ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.104 by root, Mon Nov 12 00:39:45 2007 UTC vs.
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
63 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
64#endif 132#endif
65 133
66#include <math.h> 134#include <math.h>
67#include <stdlib.h> 135#include <stdlib.h>
68#include <fcntl.h> 136#include <fcntl.h>
75#include <sys/types.h> 143#include <sys/types.h>
76#include <time.h> 144#include <time.h>
77 145
78#include <signal.h> 146#include <signal.h>
79 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
80#ifndef _WIN32 154#ifndef _WIN32
81# include <unistd.h>
82# include <sys/time.h> 155# include <sys/time.h>
83# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
84#else 158#else
85# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
86# include <windows.h> 160# include <windows.h>
87# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
88# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
89# endif 163# endif
90#endif 164#endif
91 165
92/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
93 167
94#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
95# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
96#endif 178#endif
97 179
98#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
99# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
100# define EV_SELECT_USE_FD_SET 1
101#endif 182#endif
102 183
103#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
104# ifdef _WIN32 185# ifdef _WIN32
105# define EV_USE_POLL 0 186# define EV_USE_POLL 0
107# define EV_USE_POLL 1 188# define EV_USE_POLL 1
108# endif 189# endif
109#endif 190#endif
110 191
111#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
112# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
113#endif 198#endif
114 199
115#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
116# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
117#endif 202#endif
118 203
119#ifndef EV_USE_REALTIME 204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
120# define EV_USE_REALTIME 1 210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
121#endif 213# endif
214#endif
122 215
123/**/ 216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
124 241
125#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
126# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
127# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
128#endif 245#endif
130#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
131# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
132# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
133#endif 250#endif
134 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
135#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
136# include <winsock.h> 268# include <winsock.h>
137#endif 269#endif
138 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
139/**/ 283/**/
140 284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
141#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
142#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
143#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
144/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
145 298
146#ifdef EV_H
147# include EV_H
148#else
149# include "ev.h"
150#endif
151
152#if __GNUC__ >= 3 299#if __GNUC__ >= 4
153# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
154# define inline inline 301# define noinline __attribute__ ((noinline))
155#else 302#else
156# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
157# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
158#endif 308#endif
159 309
160#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
161#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
162 319
163#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
164#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
165 322
166#define EMPTY /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
167 325
168typedef struct ev_watcher *W; 326typedef ev_watcher *W;
169typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
170typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
171 329
330#define ev_at(w) ((WT)(w))->at
331
332#if EV_USE_MONOTONIC
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */
172static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
336#endif
173 337
174#ifdef _WIN32 338#ifdef _WIN32
175# include "ev_win32.c" 339# include "ev_win32.c"
176#endif 340#endif
177 341
178/*****************************************************************************/ 342/*****************************************************************************/
179 343
180static void (*syserr_cb)(const char *msg); 344static void (*syserr_cb)(const char *msg);
181 345
346void
182void ev_set_syserr_cb (void (*cb)(const char *msg)) 347ev_set_syserr_cb (void (*cb)(const char *msg))
183{ 348{
184 syserr_cb = cb; 349 syserr_cb = cb;
185} 350}
186 351
187static void 352static void noinline
188syserr (const char *msg) 353syserr (const char *msg)
189{ 354{
190 if (!msg) 355 if (!msg)
191 msg = "(libev) system error"; 356 msg = "(libev) system error";
192 357
197 perror (msg); 362 perror (msg);
198 abort (); 363 abort ();
199 } 364 }
200} 365}
201 366
367static void *
368ev_realloc_emul (void *ptr, long size)
369{
370 /* some systems, notably openbsd and darwin, fail to properly
371 * implement realloc (x, 0) (as required by both ansi c-98 and
372 * the single unix specification, so work around them here.
373 */
374
375 if (size)
376 return realloc (ptr, size);
377
378 free (ptr);
379 return 0;
380}
381
202static void *(*alloc)(void *ptr, long size); 382static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
203 383
384void
204void ev_set_allocator (void *(*cb)(void *ptr, long size)) 385ev_set_allocator (void *(*cb)(void *ptr, long size))
205{ 386{
206 alloc = cb; 387 alloc = cb;
207} 388}
208 389
209static void * 390inline_speed void *
210ev_realloc (void *ptr, long size) 391ev_realloc (void *ptr, long size)
211{ 392{
212 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 393 ptr = alloc (ptr, size);
213 394
214 if (!ptr && size) 395 if (!ptr && size)
215 { 396 {
216 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 397 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
217 abort (); 398 abort ();
238typedef struct 419typedef struct
239{ 420{
240 W w; 421 W w;
241 int events; 422 int events;
242} ANPENDING; 423} ANPENDING;
424
425#if EV_USE_INOTIFY
426typedef struct
427{
428 WL head;
429} ANFS;
430#endif
243 431
244#if EV_MULTIPLICITY 432#if EV_MULTIPLICITY
245 433
246 struct ev_loop 434 struct ev_loop
247 { 435 {
251 #include "ev_vars.h" 439 #include "ev_vars.h"
252 #undef VAR 440 #undef VAR
253 }; 441 };
254 #include "ev_wrap.h" 442 #include "ev_wrap.h"
255 443
256 struct ev_loop default_loop_struct; 444 static struct ev_loop default_loop_struct;
257 static struct ev_loop *default_loop; 445 struct ev_loop *ev_default_loop_ptr;
258 446
259#else 447#else
260 448
261 ev_tstamp ev_rt_now; 449 ev_tstamp ev_rt_now;
262 #define VAR(name,decl) static decl; 450 #define VAR(name,decl) static decl;
263 #include "ev_vars.h" 451 #include "ev_vars.h"
264 #undef VAR 452 #undef VAR
265 453
266 static int default_loop; 454 static int ev_default_loop_ptr;
267 455
268#endif 456#endif
269 457
270/*****************************************************************************/ 458/*****************************************************************************/
271 459
281 gettimeofday (&tv, 0); 469 gettimeofday (&tv, 0);
282 return tv.tv_sec + tv.tv_usec * 1e-6; 470 return tv.tv_sec + tv.tv_usec * 1e-6;
283#endif 471#endif
284} 472}
285 473
286inline ev_tstamp 474ev_tstamp inline_size
287get_clock (void) 475get_clock (void)
288{ 476{
289#if EV_USE_MONOTONIC 477#if EV_USE_MONOTONIC
290 if (expect_true (have_monotonic)) 478 if (expect_true (have_monotonic))
291 { 479 {
304{ 492{
305 return ev_rt_now; 493 return ev_rt_now;
306} 494}
307#endif 495#endif
308 496
309#define array_roundsize(type,n) ((n) | 4 & ~3) 497void
498ev_sleep (ev_tstamp delay)
499{
500 if (delay > 0.)
501 {
502#if EV_USE_NANOSLEEP
503 struct timespec ts;
504
505 ts.tv_sec = (time_t)delay;
506 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
507
508 nanosleep (&ts, 0);
509#elif defined(_WIN32)
510 Sleep ((unsigned long)(delay * 1e3));
511#else
512 struct timeval tv;
513
514 tv.tv_sec = (time_t)delay;
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
516
517 select (0, 0, 0, 0, &tv);
518#endif
519 }
520}
521
522/*****************************************************************************/
523
524int inline_size
525array_nextsize (int elem, int cur, int cnt)
526{
527 int ncur = cur + 1;
528
529 do
530 ncur <<= 1;
531 while (cnt > ncur);
532
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
534 if (elem * ncur > 4096)
535 {
536 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
538 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem;
540 }
541
542 return ncur;
543}
544
545static noinline void *
546array_realloc (int elem, void *base, int *cur, int cnt)
547{
548 *cur = array_nextsize (elem, *cur, cnt);
549 return ev_realloc (base, elem * *cur);
550}
310 551
311#define array_needsize(type,base,cur,cnt,init) \ 552#define array_needsize(type,base,cur,cnt,init) \
312 if (expect_false ((cnt) > cur)) \ 553 if (expect_false ((cnt) > (cur))) \
313 { \ 554 { \
314 int newcnt = cur; \ 555 int ocur_ = (cur); \
315 do \ 556 (base) = (type *)array_realloc \
316 { \ 557 (sizeof (type), (base), &(cur), (cnt)); \
317 newcnt = array_roundsize (type, newcnt << 1); \ 558 init ((base) + (ocur_), (cur) - ocur_); \
318 } \
319 while ((cnt) > newcnt); \
320 \
321 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
322 init (base + cur, newcnt - cur); \
323 cur = newcnt; \
324 } 559 }
325 560
561#if 0
326#define array_slim(type,stem) \ 562#define array_slim(type,stem) \
327 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 563 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
328 { \ 564 { \
329 stem ## max = array_roundsize (stem ## cnt >> 1); \ 565 stem ## max = array_roundsize (stem ## cnt >> 1); \
330 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 566 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
331 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 567 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
332 } 568 }
569#endif
333 570
334#define array_free(stem, idx) \ 571#define array_free(stem, idx) \
335 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 572 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
336 573
337/*****************************************************************************/ 574/*****************************************************************************/
338 575
339static void 576void noinline
577ev_feed_event (EV_P_ void *w, int revents)
578{
579 W w_ = (W)w;
580 int pri = ABSPRI (w_);
581
582 if (expect_false (w_->pending))
583 pendings [pri][w_->pending - 1].events |= revents;
584 else
585 {
586 w_->pending = ++pendingcnt [pri];
587 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
588 pendings [pri][w_->pending - 1].w = w_;
589 pendings [pri][w_->pending - 1].events = revents;
590 }
591}
592
593void inline_speed
594queue_events (EV_P_ W *events, int eventcnt, int type)
595{
596 int i;
597
598 for (i = 0; i < eventcnt; ++i)
599 ev_feed_event (EV_A_ events [i], type);
600}
601
602/*****************************************************************************/
603
604void inline_size
340anfds_init (ANFD *base, int count) 605anfds_init (ANFD *base, int count)
341{ 606{
342 while (count--) 607 while (count--)
343 { 608 {
344 base->head = 0; 609 base->head = 0;
347 612
348 ++base; 613 ++base;
349 } 614 }
350} 615}
351 616
352void 617void inline_speed
353ev_feed_event (EV_P_ void *w, int revents)
354{
355 W w_ = (W)w;
356
357 if (w_->pending)
358 {
359 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
360 return;
361 }
362
363 w_->pending = ++pendingcnt [ABSPRI (w_)];
364 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
365 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
366 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
367}
368
369static void
370queue_events (EV_P_ W *events, int eventcnt, int type)
371{
372 int i;
373
374 for (i = 0; i < eventcnt; ++i)
375 ev_feed_event (EV_A_ events [i], type);
376}
377
378inline void
379fd_event (EV_P_ int fd, int revents) 618fd_event (EV_P_ int fd, int revents)
380{ 619{
381 ANFD *anfd = anfds + fd; 620 ANFD *anfd = anfds + fd;
382 struct ev_io *w; 621 ev_io *w;
383 622
384 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 623 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
385 { 624 {
386 int ev = w->events & revents; 625 int ev = w->events & revents;
387 626
388 if (ev) 627 if (ev)
389 ev_feed_event (EV_A_ (W)w, ev); 628 ev_feed_event (EV_A_ (W)w, ev);
391} 630}
392 631
393void 632void
394ev_feed_fd_event (EV_P_ int fd, int revents) 633ev_feed_fd_event (EV_P_ int fd, int revents)
395{ 634{
635 if (fd >= 0 && fd < anfdmax)
396 fd_event (EV_A_ fd, revents); 636 fd_event (EV_A_ fd, revents);
397} 637}
398 638
399/*****************************************************************************/ 639void inline_size
400
401static void
402fd_reify (EV_P) 640fd_reify (EV_P)
403{ 641{
404 int i; 642 int i;
405 643
406 for (i = 0; i < fdchangecnt; ++i) 644 for (i = 0; i < fdchangecnt; ++i)
407 { 645 {
408 int fd = fdchanges [i]; 646 int fd = fdchanges [i];
409 ANFD *anfd = anfds + fd; 647 ANFD *anfd = anfds + fd;
410 struct ev_io *w; 648 ev_io *w;
411 649
412 int events = 0; 650 unsigned char events = 0;
413 651
414 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 652 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
415 events |= w->events; 653 events |= (unsigned char)w->events;
416 654
417#if EV_SELECT_IS_WINSOCKET 655#if EV_SELECT_IS_WINSOCKET
418 if (events) 656 if (events)
419 { 657 {
420 unsigned long argp; 658 unsigned long argp;
659 #ifdef EV_FD_TO_WIN32_HANDLE
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
661 #else
421 anfd->handle = _get_osfhandle (fd); 662 anfd->handle = _get_osfhandle (fd);
663 #endif
422 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
423 } 665 }
424#endif 666#endif
425 667
668 {
669 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify;
671
426 anfd->reify = 0; 672 anfd->reify = 0;
427
428 method_modify (EV_A_ fd, anfd->events, events);
429 anfd->events = events; 673 anfd->events = events;
674
675 if (o_events != events || o_reify & EV_IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events);
677 }
430 } 678 }
431 679
432 fdchangecnt = 0; 680 fdchangecnt = 0;
433} 681}
434 682
435static void 683void inline_size
436fd_change (EV_P_ int fd) 684fd_change (EV_P_ int fd, int flags)
437{ 685{
438 if (anfds [fd].reify) 686 unsigned char reify = anfds [fd].reify;
439 return;
440
441 anfds [fd].reify = 1; 687 anfds [fd].reify |= flags;
442 688
689 if (expect_true (!reify))
690 {
443 ++fdchangecnt; 691 ++fdchangecnt;
444 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
445 fdchanges [fdchangecnt - 1] = fd; 693 fdchanges [fdchangecnt - 1] = fd;
694 }
446} 695}
447 696
448static void 697void inline_speed
449fd_kill (EV_P_ int fd) 698fd_kill (EV_P_ int fd)
450{ 699{
451 struct ev_io *w; 700 ev_io *w;
452 701
453 while ((w = (struct ev_io *)anfds [fd].head)) 702 while ((w = (ev_io *)anfds [fd].head))
454 { 703 {
455 ev_io_stop (EV_A_ w); 704 ev_io_stop (EV_A_ w);
456 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 705 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
457 } 706 }
458} 707}
459 708
460static int 709int inline_size
461fd_valid (int fd) 710fd_valid (int fd)
462{ 711{
463#ifdef _WIN32 712#ifdef _WIN32
464 return _get_osfhandle (fd) != -1; 713 return _get_osfhandle (fd) != -1;
465#else 714#else
466 return fcntl (fd, F_GETFD) != -1; 715 return fcntl (fd, F_GETFD) != -1;
467#endif 716#endif
468} 717}
469 718
470/* called on EBADF to verify fds */ 719/* called on EBADF to verify fds */
471static void 720static void noinline
472fd_ebadf (EV_P) 721fd_ebadf (EV_P)
473{ 722{
474 int fd; 723 int fd;
475 724
476 for (fd = 0; fd < anfdmax; ++fd) 725 for (fd = 0; fd < anfdmax; ++fd)
478 if (!fd_valid (fd) == -1 && errno == EBADF) 727 if (!fd_valid (fd) == -1 && errno == EBADF)
479 fd_kill (EV_A_ fd); 728 fd_kill (EV_A_ fd);
480} 729}
481 730
482/* called on ENOMEM in select/poll to kill some fds and retry */ 731/* called on ENOMEM in select/poll to kill some fds and retry */
483static void 732static void noinline
484fd_enomem (EV_P) 733fd_enomem (EV_P)
485{ 734{
486 int fd; 735 int fd;
487 736
488 for (fd = anfdmax; fd--; ) 737 for (fd = anfdmax; fd--; )
491 fd_kill (EV_A_ fd); 740 fd_kill (EV_A_ fd);
492 return; 741 return;
493 } 742 }
494} 743}
495 744
496/* usually called after fork if method needs to re-arm all fds from scratch */ 745/* usually called after fork if backend needs to re-arm all fds from scratch */
497static void 746static void noinline
498fd_rearm_all (EV_P) 747fd_rearm_all (EV_P)
499{ 748{
500 int fd; 749 int fd;
501 750
502 /* this should be highly optimised to not do anything but set a flag */
503 for (fd = 0; fd < anfdmax; ++fd) 751 for (fd = 0; fd < anfdmax; ++fd)
504 if (anfds [fd].events) 752 if (anfds [fd].events)
505 { 753 {
506 anfds [fd].events = 0; 754 anfds [fd].events = 0;
507 fd_change (EV_A_ fd); 755 fd_change (EV_A_ fd, EV_IOFDSET | 1);
508 } 756 }
509} 757}
510 758
511/*****************************************************************************/ 759/*****************************************************************************/
512 760
513static void 761/* towards the root */
762void inline_speed
514upheap (WT *heap, int k) 763upheap (WT *heap, int k)
515{ 764{
516 WT w = heap [k]; 765 WT w = heap [k];
517 766
518 while (k && heap [k >> 1]->at > w->at) 767 for (;;)
519 { 768 {
769 int p = k >> 1;
770
771 /* maybe we could use a dummy element at heap [0]? */
772 if (!p || heap [p]->at <= w->at)
773 break;
774
520 heap [k] = heap [k >> 1]; 775 heap [k] = heap [p];
521 ((W)heap [k])->active = k + 1; 776 ((W)heap [k])->active = k;
522 k >>= 1; 777 k = p;
523 } 778 }
524 779
525 heap [k] = w; 780 heap [k] = w;
526 ((W)heap [k])->active = k + 1; 781 ((W)heap [k])->active = k;
527
528} 782}
529 783
530static void 784/* away from the root */
785void inline_speed
531downheap (WT *heap, int N, int k) 786downheap (WT *heap, int N, int k)
532{ 787{
533 WT w = heap [k]; 788 WT w = heap [k];
534 789
535 while (k < (N >> 1)) 790 for (;;)
536 { 791 {
537 int j = k << 1; 792 int c = k << 1;
538 793
539 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 794 if (c > N)
540 ++j;
541
542 if (w->at <= heap [j]->at)
543 break; 795 break;
544 796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
545 heap [k] = heap [j]; 803 heap [k] = heap [c];
546 ((W)heap [k])->active = k + 1; 804 ((W)heap [k])->active = k;
805
547 k = j; 806 k = c;
548 } 807 }
549 808
550 heap [k] = w; 809 heap [k] = w;
551 ((W)heap [k])->active = k + 1; 810 ((W)heap [k])->active = k;
552} 811}
553 812
554inline void 813void inline_size
555adjustheap (WT *heap, int N, int k) 814adjustheap (WT *heap, int N, int k)
556{ 815{
557 upheap (heap, k); 816 upheap (heap, k);
558 downheap (heap, N, k); 817 downheap (heap, N, k);
559} 818}
561/*****************************************************************************/ 820/*****************************************************************************/
562 821
563typedef struct 822typedef struct
564{ 823{
565 WL head; 824 WL head;
566 sig_atomic_t volatile gotsig; 825 EV_ATOMIC_T gotsig;
567} ANSIG; 826} ANSIG;
568 827
569static ANSIG *signals; 828static ANSIG *signals;
570static int signalmax; 829static int signalmax;
571 830
572static int sigpipe [2]; 831static EV_ATOMIC_T gotsig;
573static sig_atomic_t volatile gotsig;
574static struct ev_io sigev;
575 832
576static void 833void inline_size
577signals_init (ANSIG *base, int count) 834signals_init (ANSIG *base, int count)
578{ 835{
579 while (count--) 836 while (count--)
580 { 837 {
581 base->head = 0; 838 base->head = 0;
583 840
584 ++base; 841 ++base;
585 } 842 }
586} 843}
587 844
588static void 845/*****************************************************************************/
589sighandler (int signum)
590{
591#if _WIN32
592 signal (signum, sighandler);
593#endif
594 846
595 signals [signum - 1].gotsig = 1; 847void inline_speed
596
597 if (!gotsig)
598 {
599 int old_errno = errno;
600 gotsig = 1;
601 write (sigpipe [1], &signum, 1);
602 errno = old_errno;
603 }
604}
605
606void
607ev_feed_signal_event (EV_P_ int signum)
608{
609 WL w;
610
611#if EV_MULTIPLICITY
612 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
613#endif
614
615 --signum;
616
617 if (signum < 0 || signum >= signalmax)
618 return;
619
620 signals [signum].gotsig = 0;
621
622 for (w = signals [signum].head; w; w = w->next)
623 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
624}
625
626static void
627sigcb (EV_P_ struct ev_io *iow, int revents)
628{
629 int signum;
630
631 read (sigpipe [0], &revents, 1);
632 gotsig = 0;
633
634 for (signum = signalmax; signum--; )
635 if (signals [signum].gotsig)
636 ev_feed_signal_event (EV_A_ signum + 1);
637}
638
639inline void
640fd_intern (int fd) 848fd_intern (int fd)
641{ 849{
642#ifdef _WIN32 850#ifdef _WIN32
643 int arg = 1; 851 int arg = 1;
644 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
646 fcntl (fd, F_SETFD, FD_CLOEXEC); 854 fcntl (fd, F_SETFD, FD_CLOEXEC);
647 fcntl (fd, F_SETFL, O_NONBLOCK); 855 fcntl (fd, F_SETFL, O_NONBLOCK);
648#endif 856#endif
649} 857}
650 858
859static void noinline
860evpipe_init (EV_P)
861{
862 if (!ev_is_active (&pipeev))
863 {
864#if EV_USE_EVENTFD
865 if ((evfd = eventfd (0, 0)) >= 0)
866 {
867 evpipe [0] = -1;
868 fd_intern (evfd);
869 ev_io_set (&pipeev, evfd, EV_READ);
870 }
871 else
872#endif
873 {
874 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe");
876
877 fd_intern (evpipe [0]);
878 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ);
880 }
881
882 ev_io_start (EV_A_ &pipeev);
883 ev_unref (EV_A); /* watcher should not keep loop alive */
884 }
885}
886
887void inline_size
888evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{
890 if (!*flag)
891 {
892 int old_errno = errno; /* save errno because write might clobber it */
893
894 *flag = 1;
895
896#if EV_USE_EVENTFD
897 if (evfd >= 0)
898 {
899 uint64_t counter = 1;
900 write (evfd, &counter, sizeof (uint64_t));
901 }
902 else
903#endif
904 write (evpipe [1], &old_errno, 1);
905
906 errno = old_errno;
907 }
908}
909
651static void 910static void
652siginit (EV_P) 911pipecb (EV_P_ ev_io *iow, int revents)
653{ 912{
654 fd_intern (sigpipe [0]); 913#if EV_USE_EVENTFD
655 fd_intern (sigpipe [1]); 914 if (evfd >= 0)
915 {
916 uint64_t counter = 1;
917 read (evfd, &counter, sizeof (uint64_t));
918 }
919 else
920#endif
921 {
922 char dummy;
923 read (evpipe [0], &dummy, 1);
924 }
656 925
657 ev_io_set (&sigev, sigpipe [0], EV_READ); 926 if (gotsig && ev_is_default_loop (EV_A))
658 ev_io_start (EV_A_ &sigev); 927 {
659 ev_unref (EV_A); /* child watcher should not keep loop alive */ 928 int signum;
929 gotsig = 0;
930
931 for (signum = signalmax; signum--; )
932 if (signals [signum].gotsig)
933 ev_feed_signal_event (EV_A_ signum + 1);
934 }
935
936#if EV_ASYNC_ENABLE
937 if (gotasync)
938 {
939 int i;
940 gotasync = 0;
941
942 for (i = asynccnt; i--; )
943 if (asyncs [i]->sent)
944 {
945 asyncs [i]->sent = 0;
946 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
947 }
948 }
949#endif
660} 950}
661 951
662/*****************************************************************************/ 952/*****************************************************************************/
663 953
664static struct ev_child *childs [PID_HASHSIZE]; 954static void
955ev_sighandler (int signum)
956{
957#if EV_MULTIPLICITY
958 struct ev_loop *loop = &default_loop_struct;
959#endif
960
961#if _WIN32
962 signal (signum, ev_sighandler);
963#endif
964
965 signals [signum - 1].gotsig = 1;
966 evpipe_write (EV_A_ &gotsig);
967}
968
969void noinline
970ev_feed_signal_event (EV_P_ int signum)
971{
972 WL w;
973
974#if EV_MULTIPLICITY
975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
976#endif
977
978 --signum;
979
980 if (signum < 0 || signum >= signalmax)
981 return;
982
983 signals [signum].gotsig = 0;
984
985 for (w = signals [signum].head; w; w = w->next)
986 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
987}
988
989/*****************************************************************************/
990
991static WL childs [EV_PID_HASHSIZE];
665 992
666#ifndef _WIN32 993#ifndef _WIN32
667 994
668static struct ev_signal childev; 995static ev_signal childev;
996
997#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0
999#endif
1000
1001void inline_speed
1002child_reap (EV_P_ int chain, int pid, int status)
1003{
1004 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1006
1007 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1008 {
1009 if ((w->pid == pid || !w->pid)
1010 && (!traced || (w->flags & 1)))
1011 {
1012 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1013 w->rpid = pid;
1014 w->rstatus = status;
1015 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1016 }
1017 }
1018}
669 1019
670#ifndef WCONTINUED 1020#ifndef WCONTINUED
671# define WCONTINUED 0 1021# define WCONTINUED 0
672#endif 1022#endif
673 1023
674static void 1024static void
675child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
676{
677 struct ev_child *w;
678
679 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
680 if (w->pid == pid || !w->pid)
681 {
682 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
683 w->rpid = pid;
684 w->rstatus = status;
685 ev_feed_event (EV_A_ (W)w, EV_CHILD);
686 }
687}
688
689static void
690childcb (EV_P_ struct ev_signal *sw, int revents) 1025childcb (EV_P_ ev_signal *sw, int revents)
691{ 1026{
692 int pid, status; 1027 int pid, status;
693 1028
1029 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
694 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1030 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
695 { 1031 if (!WCONTINUED
1032 || errno != EINVAL
1033 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1034 return;
1035
696 /* make sure we are called again until all childs have been reaped */ 1036 /* make sure we are called again until all children have been reaped */
1037 /* we need to do it this way so that the callback gets called before we continue */
697 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1038 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
698 1039
699 child_reap (EV_A_ sw, pid, pid, status); 1040 child_reap (EV_A_ pid, pid, status);
1041 if (EV_PID_HASHSIZE > 1)
700 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1042 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
701 }
702} 1043}
703 1044
704#endif 1045#endif
705 1046
706/*****************************************************************************/ 1047/*****************************************************************************/
707 1048
1049#if EV_USE_PORT
1050# include "ev_port.c"
1051#endif
708#if EV_USE_KQUEUE 1052#if EV_USE_KQUEUE
709# include "ev_kqueue.c" 1053# include "ev_kqueue.c"
710#endif 1054#endif
711#if EV_USE_EPOLL 1055#if EV_USE_EPOLL
712# include "ev_epoll.c" 1056# include "ev_epoll.c"
729{ 1073{
730 return EV_VERSION_MINOR; 1074 return EV_VERSION_MINOR;
731} 1075}
732 1076
733/* return true if we are running with elevated privileges and should ignore env variables */ 1077/* return true if we are running with elevated privileges and should ignore env variables */
734static int 1078int inline_size
735enable_secure (void) 1079enable_secure (void)
736{ 1080{
737#ifdef _WIN32 1081#ifdef _WIN32
738 return 0; 1082 return 0;
739#else 1083#else
740 return getuid () != geteuid () 1084 return getuid () != geteuid ()
741 || getgid () != getegid (); 1085 || getgid () != getegid ();
742#endif 1086#endif
743} 1087}
744 1088
745int 1089unsigned int
746ev_method (EV_P) 1090ev_supported_backends (void)
747{ 1091{
748 return method; 1092 unsigned int flags = 0;
749}
750 1093
751static void 1094 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
752loop_init (EV_P_ int methods) 1095 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1096 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1097 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1098 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1099
1100 return flags;
1101}
1102
1103unsigned int
1104ev_recommended_backends (void)
753{ 1105{
754 if (!method) 1106 unsigned int flags = ev_supported_backends ();
1107
1108#ifndef __NetBSD__
1109 /* kqueue is borked on everything but netbsd apparently */
1110 /* it usually doesn't work correctly on anything but sockets and pipes */
1111 flags &= ~EVBACKEND_KQUEUE;
1112#endif
1113#ifdef __APPLE__
1114 // flags &= ~EVBACKEND_KQUEUE; for documentation
1115 flags &= ~EVBACKEND_POLL;
1116#endif
1117
1118 return flags;
1119}
1120
1121unsigned int
1122ev_embeddable_backends (void)
1123{
1124 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1125
1126 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1127 /* please fix it and tell me how to detect the fix */
1128 flags &= ~EVBACKEND_EPOLL;
1129
1130 return flags;
1131}
1132
1133unsigned int
1134ev_backend (EV_P)
1135{
1136 return backend;
1137}
1138
1139unsigned int
1140ev_loop_count (EV_P)
1141{
1142 return loop_count;
1143}
1144
1145void
1146ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1147{
1148 io_blocktime = interval;
1149}
1150
1151void
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1153{
1154 timeout_blocktime = interval;
1155}
1156
1157static void noinline
1158loop_init (EV_P_ unsigned int flags)
1159{
1160 if (!backend)
755 { 1161 {
756#if EV_USE_MONOTONIC 1162#if EV_USE_MONOTONIC
757 { 1163 {
758 struct timespec ts; 1164 struct timespec ts;
759 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
760 have_monotonic = 1; 1166 have_monotonic = 1;
761 } 1167 }
762#endif 1168#endif
763 1169
764 ev_rt_now = ev_time (); 1170 ev_rt_now = ev_time ();
765 mn_now = get_clock (); 1171 mn_now = get_clock ();
766 now_floor = mn_now; 1172 now_floor = mn_now;
767 rtmn_diff = ev_rt_now - mn_now; 1173 rtmn_diff = ev_rt_now - mn_now;
768 1174
769 if (methods == EVMETHOD_AUTO) 1175 io_blocktime = 0.;
770 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1176 timeout_blocktime = 0.;
1177 backend = 0;
1178 backend_fd = -1;
1179 gotasync = 0;
1180#if EV_USE_INOTIFY
1181 fs_fd = -2;
1182#endif
1183
1184 /* pid check not overridable via env */
1185#ifndef _WIN32
1186 if (flags & EVFLAG_FORKCHECK)
1187 curpid = getpid ();
1188#endif
1189
1190 if (!(flags & EVFLAG_NOENV)
1191 && !enable_secure ()
1192 && getenv ("LIBEV_FLAGS"))
771 methods = atoi (getenv ("LIBEV_METHODS")); 1193 flags = atoi (getenv ("LIBEV_FLAGS"));
772 else
773 methods = EVMETHOD_ANY;
774 1194
775 method = 0; 1195 if (!(flags & 0x0000ffffU))
1196 flags |= ev_recommended_backends ();
1197
1198#if EV_USE_PORT
1199 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1200#endif
776#if EV_USE_KQUEUE 1201#if EV_USE_KQUEUE
777 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1202 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
778#endif 1203#endif
779#if EV_USE_EPOLL 1204#if EV_USE_EPOLL
780 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1205 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
781#endif 1206#endif
782#if EV_USE_POLL 1207#if EV_USE_POLL
783 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1208 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
784#endif 1209#endif
785#if EV_USE_SELECT 1210#if EV_USE_SELECT
786 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
787#endif 1212#endif
788 1213
789 ev_init (&sigev, sigcb); 1214 ev_init (&pipeev, pipecb);
790 ev_set_priority (&sigev, EV_MAXPRI); 1215 ev_set_priority (&pipeev, EV_MAXPRI);
791 } 1216 }
792} 1217}
793 1218
794void 1219static void noinline
795loop_destroy (EV_P) 1220loop_destroy (EV_P)
796{ 1221{
797 int i; 1222 int i;
798 1223
1224 if (ev_is_active (&pipeev))
1225 {
1226 ev_ref (EV_A); /* signal watcher */
1227 ev_io_stop (EV_A_ &pipeev);
1228
1229#if EV_USE_EVENTFD
1230 if (evfd >= 0)
1231 close (evfd);
1232#endif
1233
1234 if (evpipe [0] >= 0)
1235 {
1236 close (evpipe [0]);
1237 close (evpipe [1]);
1238 }
1239 }
1240
1241#if EV_USE_INOTIFY
1242 if (fs_fd >= 0)
1243 close (fs_fd);
1244#endif
1245
1246 if (backend_fd >= 0)
1247 close (backend_fd);
1248
1249#if EV_USE_PORT
1250 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1251#endif
799#if EV_USE_KQUEUE 1252#if EV_USE_KQUEUE
800 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1253 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
801#endif 1254#endif
802#if EV_USE_EPOLL 1255#if EV_USE_EPOLL
803 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1256 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
804#endif 1257#endif
805#if EV_USE_POLL 1258#if EV_USE_POLL
806 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1259 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
807#endif 1260#endif
808#if EV_USE_SELECT 1261#if EV_USE_SELECT
809 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1262 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
810#endif 1263#endif
811 1264
812 for (i = NUMPRI; i--; ) 1265 for (i = NUMPRI; i--; )
1266 {
813 array_free (pending, [i]); 1267 array_free (pending, [i]);
1268#if EV_IDLE_ENABLE
1269 array_free (idle, [i]);
1270#endif
1271 }
1272
1273 ev_free (anfds); anfdmax = 0;
814 1274
815 /* have to use the microsoft-never-gets-it-right macro */ 1275 /* have to use the microsoft-never-gets-it-right macro */
816 array_free (fdchange, EMPTY); 1276 array_free (fdchange, EMPTY);
817 array_free (timer, EMPTY); 1277 array_free (timer, EMPTY);
818#if EV_PERIODICS 1278#if EV_PERIODIC_ENABLE
819 array_free (periodic, EMPTY); 1279 array_free (periodic, EMPTY);
820#endif 1280#endif
1281#if EV_FORK_ENABLE
821 array_free (idle, EMPTY); 1282 array_free (fork, EMPTY);
1283#endif
822 array_free (prepare, EMPTY); 1284 array_free (prepare, EMPTY);
823 array_free (check, EMPTY); 1285 array_free (check, EMPTY);
1286#if EV_ASYNC_ENABLE
1287 array_free (async, EMPTY);
1288#endif
824 1289
825 method = 0; 1290 backend = 0;
826} 1291}
827 1292
828static void 1293#if EV_USE_INOTIFY
1294void inline_size infy_fork (EV_P);
1295#endif
1296
1297void inline_size
829loop_fork (EV_P) 1298loop_fork (EV_P)
830{ 1299{
1300#if EV_USE_PORT
1301 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1302#endif
1303#if EV_USE_KQUEUE
1304 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1305#endif
831#if EV_USE_EPOLL 1306#if EV_USE_EPOLL
832 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1307 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
833#endif 1308#endif
834#if EV_USE_KQUEUE 1309#if EV_USE_INOTIFY
835 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1310 infy_fork (EV_A);
836#endif 1311#endif
837 1312
838 if (ev_is_active (&sigev)) 1313 if (ev_is_active (&pipeev))
839 { 1314 {
840 /* default loop */ 1315 /* this "locks" the handlers against writing to the pipe */
1316 /* while we modify the fd vars */
1317 gotsig = 1;
1318#if EV_ASYNC_ENABLE
1319 gotasync = 1;
1320#endif
841 1321
842 ev_ref (EV_A); 1322 ev_ref (EV_A);
843 ev_io_stop (EV_A_ &sigev); 1323 ev_io_stop (EV_A_ &pipeev);
1324
1325#if EV_USE_EVENTFD
1326 if (evfd >= 0)
1327 close (evfd);
1328#endif
1329
1330 if (evpipe [0] >= 0)
1331 {
844 close (sigpipe [0]); 1332 close (evpipe [0]);
845 close (sigpipe [1]); 1333 close (evpipe [1]);
1334 }
846 1335
847 while (pipe (sigpipe))
848 syserr ("(libev) error creating pipe");
849
850 siginit (EV_A); 1336 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */
1338 pipecb (EV_A_ &pipeev, EV_READ);
851 } 1339 }
852 1340
853 postfork = 0; 1341 postfork = 0;
854} 1342}
855 1343
856#if EV_MULTIPLICITY 1344#if EV_MULTIPLICITY
857struct ev_loop * 1345struct ev_loop *
858ev_loop_new (int methods) 1346ev_loop_new (unsigned int flags)
859{ 1347{
860 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1348 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
861 1349
862 memset (loop, 0, sizeof (struct ev_loop)); 1350 memset (loop, 0, sizeof (struct ev_loop));
863 1351
864 loop_init (EV_A_ methods); 1352 loop_init (EV_A_ flags);
865 1353
866 if (ev_method (EV_A)) 1354 if (ev_backend (EV_A))
867 return loop; 1355 return loop;
868 1356
869 return 0; 1357 return 0;
870} 1358}
871 1359
877} 1365}
878 1366
879void 1367void
880ev_loop_fork (EV_P) 1368ev_loop_fork (EV_P)
881{ 1369{
882 postfork = 1; 1370 postfork = 1; /* must be in line with ev_default_fork */
883} 1371}
884 1372
885#endif 1373#endif
886 1374
887#if EV_MULTIPLICITY 1375#if EV_MULTIPLICITY
888struct ev_loop * 1376struct ev_loop *
1377ev_default_loop_init (unsigned int flags)
889#else 1378#else
890int 1379int
1380ev_default_loop (unsigned int flags)
891#endif 1381#endif
892ev_default_loop (int methods)
893{ 1382{
894 if (sigpipe [0] == sigpipe [1])
895 if (pipe (sigpipe))
896 return 0;
897
898 if (!default_loop) 1383 if (!ev_default_loop_ptr)
899 { 1384 {
900#if EV_MULTIPLICITY 1385#if EV_MULTIPLICITY
901 struct ev_loop *loop = default_loop = &default_loop_struct; 1386 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
902#else 1387#else
903 default_loop = 1; 1388 ev_default_loop_ptr = 1;
904#endif 1389#endif
905 1390
906 loop_init (EV_A_ methods); 1391 loop_init (EV_A_ flags);
907 1392
908 if (ev_method (EV_A)) 1393 if (ev_backend (EV_A))
909 { 1394 {
910 siginit (EV_A);
911
912#ifndef _WIN32 1395#ifndef _WIN32
913 ev_signal_init (&childev, childcb, SIGCHLD); 1396 ev_signal_init (&childev, childcb, SIGCHLD);
914 ev_set_priority (&childev, EV_MAXPRI); 1397 ev_set_priority (&childev, EV_MAXPRI);
915 ev_signal_start (EV_A_ &childev); 1398 ev_signal_start (EV_A_ &childev);
916 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1399 ev_unref (EV_A); /* child watcher should not keep loop alive */
917#endif 1400#endif
918 } 1401 }
919 else 1402 else
920 default_loop = 0; 1403 ev_default_loop_ptr = 0;
921 } 1404 }
922 1405
923 return default_loop; 1406 return ev_default_loop_ptr;
924} 1407}
925 1408
926void 1409void
927ev_default_destroy (void) 1410ev_default_destroy (void)
928{ 1411{
929#if EV_MULTIPLICITY 1412#if EV_MULTIPLICITY
930 struct ev_loop *loop = default_loop; 1413 struct ev_loop *loop = ev_default_loop_ptr;
931#endif 1414#endif
932 1415
933#ifndef _WIN32 1416#ifndef _WIN32
934 ev_ref (EV_A); /* child watcher */ 1417 ev_ref (EV_A); /* child watcher */
935 ev_signal_stop (EV_A_ &childev); 1418 ev_signal_stop (EV_A_ &childev);
936#endif 1419#endif
937 1420
938 ev_ref (EV_A); /* signal watcher */
939 ev_io_stop (EV_A_ &sigev);
940
941 close (sigpipe [0]); sigpipe [0] = 0;
942 close (sigpipe [1]); sigpipe [1] = 0;
943
944 loop_destroy (EV_A); 1421 loop_destroy (EV_A);
945} 1422}
946 1423
947void 1424void
948ev_default_fork (void) 1425ev_default_fork (void)
949{ 1426{
950#if EV_MULTIPLICITY 1427#if EV_MULTIPLICITY
951 struct ev_loop *loop = default_loop; 1428 struct ev_loop *loop = ev_default_loop_ptr;
952#endif 1429#endif
953 1430
954 if (method) 1431 if (backend)
955 postfork = 1; 1432 postfork = 1; /* must be in line with ev_loop_fork */
956} 1433}
957 1434
958/*****************************************************************************/ 1435/*****************************************************************************/
959 1436
960static int 1437void
961any_pending (EV_P) 1438ev_invoke (EV_P_ void *w, int revents)
962{ 1439{
963 int pri; 1440 EV_CB_INVOKE ((W)w, revents);
964
965 for (pri = NUMPRI; pri--; )
966 if (pendingcnt [pri])
967 return 1;
968
969 return 0;
970} 1441}
971 1442
972static void 1443void inline_speed
973call_pending (EV_P) 1444call_pending (EV_P)
974{ 1445{
975 int pri; 1446 int pri;
976 1447
977 for (pri = NUMPRI; pri--; ) 1448 for (pri = NUMPRI; pri--; )
978 while (pendingcnt [pri]) 1449 while (pendingcnt [pri])
979 { 1450 {
980 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1451 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
981 1452
982 if (p->w) 1453 if (expect_true (p->w))
983 { 1454 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1456
984 p->w->pending = 0; 1457 p->w->pending = 0;
985 EV_CB_INVOKE (p->w, p->events); 1458 EV_CB_INVOKE (p->w, p->events);
986 } 1459 }
987 } 1460 }
988} 1461}
989 1462
990static void 1463void inline_size
991timers_reify (EV_P) 1464timers_reify (EV_P)
992{ 1465{
993 while (timercnt && ((WT)timers [0])->at <= mn_now) 1466 while (timercnt && ev_at (timers [1]) <= mn_now)
994 { 1467 {
995 struct ev_timer *w = timers [0]; 1468 ev_timer *w = (ev_timer *)timers [1];
996 1469
997 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
998 1471
999 /* first reschedule or stop timer */ 1472 /* first reschedule or stop timer */
1000 if (w->repeat) 1473 if (w->repeat)
1001 { 1474 {
1002 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1003 1476
1004 ((WT)w)->at += w->repeat; 1477 ev_at (w) += w->repeat;
1005 if (((WT)w)->at < mn_now) 1478 if (ev_at (w) < mn_now)
1006 ((WT)w)->at = mn_now; 1479 ev_at (w) = mn_now;
1007 1480
1008 downheap ((WT *)timers, timercnt, 0); 1481 downheap (timers, timercnt, 1);
1009 } 1482 }
1010 else 1483 else
1011 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1012 1485
1013 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1014 } 1487 }
1015} 1488}
1016 1489
1017#if EV_PERIODICS 1490#if EV_PERIODIC_ENABLE
1018static void 1491void inline_size
1019periodics_reify (EV_P) 1492periodics_reify (EV_P)
1020{ 1493{
1021 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1022 { 1495 {
1023 struct ev_periodic *w = periodics [0]; 1496 ev_periodic *w = (ev_periodic *)periodics [1];
1024 1497
1025 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1026 1499
1027 /* first reschedule or stop timer */ 1500 /* first reschedule or stop timer */
1028 if (w->reschedule_cb) 1501 if (w->reschedule_cb)
1029 { 1502 {
1030 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1031
1032 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1033 downheap ((WT *)periodics, periodiccnt, 0); 1505 downheap (periodics, periodiccnt, 1);
1034 } 1506 }
1035 else if (w->interval) 1507 else if (w->interval)
1036 { 1508 {
1037 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1038 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1039 downheap ((WT *)periodics, periodiccnt, 0); 1512 downheap (periodics, periodiccnt, 1);
1040 } 1513 }
1041 else 1514 else
1042 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1043 1516
1044 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1045 } 1518 }
1046} 1519}
1047 1520
1048static void 1521static void noinline
1049periodics_reschedule (EV_P) 1522periodics_reschedule (EV_P)
1050{ 1523{
1051 int i; 1524 int i;
1052 1525
1053 /* adjust periodics after time jump */ 1526 /* adjust periodics after time jump */
1054 for (i = 0; i < periodiccnt; ++i) 1527 for (i = 0; i < periodiccnt; ++i)
1055 { 1528 {
1056 struct ev_periodic *w = periodics [i]; 1529 ev_periodic *w = (ev_periodic *)periodics [i];
1057 1530
1058 if (w->reschedule_cb) 1531 if (w->reschedule_cb)
1059 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1060 else if (w->interval) 1533 else if (w->interval)
1061 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1062 } 1535 }
1063 1536
1064 /* now rebuild the heap */ 1537 /* now rebuild the heap */
1065 for (i = periodiccnt >> 1; i--; ) 1538 for (i = periodiccnt >> 1; i--; )
1066 downheap ((WT *)periodics, periodiccnt, i); 1539 downheap (periodics, periodiccnt, i);
1067} 1540}
1068#endif 1541#endif
1069 1542
1070inline int 1543#if EV_IDLE_ENABLE
1071time_update_monotonic (EV_P) 1544void inline_size
1545idle_reify (EV_P)
1072{ 1546{
1547 if (expect_false (idleall))
1548 {
1549 int pri;
1550
1551 for (pri = NUMPRI; pri--; )
1552 {
1553 if (pendingcnt [pri])
1554 break;
1555
1556 if (idlecnt [pri])
1557 {
1558 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1559 break;
1560 }
1561 }
1562 }
1563}
1564#endif
1565
1566void inline_speed
1567time_update (EV_P_ ev_tstamp max_block)
1568{
1569 int i;
1570
1571#if EV_USE_MONOTONIC
1572 if (expect_true (have_monotonic))
1573 {
1574 ev_tstamp odiff = rtmn_diff;
1575
1073 mn_now = get_clock (); 1576 mn_now = get_clock ();
1074 1577
1578 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1579 /* interpolate in the meantime */
1075 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1580 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1076 { 1581 {
1077 ev_rt_now = rtmn_diff + mn_now; 1582 ev_rt_now = rtmn_diff + mn_now;
1078 return 0; 1583 return;
1079 } 1584 }
1080 else 1585
1081 {
1082 now_floor = mn_now; 1586 now_floor = mn_now;
1083 ev_rt_now = ev_time (); 1587 ev_rt_now = ev_time ();
1084 return 1;
1085 }
1086}
1087 1588
1088static void 1589 /* loop a few times, before making important decisions.
1089time_update (EV_P) 1590 * on the choice of "4": one iteration isn't enough,
1090{ 1591 * in case we get preempted during the calls to
1091 int i; 1592 * ev_time and get_clock. a second call is almost guaranteed
1092 1593 * to succeed in that case, though. and looping a few more times
1093#if EV_USE_MONOTONIC 1594 * doesn't hurt either as we only do this on time-jumps or
1094 if (expect_true (have_monotonic)) 1595 * in the unlikely event of having been preempted here.
1095 { 1596 */
1096 if (time_update_monotonic (EV_A)) 1597 for (i = 4; --i; )
1097 { 1598 {
1098 ev_tstamp odiff = rtmn_diff;
1099
1100 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1101 {
1102 rtmn_diff = ev_rt_now - mn_now; 1599 rtmn_diff = ev_rt_now - mn_now;
1103 1600
1104 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1105 return; /* all is well */ 1602 return; /* all is well */
1106 1603
1107 ev_rt_now = ev_time (); 1604 ev_rt_now = ev_time ();
1108 mn_now = get_clock (); 1605 mn_now = get_clock ();
1109 now_floor = mn_now; 1606 now_floor = mn_now;
1110 } 1607 }
1111 1608
1112# if EV_PERIODICS 1609# if EV_PERIODIC_ENABLE
1610 periodics_reschedule (EV_A);
1611# endif
1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1614 }
1615 else
1616#endif
1617 {
1618 ev_rt_now = ev_time ();
1619
1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1621 {
1622#if EV_PERIODIC_ENABLE
1113 periodics_reschedule (EV_A); 1623 periodics_reschedule (EV_A);
1114# endif 1624#endif
1115 /* no timer adjustment, as the monotonic clock doesn't jump */ 1625 /* adjust timers. this is easy, as the offset is the same for all of them */
1116 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1626 for (i = 1; i <= timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now;
1117 } 1628 }
1118 }
1119 else
1120#endif
1121 {
1122 ev_rt_now = ev_time ();
1123
1124 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1125 {
1126#if EV_PERIODICS
1127 periodics_reschedule (EV_A);
1128#endif
1129
1130 /* adjust timers. this is easy, as the offset is the same for all */
1131 for (i = 0; i < timercnt; ++i)
1132 ((WT)timers [i])->at += ev_rt_now - mn_now;
1133 }
1134 1629
1135 mn_now = ev_rt_now; 1630 mn_now = ev_rt_now;
1136 } 1631 }
1137} 1632}
1138 1633
1151static int loop_done; 1646static int loop_done;
1152 1647
1153void 1648void
1154ev_loop (EV_P_ int flags) 1649ev_loop (EV_P_ int flags)
1155{ 1650{
1156 double block; 1651 loop_done = EVUNLOOP_CANCEL;
1157 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1652
1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1158 1654
1159 do 1655 do
1160 { 1656 {
1657#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid))
1660 {
1661 curpid = getpid ();
1662 postfork = 1;
1663 }
1664#endif
1665
1666#if EV_FORK_ENABLE
1667 /* we might have forked, so queue fork handlers */
1668 if (expect_false (postfork))
1669 if (forkcnt)
1670 {
1671 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1672 call_pending (EV_A);
1673 }
1674#endif
1675
1161 /* queue check watchers (and execute them) */ 1676 /* queue prepare watchers (and execute them) */
1162 if (expect_false (preparecnt)) 1677 if (expect_false (preparecnt))
1163 { 1678 {
1164 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1165 call_pending (EV_A); 1680 call_pending (EV_A);
1166 } 1681 }
1167 1682
1683 if (expect_false (!activecnt))
1684 break;
1685
1168 /* we might have forked, so reify kernel state if necessary */ 1686 /* we might have forked, so reify kernel state if necessary */
1169 if (expect_false (postfork)) 1687 if (expect_false (postfork))
1170 loop_fork (EV_A); 1688 loop_fork (EV_A);
1171 1689
1172 /* update fd-related kernel structures */ 1690 /* update fd-related kernel structures */
1173 fd_reify (EV_A); 1691 fd_reify (EV_A);
1174 1692
1175 /* calculate blocking time */ 1693 /* calculate blocking time */
1694 {
1695 ev_tstamp waittime = 0.;
1696 ev_tstamp sleeptime = 0.;
1176 1697
1177 /* we only need this for !monotonic clock or timers, but as we basically 1698 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1178 always have timers, we just calculate it always */
1179#if EV_USE_MONOTONIC
1180 if (expect_true (have_monotonic))
1181 time_update_monotonic (EV_A);
1182 else
1183#endif
1184 { 1699 {
1185 ev_rt_now = ev_time (); 1700 /* update time to cancel out callback processing overhead */
1186 mn_now = ev_rt_now; 1701 time_update (EV_A_ 1e100);
1187 }
1188 1702
1189 if (flags & EVLOOP_NONBLOCK || idlecnt)
1190 block = 0.;
1191 else
1192 {
1193 block = MAX_BLOCKTIME; 1703 waittime = MAX_BLOCKTIME;
1194 1704
1195 if (timercnt) 1705 if (timercnt)
1196 { 1706 {
1197 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1198 if (block > to) block = to; 1708 if (waittime > to) waittime = to;
1199 } 1709 }
1200 1710
1201#if EV_PERIODICS 1711#if EV_PERIODIC_ENABLE
1202 if (periodiccnt) 1712 if (periodiccnt)
1203 { 1713 {
1204 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1205 if (block > to) block = to; 1715 if (waittime > to) waittime = to;
1206 } 1716 }
1207#endif 1717#endif
1208 1718
1209 if (block < 0.) block = 0.; 1719 if (expect_false (waittime < timeout_blocktime))
1720 waittime = timeout_blocktime;
1721
1722 sleeptime = waittime - backend_fudge;
1723
1724 if (expect_true (sleeptime > io_blocktime))
1725 sleeptime = io_blocktime;
1726
1727 if (sleeptime)
1728 {
1729 ev_sleep (sleeptime);
1730 waittime -= sleeptime;
1731 }
1210 } 1732 }
1211 1733
1212 method_poll (EV_A_ block); 1734 ++loop_count;
1735 backend_poll (EV_A_ waittime);
1213 1736
1214 /* update ev_rt_now, do magic */ 1737 /* update ev_rt_now, do magic */
1215 time_update (EV_A); 1738 time_update (EV_A_ waittime + sleeptime);
1739 }
1216 1740
1217 /* queue pending timers and reschedule them */ 1741 /* queue pending timers and reschedule them */
1218 timers_reify (EV_A); /* relative timers called last */ 1742 timers_reify (EV_A); /* relative timers called last */
1219#if EV_PERIODICS 1743#if EV_PERIODIC_ENABLE
1220 periodics_reify (EV_A); /* absolute timers called first */ 1744 periodics_reify (EV_A); /* absolute timers called first */
1221#endif 1745#endif
1222 1746
1747#if EV_IDLE_ENABLE
1223 /* queue idle watchers unless io or timers are pending */ 1748 /* queue idle watchers unless other events are pending */
1224 if (idlecnt && !any_pending (EV_A)) 1749 idle_reify (EV_A);
1225 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1750#endif
1226 1751
1227 /* queue check watchers, to be executed first */ 1752 /* queue check watchers, to be executed first */
1228 if (checkcnt) 1753 if (expect_false (checkcnt))
1229 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1754 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1230 1755
1231 call_pending (EV_A); 1756 call_pending (EV_A);
1232 } 1757 }
1233 while (activecnt && !loop_done); 1758 while (expect_true (
1759 activecnt
1760 && !loop_done
1761 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1762 ));
1234 1763
1235 if (loop_done != 2) 1764 if (loop_done == EVUNLOOP_ONE)
1236 loop_done = 0; 1765 loop_done = EVUNLOOP_CANCEL;
1237} 1766}
1238 1767
1239void 1768void
1240ev_unloop (EV_P_ int how) 1769ev_unloop (EV_P_ int how)
1241{ 1770{
1242 loop_done = how; 1771 loop_done = how;
1243} 1772}
1244 1773
1245/*****************************************************************************/ 1774/*****************************************************************************/
1246 1775
1247inline void 1776void inline_size
1248wlist_add (WL *head, WL elem) 1777wlist_add (WL *head, WL elem)
1249{ 1778{
1250 elem->next = *head; 1779 elem->next = *head;
1251 *head = elem; 1780 *head = elem;
1252} 1781}
1253 1782
1254inline void 1783void inline_size
1255wlist_del (WL *head, WL elem) 1784wlist_del (WL *head, WL elem)
1256{ 1785{
1257 while (*head) 1786 while (*head)
1258 { 1787 {
1259 if (*head == elem) 1788 if (*head == elem)
1264 1793
1265 head = &(*head)->next; 1794 head = &(*head)->next;
1266 } 1795 }
1267} 1796}
1268 1797
1269inline void 1798void inline_speed
1270ev_clear_pending (EV_P_ W w) 1799clear_pending (EV_P_ W w)
1271{ 1800{
1272 if (w->pending) 1801 if (w->pending)
1273 { 1802 {
1274 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1803 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1275 w->pending = 0; 1804 w->pending = 0;
1276 } 1805 }
1277} 1806}
1278 1807
1279inline void 1808int
1809ev_clear_pending (EV_P_ void *w)
1810{
1811 W w_ = (W)w;
1812 int pending = w_->pending;
1813
1814 if (expect_true (pending))
1815 {
1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1817 w_->pending = 0;
1818 p->w = 0;
1819 return p->events;
1820 }
1821 else
1822 return 0;
1823}
1824
1825void inline_size
1826pri_adjust (EV_P_ W w)
1827{
1828 int pri = w->priority;
1829 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1830 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1831 w->priority = pri;
1832}
1833
1834void inline_speed
1280ev_start (EV_P_ W w, int active) 1835ev_start (EV_P_ W w, int active)
1281{ 1836{
1282 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1837 pri_adjust (EV_A_ w);
1283 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1284
1285 w->active = active; 1838 w->active = active;
1286 ev_ref (EV_A); 1839 ev_ref (EV_A);
1287} 1840}
1288 1841
1289inline void 1842void inline_size
1290ev_stop (EV_P_ W w) 1843ev_stop (EV_P_ W w)
1291{ 1844{
1292 ev_unref (EV_A); 1845 ev_unref (EV_A);
1293 w->active = 0; 1846 w->active = 0;
1294} 1847}
1295 1848
1296/*****************************************************************************/ 1849/*****************************************************************************/
1297 1850
1298void 1851void noinline
1299ev_io_start (EV_P_ struct ev_io *w) 1852ev_io_start (EV_P_ ev_io *w)
1300{ 1853{
1301 int fd = w->fd; 1854 int fd = w->fd;
1302 1855
1303 if (ev_is_active (w)) 1856 if (expect_false (ev_is_active (w)))
1304 return; 1857 return;
1305 1858
1306 assert (("ev_io_start called with negative fd", fd >= 0)); 1859 assert (("ev_io_start called with negative fd", fd >= 0));
1307 1860
1308 ev_start (EV_A_ (W)w, 1); 1861 ev_start (EV_A_ (W)w, 1);
1309 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1310 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1863 wlist_add (&anfds[fd].head, (WL)w);
1311 1864
1312 fd_change (EV_A_ fd); 1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1866 w->events &= ~EV_IOFDSET;
1313} 1867}
1314 1868
1315void 1869void noinline
1316ev_io_stop (EV_P_ struct ev_io *w) 1870ev_io_stop (EV_P_ ev_io *w)
1317{ 1871{
1318 ev_clear_pending (EV_A_ (W)w); 1872 clear_pending (EV_A_ (W)w);
1319 if (!ev_is_active (w)) 1873 if (expect_false (!ev_is_active (w)))
1320 return; 1874 return;
1321 1875
1322 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1323 1877
1324 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1878 wlist_del (&anfds[w->fd].head, (WL)w);
1325 ev_stop (EV_A_ (W)w); 1879 ev_stop (EV_A_ (W)w);
1326 1880
1327 fd_change (EV_A_ w->fd); 1881 fd_change (EV_A_ w->fd, 1);
1328} 1882}
1329 1883
1330void 1884void noinline
1331ev_timer_start (EV_P_ struct ev_timer *w) 1885ev_timer_start (EV_P_ ev_timer *w)
1332{ 1886{
1333 if (ev_is_active (w)) 1887 if (expect_false (ev_is_active (w)))
1334 return; 1888 return;
1335 1889
1336 ((WT)w)->at += mn_now; 1890 ev_at (w) += mn_now;
1337 1891
1338 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1339 1893
1340 ev_start (EV_A_ (W)w, ++timercnt); 1894 ev_start (EV_A_ (W)w, ++timercnt);
1341 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void)); 1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1342 timers [timercnt - 1] = w; 1896 timers [timercnt] = (WT)w;
1343 upheap ((WT *)timers, timercnt - 1); 1897 upheap (timers, timercnt);
1344 1898
1345 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/
1346} 1900}
1347 1901
1348void 1902void noinline
1349ev_timer_stop (EV_P_ struct ev_timer *w) 1903ev_timer_stop (EV_P_ ev_timer *w)
1350{ 1904{
1351 ev_clear_pending (EV_A_ (W)w); 1905 clear_pending (EV_A_ (W)w);
1352 if (!ev_is_active (w)) 1906 if (expect_false (!ev_is_active (w)))
1353 return; 1907 return;
1354 1908
1355 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w));
1356 1910
1357 if (((W)w)->active < timercnt--) 1911 {
1912 int active = ((W)w)->active;
1913
1914 if (expect_true (active < timercnt))
1358 { 1915 {
1359 timers [((W)w)->active - 1] = timers [timercnt]; 1916 timers [active] = timers [timercnt];
1360 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1917 adjustheap (timers, timercnt, active);
1361 } 1918 }
1362 1919
1363 ((WT)w)->at -= mn_now; 1920 --timercnt;
1921 }
1922
1923 ev_at (w) -= mn_now;
1364 1924
1365 ev_stop (EV_A_ (W)w); 1925 ev_stop (EV_A_ (W)w);
1366} 1926}
1367 1927
1368void 1928void noinline
1369ev_timer_again (EV_P_ struct ev_timer *w) 1929ev_timer_again (EV_P_ ev_timer *w)
1370{ 1930{
1371 if (ev_is_active (w)) 1931 if (ev_is_active (w))
1372 { 1932 {
1373 if (w->repeat) 1933 if (w->repeat)
1374 { 1934 {
1375 ((WT)w)->at = mn_now + w->repeat; 1935 ev_at (w) = mn_now + w->repeat;
1376 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1936 adjustheap (timers, timercnt, ((W)w)->active);
1377 } 1937 }
1378 else 1938 else
1379 ev_timer_stop (EV_A_ w); 1939 ev_timer_stop (EV_A_ w);
1380 } 1940 }
1381 else if (w->repeat) 1941 else if (w->repeat)
1942 {
1943 w->at = w->repeat;
1382 ev_timer_start (EV_A_ w); 1944 ev_timer_start (EV_A_ w);
1945 }
1383} 1946}
1384 1947
1385#if EV_PERIODICS 1948#if EV_PERIODIC_ENABLE
1386void 1949void noinline
1387ev_periodic_start (EV_P_ struct ev_periodic *w) 1950ev_periodic_start (EV_P_ ev_periodic *w)
1388{ 1951{
1389 if (ev_is_active (w)) 1952 if (expect_false (ev_is_active (w)))
1390 return; 1953 return;
1391 1954
1392 if (w->reschedule_cb) 1955 if (w->reschedule_cb)
1393 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1394 else if (w->interval) 1957 else if (w->interval)
1395 { 1958 {
1396 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1397 /* this formula differs from the one in periodic_reify because we do not always round up */ 1960 /* this formula differs from the one in periodic_reify because we do not always round up */
1398 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1399 } 1962 }
1963 else
1964 ev_at (w) = w->offset;
1400 1965
1401 ev_start (EV_A_ (W)w, ++periodiccnt); 1966 ev_start (EV_A_ (W)w, ++periodiccnt);
1402 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1403 periodics [periodiccnt - 1] = w; 1968 periodics [periodiccnt] = (WT)w;
1404 upheap ((WT *)periodics, periodiccnt - 1); 1969 upheap (periodics, periodiccnt);
1405 1970
1406 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1407} 1972}
1408 1973
1409void 1974void noinline
1410ev_periodic_stop (EV_P_ struct ev_periodic *w) 1975ev_periodic_stop (EV_P_ ev_periodic *w)
1411{ 1976{
1412 ev_clear_pending (EV_A_ (W)w); 1977 clear_pending (EV_A_ (W)w);
1413 if (!ev_is_active (w)) 1978 if (expect_false (!ev_is_active (w)))
1414 return; 1979 return;
1415 1980
1416 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w));
1417 1982
1418 if (((W)w)->active < periodiccnt--) 1983 {
1984 int active = ((W)w)->active;
1985
1986 if (expect_true (active < periodiccnt))
1419 { 1987 {
1420 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1988 periodics [active] = periodics [periodiccnt];
1421 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1989 adjustheap (periodics, periodiccnt, active);
1422 } 1990 }
1991
1992 --periodiccnt;
1993 }
1423 1994
1424 ev_stop (EV_A_ (W)w); 1995 ev_stop (EV_A_ (W)w);
1425} 1996}
1426 1997
1427void 1998void noinline
1428ev_periodic_again (EV_P_ struct ev_periodic *w) 1999ev_periodic_again (EV_P_ ev_periodic *w)
1429{ 2000{
1430 /* TODO: use adjustheap and recalculation */ 2001 /* TODO: use adjustheap and recalculation */
1431 ev_periodic_stop (EV_A_ w); 2002 ev_periodic_stop (EV_A_ w);
1432 ev_periodic_start (EV_A_ w); 2003 ev_periodic_start (EV_A_ w);
1433} 2004}
1434#endif 2005#endif
1435 2006
1436void
1437ev_idle_start (EV_P_ struct ev_idle *w)
1438{
1439 if (ev_is_active (w))
1440 return;
1441
1442 ev_start (EV_A_ (W)w, ++idlecnt);
1443 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1444 idles [idlecnt - 1] = w;
1445}
1446
1447void
1448ev_idle_stop (EV_P_ struct ev_idle *w)
1449{
1450 ev_clear_pending (EV_A_ (W)w);
1451 if (!ev_is_active (w))
1452 return;
1453
1454 idles [((W)w)->active - 1] = idles [--idlecnt];
1455 ev_stop (EV_A_ (W)w);
1456}
1457
1458void
1459ev_prepare_start (EV_P_ struct ev_prepare *w)
1460{
1461 if (ev_is_active (w))
1462 return;
1463
1464 ev_start (EV_A_ (W)w, ++preparecnt);
1465 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1466 prepares [preparecnt - 1] = w;
1467}
1468
1469void
1470ev_prepare_stop (EV_P_ struct ev_prepare *w)
1471{
1472 ev_clear_pending (EV_A_ (W)w);
1473 if (!ev_is_active (w))
1474 return;
1475
1476 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1477 ev_stop (EV_A_ (W)w);
1478}
1479
1480void
1481ev_check_start (EV_P_ struct ev_check *w)
1482{
1483 if (ev_is_active (w))
1484 return;
1485
1486 ev_start (EV_A_ (W)w, ++checkcnt);
1487 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1488 checks [checkcnt - 1] = w;
1489}
1490
1491void
1492ev_check_stop (EV_P_ struct ev_check *w)
1493{
1494 ev_clear_pending (EV_A_ (W)w);
1495 if (!ev_is_active (w))
1496 return;
1497
1498 checks [((W)w)->active - 1] = checks [--checkcnt];
1499 ev_stop (EV_A_ (W)w);
1500}
1501
1502#ifndef SA_RESTART 2007#ifndef SA_RESTART
1503# define SA_RESTART 0 2008# define SA_RESTART 0
1504#endif 2009#endif
1505 2010
1506void 2011void noinline
1507ev_signal_start (EV_P_ struct ev_signal *w) 2012ev_signal_start (EV_P_ ev_signal *w)
1508{ 2013{
1509#if EV_MULTIPLICITY 2014#if EV_MULTIPLICITY
1510 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1511#endif 2016#endif
1512 if (ev_is_active (w)) 2017 if (expect_false (ev_is_active (w)))
1513 return; 2018 return;
1514 2019
1515 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1516 2021
2022 evpipe_init (EV_A);
2023
2024 {
2025#ifndef _WIN32
2026 sigset_t full, prev;
2027 sigfillset (&full);
2028 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif
2030
2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2032
2033#ifndef _WIN32
2034 sigprocmask (SIG_SETMASK, &prev, 0);
2035#endif
2036 }
2037
1517 ev_start (EV_A_ (W)w, 1); 2038 ev_start (EV_A_ (W)w, 1);
1518 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1519 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2039 wlist_add (&signals [w->signum - 1].head, (WL)w);
1520 2040
1521 if (!((WL)w)->next) 2041 if (!((WL)w)->next)
1522 { 2042 {
1523#if _WIN32 2043#if _WIN32
1524 signal (w->signum, sighandler); 2044 signal (w->signum, ev_sighandler);
1525#else 2045#else
1526 struct sigaction sa; 2046 struct sigaction sa;
1527 sa.sa_handler = sighandler; 2047 sa.sa_handler = ev_sighandler;
1528 sigfillset (&sa.sa_mask); 2048 sigfillset (&sa.sa_mask);
1529 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1530 sigaction (w->signum, &sa, 0); 2050 sigaction (w->signum, &sa, 0);
1531#endif 2051#endif
1532 } 2052 }
1533} 2053}
1534 2054
1535void 2055void noinline
1536ev_signal_stop (EV_P_ struct ev_signal *w) 2056ev_signal_stop (EV_P_ ev_signal *w)
1537{ 2057{
1538 ev_clear_pending (EV_A_ (W)w); 2058 clear_pending (EV_A_ (W)w);
1539 if (!ev_is_active (w)) 2059 if (expect_false (!ev_is_active (w)))
1540 return; 2060 return;
1541 2061
1542 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2062 wlist_del (&signals [w->signum - 1].head, (WL)w);
1543 ev_stop (EV_A_ (W)w); 2063 ev_stop (EV_A_ (W)w);
1544 2064
1545 if (!signals [w->signum - 1].head) 2065 if (!signals [w->signum - 1].head)
1546 signal (w->signum, SIG_DFL); 2066 signal (w->signum, SIG_DFL);
1547} 2067}
1548 2068
1549void 2069void
1550ev_child_start (EV_P_ struct ev_child *w) 2070ev_child_start (EV_P_ ev_child *w)
1551{ 2071{
1552#if EV_MULTIPLICITY 2072#if EV_MULTIPLICITY
1553 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1554#endif 2074#endif
1555 if (ev_is_active (w)) 2075 if (expect_false (ev_is_active (w)))
1556 return; 2076 return;
1557 2077
1558 ev_start (EV_A_ (W)w, 1); 2078 ev_start (EV_A_ (W)w, 1);
1559 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1560} 2080}
1561 2081
1562void 2082void
1563ev_child_stop (EV_P_ struct ev_child *w) 2083ev_child_stop (EV_P_ ev_child *w)
1564{ 2084{
1565 ev_clear_pending (EV_A_ (W)w); 2085 clear_pending (EV_A_ (W)w);
1566 if (!ev_is_active (w)) 2086 if (expect_false (!ev_is_active (w)))
1567 return; 2087 return;
1568 2088
1569 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1570 ev_stop (EV_A_ (W)w); 2090 ev_stop (EV_A_ (W)w);
1571} 2091}
1572 2092
2093#if EV_STAT_ENABLE
2094
2095# ifdef _WIN32
2096# undef lstat
2097# define lstat(a,b) _stati64 (a,b)
2098# endif
2099
2100#define DEF_STAT_INTERVAL 5.0074891
2101#define MIN_STAT_INTERVAL 0.1074891
2102
2103static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2104
2105#if EV_USE_INOTIFY
2106# define EV_INOTIFY_BUFSIZE 8192
2107
2108static void noinline
2109infy_add (EV_P_ ev_stat *w)
2110{
2111 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2112
2113 if (w->wd < 0)
2114 {
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2116
2117 /* monitor some parent directory for speedup hints */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 {
2120 char path [4096];
2121 strcpy (path, w->path);
2122
2123 do
2124 {
2125 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2126 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2127
2128 char *pend = strrchr (path, '/');
2129
2130 if (!pend)
2131 break; /* whoops, no '/', complain to your admin */
2132
2133 *pend = 0;
2134 w->wd = inotify_add_watch (fs_fd, path, mask);
2135 }
2136 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2137 }
2138 }
2139 else
2140 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2141
2142 if (w->wd >= 0)
2143 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2144}
2145
2146static void noinline
2147infy_del (EV_P_ ev_stat *w)
2148{
2149 int slot;
2150 int wd = w->wd;
2151
2152 if (wd < 0)
2153 return;
2154
2155 w->wd = -2;
2156 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2157 wlist_del (&fs_hash [slot].head, (WL)w);
2158
2159 /* remove this watcher, if others are watching it, they will rearm */
2160 inotify_rm_watch (fs_fd, wd);
2161}
2162
2163static void noinline
2164infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2165{
2166 if (slot < 0)
2167 /* overflow, need to check for all hahs slots */
2168 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2169 infy_wd (EV_A_ slot, wd, ev);
2170 else
2171 {
2172 WL w_;
2173
2174 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2175 {
2176 ev_stat *w = (ev_stat *)w_;
2177 w_ = w_->next; /* lets us remove this watcher and all before it */
2178
2179 if (w->wd == wd || wd == -1)
2180 {
2181 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2182 {
2183 w->wd = -1;
2184 infy_add (EV_A_ w); /* re-add, no matter what */
2185 }
2186
2187 stat_timer_cb (EV_A_ &w->timer, 0);
2188 }
2189 }
2190 }
2191}
2192
2193static void
2194infy_cb (EV_P_ ev_io *w, int revents)
2195{
2196 char buf [EV_INOTIFY_BUFSIZE];
2197 struct inotify_event *ev = (struct inotify_event *)buf;
2198 int ofs;
2199 int len = read (fs_fd, buf, sizeof (buf));
2200
2201 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2202 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2203}
2204
2205void inline_size
2206infy_init (EV_P)
2207{
2208 if (fs_fd != -2)
2209 return;
2210
2211 fs_fd = inotify_init ();
2212
2213 if (fs_fd >= 0)
2214 {
2215 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2216 ev_set_priority (&fs_w, EV_MAXPRI);
2217 ev_io_start (EV_A_ &fs_w);
2218 }
2219}
2220
2221void inline_size
2222infy_fork (EV_P)
2223{
2224 int slot;
2225
2226 if (fs_fd < 0)
2227 return;
2228
2229 close (fs_fd);
2230 fs_fd = inotify_init ();
2231
2232 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2233 {
2234 WL w_ = fs_hash [slot].head;
2235 fs_hash [slot].head = 0;
2236
2237 while (w_)
2238 {
2239 ev_stat *w = (ev_stat *)w_;
2240 w_ = w_->next; /* lets us add this watcher */
2241
2242 w->wd = -1;
2243
2244 if (fs_fd >= 0)
2245 infy_add (EV_A_ w); /* re-add, no matter what */
2246 else
2247 ev_timer_start (EV_A_ &w->timer);
2248 }
2249
2250 }
2251}
2252
2253#endif
2254
2255void
2256ev_stat_stat (EV_P_ ev_stat *w)
2257{
2258 if (lstat (w->path, &w->attr) < 0)
2259 w->attr.st_nlink = 0;
2260 else if (!w->attr.st_nlink)
2261 w->attr.st_nlink = 1;
2262}
2263
2264static void noinline
2265stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2266{
2267 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2268
2269 /* we copy this here each the time so that */
2270 /* prev has the old value when the callback gets invoked */
2271 w->prev = w->attr;
2272 ev_stat_stat (EV_A_ w);
2273
2274 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2275 if (
2276 w->prev.st_dev != w->attr.st_dev
2277 || w->prev.st_ino != w->attr.st_ino
2278 || w->prev.st_mode != w->attr.st_mode
2279 || w->prev.st_nlink != w->attr.st_nlink
2280 || w->prev.st_uid != w->attr.st_uid
2281 || w->prev.st_gid != w->attr.st_gid
2282 || w->prev.st_rdev != w->attr.st_rdev
2283 || w->prev.st_size != w->attr.st_size
2284 || w->prev.st_atime != w->attr.st_atime
2285 || w->prev.st_mtime != w->attr.st_mtime
2286 || w->prev.st_ctime != w->attr.st_ctime
2287 ) {
2288 #if EV_USE_INOTIFY
2289 infy_del (EV_A_ w);
2290 infy_add (EV_A_ w);
2291 ev_stat_stat (EV_A_ w); /* avoid race... */
2292 #endif
2293
2294 ev_feed_event (EV_A_ w, EV_STAT);
2295 }
2296}
2297
2298void
2299ev_stat_start (EV_P_ ev_stat *w)
2300{
2301 if (expect_false (ev_is_active (w)))
2302 return;
2303
2304 /* since we use memcmp, we need to clear any padding data etc. */
2305 memset (&w->prev, 0, sizeof (ev_statdata));
2306 memset (&w->attr, 0, sizeof (ev_statdata));
2307
2308 ev_stat_stat (EV_A_ w);
2309
2310 if (w->interval < MIN_STAT_INTERVAL)
2311 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2312
2313 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2314 ev_set_priority (&w->timer, ev_priority (w));
2315
2316#if EV_USE_INOTIFY
2317 infy_init (EV_A);
2318
2319 if (fs_fd >= 0)
2320 infy_add (EV_A_ w);
2321 else
2322#endif
2323 ev_timer_start (EV_A_ &w->timer);
2324
2325 ev_start (EV_A_ (W)w, 1);
2326}
2327
2328void
2329ev_stat_stop (EV_P_ ev_stat *w)
2330{
2331 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w)))
2333 return;
2334
2335#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w);
2337#endif
2338 ev_timer_stop (EV_A_ &w->timer);
2339
2340 ev_stop (EV_A_ (W)w);
2341}
2342#endif
2343
2344#if EV_IDLE_ENABLE
2345void
2346ev_idle_start (EV_P_ ev_idle *w)
2347{
2348 if (expect_false (ev_is_active (w)))
2349 return;
2350
2351 pri_adjust (EV_A_ (W)w);
2352
2353 {
2354 int active = ++idlecnt [ABSPRI (w)];
2355
2356 ++idleall;
2357 ev_start (EV_A_ (W)w, active);
2358
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w;
2361 }
2362}
2363
2364void
2365ev_idle_stop (EV_P_ ev_idle *w)
2366{
2367 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w)))
2369 return;
2370
2371 {
2372 int active = ((W)w)->active;
2373
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2376
2377 ev_stop (EV_A_ (W)w);
2378 --idleall;
2379 }
2380}
2381#endif
2382
2383void
2384ev_prepare_start (EV_P_ ev_prepare *w)
2385{
2386 if (expect_false (ev_is_active (w)))
2387 return;
2388
2389 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w;
2392}
2393
2394void
2395ev_prepare_stop (EV_P_ ev_prepare *w)
2396{
2397 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w)))
2399 return;
2400
2401 {
2402 int active = ((W)w)->active;
2403 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active;
2405 }
2406
2407 ev_stop (EV_A_ (W)w);
2408}
2409
2410void
2411ev_check_start (EV_P_ ev_check *w)
2412{
2413 if (expect_false (ev_is_active (w)))
2414 return;
2415
2416 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w;
2419}
2420
2421void
2422ev_check_stop (EV_P_ ev_check *w)
2423{
2424 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w)))
2426 return;
2427
2428 {
2429 int active = ((W)w)->active;
2430 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active;
2432 }
2433
2434 ev_stop (EV_A_ (W)w);
2435}
2436
2437#if EV_EMBED_ENABLE
2438void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w)
2440{
2441 ev_loop (w->other, EVLOOP_NONBLOCK);
2442}
2443
2444static void
2445embed_io_cb (EV_P_ ev_io *io, int revents)
2446{
2447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2448
2449 if (ev_cb (w))
2450 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2451 else
2452 ev_loop (w->other, EVLOOP_NONBLOCK);
2453}
2454
2455static void
2456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2457{
2458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2459
2460 {
2461 struct ev_loop *loop = w->other;
2462
2463 while (fdchangecnt)
2464 {
2465 fd_reify (EV_A);
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2467 }
2468 }
2469}
2470
2471#if 0
2472static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2474{
2475 ev_idle_stop (EV_A_ idle);
2476}
2477#endif
2478
2479void
2480ev_embed_start (EV_P_ ev_embed *w)
2481{
2482 if (expect_false (ev_is_active (w)))
2483 return;
2484
2485 {
2486 struct ev_loop *loop = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 }
2490
2491 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io);
2493
2494 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare);
2497
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499
2500 ev_start (EV_A_ (W)w, 1);
2501}
2502
2503void
2504ev_embed_stop (EV_P_ ev_embed *w)
2505{
2506 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w)))
2508 return;
2509
2510 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare);
2512
2513 ev_stop (EV_A_ (W)w);
2514}
2515#endif
2516
2517#if EV_FORK_ENABLE
2518void
2519ev_fork_start (EV_P_ ev_fork *w)
2520{
2521 if (expect_false (ev_is_active (w)))
2522 return;
2523
2524 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w;
2527}
2528
2529void
2530ev_fork_stop (EV_P_ ev_fork *w)
2531{
2532 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w)))
2534 return;
2535
2536 {
2537 int active = ((W)w)->active;
2538 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active;
2540 }
2541
2542 ev_stop (EV_A_ (W)w);
2543}
2544#endif
2545
2546#if EV_ASYNC_ENABLE
2547void
2548ev_async_start (EV_P_ ev_async *w)
2549{
2550 if (expect_false (ev_is_active (w)))
2551 return;
2552
2553 evpipe_init (EV_A);
2554
2555 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w;
2558}
2559
2560void
2561ev_async_stop (EV_P_ ev_async *w)
2562{
2563 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w)))
2565 return;
2566
2567 {
2568 int active = ((W)w)->active;
2569 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active;
2571 }
2572
2573 ev_stop (EV_A_ (W)w);
2574}
2575
2576void
2577ev_async_send (EV_P_ ev_async *w)
2578{
2579 w->sent = 1;
2580 evpipe_write (EV_A_ &gotasync);
2581}
2582#endif
2583
1573/*****************************************************************************/ 2584/*****************************************************************************/
1574 2585
1575struct ev_once 2586struct ev_once
1576{ 2587{
1577 struct ev_io io; 2588 ev_io io;
1578 struct ev_timer to; 2589 ev_timer to;
1579 void (*cb)(int revents, void *arg); 2590 void (*cb)(int revents, void *arg);
1580 void *arg; 2591 void *arg;
1581}; 2592};
1582 2593
1583static void 2594static void
1592 2603
1593 cb (revents, arg); 2604 cb (revents, arg);
1594} 2605}
1595 2606
1596static void 2607static void
1597once_cb_io (EV_P_ struct ev_io *w, int revents) 2608once_cb_io (EV_P_ ev_io *w, int revents)
1598{ 2609{
1599 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1600} 2611}
1601 2612
1602static void 2613static void
1603once_cb_to (EV_P_ struct ev_timer *w, int revents) 2614once_cb_to (EV_P_ ev_timer *w, int revents)
1604{ 2615{
1605 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1606} 2617}
1607 2618
1608void 2619void
1609ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2620ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1610{ 2621{
1611 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2622 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1612 2623
1613 if (!once) 2624 if (expect_false (!once))
2625 {
1614 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1615 else 2627 return;
1616 { 2628 }
2629
1617 once->cb = cb; 2630 once->cb = cb;
1618 once->arg = arg; 2631 once->arg = arg;
1619 2632
1620 ev_init (&once->io, once_cb_io); 2633 ev_init (&once->io, once_cb_io);
1621 if (fd >= 0) 2634 if (fd >= 0)
1622 { 2635 {
1623 ev_io_set (&once->io, fd, events); 2636 ev_io_set (&once->io, fd, events);
1624 ev_io_start (EV_A_ &once->io); 2637 ev_io_start (EV_A_ &once->io);
1625 } 2638 }
1626 2639
1627 ev_init (&once->to, once_cb_to); 2640 ev_init (&once->to, once_cb_to);
1628 if (timeout >= 0.) 2641 if (timeout >= 0.)
1629 { 2642 {
1630 ev_timer_set (&once->to, timeout, 0.); 2643 ev_timer_set (&once->to, timeout, 0.);
1631 ev_timer_start (EV_A_ &once->to); 2644 ev_timer_start (EV_A_ &once->to);
1632 }
1633 } 2645 }
1634} 2646}
2647
2648#if EV_MULTIPLICITY
2649 #include "ev_wrap.h"
2650#endif
1635 2651
1636#ifdef __cplusplus 2652#ifdef __cplusplus
1637} 2653}
1638#endif 2654#endif
1639 2655

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines