ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.227 by root, Fri May 2 07:20:01 2008 UTC vs.
Revision 1.264 by root, Mon Oct 13 23:20:12 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
238#endif 247#endif
239 248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 286# include <sys/select.h>
260# endif 287# endif
261#endif 288#endif
262 289
263#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
264# include <sys/inotify.h> 292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
265#endif 298#endif
266 299
267#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 301# include <winsock.h>
269#endif 302#endif
279} 312}
280# endif 313# endif
281#endif 314#endif
282 315
283/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
284 323
285/* 324/*
286 * This is used to avoid floating point rounding problems. 325 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 326 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 327 * to ensure progress, time-wise, even when rounding
325 364
326typedef ev_watcher *W; 365typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
329 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
330#if EV_USE_MONOTONIC 372#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 374/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 376#endif
419 W w; 461 W w;
420 int events; 462 int events;
421} ANPENDING; 463} ANPENDING;
422 464
423#if EV_USE_INOTIFY 465#if EV_USE_INOTIFY
466/* hash table entry per inotify-id */
424typedef struct 467typedef struct
425{ 468{
426 WL head; 469 WL head;
427} ANFS; 470} ANFS;
471#endif
472
473/* Heap Entry */
474#if EV_HEAP_CACHE_AT
475 typedef struct {
476 ev_tstamp at;
477 WT w;
478 } ANHE;
479
480 #define ANHE_w(he) (he).w /* access watcher, read-write */
481 #define ANHE_at(he) (he).at /* access cached at, read-only */
482 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
483#else
484 typedef WT ANHE;
485
486 #define ANHE_w(he) (he)
487 #define ANHE_at(he) (he)->at
488 #define ANHE_at_cache(he)
428#endif 489#endif
429 490
430#if EV_MULTIPLICITY 491#if EV_MULTIPLICITY
431 492
432 struct ev_loop 493 struct ev_loop
510 struct timeval tv; 571 struct timeval tv;
511 572
512 tv.tv_sec = (time_t)delay; 573 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 574 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514 575
576 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
577 /* somehting nto guaranteed by newer posix versions, but guaranteed */
578 /* by older ones */
515 select (0, 0, 0, 0, &tv); 579 select (0, 0, 0, 0, &tv);
516#endif 580#endif
517 } 581 }
518} 582}
519 583
520/*****************************************************************************/ 584/*****************************************************************************/
585
586#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
521 587
522int inline_size 588int inline_size
523array_nextsize (int elem, int cur, int cnt) 589array_nextsize (int elem, int cur, int cnt)
524{ 590{
525 int ncur = cur + 1; 591 int ncur = cur + 1;
526 592
527 do 593 do
528 ncur <<= 1; 594 ncur <<= 1;
529 while (cnt > ncur); 595 while (cnt > ncur);
530 596
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 597 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 598 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 599 {
534 ncur *= elem; 600 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 601 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 602 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 603 ncur /= elem;
538 } 604 }
539 605
540 return ncur; 606 return ncur;
651 events |= (unsigned char)w->events; 717 events |= (unsigned char)w->events;
652 718
653#if EV_SELECT_IS_WINSOCKET 719#if EV_SELECT_IS_WINSOCKET
654 if (events) 720 if (events)
655 { 721 {
656 unsigned long argp; 722 unsigned long arg;
657 #ifdef EV_FD_TO_WIN32_HANDLE 723 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 724 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else 725 #else
660 anfd->handle = _get_osfhandle (fd); 726 anfd->handle = _get_osfhandle (fd);
661 #endif 727 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 728 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
663 } 729 }
664#endif 730#endif
665 731
666 { 732 {
667 unsigned char o_events = anfd->events; 733 unsigned char o_events = anfd->events;
720{ 786{
721 int fd; 787 int fd;
722 788
723 for (fd = 0; fd < anfdmax; ++fd) 789 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 790 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 791 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 792 fd_kill (EV_A_ fd);
727} 793}
728 794
729/* called on ENOMEM in select/poll to kill some fds and retry */ 795/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 796static void noinline
754 } 820 }
755} 821}
756 822
757/*****************************************************************************/ 823/*****************************************************************************/
758 824
825/*
826 * the heap functions want a real array index. array index 0 uis guaranteed to not
827 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
828 * the branching factor of the d-tree.
829 */
830
831/*
832 * at the moment we allow libev the luxury of two heaps,
833 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
834 * which is more cache-efficient.
835 * the difference is about 5% with 50000+ watchers.
836 */
837#if EV_USE_4HEAP
838
839#define DHEAP 4
840#define HEAP0 (DHEAP - 1) /* index of first element in heap */
841#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
842#define UPHEAP_DONE(p,k) ((p) == (k))
843
844/* away from the root */
845void inline_speed
846downheap (ANHE *heap, int N, int k)
847{
848 ANHE he = heap [k];
849 ANHE *E = heap + N + HEAP0;
850
851 for (;;)
852 {
853 ev_tstamp minat;
854 ANHE *minpos;
855 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
856
857 /* find minimum child */
858 if (expect_true (pos + DHEAP - 1 < E))
859 {
860 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
863 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
864 }
865 else if (pos < E)
866 {
867 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
868 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
869 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
870 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
871 }
872 else
873 break;
874
875 if (ANHE_at (he) <= minat)
876 break;
877
878 heap [k] = *minpos;
879 ev_active (ANHE_w (*minpos)) = k;
880
881 k = minpos - heap;
882 }
883
884 heap [k] = he;
885 ev_active (ANHE_w (he)) = k;
886}
887
888#else /* 4HEAP */
889
890#define HEAP0 1
891#define HPARENT(k) ((k) >> 1)
892#define UPHEAP_DONE(p,k) (!(p))
893
894/* away from the root */
895void inline_speed
896downheap (ANHE *heap, int N, int k)
897{
898 ANHE he = heap [k];
899
900 for (;;)
901 {
902 int c = k << 1;
903
904 if (c > N + HEAP0 - 1)
905 break;
906
907 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
908 ? 1 : 0;
909
910 if (ANHE_at (he) <= ANHE_at (heap [c]))
911 break;
912
913 heap [k] = heap [c];
914 ev_active (ANHE_w (heap [k])) = k;
915
916 k = c;
917 }
918
919 heap [k] = he;
920 ev_active (ANHE_w (he)) = k;
921}
922#endif
923
759/* towards the root */ 924/* towards the root */
760void inline_speed 925void inline_speed
761upheap (WT *heap, int k) 926upheap (ANHE *heap, int k)
762{ 927{
763 WT w = heap [k]; 928 ANHE he = heap [k];
764 929
765 while (k) 930 for (;;)
766 { 931 {
767 int p = (k - 1) >> 1; 932 int p = HPARENT (k);
768 933
769 if (heap [p]->at <= w->at) 934 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
770 break; 935 break;
771 936
772 heap [k] = heap [p]; 937 heap [k] = heap [p];
773 ((W)heap [k])->active = k + 1; 938 ev_active (ANHE_w (heap [k])) = k;
774 k = p; 939 k = p;
775 } 940 }
776 941
777 heap [k] = w; 942 heap [k] = he;
778 ((W)heap [k])->active = k + 1; 943 ev_active (ANHE_w (he)) = k;
779}
780
781/* away from the root */
782void inline_speed
783downheap (WT *heap, int N, int k)
784{
785 WT w = heap [k];
786
787 for (;;)
788 {
789 int c = (k << 1) + 1;
790
791 if (c >= N)
792 break;
793
794 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
795 ? 1 : 0;
796
797 if (w->at <= heap [c]->at)
798 break;
799
800 heap [k] = heap [c];
801 ((W)heap [k])->active = k + 1;
802
803 k = c;
804 }
805
806 heap [k] = w;
807 ((W)heap [k])->active = k + 1;
808} 944}
809 945
810void inline_size 946void inline_size
811adjustheap (WT *heap, int N, int k) 947adjustheap (ANHE *heap, int N, int k)
812{ 948{
949 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
813 upheap (heap, k); 950 upheap (heap, k);
951 else
814 downheap (heap, N, k); 952 downheap (heap, N, k);
953}
954
955/* rebuild the heap: this function is used only once and executed rarely */
956void inline_size
957reheap (ANHE *heap, int N)
958{
959 int i;
960
961 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
962 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
963 for (i = 0; i < N; ++i)
964 upheap (heap, i + HEAP0);
815} 965}
816 966
817/*****************************************************************************/ 967/*****************************************************************************/
818 968
819typedef struct 969typedef struct
843 993
844void inline_speed 994void inline_speed
845fd_intern (int fd) 995fd_intern (int fd)
846{ 996{
847#ifdef _WIN32 997#ifdef _WIN32
848 int arg = 1; 998 unsigned long arg = 1;
849 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 999 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
850#else 1000#else
851 fcntl (fd, F_SETFD, FD_CLOEXEC); 1001 fcntl (fd, F_SETFD, FD_CLOEXEC);
852 fcntl (fd, F_SETFL, O_NONBLOCK); 1002 fcntl (fd, F_SETFL, O_NONBLOCK);
853#endif 1003#endif
908pipecb (EV_P_ ev_io *iow, int revents) 1058pipecb (EV_P_ ev_io *iow, int revents)
909{ 1059{
910#if EV_USE_EVENTFD 1060#if EV_USE_EVENTFD
911 if (evfd >= 0) 1061 if (evfd >= 0)
912 { 1062 {
913 uint64_t counter = 1; 1063 uint64_t counter;
914 read (evfd, &counter, sizeof (uint64_t)); 1064 read (evfd, &counter, sizeof (uint64_t));
915 } 1065 }
916 else 1066 else
917#endif 1067#endif
918 { 1068 {
1337 1487
1338 postfork = 0; 1488 postfork = 0;
1339} 1489}
1340 1490
1341#if EV_MULTIPLICITY 1491#if EV_MULTIPLICITY
1492
1342struct ev_loop * 1493struct ev_loop *
1343ev_loop_new (unsigned int flags) 1494ev_loop_new (unsigned int flags)
1344{ 1495{
1345 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1496 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1346 1497
1365ev_loop_fork (EV_P) 1516ev_loop_fork (EV_P)
1366{ 1517{
1367 postfork = 1; /* must be in line with ev_default_fork */ 1518 postfork = 1; /* must be in line with ev_default_fork */
1368} 1519}
1369 1520
1521#if EV_VERIFY
1522static void noinline
1523verify_watcher (EV_P_ W w)
1524{
1525 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1526
1527 if (w->pending)
1528 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1529}
1530
1531static void noinline
1532verify_heap (EV_P_ ANHE *heap, int N)
1533{
1534 int i;
1535
1536 for (i = HEAP0; i < N + HEAP0; ++i)
1537 {
1538 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1539 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1540 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1541
1542 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1543 }
1544}
1545
1546static void noinline
1547array_verify (EV_P_ W *ws, int cnt)
1548{
1549 while (cnt--)
1550 {
1551 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1552 verify_watcher (EV_A_ ws [cnt]);
1553 }
1554}
1555#endif
1556
1557void
1558ev_loop_verify (EV_P)
1559{
1560#if EV_VERIFY
1561 int i;
1562 WL w;
1563
1564 assert (activecnt >= -1);
1565
1566 assert (fdchangemax >= fdchangecnt);
1567 for (i = 0; i < fdchangecnt; ++i)
1568 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1569
1570 assert (anfdmax >= 0);
1571 for (i = 0; i < anfdmax; ++i)
1572 for (w = anfds [i].head; w; w = w->next)
1573 {
1574 verify_watcher (EV_A_ (W)w);
1575 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1576 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1577 }
1578
1579 assert (timermax >= timercnt);
1580 verify_heap (EV_A_ timers, timercnt);
1581
1582#if EV_PERIODIC_ENABLE
1583 assert (periodicmax >= periodiccnt);
1584 verify_heap (EV_A_ periodics, periodiccnt);
1585#endif
1586
1587 for (i = NUMPRI; i--; )
1588 {
1589 assert (pendingmax [i] >= pendingcnt [i]);
1590#if EV_IDLE_ENABLE
1591 assert (idleall >= 0);
1592 assert (idlemax [i] >= idlecnt [i]);
1593 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1594#endif
1595 }
1596
1597#if EV_FORK_ENABLE
1598 assert (forkmax >= forkcnt);
1599 array_verify (EV_A_ (W *)forks, forkcnt);
1600#endif
1601
1602#if EV_ASYNC_ENABLE
1603 assert (asyncmax >= asynccnt);
1604 array_verify (EV_A_ (W *)asyncs, asynccnt);
1605#endif
1606
1607 assert (preparemax >= preparecnt);
1608 array_verify (EV_A_ (W *)prepares, preparecnt);
1609
1610 assert (checkmax >= checkcnt);
1611 array_verify (EV_A_ (W *)checks, checkcnt);
1612
1613# if 0
1614 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1615 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1370#endif 1616# endif
1617#endif
1618}
1619
1620#endif /* multiplicity */
1371 1621
1372#if EV_MULTIPLICITY 1622#if EV_MULTIPLICITY
1373struct ev_loop * 1623struct ev_loop *
1374ev_default_loop_init (unsigned int flags) 1624ev_default_loop_init (unsigned int flags)
1375#else 1625#else
1451 { 1701 {
1452 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1702 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1453 1703
1454 p->w->pending = 0; 1704 p->w->pending = 0;
1455 EV_CB_INVOKE (p->w, p->events); 1705 EV_CB_INVOKE (p->w, p->events);
1706 EV_FREQUENT_CHECK;
1456 } 1707 }
1457 } 1708 }
1458} 1709}
1459
1460void inline_size
1461timers_reify (EV_P)
1462{
1463 while (timercnt && ((WT)timers [0])->at <= mn_now)
1464 {
1465 ev_timer *w = (ev_timer *)timers [0];
1466
1467 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1468
1469 /* first reschedule or stop timer */
1470 if (w->repeat)
1471 {
1472 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1473
1474 ((WT)w)->at += w->repeat;
1475 if (((WT)w)->at < mn_now)
1476 ((WT)w)->at = mn_now;
1477
1478 downheap (timers, timercnt, 0);
1479 }
1480 else
1481 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1482
1483 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1484 }
1485}
1486
1487#if EV_PERIODIC_ENABLE
1488void inline_size
1489periodics_reify (EV_P)
1490{
1491 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1492 {
1493 ev_periodic *w = (ev_periodic *)periodics [0];
1494
1495 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1496
1497 /* first reschedule or stop timer */
1498 if (w->reschedule_cb)
1499 {
1500 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1501 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1502 downheap (periodics, periodiccnt, 0);
1503 }
1504 else if (w->interval)
1505 {
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1508 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1509 downheap (periodics, periodiccnt, 0);
1510 }
1511 else
1512 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1513
1514 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1515 }
1516}
1517
1518static void noinline
1519periodics_reschedule (EV_P)
1520{
1521 int i;
1522
1523 /* adjust periodics after time jump */
1524 for (i = 0; i < periodiccnt; ++i)
1525 {
1526 ev_periodic *w = (ev_periodic *)periodics [i];
1527
1528 if (w->reschedule_cb)
1529 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1530 else if (w->interval)
1531 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1532 }
1533
1534 /* now rebuild the heap */
1535 for (i = periodiccnt >> 1; i--; )
1536 downheap (periodics, periodiccnt, i);
1537}
1538#endif
1539 1710
1540#if EV_IDLE_ENABLE 1711#if EV_IDLE_ENABLE
1541void inline_size 1712void inline_size
1542idle_reify (EV_P) 1713idle_reify (EV_P)
1543{ 1714{
1555 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1726 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1556 break; 1727 break;
1557 } 1728 }
1558 } 1729 }
1559 } 1730 }
1731}
1732#endif
1733
1734void inline_size
1735timers_reify (EV_P)
1736{
1737 EV_FREQUENT_CHECK;
1738
1739 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1740 {
1741 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1742
1743 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1744
1745 /* first reschedule or stop timer */
1746 if (w->repeat)
1747 {
1748 ev_at (w) += w->repeat;
1749 if (ev_at (w) < mn_now)
1750 ev_at (w) = mn_now;
1751
1752 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1753
1754 ANHE_at_cache (timers [HEAP0]);
1755 downheap (timers, timercnt, HEAP0);
1756 }
1757 else
1758 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1759
1760 EV_FREQUENT_CHECK;
1761 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1762 }
1763}
1764
1765#if EV_PERIODIC_ENABLE
1766void inline_size
1767periodics_reify (EV_P)
1768{
1769 EV_FREQUENT_CHECK;
1770
1771 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1772 {
1773 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1774
1775 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1776
1777 /* first reschedule or stop timer */
1778 if (w->reschedule_cb)
1779 {
1780 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1781
1782 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1783
1784 ANHE_at_cache (periodics [HEAP0]);
1785 downheap (periodics, periodiccnt, HEAP0);
1786 }
1787 else if (w->interval)
1788 {
1789 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1790 /* if next trigger time is not sufficiently in the future, put it there */
1791 /* this might happen because of floating point inexactness */
1792 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1793 {
1794 ev_at (w) += w->interval;
1795
1796 /* if interval is unreasonably low we might still have a time in the past */
1797 /* so correct this. this will make the periodic very inexact, but the user */
1798 /* has effectively asked to get triggered more often than possible */
1799 if (ev_at (w) < ev_rt_now)
1800 ev_at (w) = ev_rt_now;
1801 }
1802
1803 ANHE_at_cache (periodics [HEAP0]);
1804 downheap (periodics, periodiccnt, HEAP0);
1805 }
1806 else
1807 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1808
1809 EV_FREQUENT_CHECK;
1810 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1811 }
1812}
1813
1814static void noinline
1815periodics_reschedule (EV_P)
1816{
1817 int i;
1818
1819 /* adjust periodics after time jump */
1820 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1821 {
1822 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1823
1824 if (w->reschedule_cb)
1825 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1826 else if (w->interval)
1827 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1828
1829 ANHE_at_cache (periodics [i]);
1830 }
1831
1832 reheap (periodics, periodiccnt);
1560} 1833}
1561#endif 1834#endif
1562 1835
1563void inline_speed 1836void inline_speed
1564time_update (EV_P_ ev_tstamp max_block) 1837time_update (EV_P_ ev_tstamp max_block)
1593 */ 1866 */
1594 for (i = 4; --i; ) 1867 for (i = 4; --i; )
1595 { 1868 {
1596 rtmn_diff = ev_rt_now - mn_now; 1869 rtmn_diff = ev_rt_now - mn_now;
1597 1870
1598 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1871 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1599 return; /* all is well */ 1872 return; /* all is well */
1600 1873
1601 ev_rt_now = ev_time (); 1874 ev_rt_now = ev_time ();
1602 mn_now = get_clock (); 1875 mn_now = get_clock ();
1603 now_floor = mn_now; 1876 now_floor = mn_now;
1619#if EV_PERIODIC_ENABLE 1892#if EV_PERIODIC_ENABLE
1620 periodics_reschedule (EV_A); 1893 periodics_reschedule (EV_A);
1621#endif 1894#endif
1622 /* adjust timers. this is easy, as the offset is the same for all of them */ 1895 /* adjust timers. this is easy, as the offset is the same for all of them */
1623 for (i = 0; i < timercnt; ++i) 1896 for (i = 0; i < timercnt; ++i)
1897 {
1898 ANHE *he = timers + i + HEAP0;
1624 ((WT)timers [i])->at += ev_rt_now - mn_now; 1899 ANHE_w (*he)->at += ev_rt_now - mn_now;
1900 ANHE_at_cache (*he);
1901 }
1625 } 1902 }
1626 1903
1627 mn_now = ev_rt_now; 1904 mn_now = ev_rt_now;
1628 } 1905 }
1629} 1906}
1638ev_unref (EV_P) 1915ev_unref (EV_P)
1639{ 1916{
1640 --activecnt; 1917 --activecnt;
1641} 1918}
1642 1919
1920void
1921ev_now_update (EV_P)
1922{
1923 time_update (EV_A_ 1e100);
1924}
1925
1643static int loop_done; 1926static int loop_done;
1644 1927
1645void 1928void
1646ev_loop (EV_P_ int flags) 1929ev_loop (EV_P_ int flags)
1647{ 1930{
1649 1932
1650 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1933 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1651 1934
1652 do 1935 do
1653 { 1936 {
1937#if EV_VERIFY >= 2
1938 ev_loop_verify (EV_A);
1939#endif
1940
1654#ifndef _WIN32 1941#ifndef _WIN32
1655 if (expect_false (curpid)) /* penalise the forking check even more */ 1942 if (expect_false (curpid)) /* penalise the forking check even more */
1656 if (expect_false (getpid () != curpid)) 1943 if (expect_false (getpid () != curpid))
1657 { 1944 {
1658 curpid = getpid (); 1945 curpid = getpid ();
1699 1986
1700 waittime = MAX_BLOCKTIME; 1987 waittime = MAX_BLOCKTIME;
1701 1988
1702 if (timercnt) 1989 if (timercnt)
1703 { 1990 {
1704 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1991 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1705 if (waittime > to) waittime = to; 1992 if (waittime > to) waittime = to;
1706 } 1993 }
1707 1994
1708#if EV_PERIODIC_ENABLE 1995#if EV_PERIODIC_ENABLE
1709 if (periodiccnt) 1996 if (periodiccnt)
1710 { 1997 {
1711 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1998 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1712 if (waittime > to) waittime = to; 1999 if (waittime > to) waittime = to;
1713 } 2000 }
1714#endif 2001#endif
1715 2002
1716 if (expect_false (waittime < timeout_blocktime)) 2003 if (expect_false (waittime < timeout_blocktime))
1853 if (expect_false (ev_is_active (w))) 2140 if (expect_false (ev_is_active (w)))
1854 return; 2141 return;
1855 2142
1856 assert (("ev_io_start called with negative fd", fd >= 0)); 2143 assert (("ev_io_start called with negative fd", fd >= 0));
1857 2144
2145 EV_FREQUENT_CHECK;
2146
1858 ev_start (EV_A_ (W)w, 1); 2147 ev_start (EV_A_ (W)w, 1);
1859 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2148 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1860 wlist_add (&anfds[fd].head, (WL)w); 2149 wlist_add (&anfds[fd].head, (WL)w);
1861 2150
1862 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2151 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1863 w->events &= ~EV_IOFDSET; 2152 w->events &= ~EV_IOFDSET;
2153
2154 EV_FREQUENT_CHECK;
1864} 2155}
1865 2156
1866void noinline 2157void noinline
1867ev_io_stop (EV_P_ ev_io *w) 2158ev_io_stop (EV_P_ ev_io *w)
1868{ 2159{
1869 clear_pending (EV_A_ (W)w); 2160 clear_pending (EV_A_ (W)w);
1870 if (expect_false (!ev_is_active (w))) 2161 if (expect_false (!ev_is_active (w)))
1871 return; 2162 return;
1872 2163
1873 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2164 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2165
2166 EV_FREQUENT_CHECK;
1874 2167
1875 wlist_del (&anfds[w->fd].head, (WL)w); 2168 wlist_del (&anfds[w->fd].head, (WL)w);
1876 ev_stop (EV_A_ (W)w); 2169 ev_stop (EV_A_ (W)w);
1877 2170
1878 fd_change (EV_A_ w->fd, 1); 2171 fd_change (EV_A_ w->fd, 1);
2172
2173 EV_FREQUENT_CHECK;
1879} 2174}
1880 2175
1881void noinline 2176void noinline
1882ev_timer_start (EV_P_ ev_timer *w) 2177ev_timer_start (EV_P_ ev_timer *w)
1883{ 2178{
1884 if (expect_false (ev_is_active (w))) 2179 if (expect_false (ev_is_active (w)))
1885 return; 2180 return;
1886 2181
1887 ((WT)w)->at += mn_now; 2182 ev_at (w) += mn_now;
1888 2183
1889 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2184 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1890 2185
2186 EV_FREQUENT_CHECK;
2187
2188 ++timercnt;
1891 ev_start (EV_A_ (W)w, ++timercnt); 2189 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1892 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2190 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1893 timers [timercnt - 1] = (WT)w; 2191 ANHE_w (timers [ev_active (w)]) = (WT)w;
1894 upheap (timers, timercnt - 1); 2192 ANHE_at_cache (timers [ev_active (w)]);
2193 upheap (timers, ev_active (w));
1895 2194
2195 EV_FREQUENT_CHECK;
2196
1896 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2197 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1897} 2198}
1898 2199
1899void noinline 2200void noinline
1900ev_timer_stop (EV_P_ ev_timer *w) 2201ev_timer_stop (EV_P_ ev_timer *w)
1901{ 2202{
1902 clear_pending (EV_A_ (W)w); 2203 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2204 if (expect_false (!ev_is_active (w)))
1904 return; 2205 return;
1905 2206
1906 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2207 EV_FREQUENT_CHECK;
1907 2208
1908 { 2209 {
1909 int active = ((W)w)->active; 2210 int active = ev_active (w);
1910 2211
2212 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2213
2214 --timercnt;
2215
1911 if (expect_true (--active < --timercnt)) 2216 if (expect_true (active < timercnt + HEAP0))
1912 { 2217 {
1913 timers [active] = timers [timercnt]; 2218 timers [active] = timers [timercnt + HEAP0];
1914 adjustheap (timers, timercnt, active); 2219 adjustheap (timers, timercnt, active);
1915 } 2220 }
1916 } 2221 }
1917 2222
1918 ((WT)w)->at -= mn_now; 2223 EV_FREQUENT_CHECK;
2224
2225 ev_at (w) -= mn_now;
1919 2226
1920 ev_stop (EV_A_ (W)w); 2227 ev_stop (EV_A_ (W)w);
1921} 2228}
1922 2229
1923void noinline 2230void noinline
1924ev_timer_again (EV_P_ ev_timer *w) 2231ev_timer_again (EV_P_ ev_timer *w)
1925{ 2232{
2233 EV_FREQUENT_CHECK;
2234
1926 if (ev_is_active (w)) 2235 if (ev_is_active (w))
1927 { 2236 {
1928 if (w->repeat) 2237 if (w->repeat)
1929 { 2238 {
1930 ((WT)w)->at = mn_now + w->repeat; 2239 ev_at (w) = mn_now + w->repeat;
2240 ANHE_at_cache (timers [ev_active (w)]);
1931 adjustheap (timers, timercnt, ((W)w)->active - 1); 2241 adjustheap (timers, timercnt, ev_active (w));
1932 } 2242 }
1933 else 2243 else
1934 ev_timer_stop (EV_A_ w); 2244 ev_timer_stop (EV_A_ w);
1935 } 2245 }
1936 else if (w->repeat) 2246 else if (w->repeat)
1937 { 2247 {
1938 w->at = w->repeat; 2248 ev_at (w) = w->repeat;
1939 ev_timer_start (EV_A_ w); 2249 ev_timer_start (EV_A_ w);
1940 } 2250 }
2251
2252 EV_FREQUENT_CHECK;
1941} 2253}
1942 2254
1943#if EV_PERIODIC_ENABLE 2255#if EV_PERIODIC_ENABLE
1944void noinline 2256void noinline
1945ev_periodic_start (EV_P_ ev_periodic *w) 2257ev_periodic_start (EV_P_ ev_periodic *w)
1946{ 2258{
1947 if (expect_false (ev_is_active (w))) 2259 if (expect_false (ev_is_active (w)))
1948 return; 2260 return;
1949 2261
1950 if (w->reschedule_cb) 2262 if (w->reschedule_cb)
1951 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2263 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1952 else if (w->interval) 2264 else if (w->interval)
1953 { 2265 {
1954 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2266 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1955 /* this formula differs from the one in periodic_reify because we do not always round up */ 2267 /* this formula differs from the one in periodic_reify because we do not always round up */
1956 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2268 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 } 2269 }
1958 else 2270 else
1959 ((WT)w)->at = w->offset; 2271 ev_at (w) = w->offset;
1960 2272
2273 EV_FREQUENT_CHECK;
2274
2275 ++periodiccnt;
1961 ev_start (EV_A_ (W)w, ++periodiccnt); 2276 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1962 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2277 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1963 periodics [periodiccnt - 1] = (WT)w; 2278 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1964 upheap (periodics, periodiccnt - 1); 2279 ANHE_at_cache (periodics [ev_active (w)]);
2280 upheap (periodics, ev_active (w));
1965 2281
2282 EV_FREQUENT_CHECK;
2283
1966 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2284 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1967} 2285}
1968 2286
1969void noinline 2287void noinline
1970ev_periodic_stop (EV_P_ ev_periodic *w) 2288ev_periodic_stop (EV_P_ ev_periodic *w)
1971{ 2289{
1972 clear_pending (EV_A_ (W)w); 2290 clear_pending (EV_A_ (W)w);
1973 if (expect_false (!ev_is_active (w))) 2291 if (expect_false (!ev_is_active (w)))
1974 return; 2292 return;
1975 2293
1976 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2294 EV_FREQUENT_CHECK;
1977 2295
1978 { 2296 {
1979 int active = ((W)w)->active; 2297 int active = ev_active (w);
1980 2298
2299 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2300
2301 --periodiccnt;
2302
1981 if (expect_true (--active < --periodiccnt)) 2303 if (expect_true (active < periodiccnt + HEAP0))
1982 { 2304 {
1983 periodics [active] = periodics [periodiccnt]; 2305 periodics [active] = periodics [periodiccnt + HEAP0];
1984 adjustheap (periodics, periodiccnt, active); 2306 adjustheap (periodics, periodiccnt, active);
1985 } 2307 }
1986 } 2308 }
1987 2309
2310 EV_FREQUENT_CHECK;
2311
1988 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
1989} 2313}
1990 2314
1991void noinline 2315void noinline
1992ev_periodic_again (EV_P_ ev_periodic *w) 2316ev_periodic_again (EV_P_ ev_periodic *w)
2011 return; 2335 return;
2012 2336
2013 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2337 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2014 2338
2015 evpipe_init (EV_A); 2339 evpipe_init (EV_A);
2340
2341 EV_FREQUENT_CHECK;
2016 2342
2017 { 2343 {
2018#ifndef _WIN32 2344#ifndef _WIN32
2019 sigset_t full, prev; 2345 sigset_t full, prev;
2020 sigfillset (&full); 2346 sigfillset (&full);
2041 sigfillset (&sa.sa_mask); 2367 sigfillset (&sa.sa_mask);
2042 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2368 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2043 sigaction (w->signum, &sa, 0); 2369 sigaction (w->signum, &sa, 0);
2044#endif 2370#endif
2045 } 2371 }
2372
2373 EV_FREQUENT_CHECK;
2046} 2374}
2047 2375
2048void noinline 2376void noinline
2049ev_signal_stop (EV_P_ ev_signal *w) 2377ev_signal_stop (EV_P_ ev_signal *w)
2050{ 2378{
2051 clear_pending (EV_A_ (W)w); 2379 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2380 if (expect_false (!ev_is_active (w)))
2053 return; 2381 return;
2054 2382
2383 EV_FREQUENT_CHECK;
2384
2055 wlist_del (&signals [w->signum - 1].head, (WL)w); 2385 wlist_del (&signals [w->signum - 1].head, (WL)w);
2056 ev_stop (EV_A_ (W)w); 2386 ev_stop (EV_A_ (W)w);
2057 2387
2058 if (!signals [w->signum - 1].head) 2388 if (!signals [w->signum - 1].head)
2059 signal (w->signum, SIG_DFL); 2389 signal (w->signum, SIG_DFL);
2390
2391 EV_FREQUENT_CHECK;
2060} 2392}
2061 2393
2062void 2394void
2063ev_child_start (EV_P_ ev_child *w) 2395ev_child_start (EV_P_ ev_child *w)
2064{ 2396{
2066 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2398 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2067#endif 2399#endif
2068 if (expect_false (ev_is_active (w))) 2400 if (expect_false (ev_is_active (w)))
2069 return; 2401 return;
2070 2402
2403 EV_FREQUENT_CHECK;
2404
2071 ev_start (EV_A_ (W)w, 1); 2405 ev_start (EV_A_ (W)w, 1);
2072 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2406 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2407
2408 EV_FREQUENT_CHECK;
2073} 2409}
2074 2410
2075void 2411void
2076ev_child_stop (EV_P_ ev_child *w) 2412ev_child_stop (EV_P_ ev_child *w)
2077{ 2413{
2078 clear_pending (EV_A_ (W)w); 2414 clear_pending (EV_A_ (W)w);
2079 if (expect_false (!ev_is_active (w))) 2415 if (expect_false (!ev_is_active (w)))
2080 return; 2416 return;
2081 2417
2418 EV_FREQUENT_CHECK;
2419
2082 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2420 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2083 ev_stop (EV_A_ (W)w); 2421 ev_stop (EV_A_ (W)w);
2422
2423 EV_FREQUENT_CHECK;
2084} 2424}
2085 2425
2086#if EV_STAT_ENABLE 2426#if EV_STAT_ENABLE
2087 2427
2088# ifdef _WIN32 2428# ifdef _WIN32
2106 if (w->wd < 0) 2446 if (w->wd < 0)
2107 { 2447 {
2108 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2448 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2109 2449
2110 /* monitor some parent directory for speedup hints */ 2450 /* monitor some parent directory for speedup hints */
2451 /* note that exceeding the hardcoded limit is not a correctness issue, */
2452 /* but an efficiency issue only */
2111 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2453 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2112 { 2454 {
2113 char path [4096]; 2455 char path [4096];
2114 strcpy (path, w->path); 2456 strcpy (path, w->path);
2115 2457
2155 2497
2156static void noinline 2498static void noinline
2157infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2499infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2158{ 2500{
2159 if (slot < 0) 2501 if (slot < 0)
2160 /* overflow, need to check for all hahs slots */ 2502 /* overflow, need to check for all hash slots */
2161 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2503 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2162 infy_wd (EV_A_ slot, wd, ev); 2504 infy_wd (EV_A_ slot, wd, ev);
2163 else 2505 else
2164 { 2506 {
2165 WL w_; 2507 WL w_;
2199infy_init (EV_P) 2541infy_init (EV_P)
2200{ 2542{
2201 if (fs_fd != -2) 2543 if (fs_fd != -2)
2202 return; 2544 return;
2203 2545
2546 /* kernels < 2.6.25 are borked
2547 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2548 */
2549 {
2550 struct utsname buf;
2551 int major, minor, micro;
2552
2553 fs_fd = -1;
2554
2555 if (uname (&buf))
2556 return;
2557
2558 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2559 return;
2560
2561 if (major < 2
2562 || (major == 2 && minor < 6)
2563 || (major == 2 && minor == 6 && micro < 25))
2564 return;
2565 }
2566
2204 fs_fd = inotify_init (); 2567 fs_fd = inotify_init ();
2205 2568
2206 if (fs_fd >= 0) 2569 if (fs_fd >= 0)
2207 { 2570 {
2208 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2571 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2237 if (fs_fd >= 0) 2600 if (fs_fd >= 0)
2238 infy_add (EV_A_ w); /* re-add, no matter what */ 2601 infy_add (EV_A_ w); /* re-add, no matter what */
2239 else 2602 else
2240 ev_timer_start (EV_A_ &w->timer); 2603 ev_timer_start (EV_A_ &w->timer);
2241 } 2604 }
2242
2243 } 2605 }
2244} 2606}
2245 2607
2608#endif
2609
2610#ifdef _WIN32
2611# define EV_LSTAT(p,b) _stati64 (p, b)
2612#else
2613# define EV_LSTAT(p,b) lstat (p, b)
2246#endif 2614#endif
2247 2615
2248void 2616void
2249ev_stat_stat (EV_P_ ev_stat *w) 2617ev_stat_stat (EV_P_ ev_stat *w)
2250{ 2618{
2277 || w->prev.st_atime != w->attr.st_atime 2645 || w->prev.st_atime != w->attr.st_atime
2278 || w->prev.st_mtime != w->attr.st_mtime 2646 || w->prev.st_mtime != w->attr.st_mtime
2279 || w->prev.st_ctime != w->attr.st_ctime 2647 || w->prev.st_ctime != w->attr.st_ctime
2280 ) { 2648 ) {
2281 #if EV_USE_INOTIFY 2649 #if EV_USE_INOTIFY
2650 if (fs_fd >= 0)
2651 {
2282 infy_del (EV_A_ w); 2652 infy_del (EV_A_ w);
2283 infy_add (EV_A_ w); 2653 infy_add (EV_A_ w);
2284 ev_stat_stat (EV_A_ w); /* avoid race... */ 2654 ev_stat_stat (EV_A_ w); /* avoid race... */
2655 }
2285 #endif 2656 #endif
2286 2657
2287 ev_feed_event (EV_A_ w, EV_STAT); 2658 ev_feed_event (EV_A_ w, EV_STAT);
2288 } 2659 }
2289} 2660}
2314 else 2685 else
2315#endif 2686#endif
2316 ev_timer_start (EV_A_ &w->timer); 2687 ev_timer_start (EV_A_ &w->timer);
2317 2688
2318 ev_start (EV_A_ (W)w, 1); 2689 ev_start (EV_A_ (W)w, 1);
2690
2691 EV_FREQUENT_CHECK;
2319} 2692}
2320 2693
2321void 2694void
2322ev_stat_stop (EV_P_ ev_stat *w) 2695ev_stat_stop (EV_P_ ev_stat *w)
2323{ 2696{
2324 clear_pending (EV_A_ (W)w); 2697 clear_pending (EV_A_ (W)w);
2325 if (expect_false (!ev_is_active (w))) 2698 if (expect_false (!ev_is_active (w)))
2326 return; 2699 return;
2327 2700
2701 EV_FREQUENT_CHECK;
2702
2328#if EV_USE_INOTIFY 2703#if EV_USE_INOTIFY
2329 infy_del (EV_A_ w); 2704 infy_del (EV_A_ w);
2330#endif 2705#endif
2331 ev_timer_stop (EV_A_ &w->timer); 2706 ev_timer_stop (EV_A_ &w->timer);
2332 2707
2333 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2709
2710 EV_FREQUENT_CHECK;
2334} 2711}
2335#endif 2712#endif
2336 2713
2337#if EV_IDLE_ENABLE 2714#if EV_IDLE_ENABLE
2338void 2715void
2340{ 2717{
2341 if (expect_false (ev_is_active (w))) 2718 if (expect_false (ev_is_active (w)))
2342 return; 2719 return;
2343 2720
2344 pri_adjust (EV_A_ (W)w); 2721 pri_adjust (EV_A_ (W)w);
2722
2723 EV_FREQUENT_CHECK;
2345 2724
2346 { 2725 {
2347 int active = ++idlecnt [ABSPRI (w)]; 2726 int active = ++idlecnt [ABSPRI (w)];
2348 2727
2349 ++idleall; 2728 ++idleall;
2350 ev_start (EV_A_ (W)w, active); 2729 ev_start (EV_A_ (W)w, active);
2351 2730
2352 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2731 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2353 idles [ABSPRI (w)][active - 1] = w; 2732 idles [ABSPRI (w)][active - 1] = w;
2354 } 2733 }
2734
2735 EV_FREQUENT_CHECK;
2355} 2736}
2356 2737
2357void 2738void
2358ev_idle_stop (EV_P_ ev_idle *w) 2739ev_idle_stop (EV_P_ ev_idle *w)
2359{ 2740{
2360 clear_pending (EV_A_ (W)w); 2741 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 2742 if (expect_false (!ev_is_active (w)))
2362 return; 2743 return;
2363 2744
2745 EV_FREQUENT_CHECK;
2746
2364 { 2747 {
2365 int active = ((W)w)->active; 2748 int active = ev_active (w);
2366 2749
2367 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2750 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2368 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2751 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2369 2752
2370 ev_stop (EV_A_ (W)w); 2753 ev_stop (EV_A_ (W)w);
2371 --idleall; 2754 --idleall;
2372 } 2755 }
2756
2757 EV_FREQUENT_CHECK;
2373} 2758}
2374#endif 2759#endif
2375 2760
2376void 2761void
2377ev_prepare_start (EV_P_ ev_prepare *w) 2762ev_prepare_start (EV_P_ ev_prepare *w)
2378{ 2763{
2379 if (expect_false (ev_is_active (w))) 2764 if (expect_false (ev_is_active (w)))
2380 return; 2765 return;
2766
2767 EV_FREQUENT_CHECK;
2381 2768
2382 ev_start (EV_A_ (W)w, ++preparecnt); 2769 ev_start (EV_A_ (W)w, ++preparecnt);
2383 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2770 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2384 prepares [preparecnt - 1] = w; 2771 prepares [preparecnt - 1] = w;
2772
2773 EV_FREQUENT_CHECK;
2385} 2774}
2386 2775
2387void 2776void
2388ev_prepare_stop (EV_P_ ev_prepare *w) 2777ev_prepare_stop (EV_P_ ev_prepare *w)
2389{ 2778{
2390 clear_pending (EV_A_ (W)w); 2779 clear_pending (EV_A_ (W)w);
2391 if (expect_false (!ev_is_active (w))) 2780 if (expect_false (!ev_is_active (w)))
2392 return; 2781 return;
2393 2782
2783 EV_FREQUENT_CHECK;
2784
2394 { 2785 {
2395 int active = ((W)w)->active; 2786 int active = ev_active (w);
2787
2396 prepares [active - 1] = prepares [--preparecnt]; 2788 prepares [active - 1] = prepares [--preparecnt];
2397 ((W)prepares [active - 1])->active = active; 2789 ev_active (prepares [active - 1]) = active;
2398 } 2790 }
2399 2791
2400 ev_stop (EV_A_ (W)w); 2792 ev_stop (EV_A_ (W)w);
2793
2794 EV_FREQUENT_CHECK;
2401} 2795}
2402 2796
2403void 2797void
2404ev_check_start (EV_P_ ev_check *w) 2798ev_check_start (EV_P_ ev_check *w)
2405{ 2799{
2406 if (expect_false (ev_is_active (w))) 2800 if (expect_false (ev_is_active (w)))
2407 return; 2801 return;
2802
2803 EV_FREQUENT_CHECK;
2408 2804
2409 ev_start (EV_A_ (W)w, ++checkcnt); 2805 ev_start (EV_A_ (W)w, ++checkcnt);
2410 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2806 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2411 checks [checkcnt - 1] = w; 2807 checks [checkcnt - 1] = w;
2808
2809 EV_FREQUENT_CHECK;
2412} 2810}
2413 2811
2414void 2812void
2415ev_check_stop (EV_P_ ev_check *w) 2813ev_check_stop (EV_P_ ev_check *w)
2416{ 2814{
2417 clear_pending (EV_A_ (W)w); 2815 clear_pending (EV_A_ (W)w);
2418 if (expect_false (!ev_is_active (w))) 2816 if (expect_false (!ev_is_active (w)))
2419 return; 2817 return;
2420 2818
2819 EV_FREQUENT_CHECK;
2820
2421 { 2821 {
2422 int active = ((W)w)->active; 2822 int active = ev_active (w);
2823
2423 checks [active - 1] = checks [--checkcnt]; 2824 checks [active - 1] = checks [--checkcnt];
2424 ((W)checks [active - 1])->active = active; 2825 ev_active (checks [active - 1]) = active;
2425 } 2826 }
2426 2827
2427 ev_stop (EV_A_ (W)w); 2828 ev_stop (EV_A_ (W)w);
2829
2830 EV_FREQUENT_CHECK;
2428} 2831}
2429 2832
2430#if EV_EMBED_ENABLE 2833#if EV_EMBED_ENABLE
2431void noinline 2834void noinline
2432ev_embed_sweep (EV_P_ ev_embed *w) 2835ev_embed_sweep (EV_P_ ev_embed *w)
2459 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2862 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2460 } 2863 }
2461 } 2864 }
2462} 2865}
2463 2866
2867static void
2868embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2869{
2870 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2871
2872 {
2873 struct ev_loop *loop = w->other;
2874
2875 ev_loop_fork (EV_A);
2876 }
2877}
2878
2464#if 0 2879#if 0
2465static void 2880static void
2466embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2881embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2467{ 2882{
2468 ev_idle_stop (EV_A_ idle); 2883 ev_idle_stop (EV_A_ idle);
2479 struct ev_loop *loop = w->other; 2894 struct ev_loop *loop = w->other;
2480 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2895 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2896 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2482 } 2897 }
2483 2898
2899 EV_FREQUENT_CHECK;
2900
2484 ev_set_priority (&w->io, ev_priority (w)); 2901 ev_set_priority (&w->io, ev_priority (w));
2485 ev_io_start (EV_A_ &w->io); 2902 ev_io_start (EV_A_ &w->io);
2486 2903
2487 ev_prepare_init (&w->prepare, embed_prepare_cb); 2904 ev_prepare_init (&w->prepare, embed_prepare_cb);
2488 ev_set_priority (&w->prepare, EV_MINPRI); 2905 ev_set_priority (&w->prepare, EV_MINPRI);
2489 ev_prepare_start (EV_A_ &w->prepare); 2906 ev_prepare_start (EV_A_ &w->prepare);
2490 2907
2908 ev_fork_init (&w->fork, embed_fork_cb);
2909 ev_fork_start (EV_A_ &w->fork);
2910
2491 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2911 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2492 2912
2493 ev_start (EV_A_ (W)w, 1); 2913 ev_start (EV_A_ (W)w, 1);
2914
2915 EV_FREQUENT_CHECK;
2494} 2916}
2495 2917
2496void 2918void
2497ev_embed_stop (EV_P_ ev_embed *w) 2919ev_embed_stop (EV_P_ ev_embed *w)
2498{ 2920{
2499 clear_pending (EV_A_ (W)w); 2921 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 2922 if (expect_false (!ev_is_active (w)))
2501 return; 2923 return;
2502 2924
2925 EV_FREQUENT_CHECK;
2926
2503 ev_io_stop (EV_A_ &w->io); 2927 ev_io_stop (EV_A_ &w->io);
2504 ev_prepare_stop (EV_A_ &w->prepare); 2928 ev_prepare_stop (EV_A_ &w->prepare);
2929 ev_fork_stop (EV_A_ &w->fork);
2505 2930
2506 ev_stop (EV_A_ (W)w); 2931 EV_FREQUENT_CHECK;
2507} 2932}
2508#endif 2933#endif
2509 2934
2510#if EV_FORK_ENABLE 2935#if EV_FORK_ENABLE
2511void 2936void
2512ev_fork_start (EV_P_ ev_fork *w) 2937ev_fork_start (EV_P_ ev_fork *w)
2513{ 2938{
2514 if (expect_false (ev_is_active (w))) 2939 if (expect_false (ev_is_active (w)))
2515 return; 2940 return;
2941
2942 EV_FREQUENT_CHECK;
2516 2943
2517 ev_start (EV_A_ (W)w, ++forkcnt); 2944 ev_start (EV_A_ (W)w, ++forkcnt);
2518 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2945 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2519 forks [forkcnt - 1] = w; 2946 forks [forkcnt - 1] = w;
2947
2948 EV_FREQUENT_CHECK;
2520} 2949}
2521 2950
2522void 2951void
2523ev_fork_stop (EV_P_ ev_fork *w) 2952ev_fork_stop (EV_P_ ev_fork *w)
2524{ 2953{
2525 clear_pending (EV_A_ (W)w); 2954 clear_pending (EV_A_ (W)w);
2526 if (expect_false (!ev_is_active (w))) 2955 if (expect_false (!ev_is_active (w)))
2527 return; 2956 return;
2528 2957
2958 EV_FREQUENT_CHECK;
2959
2529 { 2960 {
2530 int active = ((W)w)->active; 2961 int active = ev_active (w);
2962
2531 forks [active - 1] = forks [--forkcnt]; 2963 forks [active - 1] = forks [--forkcnt];
2532 ((W)forks [active - 1])->active = active; 2964 ev_active (forks [active - 1]) = active;
2533 } 2965 }
2534 2966
2535 ev_stop (EV_A_ (W)w); 2967 ev_stop (EV_A_ (W)w);
2968
2969 EV_FREQUENT_CHECK;
2536} 2970}
2537#endif 2971#endif
2538 2972
2539#if EV_ASYNC_ENABLE 2973#if EV_ASYNC_ENABLE
2540void 2974void
2542{ 2976{
2543 if (expect_false (ev_is_active (w))) 2977 if (expect_false (ev_is_active (w)))
2544 return; 2978 return;
2545 2979
2546 evpipe_init (EV_A); 2980 evpipe_init (EV_A);
2981
2982 EV_FREQUENT_CHECK;
2547 2983
2548 ev_start (EV_A_ (W)w, ++asynccnt); 2984 ev_start (EV_A_ (W)w, ++asynccnt);
2549 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2985 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2550 asyncs [asynccnt - 1] = w; 2986 asyncs [asynccnt - 1] = w;
2987
2988 EV_FREQUENT_CHECK;
2551} 2989}
2552 2990
2553void 2991void
2554ev_async_stop (EV_P_ ev_async *w) 2992ev_async_stop (EV_P_ ev_async *w)
2555{ 2993{
2556 clear_pending (EV_A_ (W)w); 2994 clear_pending (EV_A_ (W)w);
2557 if (expect_false (!ev_is_active (w))) 2995 if (expect_false (!ev_is_active (w)))
2558 return; 2996 return;
2559 2997
2998 EV_FREQUENT_CHECK;
2999
2560 { 3000 {
2561 int active = ((W)w)->active; 3001 int active = ev_active (w);
3002
2562 asyncs [active - 1] = asyncs [--asynccnt]; 3003 asyncs [active - 1] = asyncs [--asynccnt];
2563 ((W)asyncs [active - 1])->active = active; 3004 ev_active (asyncs [active - 1]) = active;
2564 } 3005 }
2565 3006
2566 ev_stop (EV_A_ (W)w); 3007 ev_stop (EV_A_ (W)w);
3008
3009 EV_FREQUENT_CHECK;
2567} 3010}
2568 3011
2569void 3012void
2570ev_async_send (EV_P_ ev_async *w) 3013ev_async_send (EV_P_ ev_async *w)
2571{ 3014{
2588once_cb (EV_P_ struct ev_once *once, int revents) 3031once_cb (EV_P_ struct ev_once *once, int revents)
2589{ 3032{
2590 void (*cb)(int revents, void *arg) = once->cb; 3033 void (*cb)(int revents, void *arg) = once->cb;
2591 void *arg = once->arg; 3034 void *arg = once->arg;
2592 3035
2593 ev_io_stop (EV_A_ &once->io); 3036 ev_io_stop (EV_A_ &once->io);
2594 ev_timer_stop (EV_A_ &once->to); 3037 ev_timer_stop (EV_A_ &once->to);
2595 ev_free (once); 3038 ev_free (once);
2596 3039
2597 cb (revents, arg); 3040 cb (revents, arg);
2598} 3041}
2599 3042
2600static void 3043static void
2601once_cb_io (EV_P_ ev_io *w, int revents) 3044once_cb_io (EV_P_ ev_io *w, int revents)
2602{ 3045{
2603 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3046 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3047
3048 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2604} 3049}
2605 3050
2606static void 3051static void
2607once_cb_to (EV_P_ ev_timer *w, int revents) 3052once_cb_to (EV_P_ ev_timer *w, int revents)
2608{ 3053{
2609 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3054 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3055
3056 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2610} 3057}
2611 3058
2612void 3059void
2613ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3060ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2614{ 3061{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines