881#define HEAP0 1
882#define HPARENT(k) ((k) >> 1)
883#define UPHEAP_DONE(p,k) (!(p))
884
885/* away from the root */
886void inline_speed
887downheap (ANHE *heap, int N, int k)
888{
889 ANHE he = heap [k];
890
891 for (;;)
892 {
893 int c = k << 1;
894
895 if (c > N + HEAP0 - 1)
896 break;
897
898 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
899 ? 1 : 0;
900
901 if (ANHE_at (he) <= ANHE_at (heap [c]))
902 break;
903
904 heap [k] = heap [c];
905 ev_active (ANHE_w (heap [k])) = k;
906
907 k = c;
908 }
909
910 heap [k] = he;
911 ev_active (ANHE_w (he)) = k;
912}
913#endif
914
759/* towards the root */ 915/* towards the root */
760void inline_speed 916void inline_speed
761upheap (WT *heap, int k) 917upheap (ANHE *heap, int k)
762{ 918{
763 WT w = heap [k]; 919 ANHE he = heap [k];
764 920
765 while (k) 921 for (;;)
766 { 922 {
767 int p = (k - 1) >> 1; 923 int p = HPARENT (k);
768 924
769 if (heap [p]->at <= w->at) 925 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
770 break; 926 break;
771 927
772 heap [k] = heap [p]; 928 heap [k] = heap [p];
773 ((W)heap [k])->active = k + 1; 929 ev_active (ANHE_w (heap [k])) = k;
774 k = p; 930 k = p;
775 } 931 }
776 932
777 heap [k] = w; 933 heap [k] = he;
778 ((W)heap [k])->active = k + 1; 934 ev_active (ANHE_w (he)) = k;
779}
780
781/* away from the root */
782void inline_speed
783downheap (WT *heap, int N, int k)
784{
785 WT w = heap [k];
786
787 for (;;)
788 {
789 int c = (k << 1) + 1;
790
791 if (c >= N)
792 break;
793
794 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
795 ? 1 : 0;
796
797 if (w->at <= heap [c]->at)
798 break;
799
800 heap [k] = heap [c];
801 ((W)heap [k])->active = k + 1;
802
803 k = c;
804 }
805
806 heap [k] = w;
807 ((W)heap [k])->active = k + 1;
808} 935}
809 936
810void inline_size 937void inline_size
811adjustheap (WT *heap, int N, int k) 938adjustheap (ANHE *heap, int N, int k)
812{ 939{
940 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
813 upheap (heap, k); 941 upheap (heap, k);
942 else
814 downheap (heap, N, k); 943 downheap (heap, N, k);
944}
945
946/* rebuild the heap: this function is used only once and executed rarely */
947void inline_size
948reheap (ANHE *heap, int N)
949{
950 int i;
951
952 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
953 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
954 for (i = 0; i < N; ++i)
955 upheap (heap, i + HEAP0);
815} 956}
816 957
817/*****************************************************************************/ 958/*****************************************************************************/
818 959
819typedef struct 960typedef struct
843 984
844void inline_speed 985void inline_speed
845fd_intern (int fd) 986fd_intern (int fd)
846{ 987{
847#ifdef _WIN32 988#ifdef _WIN32
848 int arg = 1; 989 unsigned long arg = 1;
849 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 990 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
850#else 991#else
851 fcntl (fd, F_SETFD, FD_CLOEXEC); 992 fcntl (fd, F_SETFD, FD_CLOEXEC);
852 fcntl (fd, F_SETFL, O_NONBLOCK); 993 fcntl (fd, F_SETFL, O_NONBLOCK);
853#endif 994#endif
908pipecb (EV_P_ ev_io *iow, int revents) 1049pipecb (EV_P_ ev_io *iow, int revents)
909{ 1050{
910#if EV_USE_EVENTFD 1051#if EV_USE_EVENTFD
911 if (evfd >= 0) 1052 if (evfd >= 0)
912 { 1053 {
913 uint64_t counter = 1; 1054 uint64_t counter;
914 read (evfd, &counter, sizeof (uint64_t)); 1055 read (evfd, &counter, sizeof (uint64_t));
915 } 1056 }
916 else 1057 else
917#endif 1058#endif
918 { 1059 {
1337 1478
1338 postfork = 0; 1479 postfork = 0;
1339} 1480}
1340 1481
1341#if EV_MULTIPLICITY 1482#if EV_MULTIPLICITY
1483
1342struct ev_loop * 1484struct ev_loop *
1343ev_loop_new (unsigned int flags) 1485ev_loop_new (unsigned int flags)
1344{ 1486{
1345 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1487 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1346 1488
1365ev_loop_fork (EV_P) 1507ev_loop_fork (EV_P)
1366{ 1508{
1367 postfork = 1; /* must be in line with ev_default_fork */ 1509 postfork = 1; /* must be in line with ev_default_fork */
1368} 1510}
1369 1511
1512#if EV_VERIFY
1513void noinline
1514verify_watcher (EV_P_ W w)
1515{
1516 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1517
1518 if (w->pending)
1519 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1520}
1521
1522static void noinline
1523verify_heap (EV_P_ ANHE *heap, int N)
1524{
1525 int i;
1526
1527 for (i = HEAP0; i < N + HEAP0; ++i)
1528 {
1529 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1530 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1531 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1532
1533 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1534 }
1535}
1536
1537static void noinline
1538array_verify (EV_P_ W *ws, int cnt)
1539{
1540 while (cnt--)
1541 {
1542 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1543 verify_watcher (EV_A_ ws [cnt]);
1544 }
1545}
1546#endif
1547
1548void
1549ev_loop_verify (EV_P)
1550{
1551#if EV_VERIFY
1552 int i;
1553 WL w;
1554
1555 assert (activecnt >= -1);
1556
1557 assert (fdchangemax >= fdchangecnt);
1558 for (i = 0; i < fdchangecnt; ++i)
1559 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1560
1561 assert (anfdmax >= 0);
1562 for (i = 0; i < anfdmax; ++i)
1563 for (w = anfds [i].head; w; w = w->next)
1564 {
1565 verify_watcher (EV_A_ (W)w);
1566 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1567 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1568 }
1569
1570 assert (timermax >= timercnt);
1571 verify_heap (EV_A_ timers, timercnt);
1572
1573#if EV_PERIODIC_ENABLE
1574 assert (periodicmax >= periodiccnt);
1575 verify_heap (EV_A_ periodics, periodiccnt);
1576#endif
1577
1578 for (i = NUMPRI; i--; )
1579 {
1580 assert (pendingmax [i] >= pendingcnt [i]);
1581#if EV_IDLE_ENABLE
1582 assert (idleall >= 0);
1583 assert (idlemax [i] >= idlecnt [i]);
1584 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1585#endif
1586 }
1587
1588#if EV_FORK_ENABLE
1589 assert (forkmax >= forkcnt);
1590 array_verify (EV_A_ (W *)forks, forkcnt);
1591#endif
1592
1593#if EV_ASYNC_ENABLE
1594 assert (asyncmax >= asynccnt);
1595 array_verify (EV_A_ (W *)asyncs, asynccnt);
1596#endif
1597
1598 assert (preparemax >= preparecnt);
1599 array_verify (EV_A_ (W *)prepares, preparecnt);
1600
1601 assert (checkmax >= checkcnt);
1602 array_verify (EV_A_ (W *)checks, checkcnt);
1603
1604# if 0
1605 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1606 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1370#endif 1607# endif
1608#endif
1609}
1610
1611#endif /* multiplicity */
1371 1612
1372#if EV_MULTIPLICITY 1613#if EV_MULTIPLICITY
1373struct ev_loop * 1614struct ev_loop *
1374ev_default_loop_init (unsigned int flags) 1615ev_default_loop_init (unsigned int flags)
1375#else 1616#else
1451 { 1692 {
1452 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1693 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1453 1694
1454 p->w->pending = 0; 1695 p->w->pending = 0;
1455 EV_CB_INVOKE (p->w, p->events); 1696 EV_CB_INVOKE (p->w, p->events);
1697 EV_FREQUENT_CHECK;
1456 } 1698 }
1457 } 1699 }
1458} 1700}
1459
1460void inline_size
1461timers_reify (EV_P)
1462{
1463 while (timercnt && ((WT)timers [0])->at <= mn_now)
1464 {
1465 ev_timer *w = (ev_timer *)timers [0];
1466
1467 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1468
1469 /* first reschedule or stop timer */
1470 if (w->repeat)
1471 {
1472 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1473
1474 ((WT)w)->at += w->repeat;
1475 if (((WT)w)->at < mn_now)
1476 ((WT)w)->at = mn_now;
1477
1478 downheap (timers, timercnt, 0);
1479 }
1480 else
1481 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1482
1483 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1484 }
1485}
1486
1487#if EV_PERIODIC_ENABLE
1488void inline_size
1489periodics_reify (EV_P)
1490{
1491 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1492 {
1493 ev_periodic *w = (ev_periodic *)periodics [0];
1494
1495 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1496
1497 /* first reschedule or stop timer */
1498 if (w->reschedule_cb)
1499 {
1500 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1501 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1502 downheap (periodics, periodiccnt, 0);
1503 }
1504 else if (w->interval)
1505 {
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1508 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1509 downheap (periodics, periodiccnt, 0);
1510 }
1511 else
1512 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1513
1514 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1515 }
1516}
1517
1518static void noinline
1519periodics_reschedule (EV_P)
1520{
1521 int i;
1522
1523 /* adjust periodics after time jump */
1524 for (i = 0; i < periodiccnt; ++i)
1525 {
1526 ev_periodic *w = (ev_periodic *)periodics [i];
1527
1528 if (w->reschedule_cb)
1529 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1530 else if (w->interval)
1531 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1532 }
1533
1534 /* now rebuild the heap */
1535 for (i = periodiccnt >> 1; i--; )
1536 downheap (periodics, periodiccnt, i);
1537}
1538#endif
1539 1701
1540#if EV_IDLE_ENABLE 1702#if EV_IDLE_ENABLE
1541void inline_size 1703void inline_size
1542idle_reify (EV_P) 1704idle_reify (EV_P)
1543{ 1705{
1555 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1717 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1556 break; 1718 break;
1557 } 1719 }
1558 } 1720 }
1559 } 1721 }
1722}
1723#endif
1724
1725void inline_size
1726timers_reify (EV_P)
1727{
1728 EV_FREQUENT_CHECK;
1729
1730 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1731 {
1732 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1733
1734 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1735
1736 /* first reschedule or stop timer */
1737 if (w->repeat)
1738 {
1739 ev_at (w) += w->repeat;
1740 if (ev_at (w) < mn_now)
1741 ev_at (w) = mn_now;
1742
1743 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1744
1745 ANHE_at_cache (timers [HEAP0]);
1746 downheap (timers, timercnt, HEAP0);
1747 }
1748 else
1749 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1750
1751 EV_FREQUENT_CHECK;
1752 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1753 }
1754}
1755
1756#if EV_PERIODIC_ENABLE
1757void inline_size
1758periodics_reify (EV_P)
1759{
1760 EV_FREQUENT_CHECK;
1761
1762 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1763 {
1764 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1765
1766 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1767
1768 /* first reschedule or stop timer */
1769 if (w->reschedule_cb)
1770 {
1771 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1772
1773 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1774
1775 ANHE_at_cache (periodics [HEAP0]);
1776 downheap (periodics, periodiccnt, HEAP0);
1777 }
1778 else if (w->interval)
1779 {
1780 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1781 /* if next trigger time is not sufficiently in the future, put it there */
1782 /* this might happen because of floating point inexactness */
1783 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1784 {
1785 ev_at (w) += w->interval;
1786
1787 /* if interval is unreasonably low we might still have a time in the past */
1788 /* so correct this. this will make the periodic very inexact, but the user */
1789 /* has effectively asked to get triggered more often than possible */
1790 if (ev_at (w) < ev_rt_now)
1791 ev_at (w) = ev_rt_now;
1792 }
1793
1794 ANHE_at_cache (periodics [HEAP0]);
1795 downheap (periodics, periodiccnt, HEAP0);
1796 }
1797 else
1798 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1799
1800 EV_FREQUENT_CHECK;
1801 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1802 }
1803}
1804
1805static void noinline
1806periodics_reschedule (EV_P)
1807{
1808 int i;
1809
1810 /* adjust periodics after time jump */
1811 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1812 {
1813 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1814
1815 if (w->reschedule_cb)
1816 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1817 else if (w->interval)
1818 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1819
1820 ANHE_at_cache (periodics [i]);
1821 }
1822
1823 reheap (periodics, periodiccnt);
1560} 1824}
1561#endif 1825#endif
1562 1826
1563void inline_speed 1827void inline_speed
1564time_update (EV_P_ ev_tstamp max_block) 1828time_update (EV_P_ ev_tstamp max_block)
1593 */ 1857 */
1594 for (i = 4; --i; ) 1858 for (i = 4; --i; )
1595 { 1859 {
1596 rtmn_diff = ev_rt_now - mn_now; 1860 rtmn_diff = ev_rt_now - mn_now;
1597 1861
1598 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1862 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1599 return; /* all is well */ 1863 return; /* all is well */
1600 1864
1601 ev_rt_now = ev_time (); 1865 ev_rt_now = ev_time ();
1602 mn_now = get_clock (); 1866 mn_now = get_clock ();
1603 now_floor = mn_now; 1867 now_floor = mn_now;
1619#if EV_PERIODIC_ENABLE 1883#if EV_PERIODIC_ENABLE
1620 periodics_reschedule (EV_A); 1884 periodics_reschedule (EV_A);
1621#endif 1885#endif
1622 /* adjust timers. this is easy, as the offset is the same for all of them */ 1886 /* adjust timers. this is easy, as the offset is the same for all of them */
1623 for (i = 0; i < timercnt; ++i) 1887 for (i = 0; i < timercnt; ++i)
1888 {
1889 ANHE *he = timers + i + HEAP0;
1624 ((WT)timers [i])->at += ev_rt_now - mn_now; 1890 ANHE_w (*he)->at += ev_rt_now - mn_now;
1891 ANHE_at_cache (*he);
1892 }
1625 } 1893 }
1626 1894
1627 mn_now = ev_rt_now; 1895 mn_now = ev_rt_now;
1628 } 1896 }
1629} 1897}
1649 1917
1650 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1651 1919
1652 do 1920 do
1653 { 1921 {
1922#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A);
1924#endif
1925
1654#ifndef _WIN32 1926#ifndef _WIN32
1655 if (expect_false (curpid)) /* penalise the forking check even more */ 1927 if (expect_false (curpid)) /* penalise the forking check even more */
1656 if (expect_false (getpid () != curpid)) 1928 if (expect_false (getpid () != curpid))
1657 { 1929 {
1658 curpid = getpid (); 1930 curpid = getpid ();
1699 1971
1700 waittime = MAX_BLOCKTIME; 1972 waittime = MAX_BLOCKTIME;
1701 1973
1702 if (timercnt) 1974 if (timercnt)
1703 { 1975 {
1704 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1705 if (waittime > to) waittime = to; 1977 if (waittime > to) waittime = to;
1706 } 1978 }
1707 1979
1708#if EV_PERIODIC_ENABLE 1980#if EV_PERIODIC_ENABLE
1709 if (periodiccnt) 1981 if (periodiccnt)
1710 { 1982 {
1711 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1712 if (waittime > to) waittime = to; 1984 if (waittime > to) waittime = to;
1713 } 1985 }
1714#endif 1986#endif
1715 1987
1716 if (expect_false (waittime < timeout_blocktime)) 1988 if (expect_false (waittime < timeout_blocktime))
1853 if (expect_false (ev_is_active (w))) 2125 if (expect_false (ev_is_active (w)))
1854 return; 2126 return;
1855 2127
1856 assert (("ev_io_start called with negative fd", fd >= 0)); 2128 assert (("ev_io_start called with negative fd", fd >= 0));
1857 2129
2130 EV_FREQUENT_CHECK;
2131
1858 ev_start (EV_A_ (W)w, 1); 2132 ev_start (EV_A_ (W)w, 1);
1859 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2133 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1860 wlist_add (&anfds[fd].head, (WL)w); 2134 wlist_add (&anfds[fd].head, (WL)w);
1861 2135
1862 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2136 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1863 w->events &= ~EV_IOFDSET; 2137 w->events &= ~EV_IOFDSET;
2138
2139 EV_FREQUENT_CHECK;
1864} 2140}
1865 2141
1866void noinline 2142void noinline
1867ev_io_stop (EV_P_ ev_io *w) 2143ev_io_stop (EV_P_ ev_io *w)
1868{ 2144{
1869 clear_pending (EV_A_ (W)w); 2145 clear_pending (EV_A_ (W)w);
1870 if (expect_false (!ev_is_active (w))) 2146 if (expect_false (!ev_is_active (w)))
1871 return; 2147 return;
1872 2148
1873 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2149 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2150
2151 EV_FREQUENT_CHECK;
1874 2152
1875 wlist_del (&anfds[w->fd].head, (WL)w); 2153 wlist_del (&anfds[w->fd].head, (WL)w);
1876 ev_stop (EV_A_ (W)w); 2154 ev_stop (EV_A_ (W)w);
1877 2155
1878 fd_change (EV_A_ w->fd, 1); 2156 fd_change (EV_A_ w->fd, 1);
2157
2158 EV_FREQUENT_CHECK;
1879} 2159}
1880 2160
1881void noinline 2161void noinline
1882ev_timer_start (EV_P_ ev_timer *w) 2162ev_timer_start (EV_P_ ev_timer *w)
1883{ 2163{
1884 if (expect_false (ev_is_active (w))) 2164 if (expect_false (ev_is_active (w)))
1885 return; 2165 return;
1886 2166
1887 ((WT)w)->at += mn_now; 2167 ev_at (w) += mn_now;
1888 2168
1889 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2169 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1890 2170
2171 EV_FREQUENT_CHECK;
2172
2173 ++timercnt;
1891 ev_start (EV_A_ (W)w, ++timercnt); 2174 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1892 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2175 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1893 timers [timercnt - 1] = (WT)w; 2176 ANHE_w (timers [ev_active (w)]) = (WT)w;
1894 upheap (timers, timercnt - 1); 2177 ANHE_at_cache (timers [ev_active (w)]);
2178 upheap (timers, ev_active (w));
1895 2179
2180 EV_FREQUENT_CHECK;
2181
1896 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2182 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1897} 2183}
1898 2184
1899void noinline 2185void noinline
1900ev_timer_stop (EV_P_ ev_timer *w) 2186ev_timer_stop (EV_P_ ev_timer *w)
1901{ 2187{
1902 clear_pending (EV_A_ (W)w); 2188 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2189 if (expect_false (!ev_is_active (w)))
1904 return; 2190 return;
1905 2191
1906 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2192 EV_FREQUENT_CHECK;
1907 2193
1908 { 2194 {
1909 int active = ((W)w)->active; 2195 int active = ev_active (w);
1910 2196
2197 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2198
2199 --timercnt;
2200
1911 if (expect_true (--active < --timercnt)) 2201 if (expect_true (active < timercnt + HEAP0))
1912 { 2202 {
1913 timers [active] = timers [timercnt]; 2203 timers [active] = timers [timercnt + HEAP0];
1914 adjustheap (timers, timercnt, active); 2204 adjustheap (timers, timercnt, active);
1915 } 2205 }
1916 } 2206 }
1917 2207
1918 ((WT)w)->at -= mn_now; 2208 EV_FREQUENT_CHECK;
2209
2210 ev_at (w) -= mn_now;
1919 2211
1920 ev_stop (EV_A_ (W)w); 2212 ev_stop (EV_A_ (W)w);
1921} 2213}
1922 2214
1923void noinline 2215void noinline
1924ev_timer_again (EV_P_ ev_timer *w) 2216ev_timer_again (EV_P_ ev_timer *w)
1925{ 2217{
2218 EV_FREQUENT_CHECK;
2219
1926 if (ev_is_active (w)) 2220 if (ev_is_active (w))
1927 { 2221 {
1928 if (w->repeat) 2222 if (w->repeat)
1929 { 2223 {
1930 ((WT)w)->at = mn_now + w->repeat; 2224 ev_at (w) = mn_now + w->repeat;
2225 ANHE_at_cache (timers [ev_active (w)]);
1931 adjustheap (timers, timercnt, ((W)w)->active - 1); 2226 adjustheap (timers, timercnt, ev_active (w));
1932 } 2227 }
1933 else 2228 else
1934 ev_timer_stop (EV_A_ w); 2229 ev_timer_stop (EV_A_ w);
1935 } 2230 }
1936 else if (w->repeat) 2231 else if (w->repeat)
1937 { 2232 {
1938 w->at = w->repeat; 2233 ev_at (w) = w->repeat;
1939 ev_timer_start (EV_A_ w); 2234 ev_timer_start (EV_A_ w);
1940 } 2235 }
2236
2237 EV_FREQUENT_CHECK;
1941} 2238}
1942 2239
1943#if EV_PERIODIC_ENABLE 2240#if EV_PERIODIC_ENABLE
1944void noinline 2241void noinline
1945ev_periodic_start (EV_P_ ev_periodic *w) 2242ev_periodic_start (EV_P_ ev_periodic *w)
1946{ 2243{
1947 if (expect_false (ev_is_active (w))) 2244 if (expect_false (ev_is_active (w)))
1948 return; 2245 return;
1949 2246
1950 if (w->reschedule_cb) 2247 if (w->reschedule_cb)
1951 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2248 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1952 else if (w->interval) 2249 else if (w->interval)
1953 { 2250 {
1954 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2251 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1955 /* this formula differs from the one in periodic_reify because we do not always round up */ 2252 /* this formula differs from the one in periodic_reify because we do not always round up */
1956 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2253 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 } 2254 }
1958 else 2255 else
1959 ((WT)w)->at = w->offset; 2256 ev_at (w) = w->offset;
1960 2257
2258 EV_FREQUENT_CHECK;
2259
2260 ++periodiccnt;
1961 ev_start (EV_A_ (W)w, ++periodiccnt); 2261 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1962 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2262 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1963 periodics [periodiccnt - 1] = (WT)w; 2263 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1964 upheap (periodics, periodiccnt - 1); 2264 ANHE_at_cache (periodics [ev_active (w)]);
2265 upheap (periodics, ev_active (w));
1965 2266
2267 EV_FREQUENT_CHECK;
2268
1966 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2269 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1967} 2270}
1968 2271
1969void noinline 2272void noinline
1970ev_periodic_stop (EV_P_ ev_periodic *w) 2273ev_periodic_stop (EV_P_ ev_periodic *w)
1971{ 2274{
1972 clear_pending (EV_A_ (W)w); 2275 clear_pending (EV_A_ (W)w);
1973 if (expect_false (!ev_is_active (w))) 2276 if (expect_false (!ev_is_active (w)))
1974 return; 2277 return;
1975 2278
1976 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2279 EV_FREQUENT_CHECK;
1977 2280
1978 { 2281 {
1979 int active = ((W)w)->active; 2282 int active = ev_active (w);
1980 2283
2284 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2285
2286 --periodiccnt;
2287
1981 if (expect_true (--active < --periodiccnt)) 2288 if (expect_true (active < periodiccnt + HEAP0))
1982 { 2289 {
1983 periodics [active] = periodics [periodiccnt]; 2290 periodics [active] = periodics [periodiccnt + HEAP0];
1984 adjustheap (periodics, periodiccnt, active); 2291 adjustheap (periodics, periodiccnt, active);
1985 } 2292 }
1986 } 2293 }
1987 2294
2295 EV_FREQUENT_CHECK;
2296
1988 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
1989} 2298}
1990 2299
1991void noinline 2300void noinline
1992ev_periodic_again (EV_P_ ev_periodic *w) 2301ev_periodic_again (EV_P_ ev_periodic *w)
2011 return; 2320 return;
2012 2321
2013 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2322 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2014 2323
2015 evpipe_init (EV_A); 2324 evpipe_init (EV_A);
2325
2326 EV_FREQUENT_CHECK;
2016 2327
2017 { 2328 {
2018#ifndef _WIN32 2329#ifndef _WIN32
2019 sigset_t full, prev; 2330 sigset_t full, prev;
2020 sigfillset (&full); 2331 sigfillset (&full);
2041 sigfillset (&sa.sa_mask); 2352 sigfillset (&sa.sa_mask);
2042 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2353 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2043 sigaction (w->signum, &sa, 0); 2354 sigaction (w->signum, &sa, 0);
2044#endif 2355#endif
2045 } 2356 }
2357
2358 EV_FREQUENT_CHECK;
2046} 2359}
2047 2360
2048void noinline 2361void noinline
2049ev_signal_stop (EV_P_ ev_signal *w) 2362ev_signal_stop (EV_P_ ev_signal *w)
2050{ 2363{
2051 clear_pending (EV_A_ (W)w); 2364 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2365 if (expect_false (!ev_is_active (w)))
2053 return; 2366 return;
2054 2367
2368 EV_FREQUENT_CHECK;
2369
2055 wlist_del (&signals [w->signum - 1].head, (WL)w); 2370 wlist_del (&signals [w->signum - 1].head, (WL)w);
2056 ev_stop (EV_A_ (W)w); 2371 ev_stop (EV_A_ (W)w);
2057 2372
2058 if (!signals [w->signum - 1].head) 2373 if (!signals [w->signum - 1].head)
2059 signal (w->signum, SIG_DFL); 2374 signal (w->signum, SIG_DFL);
2375
2376 EV_FREQUENT_CHECK;
2060} 2377}
2061 2378
2062void 2379void
2063ev_child_start (EV_P_ ev_child *w) 2380ev_child_start (EV_P_ ev_child *w)
2064{ 2381{
2066 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2383 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2067#endif 2384#endif
2068 if (expect_false (ev_is_active (w))) 2385 if (expect_false (ev_is_active (w)))
2069 return; 2386 return;
2070 2387
2388 EV_FREQUENT_CHECK;
2389
2071 ev_start (EV_A_ (W)w, 1); 2390 ev_start (EV_A_ (W)w, 1);
2072 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2391 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2392
2393 EV_FREQUENT_CHECK;
2073} 2394}
2074 2395
2075void 2396void
2076ev_child_stop (EV_P_ ev_child *w) 2397ev_child_stop (EV_P_ ev_child *w)
2077{ 2398{
2078 clear_pending (EV_A_ (W)w); 2399 clear_pending (EV_A_ (W)w);
2079 if (expect_false (!ev_is_active (w))) 2400 if (expect_false (!ev_is_active (w)))
2080 return; 2401 return;
2081 2402
2403 EV_FREQUENT_CHECK;
2404
2082 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2405 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2083 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
2407
2408 EV_FREQUENT_CHECK;
2084} 2409}
2085 2410
2086#if EV_STAT_ENABLE 2411#if EV_STAT_ENABLE
2087 2412
2088# ifdef _WIN32 2413# ifdef _WIN32
2106 if (w->wd < 0) 2431 if (w->wd < 0)
2107 { 2432 {
2108 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2433 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2109 2434
2110 /* monitor some parent directory for speedup hints */ 2435 /* monitor some parent directory for speedup hints */
2436 /* note that exceeding the hardcoded limit is not a correctness issue, */
2437 /* but an efficiency issue only */
2111 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2438 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2112 { 2439 {
2113 char path [4096]; 2440 char path [4096];
2114 strcpy (path, w->path); 2441 strcpy (path, w->path);
2115 2442
2241 } 2568 }
2242 2569
2243 } 2570 }
2244} 2571}
2245 2572
2573#endif
2574
2575#ifdef _WIN32
2576# define EV_LSTAT(p,b) _stati64 (p, b)
2577#else
2578# define EV_LSTAT(p,b) lstat (p, b)
2246#endif 2579#endif
2247 2580
2248void 2581void
2249ev_stat_stat (EV_P_ ev_stat *w) 2582ev_stat_stat (EV_P_ ev_stat *w)
2250{ 2583{
2314 else 2647 else
2315#endif 2648#endif
2316 ev_timer_start (EV_A_ &w->timer); 2649 ev_timer_start (EV_A_ &w->timer);
2317 2650
2318 ev_start (EV_A_ (W)w, 1); 2651 ev_start (EV_A_ (W)w, 1);
2652
2653 EV_FREQUENT_CHECK;
2319} 2654}
2320 2655
2321void 2656void
2322ev_stat_stop (EV_P_ ev_stat *w) 2657ev_stat_stop (EV_P_ ev_stat *w)
2323{ 2658{
2324 clear_pending (EV_A_ (W)w); 2659 clear_pending (EV_A_ (W)w);
2325 if (expect_false (!ev_is_active (w))) 2660 if (expect_false (!ev_is_active (w)))
2326 return; 2661 return;
2327 2662
2663 EV_FREQUENT_CHECK;
2664
2328#if EV_USE_INOTIFY 2665#if EV_USE_INOTIFY
2329 infy_del (EV_A_ w); 2666 infy_del (EV_A_ w);
2330#endif 2667#endif
2331 ev_timer_stop (EV_A_ &w->timer); 2668 ev_timer_stop (EV_A_ &w->timer);
2332 2669
2333 ev_stop (EV_A_ (W)w); 2670 ev_stop (EV_A_ (W)w);
2671
2672 EV_FREQUENT_CHECK;
2334} 2673}
2335#endif 2674#endif
2336 2675
2337#if EV_IDLE_ENABLE 2676#if EV_IDLE_ENABLE
2338void 2677void
2340{ 2679{
2341 if (expect_false (ev_is_active (w))) 2680 if (expect_false (ev_is_active (w)))
2342 return; 2681 return;
2343 2682
2344 pri_adjust (EV_A_ (W)w); 2683 pri_adjust (EV_A_ (W)w);
2684
2685 EV_FREQUENT_CHECK;
2345 2686
2346 { 2687 {
2347 int active = ++idlecnt [ABSPRI (w)]; 2688 int active = ++idlecnt [ABSPRI (w)];
2348 2689
2349 ++idleall; 2690 ++idleall;
2350 ev_start (EV_A_ (W)w, active); 2691 ev_start (EV_A_ (W)w, active);
2351 2692
2352 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2693 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2353 idles [ABSPRI (w)][active - 1] = w; 2694 idles [ABSPRI (w)][active - 1] = w;
2354 } 2695 }
2696
2697 EV_FREQUENT_CHECK;
2355} 2698}
2356 2699
2357void 2700void
2358ev_idle_stop (EV_P_ ev_idle *w) 2701ev_idle_stop (EV_P_ ev_idle *w)
2359{ 2702{
2360 clear_pending (EV_A_ (W)w); 2703 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 2704 if (expect_false (!ev_is_active (w)))
2362 return; 2705 return;
2363 2706
2707 EV_FREQUENT_CHECK;
2708
2364 { 2709 {
2365 int active = ((W)w)->active; 2710 int active = ev_active (w);
2366 2711
2367 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2712 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2368 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2713 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2369 2714
2370 ev_stop (EV_A_ (W)w); 2715 ev_stop (EV_A_ (W)w);
2371 --idleall; 2716 --idleall;
2372 } 2717 }
2718
2719 EV_FREQUENT_CHECK;
2373} 2720}
2374#endif 2721#endif
2375 2722
2376void 2723void
2377ev_prepare_start (EV_P_ ev_prepare *w) 2724ev_prepare_start (EV_P_ ev_prepare *w)
2378{ 2725{
2379 if (expect_false (ev_is_active (w))) 2726 if (expect_false (ev_is_active (w)))
2380 return; 2727 return;
2728
2729 EV_FREQUENT_CHECK;
2381 2730
2382 ev_start (EV_A_ (W)w, ++preparecnt); 2731 ev_start (EV_A_ (W)w, ++preparecnt);
2383 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2732 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2384 prepares [preparecnt - 1] = w; 2733 prepares [preparecnt - 1] = w;
2734
2735 EV_FREQUENT_CHECK;
2385} 2736}
2386 2737
2387void 2738void
2388ev_prepare_stop (EV_P_ ev_prepare *w) 2739ev_prepare_stop (EV_P_ ev_prepare *w)
2389{ 2740{
2390 clear_pending (EV_A_ (W)w); 2741 clear_pending (EV_A_ (W)w);
2391 if (expect_false (!ev_is_active (w))) 2742 if (expect_false (!ev_is_active (w)))
2392 return; 2743 return;
2393 2744
2745 EV_FREQUENT_CHECK;
2746
2394 { 2747 {
2395 int active = ((W)w)->active; 2748 int active = ev_active (w);
2749
2396 prepares [active - 1] = prepares [--preparecnt]; 2750 prepares [active - 1] = prepares [--preparecnt];
2397 ((W)prepares [active - 1])->active = active; 2751 ev_active (prepares [active - 1]) = active;
2398 } 2752 }
2399 2753
2400 ev_stop (EV_A_ (W)w); 2754 ev_stop (EV_A_ (W)w);
2755
2756 EV_FREQUENT_CHECK;
2401} 2757}
2402 2758
2403void 2759void
2404ev_check_start (EV_P_ ev_check *w) 2760ev_check_start (EV_P_ ev_check *w)
2405{ 2761{
2406 if (expect_false (ev_is_active (w))) 2762 if (expect_false (ev_is_active (w)))
2407 return; 2763 return;
2764
2765 EV_FREQUENT_CHECK;
2408 2766
2409 ev_start (EV_A_ (W)w, ++checkcnt); 2767 ev_start (EV_A_ (W)w, ++checkcnt);
2410 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2768 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2411 checks [checkcnt - 1] = w; 2769 checks [checkcnt - 1] = w;
2770
2771 EV_FREQUENT_CHECK;
2412} 2772}
2413 2773
2414void 2774void
2415ev_check_stop (EV_P_ ev_check *w) 2775ev_check_stop (EV_P_ ev_check *w)
2416{ 2776{
2417 clear_pending (EV_A_ (W)w); 2777 clear_pending (EV_A_ (W)w);
2418 if (expect_false (!ev_is_active (w))) 2778 if (expect_false (!ev_is_active (w)))
2419 return; 2779 return;
2420 2780
2781 EV_FREQUENT_CHECK;
2782
2421 { 2783 {
2422 int active = ((W)w)->active; 2784 int active = ev_active (w);
2785
2423 checks [active - 1] = checks [--checkcnt]; 2786 checks [active - 1] = checks [--checkcnt];
2424 ((W)checks [active - 1])->active = active; 2787 ev_active (checks [active - 1]) = active;
2425 } 2788 }
2426 2789
2427 ev_stop (EV_A_ (W)w); 2790 ev_stop (EV_A_ (W)w);
2791
2792 EV_FREQUENT_CHECK;
2428} 2793}
2429 2794
2430#if EV_EMBED_ENABLE 2795#if EV_EMBED_ENABLE
2431void noinline 2796void noinline
2432ev_embed_sweep (EV_P_ ev_embed *w) 2797ev_embed_sweep (EV_P_ ev_embed *w)
2479 struct ev_loop *loop = w->other; 2844 struct ev_loop *loop = w->other;
2480 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2845 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2846 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2482 } 2847 }
2483 2848
2849 EV_FREQUENT_CHECK;
2850
2484 ev_set_priority (&w->io, ev_priority (w)); 2851 ev_set_priority (&w->io, ev_priority (w));
2485 ev_io_start (EV_A_ &w->io); 2852 ev_io_start (EV_A_ &w->io);
2486 2853
2487 ev_prepare_init (&w->prepare, embed_prepare_cb); 2854 ev_prepare_init (&w->prepare, embed_prepare_cb);
2488 ev_set_priority (&w->prepare, EV_MINPRI); 2855 ev_set_priority (&w->prepare, EV_MINPRI);
2489 ev_prepare_start (EV_A_ &w->prepare); 2856 ev_prepare_start (EV_A_ &w->prepare);
2490 2857
2491 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2858 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2492 2859
2493 ev_start (EV_A_ (W)w, 1); 2860 ev_start (EV_A_ (W)w, 1);
2861
2862 EV_FREQUENT_CHECK;
2494} 2863}
2495 2864
2496void 2865void
2497ev_embed_stop (EV_P_ ev_embed *w) 2866ev_embed_stop (EV_P_ ev_embed *w)
2498{ 2867{
2499 clear_pending (EV_A_ (W)w); 2868 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 2869 if (expect_false (!ev_is_active (w)))
2501 return; 2870 return;
2502 2871
2872 EV_FREQUENT_CHECK;
2873
2503 ev_io_stop (EV_A_ &w->io); 2874 ev_io_stop (EV_A_ &w->io);
2504 ev_prepare_stop (EV_A_ &w->prepare); 2875 ev_prepare_stop (EV_A_ &w->prepare);
2505 2876
2506 ev_stop (EV_A_ (W)w); 2877 ev_stop (EV_A_ (W)w);
2878
2879 EV_FREQUENT_CHECK;
2507} 2880}
2508#endif 2881#endif
2509 2882
2510#if EV_FORK_ENABLE 2883#if EV_FORK_ENABLE
2511void 2884void
2512ev_fork_start (EV_P_ ev_fork *w) 2885ev_fork_start (EV_P_ ev_fork *w)
2513{ 2886{
2514 if (expect_false (ev_is_active (w))) 2887 if (expect_false (ev_is_active (w)))
2515 return; 2888 return;
2889
2890 EV_FREQUENT_CHECK;
2516 2891
2517 ev_start (EV_A_ (W)w, ++forkcnt); 2892 ev_start (EV_A_ (W)w, ++forkcnt);
2518 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2893 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2519 forks [forkcnt - 1] = w; 2894 forks [forkcnt - 1] = w;
2895
2896 EV_FREQUENT_CHECK;
2520} 2897}
2521 2898
2522void 2899void
2523ev_fork_stop (EV_P_ ev_fork *w) 2900ev_fork_stop (EV_P_ ev_fork *w)
2524{ 2901{
2525 clear_pending (EV_A_ (W)w); 2902 clear_pending (EV_A_ (W)w);
2526 if (expect_false (!ev_is_active (w))) 2903 if (expect_false (!ev_is_active (w)))
2527 return; 2904 return;
2528 2905
2906 EV_FREQUENT_CHECK;
2907
2529 { 2908 {
2530 int active = ((W)w)->active; 2909 int active = ev_active (w);
2910
2531 forks [active - 1] = forks [--forkcnt]; 2911 forks [active - 1] = forks [--forkcnt];
2532 ((W)forks [active - 1])->active = active; 2912 ev_active (forks [active - 1]) = active;
2533 } 2913 }
2534 2914
2535 ev_stop (EV_A_ (W)w); 2915 ev_stop (EV_A_ (W)w);
2916
2917 EV_FREQUENT_CHECK;
2536} 2918}
2537#endif 2919#endif
2538 2920
2539#if EV_ASYNC_ENABLE 2921#if EV_ASYNC_ENABLE
2540void 2922void
2542{ 2924{
2543 if (expect_false (ev_is_active (w))) 2925 if (expect_false (ev_is_active (w)))
2544 return; 2926 return;
2545 2927
2546 evpipe_init (EV_A); 2928 evpipe_init (EV_A);
2929
2930 EV_FREQUENT_CHECK;
2547 2931
2548 ev_start (EV_A_ (W)w, ++asynccnt); 2932 ev_start (EV_A_ (W)w, ++asynccnt);
2549 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2933 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2550 asyncs [asynccnt - 1] = w; 2934 asyncs [asynccnt - 1] = w;
2935
2936 EV_FREQUENT_CHECK;
2551} 2937}
2552 2938
2553void 2939void
2554ev_async_stop (EV_P_ ev_async *w) 2940ev_async_stop (EV_P_ ev_async *w)
2555{ 2941{
2556 clear_pending (EV_A_ (W)w); 2942 clear_pending (EV_A_ (W)w);
2557 if (expect_false (!ev_is_active (w))) 2943 if (expect_false (!ev_is_active (w)))
2558 return; 2944 return;
2559 2945
2946 EV_FREQUENT_CHECK;
2947
2560 { 2948 {
2561 int active = ((W)w)->active; 2949 int active = ev_active (w);
2950
2562 asyncs [active - 1] = asyncs [--asynccnt]; 2951 asyncs [active - 1] = asyncs [--asynccnt];
2563 ((W)asyncs [active - 1])->active = active; 2952 ev_active (asyncs [active - 1]) = active;
2564 } 2953 }
2565 2954
2566 ev_stop (EV_A_ (W)w); 2955 ev_stop (EV_A_ (W)w);
2956
2957 EV_FREQUENT_CHECK;
2567} 2958}
2568 2959
2569void 2960void
2570ev_async_send (EV_P_ ev_async *w) 2961ev_async_send (EV_P_ ev_async *w)
2571{ 2962{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines