ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.227 by root, Fri May 2 07:20:01 2008 UTC vs.
Revision 1.300 by root, Tue Jul 14 20:31:21 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
126# define EV_USE_EVENTFD 1 140# define EV_USE_EVENTFD 1
127# else 141# else
128# define EV_USE_EVENTFD 0 142# define EV_USE_EVENTFD 0
129# endif 143# endif
130# endif 144# endif
131 145
132#endif 146#endif
133 147
134#include <math.h> 148#include <math.h>
135#include <stdlib.h> 149#include <stdlib.h>
136#include <fcntl.h> 150#include <fcntl.h>
154#ifndef _WIN32 168#ifndef _WIN32
155# include <sys/time.h> 169# include <sys/time.h>
156# include <sys/wait.h> 170# include <sys/wait.h>
157# include <unistd.h> 171# include <unistd.h>
158#else 172#else
173# include <io.h>
159# define WIN32_LEAN_AND_MEAN 174# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 175# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 176# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 177# define EV_SELECT_IS_WINSOCKET 1
163# endif 178# endif
164#endif 179#endif
165 180
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 181/* this block tries to deduce configuration from header-defined symbols and defaults */
167 182
183#ifndef EV_USE_CLOCK_SYSCALL
184# if __linux && __GLIBC__ >= 2
185# define EV_USE_CLOCK_SYSCALL 1
186# else
187# define EV_USE_CLOCK_SYSCALL 0
188# endif
189#endif
190
168#ifndef EV_USE_MONOTONIC 191#ifndef EV_USE_MONOTONIC
192# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
193# define EV_USE_MONOTONIC 1
194# else
169# define EV_USE_MONOTONIC 0 195# define EV_USE_MONOTONIC 0
196# endif
170#endif 197#endif
171 198
172#ifndef EV_USE_REALTIME 199#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 200# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 201#endif
175 202
176#ifndef EV_USE_NANOSLEEP 203#ifndef EV_USE_NANOSLEEP
204# if _POSIX_C_SOURCE >= 199309L
205# define EV_USE_NANOSLEEP 1
206# else
177# define EV_USE_NANOSLEEP 0 207# define EV_USE_NANOSLEEP 0
208# endif
178#endif 209#endif
179 210
180#ifndef EV_USE_SELECT 211#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 212# define EV_USE_SELECT 1
182#endif 213#endif
235# else 266# else
236# define EV_USE_EVENTFD 0 267# define EV_USE_EVENTFD 0
237# endif 268# endif
238#endif 269#endif
239 270
271#if 0 /* debugging */
272# define EV_VERIFY 3
273# define EV_USE_4HEAP 1
274# define EV_HEAP_CACHE_AT 1
275#endif
276
277#ifndef EV_VERIFY
278# define EV_VERIFY !EV_MINIMAL
279#endif
280
281#ifndef EV_USE_4HEAP
282# define EV_USE_4HEAP !EV_MINIMAL
283#endif
284
285#ifndef EV_HEAP_CACHE_AT
286# define EV_HEAP_CACHE_AT !EV_MINIMAL
287#endif
288
289/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
290/* which makes programs even slower. might work on other unices, too. */
291#if EV_USE_CLOCK_SYSCALL
292# include <syscall.h>
293# ifdef SYS_clock_gettime
294# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
295# undef EV_USE_MONOTONIC
296# define EV_USE_MONOTONIC 1
297# else
298# undef EV_USE_CLOCK_SYSCALL
299# define EV_USE_CLOCK_SYSCALL 0
300# endif
301#endif
302
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 303/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 304
242#ifndef CLOCK_MONOTONIC 305#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 306# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 307# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 322# include <sys/select.h>
260# endif 323# endif
261#endif 324#endif
262 325
263#if EV_USE_INOTIFY 326#if EV_USE_INOTIFY
327# include <sys/utsname.h>
328# include <sys/statfs.h>
264# include <sys/inotify.h> 329# include <sys/inotify.h>
330/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
331# ifndef IN_DONT_FOLLOW
332# undef EV_USE_INOTIFY
333# define EV_USE_INOTIFY 0
334# endif
265#endif 335#endif
266 336
267#if EV_SELECT_IS_WINSOCKET 337#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 338# include <winsock.h>
269#endif 339#endif
279} 349}
280# endif 350# endif
281#endif 351#endif
282 352
283/**/ 353/**/
354
355#if EV_VERIFY >= 3
356# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
357#else
358# define EV_FREQUENT_CHECK do { } while (0)
359#endif
284 360
285/* 361/*
286 * This is used to avoid floating point rounding problems. 362 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 363 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 364 * to ensure progress, time-wise, even when rounding
315# define inline_speed static noinline 391# define inline_speed static noinline
316#else 392#else
317# define inline_speed static inline 393# define inline_speed static inline
318#endif 394#endif
319 395
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 396#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
397
398#if EV_MINPRI == EV_MAXPRI
399# define ABSPRI(w) (((W)w), 0)
400#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 401# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
402#endif
322 403
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 404#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 405#define EMPTY2(a,b) /* used to suppress some warnings */
325 406
326typedef ev_watcher *W; 407typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 408typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 409typedef ev_watcher_time *WT;
329 410
330#if EV_USE_MONOTONIC 411#define ev_active(w) ((W)(w))->active
412#define ev_at(w) ((WT)(w))->at
413
414#if EV_USE_REALTIME
331/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 415/* sig_atomic_t is used to avoid per-thread variables or locking but still */
332/* giving it a reasonably high chance of working on typical architetcures */ 416/* giving it a reasonably high chance of working on typical architetcures */
417static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
418#endif
419
420#if EV_USE_MONOTONIC
333static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 421static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
334#endif 422#endif
335 423
336#ifdef _WIN32 424#ifdef _WIN32
337# include "ev_win32.c" 425# include "ev_win32.c"
346{ 434{
347 syserr_cb = cb; 435 syserr_cb = cb;
348} 436}
349 437
350static void noinline 438static void noinline
351syserr (const char *msg) 439ev_syserr (const char *msg)
352{ 440{
353 if (!msg) 441 if (!msg)
354 msg = "(libev) system error"; 442 msg = "(libev) system error";
355 443
356 if (syserr_cb) 444 if (syserr_cb)
402#define ev_malloc(size) ev_realloc (0, (size)) 490#define ev_malloc(size) ev_realloc (0, (size))
403#define ev_free(ptr) ev_realloc ((ptr), 0) 491#define ev_free(ptr) ev_realloc ((ptr), 0)
404 492
405/*****************************************************************************/ 493/*****************************************************************************/
406 494
495/* set in reify when reification needed */
496#define EV_ANFD_REIFY 1
497
498/* file descriptor info structure */
407typedef struct 499typedef struct
408{ 500{
409 WL head; 501 WL head;
410 unsigned char events; 502 unsigned char events; /* the events watched for */
503 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
504 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
411 unsigned char reify; 505 unsigned char unused;
506#if EV_USE_EPOLL
507 unsigned int egen; /* generation counter to counter epoll bugs */
508#endif
412#if EV_SELECT_IS_WINSOCKET 509#if EV_SELECT_IS_WINSOCKET
413 SOCKET handle; 510 SOCKET handle;
414#endif 511#endif
415} ANFD; 512} ANFD;
416 513
514/* stores the pending event set for a given watcher */
417typedef struct 515typedef struct
418{ 516{
419 W w; 517 W w;
420 int events; 518 int events; /* the pending event set for the given watcher */
421} ANPENDING; 519} ANPENDING;
422 520
423#if EV_USE_INOTIFY 521#if EV_USE_INOTIFY
522/* hash table entry per inotify-id */
424typedef struct 523typedef struct
425{ 524{
426 WL head; 525 WL head;
427} ANFS; 526} ANFS;
527#endif
528
529/* Heap Entry */
530#if EV_HEAP_CACHE_AT
531 /* a heap element */
532 typedef struct {
533 ev_tstamp at;
534 WT w;
535 } ANHE;
536
537 #define ANHE_w(he) (he).w /* access watcher, read-write */
538 #define ANHE_at(he) (he).at /* access cached at, read-only */
539 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
540#else
541 /* a heap element */
542 typedef WT ANHE;
543
544 #define ANHE_w(he) (he)
545 #define ANHE_at(he) (he)->at
546 #define ANHE_at_cache(he)
428#endif 547#endif
429 548
430#if EV_MULTIPLICITY 549#if EV_MULTIPLICITY
431 550
432 struct ev_loop 551 struct ev_loop
451 570
452 static int ev_default_loop_ptr; 571 static int ev_default_loop_ptr;
453 572
454#endif 573#endif
455 574
575#if EV_MINIMAL < 2
576# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
577# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
578# define EV_INVOKE_PENDING invoke_cb (EV_A)
579#else
580# define EV_RELEASE_CB (void)0
581# define EV_ACQUIRE_CB (void)0
582# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
583#endif
584
585#define EVUNLOOP_RECURSE 0x80
586
456/*****************************************************************************/ 587/*****************************************************************************/
457 588
589#ifndef EV_HAVE_EV_TIME
458ev_tstamp 590ev_tstamp
459ev_time (void) 591ev_time (void)
460{ 592{
461#if EV_USE_REALTIME 593#if EV_USE_REALTIME
594 if (expect_true (have_realtime))
595 {
462 struct timespec ts; 596 struct timespec ts;
463 clock_gettime (CLOCK_REALTIME, &ts); 597 clock_gettime (CLOCK_REALTIME, &ts);
464 return ts.tv_sec + ts.tv_nsec * 1e-9; 598 return ts.tv_sec + ts.tv_nsec * 1e-9;
465#else 599 }
600#endif
601
466 struct timeval tv; 602 struct timeval tv;
467 gettimeofday (&tv, 0); 603 gettimeofday (&tv, 0);
468 return tv.tv_sec + tv.tv_usec * 1e-6; 604 return tv.tv_sec + tv.tv_usec * 1e-6;
469#endif
470} 605}
606#endif
471 607
472ev_tstamp inline_size 608inline_size ev_tstamp
473get_clock (void) 609get_clock (void)
474{ 610{
475#if EV_USE_MONOTONIC 611#if EV_USE_MONOTONIC
476 if (expect_true (have_monotonic)) 612 if (expect_true (have_monotonic))
477 { 613 {
510 struct timeval tv; 646 struct timeval tv;
511 647
512 tv.tv_sec = (time_t)delay; 648 tv.tv_sec = (time_t)delay;
513 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 649 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
514 650
651 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
652 /* somehting not guaranteed by newer posix versions, but guaranteed */
653 /* by older ones */
515 select (0, 0, 0, 0, &tv); 654 select (0, 0, 0, 0, &tv);
516#endif 655#endif
517 } 656 }
518} 657}
519 658
520/*****************************************************************************/ 659/*****************************************************************************/
521 660
522int inline_size 661#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
662
663/* find a suitable new size for the given array, */
664/* hopefully by rounding to a ncie-to-malloc size */
665inline_size int
523array_nextsize (int elem, int cur, int cnt) 666array_nextsize (int elem, int cur, int cnt)
524{ 667{
525 int ncur = cur + 1; 668 int ncur = cur + 1;
526 669
527 do 670 do
528 ncur <<= 1; 671 ncur <<= 1;
529 while (cnt > ncur); 672 while (cnt > ncur);
530 673
531 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 674 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
532 if (elem * ncur > 4096) 675 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
533 { 676 {
534 ncur *= elem; 677 ncur *= elem;
535 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 678 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
536 ncur = ncur - sizeof (void *) * 4; 679 ncur = ncur - sizeof (void *) * 4;
537 ncur /= elem; 680 ncur /= elem;
538 } 681 }
539 682
540 return ncur; 683 return ncur;
544array_realloc (int elem, void *base, int *cur, int cnt) 687array_realloc (int elem, void *base, int *cur, int cnt)
545{ 688{
546 *cur = array_nextsize (elem, *cur, cnt); 689 *cur = array_nextsize (elem, *cur, cnt);
547 return ev_realloc (base, elem * *cur); 690 return ev_realloc (base, elem * *cur);
548} 691}
692
693#define array_init_zero(base,count) \
694 memset ((void *)(base), 0, sizeof (*(base)) * (count))
549 695
550#define array_needsize(type,base,cur,cnt,init) \ 696#define array_needsize(type,base,cur,cnt,init) \
551 if (expect_false ((cnt) > (cur))) \ 697 if (expect_false ((cnt) > (cur))) \
552 { \ 698 { \
553 int ocur_ = (cur); \ 699 int ocur_ = (cur); \
565 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 711 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
566 } 712 }
567#endif 713#endif
568 714
569#define array_free(stem, idx) \ 715#define array_free(stem, idx) \
570 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 716 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
571 717
572/*****************************************************************************/ 718/*****************************************************************************/
719
720/* dummy callback for pending events */
721static void noinline
722pendingcb (EV_P_ ev_prepare *w, int revents)
723{
724}
573 725
574void noinline 726void noinline
575ev_feed_event (EV_P_ void *w, int revents) 727ev_feed_event (EV_P_ void *w, int revents)
576{ 728{
577 W w_ = (W)w; 729 W w_ = (W)w;
586 pendings [pri][w_->pending - 1].w = w_; 738 pendings [pri][w_->pending - 1].w = w_;
587 pendings [pri][w_->pending - 1].events = revents; 739 pendings [pri][w_->pending - 1].events = revents;
588 } 740 }
589} 741}
590 742
591void inline_speed 743inline_speed void
744feed_reverse (EV_P_ W w)
745{
746 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
747 rfeeds [rfeedcnt++] = w;
748}
749
750inline_size void
751feed_reverse_done (EV_P_ int revents)
752{
753 do
754 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
755 while (rfeedcnt);
756}
757
758inline_speed void
592queue_events (EV_P_ W *events, int eventcnt, int type) 759queue_events (EV_P_ W *events, int eventcnt, int type)
593{ 760{
594 int i; 761 int i;
595 762
596 for (i = 0; i < eventcnt; ++i) 763 for (i = 0; i < eventcnt; ++i)
597 ev_feed_event (EV_A_ events [i], type); 764 ev_feed_event (EV_A_ events [i], type);
598} 765}
599 766
600/*****************************************************************************/ 767/*****************************************************************************/
601 768
602void inline_size 769inline_speed void
603anfds_init (ANFD *base, int count)
604{
605 while (count--)
606 {
607 base->head = 0;
608 base->events = EV_NONE;
609 base->reify = 0;
610
611 ++base;
612 }
613}
614
615void inline_speed
616fd_event (EV_P_ int fd, int revents) 770fd_event_nc (EV_P_ int fd, int revents)
617{ 771{
618 ANFD *anfd = anfds + fd; 772 ANFD *anfd = anfds + fd;
619 ev_io *w; 773 ev_io *w;
620 774
621 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 775 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
625 if (ev) 779 if (ev)
626 ev_feed_event (EV_A_ (W)w, ev); 780 ev_feed_event (EV_A_ (W)w, ev);
627 } 781 }
628} 782}
629 783
784/* do not submit kernel events for fds that have reify set */
785/* because that means they changed while we were polling for new events */
786inline_speed void
787fd_event (EV_P_ int fd, int revents)
788{
789 ANFD *anfd = anfds + fd;
790
791 if (expect_true (!anfd->reify))
792 fd_event_nc (EV_A_ fd, revents);
793}
794
630void 795void
631ev_feed_fd_event (EV_P_ int fd, int revents) 796ev_feed_fd_event (EV_P_ int fd, int revents)
632{ 797{
633 if (fd >= 0 && fd < anfdmax) 798 if (fd >= 0 && fd < anfdmax)
634 fd_event (EV_A_ fd, revents); 799 fd_event_nc (EV_A_ fd, revents);
635} 800}
636 801
637void inline_size 802/* make sure the external fd watch events are in-sync */
803/* with the kernel/libev internal state */
804inline_size void
638fd_reify (EV_P) 805fd_reify (EV_P)
639{ 806{
640 int i; 807 int i;
641 808
642 for (i = 0; i < fdchangecnt; ++i) 809 for (i = 0; i < fdchangecnt; ++i)
651 events |= (unsigned char)w->events; 818 events |= (unsigned char)w->events;
652 819
653#if EV_SELECT_IS_WINSOCKET 820#if EV_SELECT_IS_WINSOCKET
654 if (events) 821 if (events)
655 { 822 {
656 unsigned long argp; 823 unsigned long arg;
657 #ifdef EV_FD_TO_WIN32_HANDLE 824 #ifdef EV_FD_TO_WIN32_HANDLE
658 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 825 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
659 #else 826 #else
660 anfd->handle = _get_osfhandle (fd); 827 anfd->handle = _get_osfhandle (fd);
661 #endif 828 #endif
662 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 829 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
663 } 830 }
664#endif 831#endif
665 832
666 { 833 {
667 unsigned char o_events = anfd->events; 834 unsigned char o_events = anfd->events;
668 unsigned char o_reify = anfd->reify; 835 unsigned char o_reify = anfd->reify;
669 836
670 anfd->reify = 0; 837 anfd->reify = 0;
671 anfd->events = events; 838 anfd->events = events;
672 839
673 if (o_events != events || o_reify & EV_IOFDSET) 840 if (o_events != events || o_reify & EV__IOFDSET)
674 backend_modify (EV_A_ fd, o_events, events); 841 backend_modify (EV_A_ fd, o_events, events);
675 } 842 }
676 } 843 }
677 844
678 fdchangecnt = 0; 845 fdchangecnt = 0;
679} 846}
680 847
681void inline_size 848/* something about the given fd changed */
849inline_size void
682fd_change (EV_P_ int fd, int flags) 850fd_change (EV_P_ int fd, int flags)
683{ 851{
684 unsigned char reify = anfds [fd].reify; 852 unsigned char reify = anfds [fd].reify;
685 anfds [fd].reify |= flags; 853 anfds [fd].reify |= flags;
686 854
690 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 858 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
691 fdchanges [fdchangecnt - 1] = fd; 859 fdchanges [fdchangecnt - 1] = fd;
692 } 860 }
693} 861}
694 862
695void inline_speed 863/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
864inline_speed void
696fd_kill (EV_P_ int fd) 865fd_kill (EV_P_ int fd)
697{ 866{
698 ev_io *w; 867 ev_io *w;
699 868
700 while ((w = (ev_io *)anfds [fd].head)) 869 while ((w = (ev_io *)anfds [fd].head))
702 ev_io_stop (EV_A_ w); 871 ev_io_stop (EV_A_ w);
703 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 872 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
704 } 873 }
705} 874}
706 875
707int inline_size 876/* check whether the given fd is atcually valid, for error recovery */
877inline_size int
708fd_valid (int fd) 878fd_valid (int fd)
709{ 879{
710#ifdef _WIN32 880#ifdef _WIN32
711 return _get_osfhandle (fd) != -1; 881 return _get_osfhandle (fd) != -1;
712#else 882#else
720{ 890{
721 int fd; 891 int fd;
722 892
723 for (fd = 0; fd < anfdmax; ++fd) 893 for (fd = 0; fd < anfdmax; ++fd)
724 if (anfds [fd].events) 894 if (anfds [fd].events)
725 if (!fd_valid (fd) == -1 && errno == EBADF) 895 if (!fd_valid (fd) && errno == EBADF)
726 fd_kill (EV_A_ fd); 896 fd_kill (EV_A_ fd);
727} 897}
728 898
729/* called on ENOMEM in select/poll to kill some fds and retry */ 899/* called on ENOMEM in select/poll to kill some fds and retry */
730static void noinline 900static void noinline
748 918
749 for (fd = 0; fd < anfdmax; ++fd) 919 for (fd = 0; fd < anfdmax; ++fd)
750 if (anfds [fd].events) 920 if (anfds [fd].events)
751 { 921 {
752 anfds [fd].events = 0; 922 anfds [fd].events = 0;
923 anfds [fd].emask = 0;
753 fd_change (EV_A_ fd, EV_IOFDSET | 1); 924 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
754 } 925 }
755} 926}
756 927
757/*****************************************************************************/ 928/*****************************************************************************/
758 929
930/*
931 * the heap functions want a real array index. array index 0 uis guaranteed to not
932 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
933 * the branching factor of the d-tree.
934 */
935
936/*
937 * at the moment we allow libev the luxury of two heaps,
938 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
939 * which is more cache-efficient.
940 * the difference is about 5% with 50000+ watchers.
941 */
942#if EV_USE_4HEAP
943
944#define DHEAP 4
945#define HEAP0 (DHEAP - 1) /* index of first element in heap */
946#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
947#define UPHEAP_DONE(p,k) ((p) == (k))
948
949/* away from the root */
950inline_speed void
951downheap (ANHE *heap, int N, int k)
952{
953 ANHE he = heap [k];
954 ANHE *E = heap + N + HEAP0;
955
956 for (;;)
957 {
958 ev_tstamp minat;
959 ANHE *minpos;
960 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
961
962 /* find minimum child */
963 if (expect_true (pos + DHEAP - 1 < E))
964 {
965 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
966 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
967 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
968 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
969 }
970 else if (pos < E)
971 {
972 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
973 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
974 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
975 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
976 }
977 else
978 break;
979
980 if (ANHE_at (he) <= minat)
981 break;
982
983 heap [k] = *minpos;
984 ev_active (ANHE_w (*minpos)) = k;
985
986 k = minpos - heap;
987 }
988
989 heap [k] = he;
990 ev_active (ANHE_w (he)) = k;
991}
992
993#else /* 4HEAP */
994
995#define HEAP0 1
996#define HPARENT(k) ((k) >> 1)
997#define UPHEAP_DONE(p,k) (!(p))
998
999/* away from the root */
1000inline_speed void
1001downheap (ANHE *heap, int N, int k)
1002{
1003 ANHE he = heap [k];
1004
1005 for (;;)
1006 {
1007 int c = k << 1;
1008
1009 if (c > N + HEAP0 - 1)
1010 break;
1011
1012 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1013 ? 1 : 0;
1014
1015 if (ANHE_at (he) <= ANHE_at (heap [c]))
1016 break;
1017
1018 heap [k] = heap [c];
1019 ev_active (ANHE_w (heap [k])) = k;
1020
1021 k = c;
1022 }
1023
1024 heap [k] = he;
1025 ev_active (ANHE_w (he)) = k;
1026}
1027#endif
1028
759/* towards the root */ 1029/* towards the root */
760void inline_speed 1030inline_speed void
761upheap (WT *heap, int k) 1031upheap (ANHE *heap, int k)
762{ 1032{
763 WT w = heap [k]; 1033 ANHE he = heap [k];
764 1034
765 while (k) 1035 for (;;)
766 { 1036 {
767 int p = (k - 1) >> 1; 1037 int p = HPARENT (k);
768 1038
769 if (heap [p]->at <= w->at) 1039 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
770 break; 1040 break;
771 1041
772 heap [k] = heap [p]; 1042 heap [k] = heap [p];
773 ((W)heap [k])->active = k + 1; 1043 ev_active (ANHE_w (heap [k])) = k;
774 k = p; 1044 k = p;
775 } 1045 }
776 1046
777 heap [k] = w; 1047 heap [k] = he;
778 ((W)heap [k])->active = k + 1; 1048 ev_active (ANHE_w (he)) = k;
779} 1049}
780 1050
781/* away from the root */ 1051/* move an element suitably so it is in a correct place */
782void inline_speed 1052inline_size void
783downheap (WT *heap, int N, int k)
784{
785 WT w = heap [k];
786
787 for (;;)
788 {
789 int c = (k << 1) + 1;
790
791 if (c >= N)
792 break;
793
794 c += c + 1 < N && heap [c]->at > heap [c + 1]->at
795 ? 1 : 0;
796
797 if (w->at <= heap [c]->at)
798 break;
799
800 heap [k] = heap [c];
801 ((W)heap [k])->active = k + 1;
802
803 k = c;
804 }
805
806 heap [k] = w;
807 ((W)heap [k])->active = k + 1;
808}
809
810void inline_size
811adjustheap (WT *heap, int N, int k) 1053adjustheap (ANHE *heap, int N, int k)
812{ 1054{
1055 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
813 upheap (heap, k); 1056 upheap (heap, k);
1057 else
814 downheap (heap, N, k); 1058 downheap (heap, N, k);
1059}
1060
1061/* rebuild the heap: this function is used only once and executed rarely */
1062inline_size void
1063reheap (ANHE *heap, int N)
1064{
1065 int i;
1066
1067 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1068 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1069 for (i = 0; i < N; ++i)
1070 upheap (heap, i + HEAP0);
815} 1071}
816 1072
817/*****************************************************************************/ 1073/*****************************************************************************/
818 1074
1075/* associate signal watchers to a signal signal */
819typedef struct 1076typedef struct
820{ 1077{
821 WL head; 1078 WL head;
822 EV_ATOMIC_T gotsig; 1079 EV_ATOMIC_T gotsig;
823} ANSIG; 1080} ANSIG;
825static ANSIG *signals; 1082static ANSIG *signals;
826static int signalmax; 1083static int signalmax;
827 1084
828static EV_ATOMIC_T gotsig; 1085static EV_ATOMIC_T gotsig;
829 1086
830void inline_size
831signals_init (ANSIG *base, int count)
832{
833 while (count--)
834 {
835 base->head = 0;
836 base->gotsig = 0;
837
838 ++base;
839 }
840}
841
842/*****************************************************************************/ 1087/*****************************************************************************/
843 1088
844void inline_speed 1089/* used to prepare libev internal fd's */
1090/* this is not fork-safe */
1091inline_speed void
845fd_intern (int fd) 1092fd_intern (int fd)
846{ 1093{
847#ifdef _WIN32 1094#ifdef _WIN32
848 int arg = 1; 1095 unsigned long arg = 1;
849 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1096 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
850#else 1097#else
851 fcntl (fd, F_SETFD, FD_CLOEXEC); 1098 fcntl (fd, F_SETFD, FD_CLOEXEC);
852 fcntl (fd, F_SETFL, O_NONBLOCK); 1099 fcntl (fd, F_SETFL, O_NONBLOCK);
853#endif 1100#endif
854} 1101}
855 1102
856static void noinline 1103static void noinline
857evpipe_init (EV_P) 1104evpipe_init (EV_P)
858{ 1105{
859 if (!ev_is_active (&pipeev)) 1106 if (!ev_is_active (&pipe_w))
860 { 1107 {
861#if EV_USE_EVENTFD 1108#if EV_USE_EVENTFD
862 if ((evfd = eventfd (0, 0)) >= 0) 1109 if ((evfd = eventfd (0, 0)) >= 0)
863 { 1110 {
864 evpipe [0] = -1; 1111 evpipe [0] = -1;
865 fd_intern (evfd); 1112 fd_intern (evfd);
866 ev_io_set (&pipeev, evfd, EV_READ); 1113 ev_io_set (&pipe_w, evfd, EV_READ);
867 } 1114 }
868 else 1115 else
869#endif 1116#endif
870 { 1117 {
871 while (pipe (evpipe)) 1118 while (pipe (evpipe))
872 syserr ("(libev) error creating signal/async pipe"); 1119 ev_syserr ("(libev) error creating signal/async pipe");
873 1120
874 fd_intern (evpipe [0]); 1121 fd_intern (evpipe [0]);
875 fd_intern (evpipe [1]); 1122 fd_intern (evpipe [1]);
876 ev_io_set (&pipeev, evpipe [0], EV_READ); 1123 ev_io_set (&pipe_w, evpipe [0], EV_READ);
877 } 1124 }
878 1125
879 ev_io_start (EV_A_ &pipeev); 1126 ev_io_start (EV_A_ &pipe_w);
880 ev_unref (EV_A); /* watcher should not keep loop alive */ 1127 ev_unref (EV_A); /* watcher should not keep loop alive */
881 } 1128 }
882} 1129}
883 1130
884void inline_size 1131inline_size void
885evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1132evpipe_write (EV_P_ EV_ATOMIC_T *flag)
886{ 1133{
887 if (!*flag) 1134 if (!*flag)
888 { 1135 {
889 int old_errno = errno; /* save errno because write might clobber it */ 1136 int old_errno = errno; /* save errno because write might clobber it */
902 1149
903 errno = old_errno; 1150 errno = old_errno;
904 } 1151 }
905} 1152}
906 1153
1154/* called whenever the libev signal pipe */
1155/* got some events (signal, async) */
907static void 1156static void
908pipecb (EV_P_ ev_io *iow, int revents) 1157pipecb (EV_P_ ev_io *iow, int revents)
909{ 1158{
910#if EV_USE_EVENTFD 1159#if EV_USE_EVENTFD
911 if (evfd >= 0) 1160 if (evfd >= 0)
912 { 1161 {
913 uint64_t counter = 1; 1162 uint64_t counter;
914 read (evfd, &counter, sizeof (uint64_t)); 1163 read (evfd, &counter, sizeof (uint64_t));
915 } 1164 }
916 else 1165 else
917#endif 1166#endif
918 { 1167 {
967ev_feed_signal_event (EV_P_ int signum) 1216ev_feed_signal_event (EV_P_ int signum)
968{ 1217{
969 WL w; 1218 WL w;
970 1219
971#if EV_MULTIPLICITY 1220#if EV_MULTIPLICITY
972 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1221 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
973#endif 1222#endif
974 1223
975 --signum; 1224 --signum;
976 1225
977 if (signum < 0 || signum >= signalmax) 1226 if (signum < 0 || signum >= signalmax)
993 1242
994#ifndef WIFCONTINUED 1243#ifndef WIFCONTINUED
995# define WIFCONTINUED(status) 0 1244# define WIFCONTINUED(status) 0
996#endif 1245#endif
997 1246
998void inline_speed 1247/* handle a single child status event */
1248inline_speed void
999child_reap (EV_P_ int chain, int pid, int status) 1249child_reap (EV_P_ int chain, int pid, int status)
1000{ 1250{
1001 ev_child *w; 1251 ev_child *w;
1002 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1252 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1003 1253
1016 1266
1017#ifndef WCONTINUED 1267#ifndef WCONTINUED
1018# define WCONTINUED 0 1268# define WCONTINUED 0
1019#endif 1269#endif
1020 1270
1271/* called on sigchld etc., calls waitpid */
1021static void 1272static void
1022childcb (EV_P_ ev_signal *sw, int revents) 1273childcb (EV_P_ ev_signal *sw, int revents)
1023{ 1274{
1024 int pid, status; 1275 int pid, status;
1025 1276
1106 /* kqueue is borked on everything but netbsd apparently */ 1357 /* kqueue is borked on everything but netbsd apparently */
1107 /* it usually doesn't work correctly on anything but sockets and pipes */ 1358 /* it usually doesn't work correctly on anything but sockets and pipes */
1108 flags &= ~EVBACKEND_KQUEUE; 1359 flags &= ~EVBACKEND_KQUEUE;
1109#endif 1360#endif
1110#ifdef __APPLE__ 1361#ifdef __APPLE__
1111 // flags &= ~EVBACKEND_KQUEUE; for documentation 1362 /* only select works correctly on that "unix-certified" platform */
1112 flags &= ~EVBACKEND_POLL; 1363 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1364 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1113#endif 1365#endif
1114 1366
1115 return flags; 1367 return flags;
1116} 1368}
1117 1369
1131ev_backend (EV_P) 1383ev_backend (EV_P)
1132{ 1384{
1133 return backend; 1385 return backend;
1134} 1386}
1135 1387
1388#if EV_MINIMAL < 2
1136unsigned int 1389unsigned int
1137ev_loop_count (EV_P) 1390ev_loop_count (EV_P)
1138{ 1391{
1139 return loop_count; 1392 return loop_count;
1140} 1393}
1141 1394
1395unsigned int
1396ev_loop_depth (EV_P)
1397{
1398 return loop_depth;
1399}
1400
1142void 1401void
1143ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1402ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1144{ 1403{
1145 io_blocktime = interval; 1404 io_blocktime = interval;
1146} 1405}
1149ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1408ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1150{ 1409{
1151 timeout_blocktime = interval; 1410 timeout_blocktime = interval;
1152} 1411}
1153 1412
1413void
1414ev_set_userdata (EV_P_ void *data)
1415{
1416 userdata = data;
1417}
1418
1419void *
1420ev_userdata (EV_P)
1421{
1422 return userdata;
1423}
1424
1425void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1426{
1427 invoke_cb = invoke_pending_cb;
1428}
1429
1430void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1431{
1432 release_cb = release;
1433 acquire_cb = acquire;
1434}
1435#endif
1436
1437/* initialise a loop structure, must be zero-initialised */
1154static void noinline 1438static void noinline
1155loop_init (EV_P_ unsigned int flags) 1439loop_init (EV_P_ unsigned int flags)
1156{ 1440{
1157 if (!backend) 1441 if (!backend)
1158 { 1442 {
1443#if EV_USE_REALTIME
1444 if (!have_realtime)
1445 {
1446 struct timespec ts;
1447
1448 if (!clock_gettime (CLOCK_REALTIME, &ts))
1449 have_realtime = 1;
1450 }
1451#endif
1452
1159#if EV_USE_MONOTONIC 1453#if EV_USE_MONOTONIC
1454 if (!have_monotonic)
1160 { 1455 {
1161 struct timespec ts; 1456 struct timespec ts;
1457
1162 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1458 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1163 have_monotonic = 1; 1459 have_monotonic = 1;
1164 } 1460 }
1165#endif 1461#endif
1166 1462
1167 ev_rt_now = ev_time (); 1463 ev_rt_now = ev_time ();
1168 mn_now = get_clock (); 1464 mn_now = get_clock ();
1169 now_floor = mn_now; 1465 now_floor = mn_now;
1170 rtmn_diff = ev_rt_now - mn_now; 1466 rtmn_diff = ev_rt_now - mn_now;
1467#if EV_MINIMAL < 2
1468 invoke_cb = ev_invoke_pending;
1469#endif
1171 1470
1172 io_blocktime = 0.; 1471 io_blocktime = 0.;
1173 timeout_blocktime = 0.; 1472 timeout_blocktime = 0.;
1174 backend = 0; 1473 backend = 0;
1175 backend_fd = -1; 1474 backend_fd = -1;
1206#endif 1505#endif
1207#if EV_USE_SELECT 1506#if EV_USE_SELECT
1208 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1507 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1209#endif 1508#endif
1210 1509
1510 ev_prepare_init (&pending_w, pendingcb);
1511
1211 ev_init (&pipeev, pipecb); 1512 ev_init (&pipe_w, pipecb);
1212 ev_set_priority (&pipeev, EV_MAXPRI); 1513 ev_set_priority (&pipe_w, EV_MAXPRI);
1213 } 1514 }
1214} 1515}
1215 1516
1517/* free up a loop structure */
1216static void noinline 1518static void noinline
1217loop_destroy (EV_P) 1519loop_destroy (EV_P)
1218{ 1520{
1219 int i; 1521 int i;
1220 1522
1221 if (ev_is_active (&pipeev)) 1523 if (ev_is_active (&pipe_w))
1222 { 1524 {
1223 ev_ref (EV_A); /* signal watcher */ 1525 ev_ref (EV_A); /* signal watcher */
1224 ev_io_stop (EV_A_ &pipeev); 1526 ev_io_stop (EV_A_ &pipe_w);
1225 1527
1226#if EV_USE_EVENTFD 1528#if EV_USE_EVENTFD
1227 if (evfd >= 0) 1529 if (evfd >= 0)
1228 close (evfd); 1530 close (evfd);
1229#endif 1531#endif
1268 } 1570 }
1269 1571
1270 ev_free (anfds); anfdmax = 0; 1572 ev_free (anfds); anfdmax = 0;
1271 1573
1272 /* have to use the microsoft-never-gets-it-right macro */ 1574 /* have to use the microsoft-never-gets-it-right macro */
1575 array_free (rfeed, EMPTY);
1273 array_free (fdchange, EMPTY); 1576 array_free (fdchange, EMPTY);
1274 array_free (timer, EMPTY); 1577 array_free (timer, EMPTY);
1275#if EV_PERIODIC_ENABLE 1578#if EV_PERIODIC_ENABLE
1276 array_free (periodic, EMPTY); 1579 array_free (periodic, EMPTY);
1277#endif 1580#endif
1286 1589
1287 backend = 0; 1590 backend = 0;
1288} 1591}
1289 1592
1290#if EV_USE_INOTIFY 1593#if EV_USE_INOTIFY
1291void inline_size infy_fork (EV_P); 1594inline_size void infy_fork (EV_P);
1292#endif 1595#endif
1293 1596
1294void inline_size 1597inline_size void
1295loop_fork (EV_P) 1598loop_fork (EV_P)
1296{ 1599{
1297#if EV_USE_PORT 1600#if EV_USE_PORT
1298 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1601 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1299#endif 1602#endif
1305#endif 1608#endif
1306#if EV_USE_INOTIFY 1609#if EV_USE_INOTIFY
1307 infy_fork (EV_A); 1610 infy_fork (EV_A);
1308#endif 1611#endif
1309 1612
1310 if (ev_is_active (&pipeev)) 1613 if (ev_is_active (&pipe_w))
1311 { 1614 {
1312 /* this "locks" the handlers against writing to the pipe */ 1615 /* this "locks" the handlers against writing to the pipe */
1313 /* while we modify the fd vars */ 1616 /* while we modify the fd vars */
1314 gotsig = 1; 1617 gotsig = 1;
1315#if EV_ASYNC_ENABLE 1618#if EV_ASYNC_ENABLE
1316 gotasync = 1; 1619 gotasync = 1;
1317#endif 1620#endif
1318 1621
1319 ev_ref (EV_A); 1622 ev_ref (EV_A);
1320 ev_io_stop (EV_A_ &pipeev); 1623 ev_io_stop (EV_A_ &pipe_w);
1321 1624
1322#if EV_USE_EVENTFD 1625#if EV_USE_EVENTFD
1323 if (evfd >= 0) 1626 if (evfd >= 0)
1324 close (evfd); 1627 close (evfd);
1325#endif 1628#endif
1330 close (evpipe [1]); 1633 close (evpipe [1]);
1331 } 1634 }
1332 1635
1333 evpipe_init (EV_A); 1636 evpipe_init (EV_A);
1334 /* now iterate over everything, in case we missed something */ 1637 /* now iterate over everything, in case we missed something */
1335 pipecb (EV_A_ &pipeev, EV_READ); 1638 pipecb (EV_A_ &pipe_w, EV_READ);
1336 } 1639 }
1337 1640
1338 postfork = 0; 1641 postfork = 0;
1339} 1642}
1340 1643
1341#if EV_MULTIPLICITY 1644#if EV_MULTIPLICITY
1645
1342struct ev_loop * 1646struct ev_loop *
1343ev_loop_new (unsigned int flags) 1647ev_loop_new (unsigned int flags)
1344{ 1648{
1345 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1649 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1346 1650
1364void 1668void
1365ev_loop_fork (EV_P) 1669ev_loop_fork (EV_P)
1366{ 1670{
1367 postfork = 1; /* must be in line with ev_default_fork */ 1671 postfork = 1; /* must be in line with ev_default_fork */
1368} 1672}
1673#endif /* multiplicity */
1369 1674
1675#if EV_VERIFY
1676static void noinline
1677verify_watcher (EV_P_ W w)
1678{
1679 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1680
1681 if (w->pending)
1682 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1683}
1684
1685static void noinline
1686verify_heap (EV_P_ ANHE *heap, int N)
1687{
1688 int i;
1689
1690 for (i = HEAP0; i < N + HEAP0; ++i)
1691 {
1692 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1693 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1694 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1695
1696 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1697 }
1698}
1699
1700static void noinline
1701array_verify (EV_P_ W *ws, int cnt)
1702{
1703 while (cnt--)
1704 {
1705 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1706 verify_watcher (EV_A_ ws [cnt]);
1707 }
1708}
1709#endif
1710
1711#if EV_MINIMAL < 2
1712void
1713ev_loop_verify (EV_P)
1714{
1715#if EV_VERIFY
1716 int i;
1717 WL w;
1718
1719 assert (activecnt >= -1);
1720
1721 assert (fdchangemax >= fdchangecnt);
1722 for (i = 0; i < fdchangecnt; ++i)
1723 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1724
1725 assert (anfdmax >= 0);
1726 for (i = 0; i < anfdmax; ++i)
1727 for (w = anfds [i].head; w; w = w->next)
1728 {
1729 verify_watcher (EV_A_ (W)w);
1730 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1731 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1732 }
1733
1734 assert (timermax >= timercnt);
1735 verify_heap (EV_A_ timers, timercnt);
1736
1737#if EV_PERIODIC_ENABLE
1738 assert (periodicmax >= periodiccnt);
1739 verify_heap (EV_A_ periodics, periodiccnt);
1740#endif
1741
1742 for (i = NUMPRI; i--; )
1743 {
1744 assert (pendingmax [i] >= pendingcnt [i]);
1745#if EV_IDLE_ENABLE
1746 assert (idleall >= 0);
1747 assert (idlemax [i] >= idlecnt [i]);
1748 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1749#endif
1750 }
1751
1752#if EV_FORK_ENABLE
1753 assert (forkmax >= forkcnt);
1754 array_verify (EV_A_ (W *)forks, forkcnt);
1755#endif
1756
1757#if EV_ASYNC_ENABLE
1758 assert (asyncmax >= asynccnt);
1759 array_verify (EV_A_ (W *)asyncs, asynccnt);
1760#endif
1761
1762 assert (preparemax >= preparecnt);
1763 array_verify (EV_A_ (W *)prepares, preparecnt);
1764
1765 assert (checkmax >= checkcnt);
1766 array_verify (EV_A_ (W *)checks, checkcnt);
1767
1768# if 0
1769 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1770 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1771# endif
1772#endif
1773}
1370#endif 1774#endif
1371 1775
1372#if EV_MULTIPLICITY 1776#if EV_MULTIPLICITY
1373struct ev_loop * 1777struct ev_loop *
1374ev_default_loop_init (unsigned int flags) 1778ev_default_loop_init (unsigned int flags)
1408{ 1812{
1409#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1410 struct ev_loop *loop = ev_default_loop_ptr; 1814 struct ev_loop *loop = ev_default_loop_ptr;
1411#endif 1815#endif
1412 1816
1817 ev_default_loop_ptr = 0;
1818
1413#ifndef _WIN32 1819#ifndef _WIN32
1414 ev_ref (EV_A); /* child watcher */ 1820 ev_ref (EV_A); /* child watcher */
1415 ev_signal_stop (EV_A_ &childev); 1821 ev_signal_stop (EV_A_ &childev);
1416#endif 1822#endif
1417 1823
1423{ 1829{
1424#if EV_MULTIPLICITY 1830#if EV_MULTIPLICITY
1425 struct ev_loop *loop = ev_default_loop_ptr; 1831 struct ev_loop *loop = ev_default_loop_ptr;
1426#endif 1832#endif
1427 1833
1428 if (backend)
1429 postfork = 1; /* must be in line with ev_loop_fork */ 1834 postfork = 1; /* must be in line with ev_loop_fork */
1430} 1835}
1431 1836
1432/*****************************************************************************/ 1837/*****************************************************************************/
1433 1838
1434void 1839void
1435ev_invoke (EV_P_ void *w, int revents) 1840ev_invoke (EV_P_ void *w, int revents)
1436{ 1841{
1437 EV_CB_INVOKE ((W)w, revents); 1842 EV_CB_INVOKE ((W)w, revents);
1438} 1843}
1439 1844
1440void inline_speed 1845unsigned int
1441call_pending (EV_P) 1846ev_pending_count (EV_P)
1847{
1848 int pri;
1849 unsigned int count = 0;
1850
1851 for (pri = NUMPRI; pri--; )
1852 count += pendingcnt [pri];
1853
1854 return count;
1855}
1856
1857void noinline
1858ev_invoke_pending (EV_P)
1442{ 1859{
1443 int pri; 1860 int pri;
1444 1861
1445 for (pri = NUMPRI; pri--; ) 1862 for (pri = NUMPRI; pri--; )
1446 while (pendingcnt [pri]) 1863 while (pendingcnt [pri])
1447 { 1864 {
1448 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1865 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1449 1866
1450 if (expect_true (p->w))
1451 {
1452 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1867 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1868 /* ^ this is no longer true, as pending_w could be here */
1453 1869
1454 p->w->pending = 0; 1870 p->w->pending = 0;
1455 EV_CB_INVOKE (p->w, p->events); 1871 EV_CB_INVOKE (p->w, p->events);
1456 } 1872 EV_FREQUENT_CHECK;
1457 } 1873 }
1458} 1874}
1459 1875
1460void inline_size
1461timers_reify (EV_P)
1462{
1463 while (timercnt && ((WT)timers [0])->at <= mn_now)
1464 {
1465 ev_timer *w = (ev_timer *)timers [0];
1466
1467 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1468
1469 /* first reschedule or stop timer */
1470 if (w->repeat)
1471 {
1472 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1473
1474 ((WT)w)->at += w->repeat;
1475 if (((WT)w)->at < mn_now)
1476 ((WT)w)->at = mn_now;
1477
1478 downheap (timers, timercnt, 0);
1479 }
1480 else
1481 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1482
1483 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1484 }
1485}
1486
1487#if EV_PERIODIC_ENABLE
1488void inline_size
1489periodics_reify (EV_P)
1490{
1491 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
1492 {
1493 ev_periodic *w = (ev_periodic *)periodics [0];
1494
1495 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1496
1497 /* first reschedule or stop timer */
1498 if (w->reschedule_cb)
1499 {
1500 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1501 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1502 downheap (periodics, periodiccnt, 0);
1503 }
1504 else if (w->interval)
1505 {
1506 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1507 if (((WT)w)->at - ev_rt_now <= TIME_EPSILON) ((WT)w)->at += w->interval;
1508 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
1509 downheap (periodics, periodiccnt, 0);
1510 }
1511 else
1512 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1513
1514 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1515 }
1516}
1517
1518static void noinline
1519periodics_reschedule (EV_P)
1520{
1521 int i;
1522
1523 /* adjust periodics after time jump */
1524 for (i = 0; i < periodiccnt; ++i)
1525 {
1526 ev_periodic *w = (ev_periodic *)periodics [i];
1527
1528 if (w->reschedule_cb)
1529 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1530 else if (w->interval)
1531 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1532 }
1533
1534 /* now rebuild the heap */
1535 for (i = periodiccnt >> 1; i--; )
1536 downheap (periodics, periodiccnt, i);
1537}
1538#endif
1539
1540#if EV_IDLE_ENABLE 1876#if EV_IDLE_ENABLE
1541void inline_size 1877/* make idle watchers pending. this handles the "call-idle */
1878/* only when higher priorities are idle" logic */
1879inline_size void
1542idle_reify (EV_P) 1880idle_reify (EV_P)
1543{ 1881{
1544 if (expect_false (idleall)) 1882 if (expect_false (idleall))
1545 { 1883 {
1546 int pri; 1884 int pri;
1558 } 1896 }
1559 } 1897 }
1560} 1898}
1561#endif 1899#endif
1562 1900
1563void inline_speed 1901/* make timers pending */
1902inline_size void
1903timers_reify (EV_P)
1904{
1905 EV_FREQUENT_CHECK;
1906
1907 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1908 {
1909 do
1910 {
1911 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1912
1913 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1914
1915 /* first reschedule or stop timer */
1916 if (w->repeat)
1917 {
1918 ev_at (w) += w->repeat;
1919 if (ev_at (w) < mn_now)
1920 ev_at (w) = mn_now;
1921
1922 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1923
1924 ANHE_at_cache (timers [HEAP0]);
1925 downheap (timers, timercnt, HEAP0);
1926 }
1927 else
1928 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1929
1930 EV_FREQUENT_CHECK;
1931 feed_reverse (EV_A_ (W)w);
1932 }
1933 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1934
1935 feed_reverse_done (EV_A_ EV_TIMEOUT);
1936 }
1937}
1938
1939#if EV_PERIODIC_ENABLE
1940/* make periodics pending */
1941inline_size void
1942periodics_reify (EV_P)
1943{
1944 EV_FREQUENT_CHECK;
1945
1946 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1947 {
1948 int feed_count = 0;
1949
1950 do
1951 {
1952 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1953
1954 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1955
1956 /* first reschedule or stop timer */
1957 if (w->reschedule_cb)
1958 {
1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1960
1961 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1962
1963 ANHE_at_cache (periodics [HEAP0]);
1964 downheap (periodics, periodiccnt, HEAP0);
1965 }
1966 else if (w->interval)
1967 {
1968 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1969 /* if next trigger time is not sufficiently in the future, put it there */
1970 /* this might happen because of floating point inexactness */
1971 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1972 {
1973 ev_at (w) += w->interval;
1974
1975 /* if interval is unreasonably low we might still have a time in the past */
1976 /* so correct this. this will make the periodic very inexact, but the user */
1977 /* has effectively asked to get triggered more often than possible */
1978 if (ev_at (w) < ev_rt_now)
1979 ev_at (w) = ev_rt_now;
1980 }
1981
1982 ANHE_at_cache (periodics [HEAP0]);
1983 downheap (periodics, periodiccnt, HEAP0);
1984 }
1985 else
1986 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1987
1988 EV_FREQUENT_CHECK;
1989 feed_reverse (EV_A_ (W)w);
1990 }
1991 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1992
1993 feed_reverse_done (EV_A_ EV_PERIODIC);
1994 }
1995}
1996
1997/* simply recalculate all periodics */
1998/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1999static void noinline
2000periodics_reschedule (EV_P)
2001{
2002 int i;
2003
2004 /* adjust periodics after time jump */
2005 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2006 {
2007 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2008
2009 if (w->reschedule_cb)
2010 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2011 else if (w->interval)
2012 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2013
2014 ANHE_at_cache (periodics [i]);
2015 }
2016
2017 reheap (periodics, periodiccnt);
2018}
2019#endif
2020
2021/* adjust all timers by a given offset */
2022static void noinline
2023timers_reschedule (EV_P_ ev_tstamp adjust)
2024{
2025 int i;
2026
2027 for (i = 0; i < timercnt; ++i)
2028 {
2029 ANHE *he = timers + i + HEAP0;
2030 ANHE_w (*he)->at += adjust;
2031 ANHE_at_cache (*he);
2032 }
2033}
2034
2035/* fetch new monotonic and realtime times from the kernel */
2036/* also detetc if there was a timejump, and act accordingly */
2037inline_speed void
1564time_update (EV_P_ ev_tstamp max_block) 2038time_update (EV_P_ ev_tstamp max_block)
1565{ 2039{
1566 int i;
1567
1568#if EV_USE_MONOTONIC 2040#if EV_USE_MONOTONIC
1569 if (expect_true (have_monotonic)) 2041 if (expect_true (have_monotonic))
1570 { 2042 {
2043 int i;
1571 ev_tstamp odiff = rtmn_diff; 2044 ev_tstamp odiff = rtmn_diff;
1572 2045
1573 mn_now = get_clock (); 2046 mn_now = get_clock ();
1574 2047
1575 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2048 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1593 */ 2066 */
1594 for (i = 4; --i; ) 2067 for (i = 4; --i; )
1595 { 2068 {
1596 rtmn_diff = ev_rt_now - mn_now; 2069 rtmn_diff = ev_rt_now - mn_now;
1597 2070
1598 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2071 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1599 return; /* all is well */ 2072 return; /* all is well */
1600 2073
1601 ev_rt_now = ev_time (); 2074 ev_rt_now = ev_time ();
1602 mn_now = get_clock (); 2075 mn_now = get_clock ();
1603 now_floor = mn_now; 2076 now_floor = mn_now;
1604 } 2077 }
1605 2078
2079 /* no timer adjustment, as the monotonic clock doesn't jump */
2080 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1606# if EV_PERIODIC_ENABLE 2081# if EV_PERIODIC_ENABLE
1607 periodics_reschedule (EV_A); 2082 periodics_reschedule (EV_A);
1608# endif 2083# endif
1609 /* no timer adjustment, as the monotonic clock doesn't jump */
1610 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1611 } 2084 }
1612 else 2085 else
1613#endif 2086#endif
1614 { 2087 {
1615 ev_rt_now = ev_time (); 2088 ev_rt_now = ev_time ();
1616 2089
1617 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2090 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1618 { 2091 {
2092 /* adjust timers. this is easy, as the offset is the same for all of them */
2093 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1619#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1620 periodics_reschedule (EV_A); 2095 periodics_reschedule (EV_A);
1621#endif 2096#endif
1622 /* adjust timers. this is easy, as the offset is the same for all of them */
1623 for (i = 0; i < timercnt; ++i)
1624 ((WT)timers [i])->at += ev_rt_now - mn_now;
1625 } 2097 }
1626 2098
1627 mn_now = ev_rt_now; 2099 mn_now = ev_rt_now;
1628 } 2100 }
1629} 2101}
1630 2102
1631void 2103void
1632ev_ref (EV_P)
1633{
1634 ++activecnt;
1635}
1636
1637void
1638ev_unref (EV_P)
1639{
1640 --activecnt;
1641}
1642
1643static int loop_done;
1644
1645void
1646ev_loop (EV_P_ int flags) 2104ev_loop (EV_P_ int flags)
1647{ 2105{
2106#if EV_MINIMAL < 2
2107 ++loop_depth;
2108#endif
2109
2110 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2111
1648 loop_done = EVUNLOOP_CANCEL; 2112 loop_done = EVUNLOOP_CANCEL;
1649 2113
1650 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2114 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1651 2115
1652 do 2116 do
1653 { 2117 {
2118#if EV_VERIFY >= 2
2119 ev_loop_verify (EV_A);
2120#endif
2121
1654#ifndef _WIN32 2122#ifndef _WIN32
1655 if (expect_false (curpid)) /* penalise the forking check even more */ 2123 if (expect_false (curpid)) /* penalise the forking check even more */
1656 if (expect_false (getpid () != curpid)) 2124 if (expect_false (getpid () != curpid))
1657 { 2125 {
1658 curpid = getpid (); 2126 curpid = getpid ();
1664 /* we might have forked, so queue fork handlers */ 2132 /* we might have forked, so queue fork handlers */
1665 if (expect_false (postfork)) 2133 if (expect_false (postfork))
1666 if (forkcnt) 2134 if (forkcnt)
1667 { 2135 {
1668 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2136 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1669 call_pending (EV_A); 2137 EV_INVOKE_PENDING;
1670 } 2138 }
1671#endif 2139#endif
1672 2140
1673 /* queue prepare watchers (and execute them) */ 2141 /* queue prepare watchers (and execute them) */
1674 if (expect_false (preparecnt)) 2142 if (expect_false (preparecnt))
1675 { 2143 {
1676 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2144 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1677 call_pending (EV_A); 2145 EV_INVOKE_PENDING;
1678 } 2146 }
1679 2147
1680 if (expect_false (!activecnt)) 2148 if (expect_false (loop_done))
1681 break; 2149 break;
1682 2150
1683 /* we might have forked, so reify kernel state if necessary */ 2151 /* we might have forked, so reify kernel state if necessary */
1684 if (expect_false (postfork)) 2152 if (expect_false (postfork))
1685 loop_fork (EV_A); 2153 loop_fork (EV_A);
1692 ev_tstamp waittime = 0.; 2160 ev_tstamp waittime = 0.;
1693 ev_tstamp sleeptime = 0.; 2161 ev_tstamp sleeptime = 0.;
1694 2162
1695 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2163 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1696 { 2164 {
2165 /* remember old timestamp for io_blocktime calculation */
2166 ev_tstamp prev_mn_now = mn_now;
2167
1697 /* update time to cancel out callback processing overhead */ 2168 /* update time to cancel out callback processing overhead */
1698 time_update (EV_A_ 1e100); 2169 time_update (EV_A_ 1e100);
1699 2170
1700 waittime = MAX_BLOCKTIME; 2171 waittime = MAX_BLOCKTIME;
1701 2172
1702 if (timercnt) 2173 if (timercnt)
1703 { 2174 {
1704 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 2175 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1705 if (waittime > to) waittime = to; 2176 if (waittime > to) waittime = to;
1706 } 2177 }
1707 2178
1708#if EV_PERIODIC_ENABLE 2179#if EV_PERIODIC_ENABLE
1709 if (periodiccnt) 2180 if (periodiccnt)
1710 { 2181 {
1711 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 2182 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1712 if (waittime > to) waittime = to; 2183 if (waittime > to) waittime = to;
1713 } 2184 }
1714#endif 2185#endif
1715 2186
2187 /* don't let timeouts decrease the waittime below timeout_blocktime */
1716 if (expect_false (waittime < timeout_blocktime)) 2188 if (expect_false (waittime < timeout_blocktime))
1717 waittime = timeout_blocktime; 2189 waittime = timeout_blocktime;
1718 2190
1719 sleeptime = waittime - backend_fudge; 2191 /* extra check because io_blocktime is commonly 0 */
1720
1721 if (expect_true (sleeptime > io_blocktime)) 2192 if (expect_false (io_blocktime))
1722 sleeptime = io_blocktime;
1723
1724 if (sleeptime)
1725 { 2193 {
2194 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2195
2196 if (sleeptime > waittime - backend_fudge)
2197 sleeptime = waittime - backend_fudge;
2198
2199 if (expect_true (sleeptime > 0.))
2200 {
1726 ev_sleep (sleeptime); 2201 ev_sleep (sleeptime);
1727 waittime -= sleeptime; 2202 waittime -= sleeptime;
2203 }
1728 } 2204 }
1729 } 2205 }
1730 2206
2207#if EV_MINIMAL < 2
1731 ++loop_count; 2208 ++loop_count;
2209#endif
2210 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1732 backend_poll (EV_A_ waittime); 2211 backend_poll (EV_A_ waittime);
2212 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1733 2213
1734 /* update ev_rt_now, do magic */ 2214 /* update ev_rt_now, do magic */
1735 time_update (EV_A_ waittime + sleeptime); 2215 time_update (EV_A_ waittime + sleeptime);
1736 } 2216 }
1737 2217
1748 2228
1749 /* queue check watchers, to be executed first */ 2229 /* queue check watchers, to be executed first */
1750 if (expect_false (checkcnt)) 2230 if (expect_false (checkcnt))
1751 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2231 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1752 2232
1753 call_pending (EV_A); 2233 EV_INVOKE_PENDING;
1754 } 2234 }
1755 while (expect_true ( 2235 while (expect_true (
1756 activecnt 2236 activecnt
1757 && !loop_done 2237 && !loop_done
1758 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2238 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1759 )); 2239 ));
1760 2240
1761 if (loop_done == EVUNLOOP_ONE) 2241 if (loop_done == EVUNLOOP_ONE)
1762 loop_done = EVUNLOOP_CANCEL; 2242 loop_done = EVUNLOOP_CANCEL;
2243
2244#if EV_MINIMAL < 2
2245 --loop_depth;
2246#endif
1763} 2247}
1764 2248
1765void 2249void
1766ev_unloop (EV_P_ int how) 2250ev_unloop (EV_P_ int how)
1767{ 2251{
1768 loop_done = how; 2252 loop_done = how;
1769} 2253}
1770 2254
2255void
2256ev_ref (EV_P)
2257{
2258 ++activecnt;
2259}
2260
2261void
2262ev_unref (EV_P)
2263{
2264 --activecnt;
2265}
2266
2267void
2268ev_now_update (EV_P)
2269{
2270 time_update (EV_A_ 1e100);
2271}
2272
2273void
2274ev_suspend (EV_P)
2275{
2276 ev_now_update (EV_A);
2277}
2278
2279void
2280ev_resume (EV_P)
2281{
2282 ev_tstamp mn_prev = mn_now;
2283
2284 ev_now_update (EV_A);
2285 timers_reschedule (EV_A_ mn_now - mn_prev);
2286#if EV_PERIODIC_ENABLE
2287 /* TODO: really do this? */
2288 periodics_reschedule (EV_A);
2289#endif
2290}
2291
1771/*****************************************************************************/ 2292/*****************************************************************************/
2293/* singly-linked list management, used when the expected list length is short */
1772 2294
1773void inline_size 2295inline_size void
1774wlist_add (WL *head, WL elem) 2296wlist_add (WL *head, WL elem)
1775{ 2297{
1776 elem->next = *head; 2298 elem->next = *head;
1777 *head = elem; 2299 *head = elem;
1778} 2300}
1779 2301
1780void inline_size 2302inline_size void
1781wlist_del (WL *head, WL elem) 2303wlist_del (WL *head, WL elem)
1782{ 2304{
1783 while (*head) 2305 while (*head)
1784 { 2306 {
1785 if (*head == elem) 2307 if (*head == elem)
1790 2312
1791 head = &(*head)->next; 2313 head = &(*head)->next;
1792 } 2314 }
1793} 2315}
1794 2316
1795void inline_speed 2317/* internal, faster, version of ev_clear_pending */
2318inline_speed void
1796clear_pending (EV_P_ W w) 2319clear_pending (EV_P_ W w)
1797{ 2320{
1798 if (w->pending) 2321 if (w->pending)
1799 { 2322 {
1800 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2323 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1801 w->pending = 0; 2324 w->pending = 0;
1802 } 2325 }
1803} 2326}
1804 2327
1805int 2328int
1809 int pending = w_->pending; 2332 int pending = w_->pending;
1810 2333
1811 if (expect_true (pending)) 2334 if (expect_true (pending))
1812 { 2335 {
1813 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2336 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2337 p->w = (W)&pending_w;
1814 w_->pending = 0; 2338 w_->pending = 0;
1815 p->w = 0;
1816 return p->events; 2339 return p->events;
1817 } 2340 }
1818 else 2341 else
1819 return 0; 2342 return 0;
1820} 2343}
1821 2344
1822void inline_size 2345inline_size void
1823pri_adjust (EV_P_ W w) 2346pri_adjust (EV_P_ W w)
1824{ 2347{
1825 int pri = w->priority; 2348 int pri = ev_priority (w);
1826 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2349 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1827 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2350 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1828 w->priority = pri; 2351 ev_set_priority (w, pri);
1829} 2352}
1830 2353
1831void inline_speed 2354inline_speed void
1832ev_start (EV_P_ W w, int active) 2355ev_start (EV_P_ W w, int active)
1833{ 2356{
1834 pri_adjust (EV_A_ w); 2357 pri_adjust (EV_A_ w);
1835 w->active = active; 2358 w->active = active;
1836 ev_ref (EV_A); 2359 ev_ref (EV_A);
1837} 2360}
1838 2361
1839void inline_size 2362inline_size void
1840ev_stop (EV_P_ W w) 2363ev_stop (EV_P_ W w)
1841{ 2364{
1842 ev_unref (EV_A); 2365 ev_unref (EV_A);
1843 w->active = 0; 2366 w->active = 0;
1844} 2367}
1851 int fd = w->fd; 2374 int fd = w->fd;
1852 2375
1853 if (expect_false (ev_is_active (w))) 2376 if (expect_false (ev_is_active (w)))
1854 return; 2377 return;
1855 2378
1856 assert (("ev_io_start called with negative fd", fd >= 0)); 2379 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2380 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2381
2382 EV_FREQUENT_CHECK;
1857 2383
1858 ev_start (EV_A_ (W)w, 1); 2384 ev_start (EV_A_ (W)w, 1);
1859 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2385 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1860 wlist_add (&anfds[fd].head, (WL)w); 2386 wlist_add (&anfds[fd].head, (WL)w);
1861 2387
1862 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2388 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1863 w->events &= ~EV_IOFDSET; 2389 w->events &= ~EV__IOFDSET;
2390
2391 EV_FREQUENT_CHECK;
1864} 2392}
1865 2393
1866void noinline 2394void noinline
1867ev_io_stop (EV_P_ ev_io *w) 2395ev_io_stop (EV_P_ ev_io *w)
1868{ 2396{
1869 clear_pending (EV_A_ (W)w); 2397 clear_pending (EV_A_ (W)w);
1870 if (expect_false (!ev_is_active (w))) 2398 if (expect_false (!ev_is_active (w)))
1871 return; 2399 return;
1872 2400
1873 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2401 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2402
2403 EV_FREQUENT_CHECK;
1874 2404
1875 wlist_del (&anfds[w->fd].head, (WL)w); 2405 wlist_del (&anfds[w->fd].head, (WL)w);
1876 ev_stop (EV_A_ (W)w); 2406 ev_stop (EV_A_ (W)w);
1877 2407
1878 fd_change (EV_A_ w->fd, 1); 2408 fd_change (EV_A_ w->fd, 1);
2409
2410 EV_FREQUENT_CHECK;
1879} 2411}
1880 2412
1881void noinline 2413void noinline
1882ev_timer_start (EV_P_ ev_timer *w) 2414ev_timer_start (EV_P_ ev_timer *w)
1883{ 2415{
1884 if (expect_false (ev_is_active (w))) 2416 if (expect_false (ev_is_active (w)))
1885 return; 2417 return;
1886 2418
1887 ((WT)w)->at += mn_now; 2419 ev_at (w) += mn_now;
1888 2420
1889 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2421 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1890 2422
2423 EV_FREQUENT_CHECK;
2424
2425 ++timercnt;
1891 ev_start (EV_A_ (W)w, ++timercnt); 2426 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1892 array_needsize (WT, timers, timermax, timercnt, EMPTY2); 2427 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1893 timers [timercnt - 1] = (WT)w; 2428 ANHE_w (timers [ev_active (w)]) = (WT)w;
1894 upheap (timers, timercnt - 1); 2429 ANHE_at_cache (timers [ev_active (w)]);
2430 upheap (timers, ev_active (w));
1895 2431
2432 EV_FREQUENT_CHECK;
2433
1896 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 2434 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1897} 2435}
1898 2436
1899void noinline 2437void noinline
1900ev_timer_stop (EV_P_ ev_timer *w) 2438ev_timer_stop (EV_P_ ev_timer *w)
1901{ 2439{
1902 clear_pending (EV_A_ (W)w); 2440 clear_pending (EV_A_ (W)w);
1903 if (expect_false (!ev_is_active (w))) 2441 if (expect_false (!ev_is_active (w)))
1904 return; 2442 return;
1905 2443
1906 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == (WT)w)); 2444 EV_FREQUENT_CHECK;
1907 2445
1908 { 2446 {
1909 int active = ((W)w)->active; 2447 int active = ev_active (w);
1910 2448
2449 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2450
2451 --timercnt;
2452
1911 if (expect_true (--active < --timercnt)) 2453 if (expect_true (active < timercnt + HEAP0))
1912 { 2454 {
1913 timers [active] = timers [timercnt]; 2455 timers [active] = timers [timercnt + HEAP0];
1914 adjustheap (timers, timercnt, active); 2456 adjustheap (timers, timercnt, active);
1915 } 2457 }
1916 } 2458 }
1917 2459
1918 ((WT)w)->at -= mn_now; 2460 EV_FREQUENT_CHECK;
2461
2462 ev_at (w) -= mn_now;
1919 2463
1920 ev_stop (EV_A_ (W)w); 2464 ev_stop (EV_A_ (W)w);
1921} 2465}
1922 2466
1923void noinline 2467void noinline
1924ev_timer_again (EV_P_ ev_timer *w) 2468ev_timer_again (EV_P_ ev_timer *w)
1925{ 2469{
2470 EV_FREQUENT_CHECK;
2471
1926 if (ev_is_active (w)) 2472 if (ev_is_active (w))
1927 { 2473 {
1928 if (w->repeat) 2474 if (w->repeat)
1929 { 2475 {
1930 ((WT)w)->at = mn_now + w->repeat; 2476 ev_at (w) = mn_now + w->repeat;
2477 ANHE_at_cache (timers [ev_active (w)]);
1931 adjustheap (timers, timercnt, ((W)w)->active - 1); 2478 adjustheap (timers, timercnt, ev_active (w));
1932 } 2479 }
1933 else 2480 else
1934 ev_timer_stop (EV_A_ w); 2481 ev_timer_stop (EV_A_ w);
1935 } 2482 }
1936 else if (w->repeat) 2483 else if (w->repeat)
1937 { 2484 {
1938 w->at = w->repeat; 2485 ev_at (w) = w->repeat;
1939 ev_timer_start (EV_A_ w); 2486 ev_timer_start (EV_A_ w);
1940 } 2487 }
2488
2489 EV_FREQUENT_CHECK;
1941} 2490}
1942 2491
1943#if EV_PERIODIC_ENABLE 2492#if EV_PERIODIC_ENABLE
1944void noinline 2493void noinline
1945ev_periodic_start (EV_P_ ev_periodic *w) 2494ev_periodic_start (EV_P_ ev_periodic *w)
1946{ 2495{
1947 if (expect_false (ev_is_active (w))) 2496 if (expect_false (ev_is_active (w)))
1948 return; 2497 return;
1949 2498
1950 if (w->reschedule_cb) 2499 if (w->reschedule_cb)
1951 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 2500 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1952 else if (w->interval) 2501 else if (w->interval)
1953 { 2502 {
1954 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2503 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1955 /* this formula differs from the one in periodic_reify because we do not always round up */ 2504 /* this formula differs from the one in periodic_reify because we do not always round up */
1956 ((WT)w)->at = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2505 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1957 } 2506 }
1958 else 2507 else
1959 ((WT)w)->at = w->offset; 2508 ev_at (w) = w->offset;
1960 2509
2510 EV_FREQUENT_CHECK;
2511
2512 ++periodiccnt;
1961 ev_start (EV_A_ (W)w, ++periodiccnt); 2513 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1962 array_needsize (WT, periodics, periodicmax, periodiccnt, EMPTY2); 2514 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1963 periodics [periodiccnt - 1] = (WT)w; 2515 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1964 upheap (periodics, periodiccnt - 1); 2516 ANHE_at_cache (periodics [ev_active (w)]);
2517 upheap (periodics, ev_active (w));
1965 2518
2519 EV_FREQUENT_CHECK;
2520
1966 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2521 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1967} 2522}
1968 2523
1969void noinline 2524void noinline
1970ev_periodic_stop (EV_P_ ev_periodic *w) 2525ev_periodic_stop (EV_P_ ev_periodic *w)
1971{ 2526{
1972 clear_pending (EV_A_ (W)w); 2527 clear_pending (EV_A_ (W)w);
1973 if (expect_false (!ev_is_active (w))) 2528 if (expect_false (!ev_is_active (w)))
1974 return; 2529 return;
1975 2530
1976 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == (WT)w)); 2531 EV_FREQUENT_CHECK;
1977 2532
1978 { 2533 {
1979 int active = ((W)w)->active; 2534 int active = ev_active (w);
1980 2535
2536 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2537
2538 --periodiccnt;
2539
1981 if (expect_true (--active < --periodiccnt)) 2540 if (expect_true (active < periodiccnt + HEAP0))
1982 { 2541 {
1983 periodics [active] = periodics [periodiccnt]; 2542 periodics [active] = periodics [periodiccnt + HEAP0];
1984 adjustheap (periodics, periodiccnt, active); 2543 adjustheap (periodics, periodiccnt, active);
1985 } 2544 }
1986 } 2545 }
1987 2546
2547 EV_FREQUENT_CHECK;
2548
1988 ev_stop (EV_A_ (W)w); 2549 ev_stop (EV_A_ (W)w);
1989} 2550}
1990 2551
1991void noinline 2552void noinline
1992ev_periodic_again (EV_P_ ev_periodic *w) 2553ev_periodic_again (EV_P_ ev_periodic *w)
2003 2564
2004void noinline 2565void noinline
2005ev_signal_start (EV_P_ ev_signal *w) 2566ev_signal_start (EV_P_ ev_signal *w)
2006{ 2567{
2007#if EV_MULTIPLICITY 2568#if EV_MULTIPLICITY
2008 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2569 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2009#endif 2570#endif
2010 if (expect_false (ev_is_active (w))) 2571 if (expect_false (ev_is_active (w)))
2011 return; 2572 return;
2012 2573
2013 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2574 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2014 2575
2015 evpipe_init (EV_A); 2576 evpipe_init (EV_A);
2577
2578 EV_FREQUENT_CHECK;
2016 2579
2017 { 2580 {
2018#ifndef _WIN32 2581#ifndef _WIN32
2019 sigset_t full, prev; 2582 sigset_t full, prev;
2020 sigfillset (&full); 2583 sigfillset (&full);
2021 sigprocmask (SIG_SETMASK, &full, &prev); 2584 sigprocmask (SIG_SETMASK, &full, &prev);
2022#endif 2585#endif
2023 2586
2024 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2587 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2025 2588
2026#ifndef _WIN32 2589#ifndef _WIN32
2027 sigprocmask (SIG_SETMASK, &prev, 0); 2590 sigprocmask (SIG_SETMASK, &prev, 0);
2028#endif 2591#endif
2029 } 2592 }
2034 if (!((WL)w)->next) 2597 if (!((WL)w)->next)
2035 { 2598 {
2036#if _WIN32 2599#if _WIN32
2037 signal (w->signum, ev_sighandler); 2600 signal (w->signum, ev_sighandler);
2038#else 2601#else
2039 struct sigaction sa; 2602 struct sigaction sa = { };
2040 sa.sa_handler = ev_sighandler; 2603 sa.sa_handler = ev_sighandler;
2041 sigfillset (&sa.sa_mask); 2604 sigfillset (&sa.sa_mask);
2042 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2605 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2043 sigaction (w->signum, &sa, 0); 2606 sigaction (w->signum, &sa, 0);
2044#endif 2607#endif
2045 } 2608 }
2609
2610 EV_FREQUENT_CHECK;
2046} 2611}
2047 2612
2048void noinline 2613void noinline
2049ev_signal_stop (EV_P_ ev_signal *w) 2614ev_signal_stop (EV_P_ ev_signal *w)
2050{ 2615{
2051 clear_pending (EV_A_ (W)w); 2616 clear_pending (EV_A_ (W)w);
2052 if (expect_false (!ev_is_active (w))) 2617 if (expect_false (!ev_is_active (w)))
2053 return; 2618 return;
2054 2619
2620 EV_FREQUENT_CHECK;
2621
2055 wlist_del (&signals [w->signum - 1].head, (WL)w); 2622 wlist_del (&signals [w->signum - 1].head, (WL)w);
2056 ev_stop (EV_A_ (W)w); 2623 ev_stop (EV_A_ (W)w);
2057 2624
2058 if (!signals [w->signum - 1].head) 2625 if (!signals [w->signum - 1].head)
2059 signal (w->signum, SIG_DFL); 2626 signal (w->signum, SIG_DFL);
2627
2628 EV_FREQUENT_CHECK;
2060} 2629}
2061 2630
2062void 2631void
2063ev_child_start (EV_P_ ev_child *w) 2632ev_child_start (EV_P_ ev_child *w)
2064{ 2633{
2065#if EV_MULTIPLICITY 2634#if EV_MULTIPLICITY
2066 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2635 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2067#endif 2636#endif
2068 if (expect_false (ev_is_active (w))) 2637 if (expect_false (ev_is_active (w)))
2069 return; 2638 return;
2070 2639
2640 EV_FREQUENT_CHECK;
2641
2071 ev_start (EV_A_ (W)w, 1); 2642 ev_start (EV_A_ (W)w, 1);
2072 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2643 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2644
2645 EV_FREQUENT_CHECK;
2073} 2646}
2074 2647
2075void 2648void
2076ev_child_stop (EV_P_ ev_child *w) 2649ev_child_stop (EV_P_ ev_child *w)
2077{ 2650{
2078 clear_pending (EV_A_ (W)w); 2651 clear_pending (EV_A_ (W)w);
2079 if (expect_false (!ev_is_active (w))) 2652 if (expect_false (!ev_is_active (w)))
2080 return; 2653 return;
2081 2654
2655 EV_FREQUENT_CHECK;
2656
2082 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2657 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2083 ev_stop (EV_A_ (W)w); 2658 ev_stop (EV_A_ (W)w);
2659
2660 EV_FREQUENT_CHECK;
2084} 2661}
2085 2662
2086#if EV_STAT_ENABLE 2663#if EV_STAT_ENABLE
2087 2664
2088# ifdef _WIN32 2665# ifdef _WIN32
2089# undef lstat 2666# undef lstat
2090# define lstat(a,b) _stati64 (a,b) 2667# define lstat(a,b) _stati64 (a,b)
2091# endif 2668# endif
2092 2669
2093#define DEF_STAT_INTERVAL 5.0074891 2670#define DEF_STAT_INTERVAL 5.0074891
2671#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2094#define MIN_STAT_INTERVAL 0.1074891 2672#define MIN_STAT_INTERVAL 0.1074891
2095 2673
2096static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2674static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2097 2675
2098#if EV_USE_INOTIFY 2676#if EV_USE_INOTIFY
2099# define EV_INOTIFY_BUFSIZE 8192 2677# define EV_INOTIFY_BUFSIZE 8192
2103{ 2681{
2104 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2682 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2105 2683
2106 if (w->wd < 0) 2684 if (w->wd < 0)
2107 { 2685 {
2686 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2108 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2687 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2109 2688
2110 /* monitor some parent directory for speedup hints */ 2689 /* monitor some parent directory for speedup hints */
2690 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2691 /* but an efficiency issue only */
2111 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2692 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2112 { 2693 {
2113 char path [4096]; 2694 char path [4096];
2114 strcpy (path, w->path); 2695 strcpy (path, w->path);
2115 2696
2118 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2699 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2119 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2700 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2120 2701
2121 char *pend = strrchr (path, '/'); 2702 char *pend = strrchr (path, '/');
2122 2703
2123 if (!pend) 2704 if (!pend || pend == path)
2124 break; /* whoops, no '/', complain to your admin */ 2705 break;
2125 2706
2126 *pend = 0; 2707 *pend = 0;
2127 w->wd = inotify_add_watch (fs_fd, path, mask); 2708 w->wd = inotify_add_watch (fs_fd, path, mask);
2128 } 2709 }
2129 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2710 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2130 } 2711 }
2131 } 2712 }
2132 else
2133 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2134 2713
2135 if (w->wd >= 0) 2714 if (w->wd >= 0)
2715 {
2136 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2716 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2717
2718 /* now local changes will be tracked by inotify, but remote changes won't */
2719 /* unless the filesystem it known to be local, we therefore still poll */
2720 /* also do poll on <2.6.25, but with normal frequency */
2721 struct statfs sfs;
2722
2723 if (fs_2625 && !statfs (w->path, &sfs))
2724 if (sfs.f_type == 0x1373 /* devfs */
2725 || sfs.f_type == 0xEF53 /* ext2/3 */
2726 || sfs.f_type == 0x3153464a /* jfs */
2727 || sfs.f_type == 0x52654973 /* reiser3 */
2728 || sfs.f_type == 0x01021994 /* tempfs */
2729 || sfs.f_type == 0x58465342 /* xfs */)
2730 return;
2731
2732 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2733 ev_timer_again (EV_A_ &w->timer);
2734 }
2137} 2735}
2138 2736
2139static void noinline 2737static void noinline
2140infy_del (EV_P_ ev_stat *w) 2738infy_del (EV_P_ ev_stat *w)
2141{ 2739{
2155 2753
2156static void noinline 2754static void noinline
2157infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2755infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2158{ 2756{
2159 if (slot < 0) 2757 if (slot < 0)
2160 /* overflow, need to check for all hahs slots */ 2758 /* overflow, need to check for all hash slots */
2161 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2759 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2162 infy_wd (EV_A_ slot, wd, ev); 2760 infy_wd (EV_A_ slot, wd, ev);
2163 else 2761 else
2164 { 2762 {
2165 WL w_; 2763 WL w_;
2171 2769
2172 if (w->wd == wd || wd == -1) 2770 if (w->wd == wd || wd == -1)
2173 { 2771 {
2174 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2772 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2175 { 2773 {
2774 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2176 w->wd = -1; 2775 w->wd = -1;
2177 infy_add (EV_A_ w); /* re-add, no matter what */ 2776 infy_add (EV_A_ w); /* re-add, no matter what */
2178 } 2777 }
2179 2778
2180 stat_timer_cb (EV_A_ &w->timer, 0); 2779 stat_timer_cb (EV_A_ &w->timer, 0);
2193 2792
2194 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2793 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2195 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2794 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2196} 2795}
2197 2796
2198void inline_size 2797inline_size void
2798check_2625 (EV_P)
2799{
2800 /* kernels < 2.6.25 are borked
2801 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2802 */
2803 struct utsname buf;
2804 int major, minor, micro;
2805
2806 if (uname (&buf))
2807 return;
2808
2809 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2810 return;
2811
2812 if (major < 2
2813 || (major == 2 && minor < 6)
2814 || (major == 2 && minor == 6 && micro < 25))
2815 return;
2816
2817 fs_2625 = 1;
2818}
2819
2820inline_size void
2199infy_init (EV_P) 2821infy_init (EV_P)
2200{ 2822{
2201 if (fs_fd != -2) 2823 if (fs_fd != -2)
2202 return; 2824 return;
2825
2826 fs_fd = -1;
2827
2828 check_2625 (EV_A);
2203 2829
2204 fs_fd = inotify_init (); 2830 fs_fd = inotify_init ();
2205 2831
2206 if (fs_fd >= 0) 2832 if (fs_fd >= 0)
2207 { 2833 {
2209 ev_set_priority (&fs_w, EV_MAXPRI); 2835 ev_set_priority (&fs_w, EV_MAXPRI);
2210 ev_io_start (EV_A_ &fs_w); 2836 ev_io_start (EV_A_ &fs_w);
2211 } 2837 }
2212} 2838}
2213 2839
2214void inline_size 2840inline_size void
2215infy_fork (EV_P) 2841infy_fork (EV_P)
2216{ 2842{
2217 int slot; 2843 int slot;
2218 2844
2219 if (fs_fd < 0) 2845 if (fs_fd < 0)
2235 w->wd = -1; 2861 w->wd = -1;
2236 2862
2237 if (fs_fd >= 0) 2863 if (fs_fd >= 0)
2238 infy_add (EV_A_ w); /* re-add, no matter what */ 2864 infy_add (EV_A_ w); /* re-add, no matter what */
2239 else 2865 else
2240 ev_timer_start (EV_A_ &w->timer); 2866 ev_timer_again (EV_A_ &w->timer);
2241 } 2867 }
2242
2243 } 2868 }
2244} 2869}
2245 2870
2871#endif
2872
2873#ifdef _WIN32
2874# define EV_LSTAT(p,b) _stati64 (p, b)
2875#else
2876# define EV_LSTAT(p,b) lstat (p, b)
2246#endif 2877#endif
2247 2878
2248void 2879void
2249ev_stat_stat (EV_P_ ev_stat *w) 2880ev_stat_stat (EV_P_ ev_stat *w)
2250{ 2881{
2277 || w->prev.st_atime != w->attr.st_atime 2908 || w->prev.st_atime != w->attr.st_atime
2278 || w->prev.st_mtime != w->attr.st_mtime 2909 || w->prev.st_mtime != w->attr.st_mtime
2279 || w->prev.st_ctime != w->attr.st_ctime 2910 || w->prev.st_ctime != w->attr.st_ctime
2280 ) { 2911 ) {
2281 #if EV_USE_INOTIFY 2912 #if EV_USE_INOTIFY
2913 if (fs_fd >= 0)
2914 {
2282 infy_del (EV_A_ w); 2915 infy_del (EV_A_ w);
2283 infy_add (EV_A_ w); 2916 infy_add (EV_A_ w);
2284 ev_stat_stat (EV_A_ w); /* avoid race... */ 2917 ev_stat_stat (EV_A_ w); /* avoid race... */
2918 }
2285 #endif 2919 #endif
2286 2920
2287 ev_feed_event (EV_A_ w, EV_STAT); 2921 ev_feed_event (EV_A_ w, EV_STAT);
2288 } 2922 }
2289} 2923}
2292ev_stat_start (EV_P_ ev_stat *w) 2926ev_stat_start (EV_P_ ev_stat *w)
2293{ 2927{
2294 if (expect_false (ev_is_active (w))) 2928 if (expect_false (ev_is_active (w)))
2295 return; 2929 return;
2296 2930
2297 /* since we use memcmp, we need to clear any padding data etc. */
2298 memset (&w->prev, 0, sizeof (ev_statdata));
2299 memset (&w->attr, 0, sizeof (ev_statdata));
2300
2301 ev_stat_stat (EV_A_ w); 2931 ev_stat_stat (EV_A_ w);
2302 2932
2933 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2303 if (w->interval < MIN_STAT_INTERVAL) 2934 w->interval = MIN_STAT_INTERVAL;
2304 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2305 2935
2306 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2936 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2307 ev_set_priority (&w->timer, ev_priority (w)); 2937 ev_set_priority (&w->timer, ev_priority (w));
2308 2938
2309#if EV_USE_INOTIFY 2939#if EV_USE_INOTIFY
2310 infy_init (EV_A); 2940 infy_init (EV_A);
2311 2941
2312 if (fs_fd >= 0) 2942 if (fs_fd >= 0)
2313 infy_add (EV_A_ w); 2943 infy_add (EV_A_ w);
2314 else 2944 else
2315#endif 2945#endif
2316 ev_timer_start (EV_A_ &w->timer); 2946 ev_timer_again (EV_A_ &w->timer);
2317 2947
2318 ev_start (EV_A_ (W)w, 1); 2948 ev_start (EV_A_ (W)w, 1);
2949
2950 EV_FREQUENT_CHECK;
2319} 2951}
2320 2952
2321void 2953void
2322ev_stat_stop (EV_P_ ev_stat *w) 2954ev_stat_stop (EV_P_ ev_stat *w)
2323{ 2955{
2324 clear_pending (EV_A_ (W)w); 2956 clear_pending (EV_A_ (W)w);
2325 if (expect_false (!ev_is_active (w))) 2957 if (expect_false (!ev_is_active (w)))
2326 return; 2958 return;
2327 2959
2960 EV_FREQUENT_CHECK;
2961
2328#if EV_USE_INOTIFY 2962#if EV_USE_INOTIFY
2329 infy_del (EV_A_ w); 2963 infy_del (EV_A_ w);
2330#endif 2964#endif
2331 ev_timer_stop (EV_A_ &w->timer); 2965 ev_timer_stop (EV_A_ &w->timer);
2332 2966
2333 ev_stop (EV_A_ (W)w); 2967 ev_stop (EV_A_ (W)w);
2968
2969 EV_FREQUENT_CHECK;
2334} 2970}
2335#endif 2971#endif
2336 2972
2337#if EV_IDLE_ENABLE 2973#if EV_IDLE_ENABLE
2338void 2974void
2340{ 2976{
2341 if (expect_false (ev_is_active (w))) 2977 if (expect_false (ev_is_active (w)))
2342 return; 2978 return;
2343 2979
2344 pri_adjust (EV_A_ (W)w); 2980 pri_adjust (EV_A_ (W)w);
2981
2982 EV_FREQUENT_CHECK;
2345 2983
2346 { 2984 {
2347 int active = ++idlecnt [ABSPRI (w)]; 2985 int active = ++idlecnt [ABSPRI (w)];
2348 2986
2349 ++idleall; 2987 ++idleall;
2350 ev_start (EV_A_ (W)w, active); 2988 ev_start (EV_A_ (W)w, active);
2351 2989
2352 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2990 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2353 idles [ABSPRI (w)][active - 1] = w; 2991 idles [ABSPRI (w)][active - 1] = w;
2354 } 2992 }
2993
2994 EV_FREQUENT_CHECK;
2355} 2995}
2356 2996
2357void 2997void
2358ev_idle_stop (EV_P_ ev_idle *w) 2998ev_idle_stop (EV_P_ ev_idle *w)
2359{ 2999{
2360 clear_pending (EV_A_ (W)w); 3000 clear_pending (EV_A_ (W)w);
2361 if (expect_false (!ev_is_active (w))) 3001 if (expect_false (!ev_is_active (w)))
2362 return; 3002 return;
2363 3003
3004 EV_FREQUENT_CHECK;
3005
2364 { 3006 {
2365 int active = ((W)w)->active; 3007 int active = ev_active (w);
2366 3008
2367 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3009 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2368 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3010 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2369 3011
2370 ev_stop (EV_A_ (W)w); 3012 ev_stop (EV_A_ (W)w);
2371 --idleall; 3013 --idleall;
2372 } 3014 }
3015
3016 EV_FREQUENT_CHECK;
2373} 3017}
2374#endif 3018#endif
2375 3019
2376void 3020void
2377ev_prepare_start (EV_P_ ev_prepare *w) 3021ev_prepare_start (EV_P_ ev_prepare *w)
2378{ 3022{
2379 if (expect_false (ev_is_active (w))) 3023 if (expect_false (ev_is_active (w)))
2380 return; 3024 return;
3025
3026 EV_FREQUENT_CHECK;
2381 3027
2382 ev_start (EV_A_ (W)w, ++preparecnt); 3028 ev_start (EV_A_ (W)w, ++preparecnt);
2383 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3029 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2384 prepares [preparecnt - 1] = w; 3030 prepares [preparecnt - 1] = w;
3031
3032 EV_FREQUENT_CHECK;
2385} 3033}
2386 3034
2387void 3035void
2388ev_prepare_stop (EV_P_ ev_prepare *w) 3036ev_prepare_stop (EV_P_ ev_prepare *w)
2389{ 3037{
2390 clear_pending (EV_A_ (W)w); 3038 clear_pending (EV_A_ (W)w);
2391 if (expect_false (!ev_is_active (w))) 3039 if (expect_false (!ev_is_active (w)))
2392 return; 3040 return;
2393 3041
3042 EV_FREQUENT_CHECK;
3043
2394 { 3044 {
2395 int active = ((W)w)->active; 3045 int active = ev_active (w);
3046
2396 prepares [active - 1] = prepares [--preparecnt]; 3047 prepares [active - 1] = prepares [--preparecnt];
2397 ((W)prepares [active - 1])->active = active; 3048 ev_active (prepares [active - 1]) = active;
2398 } 3049 }
2399 3050
2400 ev_stop (EV_A_ (W)w); 3051 ev_stop (EV_A_ (W)w);
3052
3053 EV_FREQUENT_CHECK;
2401} 3054}
2402 3055
2403void 3056void
2404ev_check_start (EV_P_ ev_check *w) 3057ev_check_start (EV_P_ ev_check *w)
2405{ 3058{
2406 if (expect_false (ev_is_active (w))) 3059 if (expect_false (ev_is_active (w)))
2407 return; 3060 return;
3061
3062 EV_FREQUENT_CHECK;
2408 3063
2409 ev_start (EV_A_ (W)w, ++checkcnt); 3064 ev_start (EV_A_ (W)w, ++checkcnt);
2410 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3065 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2411 checks [checkcnt - 1] = w; 3066 checks [checkcnt - 1] = w;
3067
3068 EV_FREQUENT_CHECK;
2412} 3069}
2413 3070
2414void 3071void
2415ev_check_stop (EV_P_ ev_check *w) 3072ev_check_stop (EV_P_ ev_check *w)
2416{ 3073{
2417 clear_pending (EV_A_ (W)w); 3074 clear_pending (EV_A_ (W)w);
2418 if (expect_false (!ev_is_active (w))) 3075 if (expect_false (!ev_is_active (w)))
2419 return; 3076 return;
2420 3077
3078 EV_FREQUENT_CHECK;
3079
2421 { 3080 {
2422 int active = ((W)w)->active; 3081 int active = ev_active (w);
3082
2423 checks [active - 1] = checks [--checkcnt]; 3083 checks [active - 1] = checks [--checkcnt];
2424 ((W)checks [active - 1])->active = active; 3084 ev_active (checks [active - 1]) = active;
2425 } 3085 }
2426 3086
2427 ev_stop (EV_A_ (W)w); 3087 ev_stop (EV_A_ (W)w);
3088
3089 EV_FREQUENT_CHECK;
2428} 3090}
2429 3091
2430#if EV_EMBED_ENABLE 3092#if EV_EMBED_ENABLE
2431void noinline 3093void noinline
2432ev_embed_sweep (EV_P_ ev_embed *w) 3094ev_embed_sweep (EV_P_ ev_embed *w)
2459 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3121 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2460 } 3122 }
2461 } 3123 }
2462} 3124}
2463 3125
3126static void
3127embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3128{
3129 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3130
3131 ev_embed_stop (EV_A_ w);
3132
3133 {
3134 struct ev_loop *loop = w->other;
3135
3136 ev_loop_fork (EV_A);
3137 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3138 }
3139
3140 ev_embed_start (EV_A_ w);
3141}
3142
2464#if 0 3143#if 0
2465static void 3144static void
2466embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3145embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2467{ 3146{
2468 ev_idle_stop (EV_A_ idle); 3147 ev_idle_stop (EV_A_ idle);
2475 if (expect_false (ev_is_active (w))) 3154 if (expect_false (ev_is_active (w)))
2476 return; 3155 return;
2477 3156
2478 { 3157 {
2479 struct ev_loop *loop = w->other; 3158 struct ev_loop *loop = w->other;
2480 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3159 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3160 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2482 } 3161 }
3162
3163 EV_FREQUENT_CHECK;
2483 3164
2484 ev_set_priority (&w->io, ev_priority (w)); 3165 ev_set_priority (&w->io, ev_priority (w));
2485 ev_io_start (EV_A_ &w->io); 3166 ev_io_start (EV_A_ &w->io);
2486 3167
2487 ev_prepare_init (&w->prepare, embed_prepare_cb); 3168 ev_prepare_init (&w->prepare, embed_prepare_cb);
2488 ev_set_priority (&w->prepare, EV_MINPRI); 3169 ev_set_priority (&w->prepare, EV_MINPRI);
2489 ev_prepare_start (EV_A_ &w->prepare); 3170 ev_prepare_start (EV_A_ &w->prepare);
2490 3171
3172 ev_fork_init (&w->fork, embed_fork_cb);
3173 ev_fork_start (EV_A_ &w->fork);
3174
2491 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3175 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2492 3176
2493 ev_start (EV_A_ (W)w, 1); 3177 ev_start (EV_A_ (W)w, 1);
3178
3179 EV_FREQUENT_CHECK;
2494} 3180}
2495 3181
2496void 3182void
2497ev_embed_stop (EV_P_ ev_embed *w) 3183ev_embed_stop (EV_P_ ev_embed *w)
2498{ 3184{
2499 clear_pending (EV_A_ (W)w); 3185 clear_pending (EV_A_ (W)w);
2500 if (expect_false (!ev_is_active (w))) 3186 if (expect_false (!ev_is_active (w)))
2501 return; 3187 return;
2502 3188
3189 EV_FREQUENT_CHECK;
3190
2503 ev_io_stop (EV_A_ &w->io); 3191 ev_io_stop (EV_A_ &w->io);
2504 ev_prepare_stop (EV_A_ &w->prepare); 3192 ev_prepare_stop (EV_A_ &w->prepare);
3193 ev_fork_stop (EV_A_ &w->fork);
2505 3194
2506 ev_stop (EV_A_ (W)w); 3195 EV_FREQUENT_CHECK;
2507} 3196}
2508#endif 3197#endif
2509 3198
2510#if EV_FORK_ENABLE 3199#if EV_FORK_ENABLE
2511void 3200void
2512ev_fork_start (EV_P_ ev_fork *w) 3201ev_fork_start (EV_P_ ev_fork *w)
2513{ 3202{
2514 if (expect_false (ev_is_active (w))) 3203 if (expect_false (ev_is_active (w)))
2515 return; 3204 return;
3205
3206 EV_FREQUENT_CHECK;
2516 3207
2517 ev_start (EV_A_ (W)w, ++forkcnt); 3208 ev_start (EV_A_ (W)w, ++forkcnt);
2518 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3209 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2519 forks [forkcnt - 1] = w; 3210 forks [forkcnt - 1] = w;
3211
3212 EV_FREQUENT_CHECK;
2520} 3213}
2521 3214
2522void 3215void
2523ev_fork_stop (EV_P_ ev_fork *w) 3216ev_fork_stop (EV_P_ ev_fork *w)
2524{ 3217{
2525 clear_pending (EV_A_ (W)w); 3218 clear_pending (EV_A_ (W)w);
2526 if (expect_false (!ev_is_active (w))) 3219 if (expect_false (!ev_is_active (w)))
2527 return; 3220 return;
2528 3221
3222 EV_FREQUENT_CHECK;
3223
2529 { 3224 {
2530 int active = ((W)w)->active; 3225 int active = ev_active (w);
3226
2531 forks [active - 1] = forks [--forkcnt]; 3227 forks [active - 1] = forks [--forkcnt];
2532 ((W)forks [active - 1])->active = active; 3228 ev_active (forks [active - 1]) = active;
2533 } 3229 }
2534 3230
2535 ev_stop (EV_A_ (W)w); 3231 ev_stop (EV_A_ (W)w);
3232
3233 EV_FREQUENT_CHECK;
2536} 3234}
2537#endif 3235#endif
2538 3236
2539#if EV_ASYNC_ENABLE 3237#if EV_ASYNC_ENABLE
2540void 3238void
2542{ 3240{
2543 if (expect_false (ev_is_active (w))) 3241 if (expect_false (ev_is_active (w)))
2544 return; 3242 return;
2545 3243
2546 evpipe_init (EV_A); 3244 evpipe_init (EV_A);
3245
3246 EV_FREQUENT_CHECK;
2547 3247
2548 ev_start (EV_A_ (W)w, ++asynccnt); 3248 ev_start (EV_A_ (W)w, ++asynccnt);
2549 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3249 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2550 asyncs [asynccnt - 1] = w; 3250 asyncs [asynccnt - 1] = w;
3251
3252 EV_FREQUENT_CHECK;
2551} 3253}
2552 3254
2553void 3255void
2554ev_async_stop (EV_P_ ev_async *w) 3256ev_async_stop (EV_P_ ev_async *w)
2555{ 3257{
2556 clear_pending (EV_A_ (W)w); 3258 clear_pending (EV_A_ (W)w);
2557 if (expect_false (!ev_is_active (w))) 3259 if (expect_false (!ev_is_active (w)))
2558 return; 3260 return;
2559 3261
3262 EV_FREQUENT_CHECK;
3263
2560 { 3264 {
2561 int active = ((W)w)->active; 3265 int active = ev_active (w);
3266
2562 asyncs [active - 1] = asyncs [--asynccnt]; 3267 asyncs [active - 1] = asyncs [--asynccnt];
2563 ((W)asyncs [active - 1])->active = active; 3268 ev_active (asyncs [active - 1]) = active;
2564 } 3269 }
2565 3270
2566 ev_stop (EV_A_ (W)w); 3271 ev_stop (EV_A_ (W)w);
3272
3273 EV_FREQUENT_CHECK;
2567} 3274}
2568 3275
2569void 3276void
2570ev_async_send (EV_P_ ev_async *w) 3277ev_async_send (EV_P_ ev_async *w)
2571{ 3278{
2588once_cb (EV_P_ struct ev_once *once, int revents) 3295once_cb (EV_P_ struct ev_once *once, int revents)
2589{ 3296{
2590 void (*cb)(int revents, void *arg) = once->cb; 3297 void (*cb)(int revents, void *arg) = once->cb;
2591 void *arg = once->arg; 3298 void *arg = once->arg;
2592 3299
2593 ev_io_stop (EV_A_ &once->io); 3300 ev_io_stop (EV_A_ &once->io);
2594 ev_timer_stop (EV_A_ &once->to); 3301 ev_timer_stop (EV_A_ &once->to);
2595 ev_free (once); 3302 ev_free (once);
2596 3303
2597 cb (revents, arg); 3304 cb (revents, arg);
2598} 3305}
2599 3306
2600static void 3307static void
2601once_cb_io (EV_P_ ev_io *w, int revents) 3308once_cb_io (EV_P_ ev_io *w, int revents)
2602{ 3309{
2603 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3310 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3311
3312 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2604} 3313}
2605 3314
2606static void 3315static void
2607once_cb_to (EV_P_ ev_timer *w, int revents) 3316once_cb_to (EV_P_ ev_timer *w, int revents)
2608{ 3317{
2609 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3318 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3319
3320 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2610} 3321}
2611 3322
2612void 3323void
2613ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3324ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2614{ 3325{
2636 ev_timer_set (&once->to, timeout, 0.); 3347 ev_timer_set (&once->to, timeout, 0.);
2637 ev_timer_start (EV_A_ &once->to); 3348 ev_timer_start (EV_A_ &once->to);
2638 } 3349 }
2639} 3350}
2640 3351
3352/*****************************************************************************/
3353
3354#if EV_WALK_ENABLE
3355void
3356ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3357{
3358 int i, j;
3359 ev_watcher_list *wl, *wn;
3360
3361 if (types & (EV_IO | EV_EMBED))
3362 for (i = 0; i < anfdmax; ++i)
3363 for (wl = anfds [i].head; wl; )
3364 {
3365 wn = wl->next;
3366
3367#if EV_EMBED_ENABLE
3368 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3369 {
3370 if (types & EV_EMBED)
3371 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3372 }
3373 else
3374#endif
3375#if EV_USE_INOTIFY
3376 if (ev_cb ((ev_io *)wl) == infy_cb)
3377 ;
3378 else
3379#endif
3380 if ((ev_io *)wl != &pipe_w)
3381 if (types & EV_IO)
3382 cb (EV_A_ EV_IO, wl);
3383
3384 wl = wn;
3385 }
3386
3387 if (types & (EV_TIMER | EV_STAT))
3388 for (i = timercnt + HEAP0; i-- > HEAP0; )
3389#if EV_STAT_ENABLE
3390 /*TODO: timer is not always active*/
3391 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3392 {
3393 if (types & EV_STAT)
3394 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3395 }
3396 else
3397#endif
3398 if (types & EV_TIMER)
3399 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3400
3401#if EV_PERIODIC_ENABLE
3402 if (types & EV_PERIODIC)
3403 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3404 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3405#endif
3406
3407#if EV_IDLE_ENABLE
3408 if (types & EV_IDLE)
3409 for (j = NUMPRI; i--; )
3410 for (i = idlecnt [j]; i--; )
3411 cb (EV_A_ EV_IDLE, idles [j][i]);
3412#endif
3413
3414#if EV_FORK_ENABLE
3415 if (types & EV_FORK)
3416 for (i = forkcnt; i--; )
3417 if (ev_cb (forks [i]) != embed_fork_cb)
3418 cb (EV_A_ EV_FORK, forks [i]);
3419#endif
3420
3421#if EV_ASYNC_ENABLE
3422 if (types & EV_ASYNC)
3423 for (i = asynccnt; i--; )
3424 cb (EV_A_ EV_ASYNC, asyncs [i]);
3425#endif
3426
3427 if (types & EV_PREPARE)
3428 for (i = preparecnt; i--; )
3429#if EV_EMBED_ENABLE
3430 if (ev_cb (prepares [i]) != embed_prepare_cb)
3431#endif
3432 cb (EV_A_ EV_PREPARE, prepares [i]);
3433
3434 if (types & EV_CHECK)
3435 for (i = checkcnt; i--; )
3436 cb (EV_A_ EV_CHECK, checks [i]);
3437
3438 if (types & EV_SIGNAL)
3439 for (i = 0; i < signalmax; ++i)
3440 for (wl = signals [i].head; wl; )
3441 {
3442 wn = wl->next;
3443 cb (EV_A_ EV_SIGNAL, wl);
3444 wl = wn;
3445 }
3446
3447 if (types & EV_CHILD)
3448 for (i = EV_PID_HASHSIZE; i--; )
3449 for (wl = childs [i]; wl; )
3450 {
3451 wn = wl->next;
3452 cb (EV_A_ EV_CHILD, wl);
3453 wl = wn;
3454 }
3455/* EV_STAT 0x00001000 /* stat data changed */
3456/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3457}
3458#endif
3459
2641#if EV_MULTIPLICITY 3460#if EV_MULTIPLICITY
2642 #include "ev_wrap.h" 3461 #include "ev_wrap.h"
2643#endif 3462#endif
2644 3463
2645#ifdef __cplusplus 3464#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines