ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.227 by root, Fri May 2 07:20:01 2008 UTC vs.
Revision 1.272 by root, Mon Nov 3 12:17:40 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
238#endif 247#endif
239 248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 286# include <sys/select.h>
260# endif 287# endif
261#endif 288#endif
262 289
263#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
291# include <sys/utsname.h>
264# include <sys/inotify.h> 292# include <sys/inotify.h>
293/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
294# ifndef IN_DONT_FOLLOW
295# undef EV_USE_INOTIFY
296# define EV_USE_INOTIFY 0
297# endif
265#endif 298#endif
266 299
267#if EV_SELECT_IS_WINSOCKET 300#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 301# include <winsock.h>
269#endif 302#endif
279} 312}
280# endif 313# endif
281#endif 314#endif
282 315
283/**/ 316/**/
317
318#if EV_VERIFY >= 3
319# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
320#else
321# define EV_FREQUENT_CHECK do { } while (0)
322#endif
284 323
285/* 324/*
286 * This is used to avoid floating point rounding problems. 325 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 326 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 327 * to ensure progress, time-wise, even when rounding
325 364
326typedef ev_watcher *W; 365typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 366typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 367typedef ev_watcher_time *WT;
329 368
369#define ev_active(w) ((W)(w))->active
370#define ev_at(w) ((WT)(w))->at
371
330#if EV_USE_MONOTONIC 372#if EV_USE_MONOTONIC
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 373/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 374/* giving it a reasonably high chance of working on typical architetcures */
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 375static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 376#endif
346{ 388{
347 syserr_cb = cb; 389 syserr_cb = cb;
348} 390}
349 391
350static void noinline 392static void noinline
351syserr (const char *msg) 393ev_syserr (const char *msg)
352{ 394{
353 if (!msg) 395 if (!msg)
354 msg = "(libev) system error"; 396 msg = "(libev) system error";
355 397
356 if (syserr_cb) 398 if (syserr_cb)
407typedef struct 449typedef struct
408{ 450{
409 WL head; 451 WL head;
410 unsigned char events; 452 unsigned char events;
411 unsigned char reify; 453 unsigned char reify;
454 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
455 unsigned char unused;
456#if EV_USE_EPOLL
457 unsigned int egen; /* generation counter to counter epoll bugs */
458#endif
412#if EV_SELECT_IS_WINSOCKET 459#if EV_SELECT_IS_WINSOCKET
413 SOCKET handle; 460 SOCKET handle;
414#endif 461#endif
415} ANFD; 462} ANFD;
416 463
419 W w; 466 W w;
420 int events; 467 int events;
421} ANPENDING; 468} ANPENDING;
422 469
423#if EV_USE_INOTIFY 470#if EV_USE_INOTIFY
471/* hash table entry per inotify-id */
424typedef struct 472typedef struct
425{ 473{
426 WL head; 474 WL head;
427} ANFS; 475} ANFS;
476#endif
477
478/* Heap Entry */
479#if EV_HEAP_CACHE_AT
480 typedef struct {
481 ev_tstamp at;
482 WT w;
483 } ANHE;
484
485 #define ANHE_w(he) (he).w /* access watcher, read-write */
486 #define ANHE_at(he) (he).at /* access cached at, read-only */
487 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
488#else
489 typedef WT ANHE;
490
491 #define ANHE_w(he) (he)
492 #define ANHE_at(he) (he)->at
493 #define ANHE_at_cache(he)
428#endif 494#endif
429 495
430#if EV_MULTIPLICITY 496#if EV_MULTIPLICITY
431 497
432 struct ev_loop 498 struct ev_loop
510 struct timeval tv; 576 struct timeval tv;
511 577
512 tv.tv_sec = (time_t)delay; 578 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 579 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514 580
581 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
582 /* somehting nto guaranteed by newer posix versions, but guaranteed */
583 /* by older ones */
515 select (0, 0, 0, 0, &tv); 584 select (0, 0, 0, 0, &tv);
516#endif 585#endif
517 } 586 }
518} 587}
519 588
520/*****************************************************************************/ 589/*****************************************************************************/
590
591#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
521 592
522int inline_size 593int inline_size
523array_nextsize (int elem, int cur, int cnt) 594array_nextsize (int elem, int cur, int cnt)
524{ 595{
525 int ncur = cur + 1; 596 int ncur = cur + 1;
526 597
527 do 598 do
528 ncur <<= 1; 599 ncur <<= 1;
529 while (cnt > ncur); 600 while (cnt > ncur);
530 601
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 602 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 603 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 604 {
534 ncur *= elem; 605 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 606 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 607 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 608 ncur /= elem;
538 } 609 }
539 610
540 return ncur; 611 return ncur;
544array_realloc (int elem, void *base, int *cur, int cnt) 615array_realloc (int elem, void *base, int *cur, int cnt)
545{ 616{
546 *cur = array_nextsize (elem, *cur, cnt); 617 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur); 618 return ev_realloc (base, elem * *cur);
548} 619}
620
621#define array_init_zero(base,count) \
622 memset ((void *)(base), 0, sizeof (*(base)) * (count))
549 623
550#define array_needsize(type,base,cur,cnt,init) \ 624#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \ 625 if (expect_false ((cnt) > (cur))) \
552 { \ 626 { \
553 int ocur_ = (cur); \ 627 int ocur_ = (cur); \
597 ev_feed_event (EV_A_ events [i], type); 671 ev_feed_event (EV_A_ events [i], type);
598} 672}
599 673
600/*****************************************************************************/ 674/*****************************************************************************/
601 675
602void inline_size
603anfds_init (ANFD *base, int count)
604{
605 while (count--)
606 {
607 base->head = 0;
608 base->events = EV_NONE;
609 base->reify = 0;
610
611 ++base;
612 }
613}
614
615void inline_speed 676void inline_speed
616fd_event (EV_P_ int fd, int revents) 677fd_event (EV_P_ int fd, int revents)
617{ 678{
618 ANFD *anfd = anfds + fd; 679 ANFD *anfd = anfds + fd;
619 ev_io *w; 680 ev_io *w;
651 events |= (unsigned char)w->events; 712 events |= (unsigned char)w->events;
652 713
653#if EV_SELECT_IS_WINSOCKET 714#if EV_SELECT_IS_WINSOCKET
654 if (events) 715 if (events)
655 { 716 {
656 unsigned long argp; 717 unsigned long arg;
657 #ifdef EV_FD_TO_WIN32_HANDLE 718 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 719 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else 720 #else
660 anfd->handle = _get_osfhandle (fd); 721 anfd->handle = _get_osfhandle (fd);
661 #endif 722 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 723 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
663 } 724 }
664#endif 725#endif
665 726
666 { 727 {
667 unsigned char o_events = anfd->events; 728 unsigned char o_events = anfd->events;
720{ 781{
721 int fd; 782 int fd;
722 783
723 for (fd = 0; fd < anfdmax; ++fd) 784 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 785 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 786 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 787 fd_kill (EV_A_ fd);
727} 788}
728 789
729/* called on ENOMEM in select/poll to kill some fds and retry */ 790/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 791static void noinline
748 809
749 for (fd = 0; fd < anfdmax; ++fd) 810 for (fd = 0; fd < anfdmax; ++fd)
750 if (anfds [fd].events) 811 if (anfds [fd].events)
751 { 812 {
752 anfds [fd].events = 0; 813 anfds [fd].events = 0;
814 anfds [fd].emask = 0;
753 fd_change (EV_A_ fd, EV_IOFDSET | 1); 815 fd_change (EV_A_ fd, EV_IOFDSET | 1);
754 } 816 }
755} 817}
756 818
757/*****************************************************************************/ 819/*****************************************************************************/
758 820
821/*
822 * the heap functions want a real array index. array index 0 uis guaranteed to not
823 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
824 * the branching factor of the d-tree.
825 */
826
827/*
828 * at the moment we allow libev the luxury of two heaps,
829 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
830 * which is more cache-efficient.
831 * the difference is about 5% with 50000+ watchers.
832 */
833#if EV_USE_4HEAP
834
835#define DHEAP 4
836#define HEAP0 (DHEAP - 1) /* index of first element in heap */
837#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
838#define UPHEAP_DONE(p,k) ((p) == (k))
839
840/* away from the root */
841void inline_speed
842downheap (ANHE *heap, int N, int k)
843{
844 ANHE he = heap [k];
845 ANHE *E = heap + N + HEAP0;
846
847 for (;;)
848 {
849 ev_tstamp minat;
850 ANHE *minpos;
851 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
852
853 /* find minimum child */
854 if (expect_true (pos + DHEAP - 1 < E))
855 {
856 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
857 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
858 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
859 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
860 }
861 else if (pos < E)
862 {
863 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
864 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
865 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
866 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
867 }
868 else
869 break;
870
871 if (ANHE_at (he) <= minat)
872 break;
873
874 heap [k] = *minpos;
875 ev_active (ANHE_w (*minpos)) = k;
876
877 k = minpos - heap;
878 }
879
880 heap [k] = he;
881 ev_active (ANHE_w (he)) = k;
882}
883
884#else /* 4HEAP */
885
886#define HEAP0 1
887#define HPARENT(k) ((k) >> 1)
888#define UPHEAP_DONE(p,k) (!(p))
889
890/* away from the root */
891void inline_speed
892downheap (ANHE *heap, int N, int k)
893{
894 ANHE he = heap [k];
895
896 for (;;)
897 {
898 int c = k << 1;
899
900 if (c > N + HEAP0 - 1)
901 break;
902
903 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
904 ? 1 : 0;
905
906 if (ANHE_at (he) <= ANHE_at (heap [c]))
907 break;
908
909 heap [k] = heap [c];
910 ev_active (ANHE_w (heap [k])) = k;
911
912 k = c;
913 }
914
915 heap [k] = he;
916 ev_active (ANHE_w (he)) = k;
917}
918#endif
919
759/* towards the root */ 920/* towards the root */
760void inline_speed 921void inline_speed
761upheap (WT *heap, int k) 922upheap (ANHE *heap, int k)
762{ 923{
763 WT w = heap [k]; 924 ANHE he = heap [k];
764 925
765 while (k) 926 for (;;)
766 { 927 {
767 int p = (k - 1) >> 1; 928 int p = HPARENT (k);
768 929
769 if (heap [p]->at <= w->at) 930 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
770 break; 931 break;
771 932
772 heap [k] = heap [p]; 933 heap [k] = heap [p];
773 ((W)heap [k])->active = k + 1; 934 ev_active (ANHE_w (heap [k])) = k;
774 k = p; 935 k = p;
775 } 936 }
776 937
777 heap [k] = w; 938 heap [k] = he;
778 ((W)heap [k])->active = k + 1; 939 ev_active (ANHE_w (he)) = k;
779}
780
781/* away from the root */
782void inline_speed
783downheap (WT *heap, int N, int k)
784{
785 WT w = heap [k];
786
787 for (;;)
788 {
789 int c = (k << 1) + 1;
790
791 if (c >= N)
792 break;
793
794 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
795 ? 1 : 0;
796
797 if (w->at <= heap [c]->at)
798 break;
799
800 heap [k] = heap [c];
801 ((W)heap [k])->active = k + 1;
802
803 k = c;
804 }
805
806 heap [k] = w;
807 ((W)heap [k])->active = k + 1;
808} 940}
809 941
810void inline_size 942void inline_size
811adjustheap (WT *heap, int N, int k) 943adjustheap (ANHE *heap, int N, int k)
812{ 944{
945 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
813 upheap (heap, k); 946 upheap (heap, k);
947 else
814 downheap (heap, N, k); 948 downheap (heap, N, k);
949}
950
951/* rebuild the heap: this function is used only once and executed rarely */
952void inline_size
953reheap (ANHE *heap, int N)
954{
955 int i;
956
957 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
958 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
959 for (i = 0; i < N; ++i)
960 upheap (heap, i + HEAP0);
815} 961}
816 962
817/*****************************************************************************/ 963/*****************************************************************************/
818 964
819typedef struct 965typedef struct
825static ANSIG *signals; 971static ANSIG *signals;
826static int signalmax; 972static int signalmax;
827 973
828static EV_ATOMIC_T gotsig; 974static EV_ATOMIC_T gotsig;
829 975
830void inline_size
831signals_init (ANSIG *base, int count)
832{
833 while (count--)
834 {
835 base->head = 0;
836 base->gotsig = 0;
837
838 ++base;
839 }
840}
841
842/*****************************************************************************/ 976/*****************************************************************************/
843 977
844void inline_speed 978void inline_speed
845fd_intern (int fd) 979fd_intern (int fd)
846{ 980{
847#ifdef _WIN32 981#ifdef _WIN32
848 int arg = 1; 982 unsigned long arg = 1;
849 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 983 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
850#else 984#else
851 fcntl (fd, F_SETFD, FD_CLOEXEC); 985 fcntl (fd, F_SETFD, FD_CLOEXEC);
852 fcntl (fd, F_SETFL, O_NONBLOCK); 986 fcntl (fd, F_SETFL, O_NONBLOCK);
853#endif 987#endif
867 } 1001 }
868 else 1002 else
869#endif 1003#endif
870 { 1004 {
871 while (pipe (evpipe)) 1005 while (pipe (evpipe))
872 syserr ("(libev) error creating signal/async pipe"); 1006 ev_syserr ("(libev) error creating signal/async pipe");
873 1007
874 fd_intern (evpipe [0]); 1008 fd_intern (evpipe [0]);
875 fd_intern (evpipe [1]); 1009 fd_intern (evpipe [1]);
876 ev_io_set (&pipeev, evpipe [0], EV_READ); 1010 ev_io_set (&pipeev, evpipe [0], EV_READ);
877 } 1011 }
908pipecb (EV_P_ ev_io *iow, int revents) 1042pipecb (EV_P_ ev_io *iow, int revents)
909{ 1043{
910#if EV_USE_EVENTFD 1044#if EV_USE_EVENTFD
911 if (evfd >= 0) 1045 if (evfd >= 0)
912 { 1046 {
913 uint64_t counter = 1; 1047 uint64_t counter;
914 read (evfd, &counter, sizeof (uint64_t)); 1048 read (evfd, &counter, sizeof (uint64_t));
915 } 1049 }
916 else 1050 else
917#endif 1051#endif
918 { 1052 {
1337 1471
1338 postfork = 0; 1472 postfork = 0;
1339} 1473}
1340 1474
1341#if EV_MULTIPLICITY 1475#if EV_MULTIPLICITY
1476
1342struct ev_loop * 1477struct ev_loop *
1343ev_loop_new (unsigned int flags) 1478ev_loop_new (unsigned int flags)
1344{ 1479{
1345 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1480 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1346 1481
1365ev_loop_fork (EV_P) 1500ev_loop_fork (EV_P)
1366{ 1501{
1367 postfork = 1; /* must be in line with ev_default_fork */ 1502 postfork = 1; /* must be in line with ev_default_fork */
1368} 1503}
1369 1504
1505#if EV_VERIFY
1506static void noinline
1507verify_watcher (EV_P_ W w)
1508{
1509 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1510
1511 if (w->pending)
1512 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1513}
1514
1515static void noinline
1516verify_heap (EV_P_ ANHE *heap, int N)
1517{
1518 int i;
1519
1520 for (i = HEAP0; i < N + HEAP0; ++i)
1521 {
1522 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1523 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1524 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1525
1526 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1527 }
1528}
1529
1530static void noinline
1531array_verify (EV_P_ W *ws, int cnt)
1532{
1533 while (cnt--)
1534 {
1535 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1536 verify_watcher (EV_A_ ws [cnt]);
1537 }
1538}
1539#endif
1540
1541void
1542ev_loop_verify (EV_P)
1543{
1544#if EV_VERIFY
1545 int i;
1546 WL w;
1547
1548 assert (activecnt >= -1);
1549
1550 assert (fdchangemax >= fdchangecnt);
1551 for (i = 0; i < fdchangecnt; ++i)
1552 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1553
1554 assert (anfdmax >= 0);
1555 for (i = 0; i < anfdmax; ++i)
1556 for (w = anfds [i].head; w; w = w->next)
1557 {
1558 verify_watcher (EV_A_ (W)w);
1559 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1560 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1561 }
1562
1563 assert (timermax >= timercnt);
1564 verify_heap (EV_A_ timers, timercnt);
1565
1566#if EV_PERIODIC_ENABLE
1567 assert (periodicmax >= periodiccnt);
1568 verify_heap (EV_A_ periodics, periodiccnt);
1569#endif
1570
1571 for (i = NUMPRI; i--; )
1572 {
1573 assert (pendingmax [i] >= pendingcnt [i]);
1574#if EV_IDLE_ENABLE
1575 assert (idleall >= 0);
1576 assert (idlemax [i] >= idlecnt [i]);
1577 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1578#endif
1579 }
1580
1581#if EV_FORK_ENABLE
1582 assert (forkmax >= forkcnt);
1583 array_verify (EV_A_ (W *)forks, forkcnt);
1584#endif
1585
1586#if EV_ASYNC_ENABLE
1587 assert (asyncmax >= asynccnt);
1588 array_verify (EV_A_ (W *)asyncs, asynccnt);
1589#endif
1590
1591 assert (preparemax >= preparecnt);
1592 array_verify (EV_A_ (W *)prepares, preparecnt);
1593
1594 assert (checkmax >= checkcnt);
1595 array_verify (EV_A_ (W *)checks, checkcnt);
1596
1597# if 0
1598 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1599 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1370#endif 1600# endif
1601#endif
1602}
1603
1604#endif /* multiplicity */
1371 1605
1372#if EV_MULTIPLICITY 1606#if EV_MULTIPLICITY
1373struct ev_loop * 1607struct ev_loop *
1374ev_default_loop_init (unsigned int flags) 1608ev_default_loop_init (unsigned int flags)
1375#else 1609#else
1408{ 1642{
1409#if EV_MULTIPLICITY 1643#if EV_MULTIPLICITY
1410 struct ev_loop *loop = ev_default_loop_ptr; 1644 struct ev_loop *loop = ev_default_loop_ptr;
1411#endif 1645#endif
1412 1646
1647 ev_default_loop_ptr = 0;
1648
1413#ifndef _WIN32 1649#ifndef _WIN32
1414 ev_ref (EV_A); /* child watcher */ 1650 ev_ref (EV_A); /* child watcher */
1415 ev_signal_stop (EV_A_ &childev); 1651 ev_signal_stop (EV_A_ &childev);
1416#endif 1652#endif
1417 1653
1423{ 1659{
1424#if EV_MULTIPLICITY 1660#if EV_MULTIPLICITY
1425 struct ev_loop *loop = ev_default_loop_ptr; 1661 struct ev_loop *loop = ev_default_loop_ptr;
1426#endif 1662#endif
1427 1663
1428 if (backend)
1429 postfork = 1; /* must be in line with ev_loop_fork */ 1664 postfork = 1; /* must be in line with ev_loop_fork */
1430} 1665}
1431 1666
1432/*****************************************************************************/ 1667/*****************************************************************************/
1433 1668
1434void 1669void
1451 { 1686 {
1452 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1687 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1453 1688
1454 p->w->pending = 0; 1689 p->w->pending = 0;
1455 EV_CB_INVOKE (p->w, p->events); 1690 EV_CB_INVOKE (p->w, p->events);
1691 EV_FREQUENT_CHECK;
1456 } 1692 }
1457 } 1693 }
1458} 1694}
1459
1460void inline_size
1461timers_reify (EV_P)
1462{
1463 while (timercnt && ((WT)timers [0])->at <= mn_now)
1464 {
1465 ev_timer *w = (ev_timer *)timers [0];
1466
1467 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1468
1469 /* first reschedule or stop timer */
1470 if (w->repeat)
1471 {
1472 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1473
1474 ((WT)w)->at += w->repeat;
1475 if (((WT)w)->at < mn_now)
1476 ((WT)w)->at = mn_now;
1477
1478 downheap (timers, timercnt, 0);
1479 }
1480 else
1481 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1482
1483 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1484 }
1485}
1486
1487#if EV_PERIODIC_ENABLE
1488void inline_size
1489periodics_reify (EV_P)
1490{
1491 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1492 {
1493 ev_periodic *w = (ev_periodic *)periodics [0];
1494
1495 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1496
1497 /* first reschedule or stop timer */
1498 if (w->reschedule_cb)
1499 {
1500 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1501 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1502 downheap (periodics, periodiccnt, 0);
1503 }
1504 else if (w->interval)
1505 {
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1508 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1509 downheap (periodics, periodiccnt, 0);
1510 }
1511 else
1512 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1513
1514 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1515 }
1516}
1517
1518static void noinline
1519periodics_reschedule (EV_P)
1520{
1521 int i;
1522
1523 /* adjust periodics after time jump */
1524 for (i = 0; i < periodiccnt; ++i)
1525 {
1526 ev_periodic *w = (ev_periodic *)periodics [i];
1527
1528 if (w->reschedule_cb)
1529 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1530 else if (w->interval)
1531 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1532 }
1533
1534 /* now rebuild the heap */
1535 for (i = periodiccnt >> 1; i--; )
1536 downheap (periodics, periodiccnt, i);
1537}
1538#endif
1539 1695
1540#if EV_IDLE_ENABLE 1696#if EV_IDLE_ENABLE
1541void inline_size 1697void inline_size
1542idle_reify (EV_P) 1698idle_reify (EV_P)
1543{ 1699{
1555 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1711 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1556 break; 1712 break;
1557 } 1713 }
1558 } 1714 }
1559 } 1715 }
1716}
1717#endif
1718
1719void inline_size
1720timers_reify (EV_P)
1721{
1722 EV_FREQUENT_CHECK;
1723
1724 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1725 {
1726 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1727
1728 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1729
1730 /* first reschedule or stop timer */
1731 if (w->repeat)
1732 {
1733 ev_at (w) += w->repeat;
1734 if (ev_at (w) < mn_now)
1735 ev_at (w) = mn_now;
1736
1737 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1738
1739 ANHE_at_cache (timers [HEAP0]);
1740 downheap (timers, timercnt, HEAP0);
1741 }
1742 else
1743 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1744
1745 EV_FREQUENT_CHECK;
1746 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1747 }
1748}
1749
1750#if EV_PERIODIC_ENABLE
1751void inline_size
1752periodics_reify (EV_P)
1753{
1754 EV_FREQUENT_CHECK;
1755
1756 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1757 {
1758 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1759
1760 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1761
1762 /* first reschedule or stop timer */
1763 if (w->reschedule_cb)
1764 {
1765 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1766
1767 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1768
1769 ANHE_at_cache (periodics [HEAP0]);
1770 downheap (periodics, periodiccnt, HEAP0);
1771 }
1772 else if (w->interval)
1773 {
1774 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1775 /* if next trigger time is not sufficiently in the future, put it there */
1776 /* this might happen because of floating point inexactness */
1777 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1778 {
1779 ev_at (w) += w->interval;
1780
1781 /* if interval is unreasonably low we might still have a time in the past */
1782 /* so correct this. this will make the periodic very inexact, but the user */
1783 /* has effectively asked to get triggered more often than possible */
1784 if (ev_at (w) < ev_rt_now)
1785 ev_at (w) = ev_rt_now;
1786 }
1787
1788 ANHE_at_cache (periodics [HEAP0]);
1789 downheap (periodics, periodiccnt, HEAP0);
1790 }
1791 else
1792 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1793
1794 EV_FREQUENT_CHECK;
1795 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1796 }
1797}
1798
1799static void noinline
1800periodics_reschedule (EV_P)
1801{
1802 int i;
1803
1804 /* adjust periodics after time jump */
1805 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1806 {
1807 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1808
1809 if (w->reschedule_cb)
1810 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1811 else if (w->interval)
1812 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1813
1814 ANHE_at_cache (periodics [i]);
1815 }
1816
1817 reheap (periodics, periodiccnt);
1560} 1818}
1561#endif 1819#endif
1562 1820
1563void inline_speed 1821void inline_speed
1564time_update (EV_P_ ev_tstamp max_block) 1822time_update (EV_P_ ev_tstamp max_block)
1593 */ 1851 */
1594 for (i = 4; --i; ) 1852 for (i = 4; --i; )
1595 { 1853 {
1596 rtmn_diff = ev_rt_now - mn_now; 1854 rtmn_diff = ev_rt_now - mn_now;
1597 1855
1598 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1856 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1599 return; /* all is well */ 1857 return; /* all is well */
1600 1858
1601 ev_rt_now = ev_time (); 1859 ev_rt_now = ev_time ();
1602 mn_now = get_clock (); 1860 mn_now = get_clock ();
1603 now_floor = mn_now; 1861 now_floor = mn_now;
1619#if EV_PERIODIC_ENABLE 1877#if EV_PERIODIC_ENABLE
1620 periodics_reschedule (EV_A); 1878 periodics_reschedule (EV_A);
1621#endif 1879#endif
1622 /* adjust timers. this is easy, as the offset is the same for all of them */ 1880 /* adjust timers. this is easy, as the offset is the same for all of them */
1623 for (i = 0; i < timercnt; ++i) 1881 for (i = 0; i < timercnt; ++i)
1882 {
1883 ANHE *he = timers + i + HEAP0;
1624 ((WT)timers [i])->at += ev_rt_now - mn_now; 1884 ANHE_w (*he)->at += ev_rt_now - mn_now;
1885 ANHE_at_cache (*he);
1886 }
1625 } 1887 }
1626 1888
1627 mn_now = ev_rt_now; 1889 mn_now = ev_rt_now;
1628 } 1890 }
1629} 1891}
1638ev_unref (EV_P) 1900ev_unref (EV_P)
1639{ 1901{
1640 --activecnt; 1902 --activecnt;
1641} 1903}
1642 1904
1905void
1906ev_now_update (EV_P)
1907{
1908 time_update (EV_A_ 1e100);
1909}
1910
1643static int loop_done; 1911static int loop_done;
1644 1912
1645void 1913void
1646ev_loop (EV_P_ int flags) 1914ev_loop (EV_P_ int flags)
1647{ 1915{
1649 1917
1650 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1918 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1651 1919
1652 do 1920 do
1653 { 1921 {
1922#if EV_VERIFY >= 2
1923 ev_loop_verify (EV_A);
1924#endif
1925
1654#ifndef _WIN32 1926#ifndef _WIN32
1655 if (expect_false (curpid)) /* penalise the forking check even more */ 1927 if (expect_false (curpid)) /* penalise the forking check even more */
1656 if (expect_false (getpid () != curpid)) 1928 if (expect_false (getpid () != curpid))
1657 { 1929 {
1658 curpid = getpid (); 1930 curpid = getpid ();
1699 1971
1700 waittime = MAX_BLOCKTIME; 1972 waittime = MAX_BLOCKTIME;
1701 1973
1702 if (timercnt) 1974 if (timercnt)
1703 { 1975 {
1704 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1976 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1705 if (waittime > to) waittime = to; 1977 if (waittime > to) waittime = to;
1706 } 1978 }
1707 1979
1708#if EV_PERIODIC_ENABLE 1980#if EV_PERIODIC_ENABLE
1709 if (periodiccnt) 1981 if (periodiccnt)
1710 { 1982 {
1711 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1983 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1712 if (waittime > to) waittime = to; 1984 if (waittime > to) waittime = to;
1713 } 1985 }
1714#endif 1986#endif
1715 1987
1716 if (expect_false (waittime < timeout_blocktime)) 1988 if (expect_false (waittime < timeout_blocktime))
1852 2124
1853 if (expect_false (ev_is_active (w))) 2125 if (expect_false (ev_is_active (w)))
1854 return; 2126 return;
1855 2127
1856 assert (("ev_io_start called with negative fd", fd >= 0)); 2128 assert (("ev_io_start called with negative fd", fd >= 0));
2129 assert (("ev_io start called with illegal event mask", !(w->events & ~(EV_IOFDSET | EV_READ | EV_WRITE))));
2130
2131 EV_FREQUENT_CHECK;
1857 2132
1858 ev_start (EV_A_ (W)w, 1); 2133 ev_start (EV_A_ (W)w, 1);
1859 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2134 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1860 wlist_add (&anfds[fd].head, (WL)w); 2135 wlist_add (&anfds[fd].head, (WL)w);
1861 2136
1862 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2137 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1863 w->events &= ~EV_IOFDSET; 2138 w->events &= ~EV_IOFDSET;
2139
2140 EV_FREQUENT_CHECK;
1864} 2141}
1865 2142
1866void noinline 2143void noinline
1867ev_io_stop (EV_P_ ev_io *w) 2144ev_io_stop (EV_P_ ev_io *w)
1868{ 2145{
1869 clear_pending (EV_A_ (W)w); 2146 clear_pending (EV_A_ (W)w);
1870 if (expect_false (!ev_is_active (w))) 2147 if (expect_false (!ev_is_active (w)))
1871 return; 2148 return;
1872 2149
1873 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2150 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2151
2152 EV_FREQUENT_CHECK;
1874 2153
1875 wlist_del (&anfds[w->fd].head, (WL)w); 2154 wlist_del (&anfds[w->fd].head, (WL)w);
1876 ev_stop (EV_A_ (W)w); 2155 ev_stop (EV_A_ (W)w);
1877 2156
1878 fd_change (EV_A_ w->fd, 1); 2157 fd_change (EV_A_ w->fd, 1);
2158
2159 EV_FREQUENT_CHECK;
1879} 2160}
1880 2161
1881void noinline 2162void noinline
1882ev_timer_start (EV_P_ ev_timer *w) 2163ev_timer_start (EV_P_ ev_timer *w)
1883{ 2164{
1884 if (expect_false (ev_is_active (w))) 2165 if (expect_false (ev_is_active (w)))
1885 return; 2166 return;
1886 2167
1887 ((WT)w)->at += mn_now; 2168 ev_at (w) += mn_now;
1888 2169
1889 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2170 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1890 2171
2172 EV_FREQUENT_CHECK;
2173
2174 ++timercnt;
1891 ev_start (EV_A_ (W)w, ++timercnt); 2175 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1892 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2176 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1893 timers [timercnt - 1] = (WT)w; 2177 ANHE_w (timers [ev_active (w)]) = (WT)w;
1894 upheap (timers, timercnt - 1); 2178 ANHE_at_cache (timers [ev_active (w)]);
2179 upheap (timers, ev_active (w));
1895 2180
2181 EV_FREQUENT_CHECK;
2182
1896 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2183 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1897} 2184}
1898 2185
1899void noinline 2186void noinline
1900ev_timer_stop (EV_P_ ev_timer *w) 2187ev_timer_stop (EV_P_ ev_timer *w)
1901{ 2188{
1902 clear_pending (EV_A_ (W)w); 2189 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2190 if (expect_false (!ev_is_active (w)))
1904 return; 2191 return;
1905 2192
1906 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2193 EV_FREQUENT_CHECK;
1907 2194
1908 { 2195 {
1909 int active = ((W)w)->active; 2196 int active = ev_active (w);
1910 2197
2198 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2199
2200 --timercnt;
2201
1911 if (expect_true (--active < --timercnt)) 2202 if (expect_true (active < timercnt + HEAP0))
1912 { 2203 {
1913 timers [active] = timers [timercnt]; 2204 timers [active] = timers [timercnt + HEAP0];
1914 adjustheap (timers, timercnt, active); 2205 adjustheap (timers, timercnt, active);
1915 } 2206 }
1916 } 2207 }
1917 2208
1918 ((WT)w)->at -= mn_now; 2209 EV_FREQUENT_CHECK;
2210
2211 ev_at (w) -= mn_now;
1919 2212
1920 ev_stop (EV_A_ (W)w); 2213 ev_stop (EV_A_ (W)w);
1921} 2214}
1922 2215
1923void noinline 2216void noinline
1924ev_timer_again (EV_P_ ev_timer *w) 2217ev_timer_again (EV_P_ ev_timer *w)
1925{ 2218{
2219 EV_FREQUENT_CHECK;
2220
1926 if (ev_is_active (w)) 2221 if (ev_is_active (w))
1927 { 2222 {
1928 if (w->repeat) 2223 if (w->repeat)
1929 { 2224 {
1930 ((WT)w)->at = mn_now + w->repeat; 2225 ev_at (w) = mn_now + w->repeat;
2226 ANHE_at_cache (timers [ev_active (w)]);
1931 adjustheap (timers, timercnt, ((W)w)->active - 1); 2227 adjustheap (timers, timercnt, ev_active (w));
1932 } 2228 }
1933 else 2229 else
1934 ev_timer_stop (EV_A_ w); 2230 ev_timer_stop (EV_A_ w);
1935 } 2231 }
1936 else if (w->repeat) 2232 else if (w->repeat)
1937 { 2233 {
1938 w->at = w->repeat; 2234 ev_at (w) = w->repeat;
1939 ev_timer_start (EV_A_ w); 2235 ev_timer_start (EV_A_ w);
1940 } 2236 }
2237
2238 EV_FREQUENT_CHECK;
1941} 2239}
1942 2240
1943#if EV_PERIODIC_ENABLE 2241#if EV_PERIODIC_ENABLE
1944void noinline 2242void noinline
1945ev_periodic_start (EV_P_ ev_periodic *w) 2243ev_periodic_start (EV_P_ ev_periodic *w)
1946{ 2244{
1947 if (expect_false (ev_is_active (w))) 2245 if (expect_false (ev_is_active (w)))
1948 return; 2246 return;
1949 2247
1950 if (w->reschedule_cb) 2248 if (w->reschedule_cb)
1951 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2249 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1952 else if (w->interval) 2250 else if (w->interval)
1953 { 2251 {
1954 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2252 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1955 /* this formula differs from the one in periodic_reify because we do not always round up */ 2253 /* this formula differs from the one in periodic_reify because we do not always round up */
1956 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2254 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 } 2255 }
1958 else 2256 else
1959 ((WT)w)->at = w->offset; 2257 ev_at (w) = w->offset;
1960 2258
2259 EV_FREQUENT_CHECK;
2260
2261 ++periodiccnt;
1961 ev_start (EV_A_ (W)w, ++periodiccnt); 2262 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1962 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2263 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1963 periodics [periodiccnt - 1] = (WT)w; 2264 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1964 upheap (periodics, periodiccnt - 1); 2265 ANHE_at_cache (periodics [ev_active (w)]);
2266 upheap (periodics, ev_active (w));
1965 2267
2268 EV_FREQUENT_CHECK;
2269
1966 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2270 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1967} 2271}
1968 2272
1969void noinline 2273void noinline
1970ev_periodic_stop (EV_P_ ev_periodic *w) 2274ev_periodic_stop (EV_P_ ev_periodic *w)
1971{ 2275{
1972 clear_pending (EV_A_ (W)w); 2276 clear_pending (EV_A_ (W)w);
1973 if (expect_false (!ev_is_active (w))) 2277 if (expect_false (!ev_is_active (w)))
1974 return; 2278 return;
1975 2279
1976 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2280 EV_FREQUENT_CHECK;
1977 2281
1978 { 2282 {
1979 int active = ((W)w)->active; 2283 int active = ev_active (w);
1980 2284
2285 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2286
2287 --periodiccnt;
2288
1981 if (expect_true (--active < --periodiccnt)) 2289 if (expect_true (active < periodiccnt + HEAP0))
1982 { 2290 {
1983 periodics [active] = periodics [periodiccnt]; 2291 periodics [active] = periodics [periodiccnt + HEAP0];
1984 adjustheap (periodics, periodiccnt, active); 2292 adjustheap (periodics, periodiccnt, active);
1985 } 2293 }
1986 } 2294 }
1987 2295
2296 EV_FREQUENT_CHECK;
2297
1988 ev_stop (EV_A_ (W)w); 2298 ev_stop (EV_A_ (W)w);
1989} 2299}
1990 2300
1991void noinline 2301void noinline
1992ev_periodic_again (EV_P_ ev_periodic *w) 2302ev_periodic_again (EV_P_ ev_periodic *w)
2011 return; 2321 return;
2012 2322
2013 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2323 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2014 2324
2015 evpipe_init (EV_A); 2325 evpipe_init (EV_A);
2326
2327 EV_FREQUENT_CHECK;
2016 2328
2017 { 2329 {
2018#ifndef _WIN32 2330#ifndef _WIN32
2019 sigset_t full, prev; 2331 sigset_t full, prev;
2020 sigfillset (&full); 2332 sigfillset (&full);
2021 sigprocmask (SIG_SETMASK, &full, &prev); 2333 sigprocmask (SIG_SETMASK, &full, &prev);
2022#endif 2334#endif
2023 2335
2024 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2336 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2025 2337
2026#ifndef _WIN32 2338#ifndef _WIN32
2027 sigprocmask (SIG_SETMASK, &prev, 0); 2339 sigprocmask (SIG_SETMASK, &prev, 0);
2028#endif 2340#endif
2029 } 2341 }
2041 sigfillset (&sa.sa_mask); 2353 sigfillset (&sa.sa_mask);
2042 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2354 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2043 sigaction (w->signum, &sa, 0); 2355 sigaction (w->signum, &sa, 0);
2044#endif 2356#endif
2045 } 2357 }
2358
2359 EV_FREQUENT_CHECK;
2046} 2360}
2047 2361
2048void noinline 2362void noinline
2049ev_signal_stop (EV_P_ ev_signal *w) 2363ev_signal_stop (EV_P_ ev_signal *w)
2050{ 2364{
2051 clear_pending (EV_A_ (W)w); 2365 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2366 if (expect_false (!ev_is_active (w)))
2053 return; 2367 return;
2054 2368
2369 EV_FREQUENT_CHECK;
2370
2055 wlist_del (&signals [w->signum - 1].head, (WL)w); 2371 wlist_del (&signals [w->signum - 1].head, (WL)w);
2056 ev_stop (EV_A_ (W)w); 2372 ev_stop (EV_A_ (W)w);
2057 2373
2058 if (!signals [w->signum - 1].head) 2374 if (!signals [w->signum - 1].head)
2059 signal (w->signum, SIG_DFL); 2375 signal (w->signum, SIG_DFL);
2376
2377 EV_FREQUENT_CHECK;
2060} 2378}
2061 2379
2062void 2380void
2063ev_child_start (EV_P_ ev_child *w) 2381ev_child_start (EV_P_ ev_child *w)
2064{ 2382{
2066 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2384 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2067#endif 2385#endif
2068 if (expect_false (ev_is_active (w))) 2386 if (expect_false (ev_is_active (w)))
2069 return; 2387 return;
2070 2388
2389 EV_FREQUENT_CHECK;
2390
2071 ev_start (EV_A_ (W)w, 1); 2391 ev_start (EV_A_ (W)w, 1);
2072 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2392 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2393
2394 EV_FREQUENT_CHECK;
2073} 2395}
2074 2396
2075void 2397void
2076ev_child_stop (EV_P_ ev_child *w) 2398ev_child_stop (EV_P_ ev_child *w)
2077{ 2399{
2078 clear_pending (EV_A_ (W)w); 2400 clear_pending (EV_A_ (W)w);
2079 if (expect_false (!ev_is_active (w))) 2401 if (expect_false (!ev_is_active (w)))
2080 return; 2402 return;
2081 2403
2404 EV_FREQUENT_CHECK;
2405
2082 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2406 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2083 ev_stop (EV_A_ (W)w); 2407 ev_stop (EV_A_ (W)w);
2408
2409 EV_FREQUENT_CHECK;
2084} 2410}
2085 2411
2086#if EV_STAT_ENABLE 2412#if EV_STAT_ENABLE
2087 2413
2088# ifdef _WIN32 2414# ifdef _WIN32
2106 if (w->wd < 0) 2432 if (w->wd < 0)
2107 { 2433 {
2108 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2434 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2109 2435
2110 /* monitor some parent directory for speedup hints */ 2436 /* monitor some parent directory for speedup hints */
2437 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2438 /* but an efficiency issue only */
2111 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2439 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2112 { 2440 {
2113 char path [4096]; 2441 char path [4096];
2114 strcpy (path, w->path); 2442 strcpy (path, w->path);
2115 2443
2155 2483
2156static void noinline 2484static void noinline
2157infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2485infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2158{ 2486{
2159 if (slot < 0) 2487 if (slot < 0)
2160 /* overflow, need to check for all hahs slots */ 2488 /* overflow, need to check for all hash slots */
2161 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2489 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2162 infy_wd (EV_A_ slot, wd, ev); 2490 infy_wd (EV_A_ slot, wd, ev);
2163 else 2491 else
2164 { 2492 {
2165 WL w_; 2493 WL w_;
2199infy_init (EV_P) 2527infy_init (EV_P)
2200{ 2528{
2201 if (fs_fd != -2) 2529 if (fs_fd != -2)
2202 return; 2530 return;
2203 2531
2532 /* kernels < 2.6.25 are borked
2533 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2534 */
2535 {
2536 struct utsname buf;
2537 int major, minor, micro;
2538
2539 fs_fd = -1;
2540
2541 if (uname (&buf))
2542 return;
2543
2544 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2545 return;
2546
2547 if (major < 2
2548 || (major == 2 && minor < 6)
2549 || (major == 2 && minor == 6 && micro < 25))
2550 return;
2551 }
2552
2204 fs_fd = inotify_init (); 2553 fs_fd = inotify_init ();
2205 2554
2206 if (fs_fd >= 0) 2555 if (fs_fd >= 0)
2207 { 2556 {
2208 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 2557 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2237 if (fs_fd >= 0) 2586 if (fs_fd >= 0)
2238 infy_add (EV_A_ w); /* re-add, no matter what */ 2587 infy_add (EV_A_ w); /* re-add, no matter what */
2239 else 2588 else
2240 ev_timer_start (EV_A_ &w->timer); 2589 ev_timer_start (EV_A_ &w->timer);
2241 } 2590 }
2242
2243 } 2591 }
2244} 2592}
2245 2593
2594#endif
2595
2596#ifdef _WIN32
2597# define EV_LSTAT(p,b) _stati64 (p, b)
2598#else
2599# define EV_LSTAT(p,b) lstat (p, b)
2246#endif 2600#endif
2247 2601
2248void 2602void
2249ev_stat_stat (EV_P_ ev_stat *w) 2603ev_stat_stat (EV_P_ ev_stat *w)
2250{ 2604{
2277 || w->prev.st_atime != w->attr.st_atime 2631 || w->prev.st_atime != w->attr.st_atime
2278 || w->prev.st_mtime != w->attr.st_mtime 2632 || w->prev.st_mtime != w->attr.st_mtime
2279 || w->prev.st_ctime != w->attr.st_ctime 2633 || w->prev.st_ctime != w->attr.st_ctime
2280 ) { 2634 ) {
2281 #if EV_USE_INOTIFY 2635 #if EV_USE_INOTIFY
2636 if (fs_fd >= 0)
2637 {
2282 infy_del (EV_A_ w); 2638 infy_del (EV_A_ w);
2283 infy_add (EV_A_ w); 2639 infy_add (EV_A_ w);
2284 ev_stat_stat (EV_A_ w); /* avoid race... */ 2640 ev_stat_stat (EV_A_ w); /* avoid race... */
2641 }
2285 #endif 2642 #endif
2286 2643
2287 ev_feed_event (EV_A_ w, EV_STAT); 2644 ev_feed_event (EV_A_ w, EV_STAT);
2288 } 2645 }
2289} 2646}
2314 else 2671 else
2315#endif 2672#endif
2316 ev_timer_start (EV_A_ &w->timer); 2673 ev_timer_start (EV_A_ &w->timer);
2317 2674
2318 ev_start (EV_A_ (W)w, 1); 2675 ev_start (EV_A_ (W)w, 1);
2676
2677 EV_FREQUENT_CHECK;
2319} 2678}
2320 2679
2321void 2680void
2322ev_stat_stop (EV_P_ ev_stat *w) 2681ev_stat_stop (EV_P_ ev_stat *w)
2323{ 2682{
2324 clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
2325 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
2326 return; 2685 return;
2327 2686
2687 EV_FREQUENT_CHECK;
2688
2328#if EV_USE_INOTIFY 2689#if EV_USE_INOTIFY
2329 infy_del (EV_A_ w); 2690 infy_del (EV_A_ w);
2330#endif 2691#endif
2331 ev_timer_stop (EV_A_ &w->timer); 2692 ev_timer_stop (EV_A_ &w->timer);
2332 2693
2333 ev_stop (EV_A_ (W)w); 2694 ev_stop (EV_A_ (W)w);
2695
2696 EV_FREQUENT_CHECK;
2334} 2697}
2335#endif 2698#endif
2336 2699
2337#if EV_IDLE_ENABLE 2700#if EV_IDLE_ENABLE
2338void 2701void
2340{ 2703{
2341 if (expect_false (ev_is_active (w))) 2704 if (expect_false (ev_is_active (w)))
2342 return; 2705 return;
2343 2706
2344 pri_adjust (EV_A_ (W)w); 2707 pri_adjust (EV_A_ (W)w);
2708
2709 EV_FREQUENT_CHECK;
2345 2710
2346 { 2711 {
2347 int active = ++idlecnt [ABSPRI (w)]; 2712 int active = ++idlecnt [ABSPRI (w)];
2348 2713
2349 ++idleall; 2714 ++idleall;
2350 ev_start (EV_A_ (W)w, active); 2715 ev_start (EV_A_ (W)w, active);
2351 2716
2352 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2717 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2353 idles [ABSPRI (w)][active - 1] = w; 2718 idles [ABSPRI (w)][active - 1] = w;
2354 } 2719 }
2720
2721 EV_FREQUENT_CHECK;
2355} 2722}
2356 2723
2357void 2724void
2358ev_idle_stop (EV_P_ ev_idle *w) 2725ev_idle_stop (EV_P_ ev_idle *w)
2359{ 2726{
2360 clear_pending (EV_A_ (W)w); 2727 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 2728 if (expect_false (!ev_is_active (w)))
2362 return; 2729 return;
2363 2730
2731 EV_FREQUENT_CHECK;
2732
2364 { 2733 {
2365 int active = ((W)w)->active; 2734 int active = ev_active (w);
2366 2735
2367 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2736 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2368 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2737 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2369 2738
2370 ev_stop (EV_A_ (W)w); 2739 ev_stop (EV_A_ (W)w);
2371 --idleall; 2740 --idleall;
2372 } 2741 }
2742
2743 EV_FREQUENT_CHECK;
2373} 2744}
2374#endif 2745#endif
2375 2746
2376void 2747void
2377ev_prepare_start (EV_P_ ev_prepare *w) 2748ev_prepare_start (EV_P_ ev_prepare *w)
2378{ 2749{
2379 if (expect_false (ev_is_active (w))) 2750 if (expect_false (ev_is_active (w)))
2380 return; 2751 return;
2752
2753 EV_FREQUENT_CHECK;
2381 2754
2382 ev_start (EV_A_ (W)w, ++preparecnt); 2755 ev_start (EV_A_ (W)w, ++preparecnt);
2383 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2756 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2384 prepares [preparecnt - 1] = w; 2757 prepares [preparecnt - 1] = w;
2758
2759 EV_FREQUENT_CHECK;
2385} 2760}
2386 2761
2387void 2762void
2388ev_prepare_stop (EV_P_ ev_prepare *w) 2763ev_prepare_stop (EV_P_ ev_prepare *w)
2389{ 2764{
2390 clear_pending (EV_A_ (W)w); 2765 clear_pending (EV_A_ (W)w);
2391 if (expect_false (!ev_is_active (w))) 2766 if (expect_false (!ev_is_active (w)))
2392 return; 2767 return;
2393 2768
2769 EV_FREQUENT_CHECK;
2770
2394 { 2771 {
2395 int active = ((W)w)->active; 2772 int active = ev_active (w);
2773
2396 prepares [active - 1] = prepares [--preparecnt]; 2774 prepares [active - 1] = prepares [--preparecnt];
2397 ((W)prepares [active - 1])->active = active; 2775 ev_active (prepares [active - 1]) = active;
2398 } 2776 }
2399 2777
2400 ev_stop (EV_A_ (W)w); 2778 ev_stop (EV_A_ (W)w);
2779
2780 EV_FREQUENT_CHECK;
2401} 2781}
2402 2782
2403void 2783void
2404ev_check_start (EV_P_ ev_check *w) 2784ev_check_start (EV_P_ ev_check *w)
2405{ 2785{
2406 if (expect_false (ev_is_active (w))) 2786 if (expect_false (ev_is_active (w)))
2407 return; 2787 return;
2788
2789 EV_FREQUENT_CHECK;
2408 2790
2409 ev_start (EV_A_ (W)w, ++checkcnt); 2791 ev_start (EV_A_ (W)w, ++checkcnt);
2410 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2792 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2411 checks [checkcnt - 1] = w; 2793 checks [checkcnt - 1] = w;
2794
2795 EV_FREQUENT_CHECK;
2412} 2796}
2413 2797
2414void 2798void
2415ev_check_stop (EV_P_ ev_check *w) 2799ev_check_stop (EV_P_ ev_check *w)
2416{ 2800{
2417 clear_pending (EV_A_ (W)w); 2801 clear_pending (EV_A_ (W)w);
2418 if (expect_false (!ev_is_active (w))) 2802 if (expect_false (!ev_is_active (w)))
2419 return; 2803 return;
2420 2804
2805 EV_FREQUENT_CHECK;
2806
2421 { 2807 {
2422 int active = ((W)w)->active; 2808 int active = ev_active (w);
2809
2423 checks [active - 1] = checks [--checkcnt]; 2810 checks [active - 1] = checks [--checkcnt];
2424 ((W)checks [active - 1])->active = active; 2811 ev_active (checks [active - 1]) = active;
2425 } 2812 }
2426 2813
2427 ev_stop (EV_A_ (W)w); 2814 ev_stop (EV_A_ (W)w);
2815
2816 EV_FREQUENT_CHECK;
2428} 2817}
2429 2818
2430#if EV_EMBED_ENABLE 2819#if EV_EMBED_ENABLE
2431void noinline 2820void noinline
2432ev_embed_sweep (EV_P_ ev_embed *w) 2821ev_embed_sweep (EV_P_ ev_embed *w)
2459 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2848 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2460 } 2849 }
2461 } 2850 }
2462} 2851}
2463 2852
2853static void
2854embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2855{
2856 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2857
2858 {
2859 struct ev_loop *loop = w->other;
2860
2861 ev_loop_fork (EV_A);
2862 }
2863}
2864
2464#if 0 2865#if 0
2465static void 2866static void
2466embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2867embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2467{ 2868{
2468 ev_idle_stop (EV_A_ idle); 2869 ev_idle_stop (EV_A_ idle);
2479 struct ev_loop *loop = w->other; 2880 struct ev_loop *loop = w->other;
2480 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2881 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2882 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2482 } 2883 }
2483 2884
2885 EV_FREQUENT_CHECK;
2886
2484 ev_set_priority (&w->io, ev_priority (w)); 2887 ev_set_priority (&w->io, ev_priority (w));
2485 ev_io_start (EV_A_ &w->io); 2888 ev_io_start (EV_A_ &w->io);
2486 2889
2487 ev_prepare_init (&w->prepare, embed_prepare_cb); 2890 ev_prepare_init (&w->prepare, embed_prepare_cb);
2488 ev_set_priority (&w->prepare, EV_MINPRI); 2891 ev_set_priority (&w->prepare, EV_MINPRI);
2489 ev_prepare_start (EV_A_ &w->prepare); 2892 ev_prepare_start (EV_A_ &w->prepare);
2490 2893
2894 ev_fork_init (&w->fork, embed_fork_cb);
2895 ev_fork_start (EV_A_ &w->fork);
2896
2491 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2897 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2492 2898
2493 ev_start (EV_A_ (W)w, 1); 2899 ev_start (EV_A_ (W)w, 1);
2900
2901 EV_FREQUENT_CHECK;
2494} 2902}
2495 2903
2496void 2904void
2497ev_embed_stop (EV_P_ ev_embed *w) 2905ev_embed_stop (EV_P_ ev_embed *w)
2498{ 2906{
2499 clear_pending (EV_A_ (W)w); 2907 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 2908 if (expect_false (!ev_is_active (w)))
2501 return; 2909 return;
2502 2910
2911 EV_FREQUENT_CHECK;
2912
2503 ev_io_stop (EV_A_ &w->io); 2913 ev_io_stop (EV_A_ &w->io);
2504 ev_prepare_stop (EV_A_ &w->prepare); 2914 ev_prepare_stop (EV_A_ &w->prepare);
2915 ev_fork_stop (EV_A_ &w->fork);
2505 2916
2506 ev_stop (EV_A_ (W)w); 2917 EV_FREQUENT_CHECK;
2507} 2918}
2508#endif 2919#endif
2509 2920
2510#if EV_FORK_ENABLE 2921#if EV_FORK_ENABLE
2511void 2922void
2512ev_fork_start (EV_P_ ev_fork *w) 2923ev_fork_start (EV_P_ ev_fork *w)
2513{ 2924{
2514 if (expect_false (ev_is_active (w))) 2925 if (expect_false (ev_is_active (w)))
2515 return; 2926 return;
2927
2928 EV_FREQUENT_CHECK;
2516 2929
2517 ev_start (EV_A_ (W)w, ++forkcnt); 2930 ev_start (EV_A_ (W)w, ++forkcnt);
2518 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2931 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2519 forks [forkcnt - 1] = w; 2932 forks [forkcnt - 1] = w;
2933
2934 EV_FREQUENT_CHECK;
2520} 2935}
2521 2936
2522void 2937void
2523ev_fork_stop (EV_P_ ev_fork *w) 2938ev_fork_stop (EV_P_ ev_fork *w)
2524{ 2939{
2525 clear_pending (EV_A_ (W)w); 2940 clear_pending (EV_A_ (W)w);
2526 if (expect_false (!ev_is_active (w))) 2941 if (expect_false (!ev_is_active (w)))
2527 return; 2942 return;
2528 2943
2944 EV_FREQUENT_CHECK;
2945
2529 { 2946 {
2530 int active = ((W)w)->active; 2947 int active = ev_active (w);
2948
2531 forks [active - 1] = forks [--forkcnt]; 2949 forks [active - 1] = forks [--forkcnt];
2532 ((W)forks [active - 1])->active = active; 2950 ev_active (forks [active - 1]) = active;
2533 } 2951 }
2534 2952
2535 ev_stop (EV_A_ (W)w); 2953 ev_stop (EV_A_ (W)w);
2954
2955 EV_FREQUENT_CHECK;
2536} 2956}
2537#endif 2957#endif
2538 2958
2539#if EV_ASYNC_ENABLE 2959#if EV_ASYNC_ENABLE
2540void 2960void
2542{ 2962{
2543 if (expect_false (ev_is_active (w))) 2963 if (expect_false (ev_is_active (w)))
2544 return; 2964 return;
2545 2965
2546 evpipe_init (EV_A); 2966 evpipe_init (EV_A);
2967
2968 EV_FREQUENT_CHECK;
2547 2969
2548 ev_start (EV_A_ (W)w, ++asynccnt); 2970 ev_start (EV_A_ (W)w, ++asynccnt);
2549 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2971 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2550 asyncs [asynccnt - 1] = w; 2972 asyncs [asynccnt - 1] = w;
2973
2974 EV_FREQUENT_CHECK;
2551} 2975}
2552 2976
2553void 2977void
2554ev_async_stop (EV_P_ ev_async *w) 2978ev_async_stop (EV_P_ ev_async *w)
2555{ 2979{
2556 clear_pending (EV_A_ (W)w); 2980 clear_pending (EV_A_ (W)w);
2557 if (expect_false (!ev_is_active (w))) 2981 if (expect_false (!ev_is_active (w)))
2558 return; 2982 return;
2559 2983
2984 EV_FREQUENT_CHECK;
2985
2560 { 2986 {
2561 int active = ((W)w)->active; 2987 int active = ev_active (w);
2988
2562 asyncs [active - 1] = asyncs [--asynccnt]; 2989 asyncs [active - 1] = asyncs [--asynccnt];
2563 ((W)asyncs [active - 1])->active = active; 2990 ev_active (asyncs [active - 1]) = active;
2564 } 2991 }
2565 2992
2566 ev_stop (EV_A_ (W)w); 2993 ev_stop (EV_A_ (W)w);
2994
2995 EV_FREQUENT_CHECK;
2567} 2996}
2568 2997
2569void 2998void
2570ev_async_send (EV_P_ ev_async *w) 2999ev_async_send (EV_P_ ev_async *w)
2571{ 3000{
2588once_cb (EV_P_ struct ev_once *once, int revents) 3017once_cb (EV_P_ struct ev_once *once, int revents)
2589{ 3018{
2590 void (*cb)(int revents, void *arg) = once->cb; 3019 void (*cb)(int revents, void *arg) = once->cb;
2591 void *arg = once->arg; 3020 void *arg = once->arg;
2592 3021
2593 ev_io_stop (EV_A_ &once->io); 3022 ev_io_stop (EV_A_ &once->io);
2594 ev_timer_stop (EV_A_ &once->to); 3023 ev_timer_stop (EV_A_ &once->to);
2595 ev_free (once); 3024 ev_free (once);
2596 3025
2597 cb (revents, arg); 3026 cb (revents, arg);
2598} 3027}
2599 3028
2600static void 3029static void
2601once_cb_io (EV_P_ ev_io *w, int revents) 3030once_cb_io (EV_P_ ev_io *w, int revents)
2602{ 3031{
2603 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3032 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3033
3034 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2604} 3035}
2605 3036
2606static void 3037static void
2607once_cb_to (EV_P_ ev_timer *w, int revents) 3038once_cb_to (EV_P_ ev_timer *w, int revents)
2608{ 3039{
2609 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3040 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3041
3042 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2610} 3043}
2611 3044
2612void 3045void
2613ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3046ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2614{ 3047{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines