ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.129 by root, Fri Nov 23 05:00:44 2007 UTC vs.
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
47# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
49# endif 62# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
52# endif 73# endif
53# endif 74# endif
54 75
55# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 111# else
91# define EV_USE_PORT 0 112# define EV_USE_PORT 0
92# endif 113# endif
93# endif 114# endif
94 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
95#endif 132#endif
96 133
97#include <math.h> 134#include <math.h>
98#include <stdlib.h> 135#include <stdlib.h>
99#include <fcntl.h> 136#include <fcntl.h>
106#include <sys/types.h> 143#include <sys/types.h>
107#include <time.h> 144#include <time.h>
108 145
109#include <signal.h> 146#include <signal.h>
110 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
111#ifndef _WIN32 154#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 155# include <sys/time.h>
114# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
115#else 158#else
116# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 160# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
120# endif 163# endif
121#endif 164#endif
122 165
123/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
124 167
125#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
126# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
127#endif 170#endif
128 171
129#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
131#endif 178#endif
132 179
133#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
135#endif 182#endif
141# define EV_USE_POLL 1 188# define EV_USE_POLL 1
142# endif 189# endif
143#endif 190#endif
144 191
145#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
146# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
147#endif 198#endif
148 199
149#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
151#endif 202#endif
152 203
153#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 205# define EV_USE_PORT 0
155#endif 206#endif
156 207
157/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
158 241
159#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
162#endif 245#endif
164#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
167#endif 250#endif
168 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
169#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 268# include <winsock.h>
171#endif 269#endif
172 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
173/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 294
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 298
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 299#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 301# define noinline __attribute__ ((noinline))
189#else 302#else
190# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
191# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
192#endif 308#endif
193 309
194#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
196 319
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 322
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
202 325
203typedef struct ev_watcher *W; 326typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
206 329
330#define ev_at(w) ((WT)(w))->at
331
332#if EV_USE_MONOTONIC
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
336#endif
208 337
209#ifdef _WIN32 338#ifdef _WIN32
210# include "ev_win32.c" 339# include "ev_win32.c"
211#endif 340#endif
212 341
213/*****************************************************************************/ 342/*****************************************************************************/
214 343
215static void (*syserr_cb)(const char *msg); 344static void (*syserr_cb)(const char *msg);
216 345
346void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 347ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 348{
219 syserr_cb = cb; 349 syserr_cb = cb;
220} 350}
221 351
222static void 352static void noinline
223syserr (const char *msg) 353syserr (const char *msg)
224{ 354{
225 if (!msg) 355 if (!msg)
226 msg = "(libev) system error"; 356 msg = "(libev) system error";
227 357
232 perror (msg); 362 perror (msg);
233 abort (); 363 abort ();
234 } 364 }
235} 365}
236 366
367static void *
368ev_realloc_emul (void *ptr, long size)
369{
370 /* some systems, notably openbsd and darwin, fail to properly
371 * implement realloc (x, 0) (as required by both ansi c-98 and
372 * the single unix specification, so work around them here.
373 */
374
375 if (size)
376 return realloc (ptr, size);
377
378 free (ptr);
379 return 0;
380}
381
237static void *(*alloc)(void *ptr, long size); 382static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
238 383
384void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 385ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 386{
241 alloc = cb; 387 alloc = cb;
242} 388}
243 389
244static void * 390inline_speed void *
245ev_realloc (void *ptr, long size) 391ev_realloc (void *ptr, long size)
246{ 392{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 393 ptr = alloc (ptr, size);
248 394
249 if (!ptr && size) 395 if (!ptr && size)
250 { 396 {
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 397 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
252 abort (); 398 abort ();
273typedef struct 419typedef struct
274{ 420{
275 W w; 421 W w;
276 int events; 422 int events;
277} ANPENDING; 423} ANPENDING;
424
425#if EV_USE_INOTIFY
426typedef struct
427{
428 WL head;
429} ANFS;
430#endif
278 431
279#if EV_MULTIPLICITY 432#if EV_MULTIPLICITY
280 433
281 struct ev_loop 434 struct ev_loop
282 { 435 {
316 gettimeofday (&tv, 0); 469 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 470 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 471#endif
319} 472}
320 473
321inline ev_tstamp 474ev_tstamp inline_size
322get_clock (void) 475get_clock (void)
323{ 476{
324#if EV_USE_MONOTONIC 477#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 478 if (expect_true (have_monotonic))
326 { 479 {
339{ 492{
340 return ev_rt_now; 493 return ev_rt_now;
341} 494}
342#endif 495#endif
343 496
344#define array_roundsize(type,n) (((n) | 4) & ~3) 497void
498ev_sleep (ev_tstamp delay)
499{
500 if (delay > 0.)
501 {
502#if EV_USE_NANOSLEEP
503 struct timespec ts;
504
505 ts.tv_sec = (time_t)delay;
506 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
507
508 nanosleep (&ts, 0);
509#elif defined(_WIN32)
510 Sleep ((unsigned long)(delay * 1e3));
511#else
512 struct timeval tv;
513
514 tv.tv_sec = (time_t)delay;
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
516
517 select (0, 0, 0, 0, &tv);
518#endif
519 }
520}
521
522/*****************************************************************************/
523
524int inline_size
525array_nextsize (int elem, int cur, int cnt)
526{
527 int ncur = cur + 1;
528
529 do
530 ncur <<= 1;
531 while (cnt > ncur);
532
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
534 if (elem * ncur > 4096)
535 {
536 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
538 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem;
540 }
541
542 return ncur;
543}
544
545static noinline void *
546array_realloc (int elem, void *base, int *cur, int cnt)
547{
548 *cur = array_nextsize (elem, *cur, cnt);
549 return ev_realloc (base, elem * *cur);
550}
345 551
346#define array_needsize(type,base,cur,cnt,init) \ 552#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 553 if (expect_false ((cnt) > (cur))) \
348 { \ 554 { \
349 int newcnt = cur; \ 555 int ocur_ = (cur); \
350 do \ 556 (base) = (type *)array_realloc \
351 { \ 557 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 558 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 559 }
360 560
561#if 0
361#define array_slim(type,stem) \ 562#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 563 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 564 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 565 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 566 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 567 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 568 }
569#endif
368 570
369#define array_free(stem, idx) \ 571#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 572 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 573
372/*****************************************************************************/ 574/*****************************************************************************/
373 575
374static void 576void noinline
577ev_feed_event (EV_P_ void *w, int revents)
578{
579 W w_ = (W)w;
580 int pri = ABSPRI (w_);
581
582 if (expect_false (w_->pending))
583 pendings [pri][w_->pending - 1].events |= revents;
584 else
585 {
586 w_->pending = ++pendingcnt [pri];
587 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
588 pendings [pri][w_->pending - 1].w = w_;
589 pendings [pri][w_->pending - 1].events = revents;
590 }
591}
592
593void inline_speed
594queue_events (EV_P_ W *events, int eventcnt, int type)
595{
596 int i;
597
598 for (i = 0; i < eventcnt; ++i)
599 ev_feed_event (EV_A_ events [i], type);
600}
601
602/*****************************************************************************/
603
604void inline_size
375anfds_init (ANFD *base, int count) 605anfds_init (ANFD *base, int count)
376{ 606{
377 while (count--) 607 while (count--)
378 { 608 {
379 base->head = 0; 609 base->head = 0;
382 612
383 ++base; 613 ++base;
384 } 614 }
385} 615}
386 616
387void 617void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 618fd_event (EV_P_ int fd, int revents)
415{ 619{
416 ANFD *anfd = anfds + fd; 620 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 621 ev_io *w;
418 622
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 623 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 624 {
421 int ev = w->events & revents; 625 int ev = w->events & revents;
422 626
423 if (ev) 627 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 628 ev_feed_event (EV_A_ (W)w, ev);
426} 630}
427 631
428void 632void
429ev_feed_fd_event (EV_P_ int fd, int revents) 633ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 634{
635 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 636 fd_event (EV_A_ fd, revents);
432} 637}
433 638
434/*****************************************************************************/ 639void inline_size
435
436inline void
437fd_reify (EV_P) 640fd_reify (EV_P)
438{ 641{
439 int i; 642 int i;
440 643
441 for (i = 0; i < fdchangecnt; ++i) 644 for (i = 0; i < fdchangecnt; ++i)
442 { 645 {
443 int fd = fdchanges [i]; 646 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 647 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 648 ev_io *w;
446 649
447 int events = 0; 650 unsigned char events = 0;
448 651
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 652 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 653 events |= (unsigned char)w->events;
451 654
452#if EV_SELECT_IS_WINSOCKET 655#if EV_SELECT_IS_WINSOCKET
453 if (events) 656 if (events)
454 { 657 {
455 unsigned long argp; 658 unsigned long argp;
659 #ifdef EV_FD_TO_WIN32_HANDLE
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
661 #else
456 anfd->handle = _get_osfhandle (fd); 662 anfd->handle = _get_osfhandle (fd);
663 #endif
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 } 665 }
459#endif 666#endif
460 667
668 {
669 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify;
671
461 anfd->reify = 0; 672 anfd->reify = 0;
462
463 method_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 673 anfd->events = events;
674
675 if (o_events != events || o_reify & EV_IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events);
677 }
465 } 678 }
466 679
467 fdchangecnt = 0; 680 fdchangecnt = 0;
468} 681}
469 682
470static void 683void inline_size
471fd_change (EV_P_ int fd) 684fd_change (EV_P_ int fd, int flags)
472{ 685{
473 if (expect_false (anfds [fd].reify)) 686 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 687 anfds [fd].reify |= flags;
477 688
689 if (expect_true (!reify))
690 {
478 ++fdchangecnt; 691 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 693 fdchanges [fdchangecnt - 1] = fd;
694 }
481} 695}
482 696
483static void 697void inline_speed
484fd_kill (EV_P_ int fd) 698fd_kill (EV_P_ int fd)
485{ 699{
486 struct ev_io *w; 700 ev_io *w;
487 701
488 while ((w = (struct ev_io *)anfds [fd].head)) 702 while ((w = (ev_io *)anfds [fd].head))
489 { 703 {
490 ev_io_stop (EV_A_ w); 704 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 705 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 706 }
493} 707}
494 708
495inline int 709int inline_size
496fd_valid (int fd) 710fd_valid (int fd)
497{ 711{
498#ifdef _WIN32 712#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 713 return _get_osfhandle (fd) != -1;
500#else 714#else
501 return fcntl (fd, F_GETFD) != -1; 715 return fcntl (fd, F_GETFD) != -1;
502#endif 716#endif
503} 717}
504 718
505/* called on EBADF to verify fds */ 719/* called on EBADF to verify fds */
506static void 720static void noinline
507fd_ebadf (EV_P) 721fd_ebadf (EV_P)
508{ 722{
509 int fd; 723 int fd;
510 724
511 for (fd = 0; fd < anfdmax; ++fd) 725 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 727 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 728 fd_kill (EV_A_ fd);
515} 729}
516 730
517/* called on ENOMEM in select/poll to kill some fds and retry */ 731/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 732static void noinline
519fd_enomem (EV_P) 733fd_enomem (EV_P)
520{ 734{
521 int fd; 735 int fd;
522 736
523 for (fd = anfdmax; fd--; ) 737 for (fd = anfdmax; fd--; )
526 fd_kill (EV_A_ fd); 740 fd_kill (EV_A_ fd);
527 return; 741 return;
528 } 742 }
529} 743}
530 744
531/* usually called after fork if method needs to re-arm all fds from scratch */ 745/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 746static void noinline
533fd_rearm_all (EV_P) 747fd_rearm_all (EV_P)
534{ 748{
535 int fd; 749 int fd;
536 750
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 751 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 752 if (anfds [fd].events)
540 { 753 {
541 anfds [fd].events = 0; 754 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 755 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 756 }
544} 757}
545 758
546/*****************************************************************************/ 759/*****************************************************************************/
547 760
548static void 761/* towards the root */
762void inline_speed
549upheap (WT *heap, int k) 763upheap (WT *heap, int k)
550{ 764{
551 WT w = heap [k]; 765 WT w = heap [k];
552 766
553 while (k && heap [k >> 1]->at > w->at) 767 for (;;)
554 { 768 {
769 int p = k >> 1;
770
771 /* maybe we could use a dummy element at heap [0]? */
772 if (!p || heap [p]->at <= w->at)
773 break;
774
555 heap [k] = heap [k >> 1]; 775 heap [k] = heap [p];
556 ((W)heap [k])->active = k + 1; 776 ((W)heap [k])->active = k;
557 k >>= 1; 777 k = p;
558 } 778 }
559 779
560 heap [k] = w; 780 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 781 ((W)heap [k])->active = k;
562
563} 782}
564 783
565static void 784/* away from the root */
785void inline_speed
566downheap (WT *heap, int N, int k) 786downheap (WT *heap, int N, int k)
567{ 787{
568 WT w = heap [k]; 788 WT w = heap [k];
569 789
570 while (k < (N >> 1)) 790 for (;;)
571 { 791 {
572 int j = k << 1; 792 int c = k << 1;
573 793
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 794 if (c > N)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break; 795 break;
579 796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
580 heap [k] = heap [j]; 803 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 804 ((W)heap [k])->active = k;
805
582 k = j; 806 k = c;
583 } 807 }
584 808
585 heap [k] = w; 809 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 810 ((W)heap [k])->active = k;
587} 811}
588 812
589inline void 813void inline_size
590adjustheap (WT *heap, int N, int k) 814adjustheap (WT *heap, int N, int k)
591{ 815{
592 upheap (heap, k); 816 upheap (heap, k);
593 downheap (heap, N, k); 817 downheap (heap, N, k);
594} 818}
596/*****************************************************************************/ 820/*****************************************************************************/
597 821
598typedef struct 822typedef struct
599{ 823{
600 WL head; 824 WL head;
601 sig_atomic_t volatile gotsig; 825 EV_ATOMIC_T gotsig;
602} ANSIG; 826} ANSIG;
603 827
604static ANSIG *signals; 828static ANSIG *signals;
605static int signalmax; 829static int signalmax;
606 830
607static int sigpipe [2]; 831static EV_ATOMIC_T gotsig;
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610 832
611static void 833void inline_size
612signals_init (ANSIG *base, int count) 834signals_init (ANSIG *base, int count)
613{ 835{
614 while (count--) 836 while (count--)
615 { 837 {
616 base->head = 0; 838 base->head = 0;
618 840
619 ++base; 841 ++base;
620 } 842 }
621} 843}
622 844
623static void 845/*****************************************************************************/
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629 846
630 signals [signum - 1].gotsig = 1; 847void inline_speed
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 848fd_intern (int fd)
676{ 849{
677#ifdef _WIN32 850#ifdef _WIN32
678 int arg = 1; 851 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 854 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 855 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 856#endif
684} 857}
685 858
859static void noinline
860evpipe_init (EV_P)
861{
862 if (!ev_is_active (&pipeev))
863 {
864#if EV_USE_EVENTFD
865 if ((evfd = eventfd (0, 0)) >= 0)
866 {
867 evpipe [0] = -1;
868 fd_intern (evfd);
869 ev_io_set (&pipeev, evfd, EV_READ);
870 }
871 else
872#endif
873 {
874 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe");
876
877 fd_intern (evpipe [0]);
878 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ);
880 }
881
882 ev_io_start (EV_A_ &pipeev);
883 ev_unref (EV_A); /* watcher should not keep loop alive */
884 }
885}
886
887void inline_size
888evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{
890 if (!*flag)
891 {
892 int old_errno = errno; /* save errno because write might clobber it */
893
894 *flag = 1;
895
896#if EV_USE_EVENTFD
897 if (evfd >= 0)
898 {
899 uint64_t counter = 1;
900 write (evfd, &counter, sizeof (uint64_t));
901 }
902 else
903#endif
904 write (evpipe [1], &old_errno, 1);
905
906 errno = old_errno;
907 }
908}
909
686static void 910static void
687siginit (EV_P) 911pipecb (EV_P_ ev_io *iow, int revents)
688{ 912{
689 fd_intern (sigpipe [0]); 913#if EV_USE_EVENTFD
690 fd_intern (sigpipe [1]); 914 if (evfd >= 0)
915 {
916 uint64_t counter = 1;
917 read (evfd, &counter, sizeof (uint64_t));
918 }
919 else
920#endif
921 {
922 char dummy;
923 read (evpipe [0], &dummy, 1);
924 }
691 925
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 926 if (gotsig && ev_is_default_loop (EV_A))
693 ev_io_start (EV_A_ &sigev); 927 {
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 928 int signum;
929 gotsig = 0;
930
931 for (signum = signalmax; signum--; )
932 if (signals [signum].gotsig)
933 ev_feed_signal_event (EV_A_ signum + 1);
934 }
935
936#if EV_ASYNC_ENABLE
937 if (gotasync)
938 {
939 int i;
940 gotasync = 0;
941
942 for (i = asynccnt; i--; )
943 if (asyncs [i]->sent)
944 {
945 asyncs [i]->sent = 0;
946 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
947 }
948 }
949#endif
695} 950}
696 951
697/*****************************************************************************/ 952/*****************************************************************************/
698 953
699static struct ev_child *childs [PID_HASHSIZE]; 954static void
955ev_sighandler (int signum)
956{
957#if EV_MULTIPLICITY
958 struct ev_loop *loop = &default_loop_struct;
959#endif
960
961#if _WIN32
962 signal (signum, ev_sighandler);
963#endif
964
965 signals [signum - 1].gotsig = 1;
966 evpipe_write (EV_A_ &gotsig);
967}
968
969void noinline
970ev_feed_signal_event (EV_P_ int signum)
971{
972 WL w;
973
974#if EV_MULTIPLICITY
975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
976#endif
977
978 --signum;
979
980 if (signum < 0 || signum >= signalmax)
981 return;
982
983 signals [signum].gotsig = 0;
984
985 for (w = signals [signum].head; w; w = w->next)
986 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
987}
988
989/*****************************************************************************/
990
991static WL childs [EV_PID_HASHSIZE];
700 992
701#ifndef _WIN32 993#ifndef _WIN32
702 994
703static struct ev_signal childev; 995static ev_signal childev;
996
997#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0
999#endif
1000
1001void inline_speed
1002child_reap (EV_P_ int chain, int pid, int status)
1003{
1004 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1006
1007 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1008 {
1009 if ((w->pid == pid || !w->pid)
1010 && (!traced || (w->flags & 1)))
1011 {
1012 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1013 w->rpid = pid;
1014 w->rstatus = status;
1015 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1016 }
1017 }
1018}
704 1019
705#ifndef WCONTINUED 1020#ifndef WCONTINUED
706# define WCONTINUED 0 1021# define WCONTINUED 0
707#endif 1022#endif
708 1023
709static void 1024static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 1025childcb (EV_P_ ev_signal *sw, int revents)
726{ 1026{
727 int pid, status; 1027 int pid, status;
728 1028
1029 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1030 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 1031 if (!WCONTINUED
1032 || errno != EINVAL
1033 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1034 return;
1035
731 /* make sure we are called again until all childs have been reaped */ 1036 /* make sure we are called again until all children have been reaped */
1037 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1038 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 1039
734 child_reap (EV_A_ sw, pid, pid, status); 1040 child_reap (EV_A_ pid, pid, status);
1041 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1042 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 1043}
738 1044
739#endif 1045#endif
740 1046
741/*****************************************************************************/ 1047/*****************************************************************************/
767{ 1073{
768 return EV_VERSION_MINOR; 1074 return EV_VERSION_MINOR;
769} 1075}
770 1076
771/* return true if we are running with elevated privileges and should ignore env variables */ 1077/* return true if we are running with elevated privileges and should ignore env variables */
772static int 1078int inline_size
773enable_secure (void) 1079enable_secure (void)
774{ 1080{
775#ifdef _WIN32 1081#ifdef _WIN32
776 return 0; 1082 return 0;
777#else 1083#else
781} 1087}
782 1088
783unsigned int 1089unsigned int
784ev_supported_backends (void) 1090ev_supported_backends (void)
785{ 1091{
786}
787
788unsigned int
789ev_recommended_backends (void)
790{
791 unsigned int flags; 1092 unsigned int flags = 0;
792 1093
793 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 1094 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
794 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 1095 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
795 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL; 1096 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
796 if (EV_USE_POLL ) flags |= EVBACKEND_POLL; 1097 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
798 1099
799 return flags; 1100 return flags;
800} 1101}
801 1102
802unsigned int 1103unsigned int
803ev_backend (EV_P) 1104ev_recommended_backends (void)
804{ 1105{
805 unsigned int flags = ev_recommended_backends (); 1106 unsigned int flags = ev_supported_backends ();
806 1107
807#ifndef __NetBSD__ 1108#ifndef __NetBSD__
808 /* kqueue is borked on everything but netbsd apparently */ 1109 /* kqueue is borked on everything but netbsd apparently */
809 /* it usually doesn't work correctly on anything but sockets and pipes */ 1110 /* it usually doesn't work correctly on anything but sockets and pipes */
810 flags &= ~EVBACKEND_KQUEUE; 1111 flags &= ~EVBACKEND_KQUEUE;
815#endif 1116#endif
816 1117
817 return flags; 1118 return flags;
818} 1119}
819 1120
820static void 1121unsigned int
1122ev_embeddable_backends (void)
1123{
1124 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1125
1126 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1127 /* please fix it and tell me how to detect the fix */
1128 flags &= ~EVBACKEND_EPOLL;
1129
1130 return flags;
1131}
1132
1133unsigned int
1134ev_backend (EV_P)
1135{
1136 return backend;
1137}
1138
1139unsigned int
1140ev_loop_count (EV_P)
1141{
1142 return loop_count;
1143}
1144
1145void
1146ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1147{
1148 io_blocktime = interval;
1149}
1150
1151void
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1153{
1154 timeout_blocktime = interval;
1155}
1156
1157static void noinline
821loop_init (EV_P_ unsigned int flags) 1158loop_init (EV_P_ unsigned int flags)
822{ 1159{
823 if (!method) 1160 if (!backend)
824 { 1161 {
825#if EV_USE_MONOTONIC 1162#if EV_USE_MONOTONIC
826 { 1163 {
827 struct timespec ts; 1164 struct timespec ts;
828 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
829 have_monotonic = 1; 1166 have_monotonic = 1;
830 } 1167 }
831#endif 1168#endif
832 1169
833 ev_rt_now = ev_time (); 1170 ev_rt_now = ev_time ();
834 mn_now = get_clock (); 1171 mn_now = get_clock ();
835 now_floor = mn_now; 1172 now_floor = mn_now;
836 rtmn_diff = ev_rt_now - mn_now; 1173 rtmn_diff = ev_rt_now - mn_now;
1174
1175 io_blocktime = 0.;
1176 timeout_blocktime = 0.;
1177 backend = 0;
1178 backend_fd = -1;
1179 gotasync = 0;
1180#if EV_USE_INOTIFY
1181 fs_fd = -2;
1182#endif
1183
1184 /* pid check not overridable via env */
1185#ifndef _WIN32
1186 if (flags & EVFLAG_FORKCHECK)
1187 curpid = getpid ();
1188#endif
837 1189
838 if (!(flags & EVFLAG_NOENV) 1190 if (!(flags & EVFLAG_NOENV)
839 && !enable_secure () 1191 && !enable_secure ()
840 && getenv ("LIBEV_FLAGS")) 1192 && getenv ("LIBEV_FLAGS"))
841 flags = atoi (getenv ("LIBEV_FLAGS")); 1193 flags = atoi (getenv ("LIBEV_FLAGS"));
842 1194
843 if (!(flags & 0x0000ffffUL)) 1195 if (!(flags & 0x0000ffffU))
844 flags |= ev_recommended_backends (); 1196 flags |= ev_recommended_backends ();
845 1197
846 method = 0;
847#if EV_USE_PORT 1198#if EV_USE_PORT
848 if (!method && (flags & EVBACKEND_PORT )) method = port_init (EV_A_ flags); 1199 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
849#endif 1200#endif
850#if EV_USE_KQUEUE 1201#if EV_USE_KQUEUE
851 if (!method && (flags & EVBACKEND_KQUEUE)) method = kqueue_init (EV_A_ flags); 1202 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
852#endif 1203#endif
853#if EV_USE_EPOLL 1204#if EV_USE_EPOLL
854 if (!method && (flags & EVBACKEND_EPOLL )) method = epoll_init (EV_A_ flags); 1205 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
855#endif 1206#endif
856#if EV_USE_POLL 1207#if EV_USE_POLL
857 if (!method && (flags & EVBACKEND_POLL )) method = poll_init (EV_A_ flags); 1208 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
858#endif 1209#endif
859#if EV_USE_SELECT 1210#if EV_USE_SELECT
860 if (!method && (flags & EVBACKEND_SELECT)) method = select_init (EV_A_ flags); 1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
861#endif 1212#endif
862 1213
863 ev_init (&sigev, sigcb); 1214 ev_init (&pipeev, pipecb);
864 ev_set_priority (&sigev, EV_MAXPRI); 1215 ev_set_priority (&pipeev, EV_MAXPRI);
865 } 1216 }
866} 1217}
867 1218
868static void 1219static void noinline
869loop_destroy (EV_P) 1220loop_destroy (EV_P)
870{ 1221{
871 int i; 1222 int i;
872 1223
1224 if (ev_is_active (&pipeev))
1225 {
1226 ev_ref (EV_A); /* signal watcher */
1227 ev_io_stop (EV_A_ &pipeev);
1228
1229#if EV_USE_EVENTFD
1230 if (evfd >= 0)
1231 close (evfd);
1232#endif
1233
1234 if (evpipe [0] >= 0)
1235 {
1236 close (evpipe [0]);
1237 close (evpipe [1]);
1238 }
1239 }
1240
1241#if EV_USE_INOTIFY
1242 if (fs_fd >= 0)
1243 close (fs_fd);
1244#endif
1245
1246 if (backend_fd >= 0)
1247 close (backend_fd);
1248
873#if EV_USE_PORT 1249#if EV_USE_PORT
874 if (method == EVBACKEND_PORT ) port_destroy (EV_A); 1250 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
875#endif 1251#endif
876#if EV_USE_KQUEUE 1252#if EV_USE_KQUEUE
877 if (method == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1253 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
878#endif 1254#endif
879#if EV_USE_EPOLL 1255#if EV_USE_EPOLL
880 if (method == EVBACKEND_EPOLL ) epoll_destroy (EV_A); 1256 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
881#endif 1257#endif
882#if EV_USE_POLL 1258#if EV_USE_POLL
883 if (method == EVBACKEND_POLL ) poll_destroy (EV_A); 1259 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
884#endif 1260#endif
885#if EV_USE_SELECT 1261#if EV_USE_SELECT
886 if (method == EVBACKEND_SELECT) select_destroy (EV_A); 1262 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
887#endif 1263#endif
888 1264
889 for (i = NUMPRI; i--; ) 1265 for (i = NUMPRI; i--; )
1266 {
890 array_free (pending, [i]); 1267 array_free (pending, [i]);
1268#if EV_IDLE_ENABLE
1269 array_free (idle, [i]);
1270#endif
1271 }
1272
1273 ev_free (anfds); anfdmax = 0;
891 1274
892 /* have to use the microsoft-never-gets-it-right macro */ 1275 /* have to use the microsoft-never-gets-it-right macro */
893 array_free (fdchange, EMPTY0); 1276 array_free (fdchange, EMPTY);
894 array_free (timer, EMPTY0); 1277 array_free (timer, EMPTY);
895#if EV_PERIODICS 1278#if EV_PERIODIC_ENABLE
896 array_free (periodic, EMPTY0); 1279 array_free (periodic, EMPTY);
897#endif 1280#endif
1281#if EV_FORK_ENABLE
898 array_free (idle, EMPTY0); 1282 array_free (fork, EMPTY);
1283#endif
899 array_free (prepare, EMPTY0); 1284 array_free (prepare, EMPTY);
900 array_free (check, EMPTY0); 1285 array_free (check, EMPTY);
1286#if EV_ASYNC_ENABLE
1287 array_free (async, EMPTY);
1288#endif
901 1289
902 method = 0; 1290 backend = 0;
903} 1291}
904 1292
905static void 1293#if EV_USE_INOTIFY
1294void inline_size infy_fork (EV_P);
1295#endif
1296
1297void inline_size
906loop_fork (EV_P) 1298loop_fork (EV_P)
907{ 1299{
908#if EV_USE_PORT 1300#if EV_USE_PORT
909 if (method == EVBACKEND_PORT ) port_fork (EV_A); 1301 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
910#endif 1302#endif
911#if EV_USE_KQUEUE 1303#if EV_USE_KQUEUE
912 if (method == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1304 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
913#endif 1305#endif
914#if EV_USE_EPOLL 1306#if EV_USE_EPOLL
915 if (method == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1307 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
916#endif 1308#endif
1309#if EV_USE_INOTIFY
1310 infy_fork (EV_A);
1311#endif
917 1312
918 if (ev_is_active (&sigev)) 1313 if (ev_is_active (&pipeev))
919 { 1314 {
920 /* default loop */ 1315 /* this "locks" the handlers against writing to the pipe */
1316 /* while we modify the fd vars */
1317 gotsig = 1;
1318#if EV_ASYNC_ENABLE
1319 gotasync = 1;
1320#endif
921 1321
922 ev_ref (EV_A); 1322 ev_ref (EV_A);
923 ev_io_stop (EV_A_ &sigev); 1323 ev_io_stop (EV_A_ &pipeev);
1324
1325#if EV_USE_EVENTFD
1326 if (evfd >= 0)
1327 close (evfd);
1328#endif
1329
1330 if (evpipe [0] >= 0)
1331 {
924 close (sigpipe [0]); 1332 close (evpipe [0]);
925 close (sigpipe [1]); 1333 close (evpipe [1]);
1334 }
926 1335
927 while (pipe (sigpipe))
928 syserr ("(libev) error creating pipe");
929
930 siginit (EV_A); 1336 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */
1338 pipecb (EV_A_ &pipeev, EV_READ);
931 } 1339 }
932 1340
933 postfork = 0; 1341 postfork = 0;
934} 1342}
935 1343
941 1349
942 memset (loop, 0, sizeof (struct ev_loop)); 1350 memset (loop, 0, sizeof (struct ev_loop));
943 1351
944 loop_init (EV_A_ flags); 1352 loop_init (EV_A_ flags);
945 1353
946 if (ev_method (EV_A)) 1354 if (ev_backend (EV_A))
947 return loop; 1355 return loop;
948 1356
949 return 0; 1357 return 0;
950} 1358}
951 1359
957} 1365}
958 1366
959void 1367void
960ev_loop_fork (EV_P) 1368ev_loop_fork (EV_P)
961{ 1369{
962 postfork = 1; 1370 postfork = 1; /* must be in line with ev_default_fork */
963} 1371}
964 1372
965#endif 1373#endif
966 1374
967#if EV_MULTIPLICITY 1375#if EV_MULTIPLICITY
970#else 1378#else
971int 1379int
972ev_default_loop (unsigned int flags) 1380ev_default_loop (unsigned int flags)
973#endif 1381#endif
974{ 1382{
975 if (sigpipe [0] == sigpipe [1])
976 if (pipe (sigpipe))
977 return 0;
978
979 if (!ev_default_loop_ptr) 1383 if (!ev_default_loop_ptr)
980 { 1384 {
981#if EV_MULTIPLICITY 1385#if EV_MULTIPLICITY
982 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1386 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
983#else 1387#else
984 ev_default_loop_ptr = 1; 1388 ev_default_loop_ptr = 1;
985#endif 1389#endif
986 1390
987 loop_init (EV_A_ flags); 1391 loop_init (EV_A_ flags);
988 1392
989 if (ev_method (EV_A)) 1393 if (ev_backend (EV_A))
990 { 1394 {
991 siginit (EV_A);
992
993#ifndef _WIN32 1395#ifndef _WIN32
994 ev_signal_init (&childev, childcb, SIGCHLD); 1396 ev_signal_init (&childev, childcb, SIGCHLD);
995 ev_set_priority (&childev, EV_MAXPRI); 1397 ev_set_priority (&childev, EV_MAXPRI);
996 ev_signal_start (EV_A_ &childev); 1398 ev_signal_start (EV_A_ &childev);
997 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1399 ev_unref (EV_A); /* child watcher should not keep loop alive */
1014#ifndef _WIN32 1416#ifndef _WIN32
1015 ev_ref (EV_A); /* child watcher */ 1417 ev_ref (EV_A); /* child watcher */
1016 ev_signal_stop (EV_A_ &childev); 1418 ev_signal_stop (EV_A_ &childev);
1017#endif 1419#endif
1018 1420
1019 ev_ref (EV_A); /* signal watcher */
1020 ev_io_stop (EV_A_ &sigev);
1021
1022 close (sigpipe [0]); sigpipe [0] = 0;
1023 close (sigpipe [1]); sigpipe [1] = 0;
1024
1025 loop_destroy (EV_A); 1421 loop_destroy (EV_A);
1026} 1422}
1027 1423
1028void 1424void
1029ev_default_fork (void) 1425ev_default_fork (void)
1030{ 1426{
1031#if EV_MULTIPLICITY 1427#if EV_MULTIPLICITY
1032 struct ev_loop *loop = ev_default_loop_ptr; 1428 struct ev_loop *loop = ev_default_loop_ptr;
1033#endif 1429#endif
1034 1430
1035 if (method) 1431 if (backend)
1036 postfork = 1; 1432 postfork = 1; /* must be in line with ev_loop_fork */
1037} 1433}
1038 1434
1039/*****************************************************************************/ 1435/*****************************************************************************/
1040 1436
1041static int 1437void
1042any_pending (EV_P) 1438ev_invoke (EV_P_ void *w, int revents)
1043{ 1439{
1044 int pri; 1440 EV_CB_INVOKE ((W)w, revents);
1045
1046 for (pri = NUMPRI; pri--; )
1047 if (pendingcnt [pri])
1048 return 1;
1049
1050 return 0;
1051} 1441}
1052 1442
1053inline void 1443void inline_speed
1054call_pending (EV_P) 1444call_pending (EV_P)
1055{ 1445{
1056 int pri; 1446 int pri;
1057 1447
1058 for (pri = NUMPRI; pri--; ) 1448 for (pri = NUMPRI; pri--; )
1060 { 1450 {
1061 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1451 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1062 1452
1063 if (expect_true (p->w)) 1453 if (expect_true (p->w))
1064 { 1454 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1456
1065 p->w->pending = 0; 1457 p->w->pending = 0;
1066 EV_CB_INVOKE (p->w, p->events); 1458 EV_CB_INVOKE (p->w, p->events);
1067 } 1459 }
1068 } 1460 }
1069} 1461}
1070 1462
1071inline void 1463void inline_size
1072timers_reify (EV_P) 1464timers_reify (EV_P)
1073{ 1465{
1074 while (timercnt && ((WT)timers [0])->at <= mn_now) 1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1075 { 1467 {
1076 struct ev_timer *w = timers [0]; 1468 ev_timer *w = (ev_timer *)timers [1];
1077 1469
1078 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1079 1471
1080 /* first reschedule or stop timer */ 1472 /* first reschedule or stop timer */
1081 if (w->repeat) 1473 if (w->repeat)
1082 { 1474 {
1083 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1084 1476
1085 ((WT)w)->at += w->repeat; 1477 ev_at (w) += w->repeat;
1086 if (((WT)w)->at < mn_now) 1478 if (ev_at (w) < mn_now)
1087 ((WT)w)->at = mn_now; 1479 ev_at (w) = mn_now;
1088 1480
1089 downheap ((WT *)timers, timercnt, 0); 1481 downheap (timers, timercnt, 1);
1090 } 1482 }
1091 else 1483 else
1092 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1093 1485
1094 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1095 } 1487 }
1096} 1488}
1097 1489
1098#if EV_PERIODICS 1490#if EV_PERIODIC_ENABLE
1099inline void 1491void inline_size
1100periodics_reify (EV_P) 1492periodics_reify (EV_P)
1101{ 1493{
1102 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1103 { 1495 {
1104 struct ev_periodic *w = periodics [0]; 1496 ev_periodic *w = (ev_periodic *)periodics [1];
1105 1497
1106 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1107 1499
1108 /* first reschedule or stop timer */ 1500 /* first reschedule or stop timer */
1109 if (w->reschedule_cb) 1501 if (w->reschedule_cb)
1110 { 1502 {
1111 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1112 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1113 downheap ((WT *)periodics, periodiccnt, 0); 1505 downheap (periodics, periodiccnt, 1);
1114 } 1506 }
1115 else if (w->interval) 1507 else if (w->interval)
1116 { 1508 {
1117 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1118 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1119 downheap ((WT *)periodics, periodiccnt, 0); 1512 downheap (periodics, periodiccnt, 1);
1120 } 1513 }
1121 else 1514 else
1122 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1123 1516
1124 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1125 } 1518 }
1126} 1519}
1127 1520
1128static void 1521static void noinline
1129periodics_reschedule (EV_P) 1522periodics_reschedule (EV_P)
1130{ 1523{
1131 int i; 1524 int i;
1132 1525
1133 /* adjust periodics after time jump */ 1526 /* adjust periodics after time jump */
1134 for (i = 0; i < periodiccnt; ++i) 1527 for (i = 0; i < periodiccnt; ++i)
1135 { 1528 {
1136 struct ev_periodic *w = periodics [i]; 1529 ev_periodic *w = (ev_periodic *)periodics [i];
1137 1530
1138 if (w->reschedule_cb) 1531 if (w->reschedule_cb)
1139 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1140 else if (w->interval) 1533 else if (w->interval)
1141 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1142 } 1535 }
1143 1536
1144 /* now rebuild the heap */ 1537 /* now rebuild the heap */
1145 for (i = periodiccnt >> 1; i--; ) 1538 for (i = periodiccnt >> 1; i--; )
1146 downheap ((WT *)periodics, periodiccnt, i); 1539 downheap (periodics, periodiccnt, i);
1147} 1540}
1148#endif 1541#endif
1149 1542
1150inline int 1543#if EV_IDLE_ENABLE
1151time_update_monotonic (EV_P) 1544void inline_size
1545idle_reify (EV_P)
1152{ 1546{
1547 if (expect_false (idleall))
1548 {
1549 int pri;
1550
1551 for (pri = NUMPRI; pri--; )
1552 {
1553 if (pendingcnt [pri])
1554 break;
1555
1556 if (idlecnt [pri])
1557 {
1558 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1559 break;
1560 }
1561 }
1562 }
1563}
1564#endif
1565
1566void inline_speed
1567time_update (EV_P_ ev_tstamp max_block)
1568{
1569 int i;
1570
1571#if EV_USE_MONOTONIC
1572 if (expect_true (have_monotonic))
1573 {
1574 ev_tstamp odiff = rtmn_diff;
1575
1153 mn_now = get_clock (); 1576 mn_now = get_clock ();
1154 1577
1578 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1579 /* interpolate in the meantime */
1155 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1580 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1156 { 1581 {
1157 ev_rt_now = rtmn_diff + mn_now; 1582 ev_rt_now = rtmn_diff + mn_now;
1158 return 0; 1583 return;
1159 } 1584 }
1160 else 1585
1161 {
1162 now_floor = mn_now; 1586 now_floor = mn_now;
1163 ev_rt_now = ev_time (); 1587 ev_rt_now = ev_time ();
1164 return 1;
1165 }
1166}
1167 1588
1168inline void 1589 /* loop a few times, before making important decisions.
1169time_update (EV_P) 1590 * on the choice of "4": one iteration isn't enough,
1170{ 1591 * in case we get preempted during the calls to
1171 int i; 1592 * ev_time and get_clock. a second call is almost guaranteed
1172 1593 * to succeed in that case, though. and looping a few more times
1173#if EV_USE_MONOTONIC 1594 * doesn't hurt either as we only do this on time-jumps or
1174 if (expect_true (have_monotonic)) 1595 * in the unlikely event of having been preempted here.
1175 { 1596 */
1176 if (time_update_monotonic (EV_A)) 1597 for (i = 4; --i; )
1177 { 1598 {
1178 ev_tstamp odiff = rtmn_diff;
1179
1180 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1181 {
1182 rtmn_diff = ev_rt_now - mn_now; 1599 rtmn_diff = ev_rt_now - mn_now;
1183 1600
1184 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1185 return; /* all is well */ 1602 return; /* all is well */
1186 1603
1187 ev_rt_now = ev_time (); 1604 ev_rt_now = ev_time ();
1188 mn_now = get_clock (); 1605 mn_now = get_clock ();
1189 now_floor = mn_now; 1606 now_floor = mn_now;
1190 } 1607 }
1191 1608
1192# if EV_PERIODICS 1609# if EV_PERIODIC_ENABLE
1610 periodics_reschedule (EV_A);
1611# endif
1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1614 }
1615 else
1616#endif
1617 {
1618 ev_rt_now = ev_time ();
1619
1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1621 {
1622#if EV_PERIODIC_ENABLE
1193 periodics_reschedule (EV_A); 1623 periodics_reschedule (EV_A);
1194# endif 1624#endif
1195 /* no timer adjustment, as the monotonic clock doesn't jump */ 1625 /* adjust timers. this is easy, as the offset is the same for all of them */
1196 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1626 for (i = 1; i <= timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now;
1197 } 1628 }
1198 }
1199 else
1200#endif
1201 {
1202 ev_rt_now = ev_time ();
1203
1204 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1205 {
1206#if EV_PERIODICS
1207 periodics_reschedule (EV_A);
1208#endif
1209
1210 /* adjust timers. this is easy, as the offset is the same for all */
1211 for (i = 0; i < timercnt; ++i)
1212 ((WT)timers [i])->at += ev_rt_now - mn_now;
1213 }
1214 1629
1215 mn_now = ev_rt_now; 1630 mn_now = ev_rt_now;
1216 } 1631 }
1217} 1632}
1218 1633
1231static int loop_done; 1646static int loop_done;
1232 1647
1233void 1648void
1234ev_loop (EV_P_ int flags) 1649ev_loop (EV_P_ int flags)
1235{ 1650{
1236 double block; 1651 loop_done = EVUNLOOP_CANCEL;
1237 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1238 1652
1239 while (activecnt) 1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1654
1655 do
1240 { 1656 {
1657#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid))
1660 {
1661 curpid = getpid ();
1662 postfork = 1;
1663 }
1664#endif
1665
1666#if EV_FORK_ENABLE
1667 /* we might have forked, so queue fork handlers */
1668 if (expect_false (postfork))
1669 if (forkcnt)
1670 {
1671 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1672 call_pending (EV_A);
1673 }
1674#endif
1675
1241 /* queue check watchers (and execute them) */ 1676 /* queue prepare watchers (and execute them) */
1242 if (expect_false (preparecnt)) 1677 if (expect_false (preparecnt))
1243 { 1678 {
1244 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1245 call_pending (EV_A); 1680 call_pending (EV_A);
1246 } 1681 }
1247 1682
1683 if (expect_false (!activecnt))
1684 break;
1685
1248 /* we might have forked, so reify kernel state if necessary */ 1686 /* we might have forked, so reify kernel state if necessary */
1249 if (expect_false (postfork)) 1687 if (expect_false (postfork))
1250 loop_fork (EV_A); 1688 loop_fork (EV_A);
1251 1689
1252 /* update fd-related kernel structures */ 1690 /* update fd-related kernel structures */
1253 fd_reify (EV_A); 1691 fd_reify (EV_A);
1254 1692
1255 /* calculate blocking time */ 1693 /* calculate blocking time */
1694 {
1695 ev_tstamp waittime = 0.;
1696 ev_tstamp sleeptime = 0.;
1256 1697
1257 /* we only need this for !monotonic clock or timers, but as we basically 1698 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1258 always have timers, we just calculate it always */
1259#if EV_USE_MONOTONIC
1260 if (expect_true (have_monotonic))
1261 time_update_monotonic (EV_A);
1262 else
1263#endif
1264 { 1699 {
1265 ev_rt_now = ev_time (); 1700 /* update time to cancel out callback processing overhead */
1266 mn_now = ev_rt_now; 1701 time_update (EV_A_ 1e100);
1267 }
1268 1702
1269 if (flags & EVLOOP_NONBLOCK || idlecnt)
1270 block = 0.;
1271 else
1272 {
1273 block = MAX_BLOCKTIME; 1703 waittime = MAX_BLOCKTIME;
1274 1704
1275 if (timercnt) 1705 if (timercnt)
1276 { 1706 {
1277 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1278 if (block > to) block = to; 1708 if (waittime > to) waittime = to;
1279 } 1709 }
1280 1710
1281#if EV_PERIODICS 1711#if EV_PERIODIC_ENABLE
1282 if (periodiccnt) 1712 if (periodiccnt)
1283 { 1713 {
1284 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1285 if (block > to) block = to; 1715 if (waittime > to) waittime = to;
1286 } 1716 }
1287#endif 1717#endif
1288 1718
1289 if (expect_false (block < 0.)) block = 0.; 1719 if (expect_false (waittime < timeout_blocktime))
1720 waittime = timeout_blocktime;
1721
1722 sleeptime = waittime - backend_fudge;
1723
1724 if (expect_true (sleeptime > io_blocktime))
1725 sleeptime = io_blocktime;
1726
1727 if (sleeptime)
1728 {
1729 ev_sleep (sleeptime);
1730 waittime -= sleeptime;
1731 }
1290 } 1732 }
1291 1733
1292 method_poll (EV_A_ block); 1734 ++loop_count;
1735 backend_poll (EV_A_ waittime);
1293 1736
1294 /* update ev_rt_now, do magic */ 1737 /* update ev_rt_now, do magic */
1295 time_update (EV_A); 1738 time_update (EV_A_ waittime + sleeptime);
1739 }
1296 1740
1297 /* queue pending timers and reschedule them */ 1741 /* queue pending timers and reschedule them */
1298 timers_reify (EV_A); /* relative timers called last */ 1742 timers_reify (EV_A); /* relative timers called last */
1299#if EV_PERIODICS 1743#if EV_PERIODIC_ENABLE
1300 periodics_reify (EV_A); /* absolute timers called first */ 1744 periodics_reify (EV_A); /* absolute timers called first */
1301#endif 1745#endif
1302 1746
1747#if EV_IDLE_ENABLE
1303 /* queue idle watchers unless io or timers are pending */ 1748 /* queue idle watchers unless other events are pending */
1304 if (idlecnt && !any_pending (EV_A)) 1749 idle_reify (EV_A);
1305 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1750#endif
1306 1751
1307 /* queue check watchers, to be executed first */ 1752 /* queue check watchers, to be executed first */
1308 if (expect_false (checkcnt)) 1753 if (expect_false (checkcnt))
1309 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1754 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1310 1755
1311 call_pending (EV_A); 1756 call_pending (EV_A);
1312
1313 if (expect_false (loop_done))
1314 break;
1315 } 1757 }
1758 while (expect_true (
1759 activecnt
1760 && !loop_done
1761 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1762 ));
1316 1763
1317 if (loop_done != 2) 1764 if (loop_done == EVUNLOOP_ONE)
1318 loop_done = 0; 1765 loop_done = EVUNLOOP_CANCEL;
1319} 1766}
1320 1767
1321void 1768void
1322ev_unloop (EV_P_ int how) 1769ev_unloop (EV_P_ int how)
1323{ 1770{
1324 loop_done = how; 1771 loop_done = how;
1325} 1772}
1326 1773
1327/*****************************************************************************/ 1774/*****************************************************************************/
1328 1775
1329inline void 1776void inline_size
1330wlist_add (WL *head, WL elem) 1777wlist_add (WL *head, WL elem)
1331{ 1778{
1332 elem->next = *head; 1779 elem->next = *head;
1333 *head = elem; 1780 *head = elem;
1334} 1781}
1335 1782
1336inline void 1783void inline_size
1337wlist_del (WL *head, WL elem) 1784wlist_del (WL *head, WL elem)
1338{ 1785{
1339 while (*head) 1786 while (*head)
1340 { 1787 {
1341 if (*head == elem) 1788 if (*head == elem)
1346 1793
1347 head = &(*head)->next; 1794 head = &(*head)->next;
1348 } 1795 }
1349} 1796}
1350 1797
1351inline void 1798void inline_speed
1352ev_clear_pending (EV_P_ W w) 1799clear_pending (EV_P_ W w)
1353{ 1800{
1354 if (w->pending) 1801 if (w->pending)
1355 { 1802 {
1356 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1803 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1357 w->pending = 0; 1804 w->pending = 0;
1358 } 1805 }
1359} 1806}
1360 1807
1361inline void 1808int
1809ev_clear_pending (EV_P_ void *w)
1810{
1811 W w_ = (W)w;
1812 int pending = w_->pending;
1813
1814 if (expect_true (pending))
1815 {
1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1817 w_->pending = 0;
1818 p->w = 0;
1819 return p->events;
1820 }
1821 else
1822 return 0;
1823}
1824
1825void inline_size
1826pri_adjust (EV_P_ W w)
1827{
1828 int pri = w->priority;
1829 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1830 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1831 w->priority = pri;
1832}
1833
1834void inline_speed
1362ev_start (EV_P_ W w, int active) 1835ev_start (EV_P_ W w, int active)
1363{ 1836{
1364 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1837 pri_adjust (EV_A_ w);
1365 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1366
1367 w->active = active; 1838 w->active = active;
1368 ev_ref (EV_A); 1839 ev_ref (EV_A);
1369} 1840}
1370 1841
1371inline void 1842void inline_size
1372ev_stop (EV_P_ W w) 1843ev_stop (EV_P_ W w)
1373{ 1844{
1374 ev_unref (EV_A); 1845 ev_unref (EV_A);
1375 w->active = 0; 1846 w->active = 0;
1376} 1847}
1377 1848
1378/*****************************************************************************/ 1849/*****************************************************************************/
1379 1850
1380void 1851void noinline
1381ev_io_start (EV_P_ struct ev_io *w) 1852ev_io_start (EV_P_ ev_io *w)
1382{ 1853{
1383 int fd = w->fd; 1854 int fd = w->fd;
1384 1855
1385 if (expect_false (ev_is_active (w))) 1856 if (expect_false (ev_is_active (w)))
1386 return; 1857 return;
1387 1858
1388 assert (("ev_io_start called with negative fd", fd >= 0)); 1859 assert (("ev_io_start called with negative fd", fd >= 0));
1389 1860
1390 ev_start (EV_A_ (W)w, 1); 1861 ev_start (EV_A_ (W)w, 1);
1391 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1392 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1863 wlist_add (&anfds[fd].head, (WL)w);
1393 1864
1394 fd_change (EV_A_ fd); 1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1866 w->events &= ~EV_IOFDSET;
1395} 1867}
1396 1868
1397void 1869void noinline
1398ev_io_stop (EV_P_ struct ev_io *w) 1870ev_io_stop (EV_P_ ev_io *w)
1399{ 1871{
1400 ev_clear_pending (EV_A_ (W)w); 1872 clear_pending (EV_A_ (W)w);
1401 if (expect_false (!ev_is_active (w))) 1873 if (expect_false (!ev_is_active (w)))
1402 return; 1874 return;
1403 1875
1404 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1405 1877
1406 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1878 wlist_del (&anfds[w->fd].head, (WL)w);
1407 ev_stop (EV_A_ (W)w); 1879 ev_stop (EV_A_ (W)w);
1408 1880
1409 fd_change (EV_A_ w->fd); 1881 fd_change (EV_A_ w->fd, 1);
1410} 1882}
1411 1883
1412void 1884void noinline
1413ev_timer_start (EV_P_ struct ev_timer *w) 1885ev_timer_start (EV_P_ ev_timer *w)
1414{ 1886{
1415 if (expect_false (ev_is_active (w))) 1887 if (expect_false (ev_is_active (w)))
1416 return; 1888 return;
1417 1889
1418 ((WT)w)->at += mn_now; 1890 ev_at (w) += mn_now;
1419 1891
1420 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1421 1893
1422 ev_start (EV_A_ (W)w, ++timercnt); 1894 ev_start (EV_A_ (W)w, ++timercnt);
1423 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1424 timers [timercnt - 1] = w; 1896 timers [timercnt] = (WT)w;
1425 upheap ((WT *)timers, timercnt - 1); 1897 upheap (timers, timercnt);
1426 1898
1427 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/
1428} 1900}
1429 1901
1430void 1902void noinline
1431ev_timer_stop (EV_P_ struct ev_timer *w) 1903ev_timer_stop (EV_P_ ev_timer *w)
1432{ 1904{
1433 ev_clear_pending (EV_A_ (W)w); 1905 clear_pending (EV_A_ (W)w);
1434 if (expect_false (!ev_is_active (w))) 1906 if (expect_false (!ev_is_active (w)))
1435 return; 1907 return;
1436 1908
1437 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w));
1438 1910
1911 {
1912 int active = ((W)w)->active;
1913
1439 if (expect_true (((W)w)->active < timercnt--)) 1914 if (expect_true (active < timercnt))
1440 { 1915 {
1441 timers [((W)w)->active - 1] = timers [timercnt]; 1916 timers [active] = timers [timercnt];
1442 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1917 adjustheap (timers, timercnt, active);
1443 } 1918 }
1444 1919
1445 ((WT)w)->at -= mn_now; 1920 --timercnt;
1921 }
1922
1923 ev_at (w) -= mn_now;
1446 1924
1447 ev_stop (EV_A_ (W)w); 1925 ev_stop (EV_A_ (W)w);
1448} 1926}
1449 1927
1450void 1928void noinline
1451ev_timer_again (EV_P_ struct ev_timer *w) 1929ev_timer_again (EV_P_ ev_timer *w)
1452{ 1930{
1453 if (ev_is_active (w)) 1931 if (ev_is_active (w))
1454 { 1932 {
1455 if (w->repeat) 1933 if (w->repeat)
1456 { 1934 {
1457 ((WT)w)->at = mn_now + w->repeat; 1935 ev_at (w) = mn_now + w->repeat;
1458 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1936 adjustheap (timers, timercnt, ((W)w)->active);
1459 } 1937 }
1460 else 1938 else
1461 ev_timer_stop (EV_A_ w); 1939 ev_timer_stop (EV_A_ w);
1462 } 1940 }
1463 else if (w->repeat) 1941 else if (w->repeat)
1465 w->at = w->repeat; 1943 w->at = w->repeat;
1466 ev_timer_start (EV_A_ w); 1944 ev_timer_start (EV_A_ w);
1467 } 1945 }
1468} 1946}
1469 1947
1470#if EV_PERIODICS 1948#if EV_PERIODIC_ENABLE
1471void 1949void noinline
1472ev_periodic_start (EV_P_ struct ev_periodic *w) 1950ev_periodic_start (EV_P_ ev_periodic *w)
1473{ 1951{
1474 if (expect_false (ev_is_active (w))) 1952 if (expect_false (ev_is_active (w)))
1475 return; 1953 return;
1476 1954
1477 if (w->reschedule_cb) 1955 if (w->reschedule_cb)
1478 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1479 else if (w->interval) 1957 else if (w->interval)
1480 { 1958 {
1481 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1482 /* this formula differs from the one in periodic_reify because we do not always round up */ 1960 /* this formula differs from the one in periodic_reify because we do not always round up */
1483 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1484 } 1962 }
1963 else
1964 ev_at (w) = w->offset;
1485 1965
1486 ev_start (EV_A_ (W)w, ++periodiccnt); 1966 ev_start (EV_A_ (W)w, ++periodiccnt);
1487 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1488 periodics [periodiccnt - 1] = w; 1968 periodics [periodiccnt] = (WT)w;
1489 upheap ((WT *)periodics, periodiccnt - 1); 1969 upheap (periodics, periodiccnt);
1490 1970
1491 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1492} 1972}
1493 1973
1494void 1974void noinline
1495ev_periodic_stop (EV_P_ struct ev_periodic *w) 1975ev_periodic_stop (EV_P_ ev_periodic *w)
1496{ 1976{
1497 ev_clear_pending (EV_A_ (W)w); 1977 clear_pending (EV_A_ (W)w);
1498 if (expect_false (!ev_is_active (w))) 1978 if (expect_false (!ev_is_active (w)))
1499 return; 1979 return;
1500 1980
1501 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w));
1502 1982
1983 {
1984 int active = ((W)w)->active;
1985
1503 if (expect_true (((W)w)->active < periodiccnt--)) 1986 if (expect_true (active < periodiccnt))
1504 { 1987 {
1505 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1988 periodics [active] = periodics [periodiccnt];
1506 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1989 adjustheap (periodics, periodiccnt, active);
1507 } 1990 }
1991
1992 --periodiccnt;
1993 }
1508 1994
1509 ev_stop (EV_A_ (W)w); 1995 ev_stop (EV_A_ (W)w);
1510} 1996}
1511 1997
1512void 1998void noinline
1513ev_periodic_again (EV_P_ struct ev_periodic *w) 1999ev_periodic_again (EV_P_ ev_periodic *w)
1514{ 2000{
1515 /* TODO: use adjustheap and recalculation */ 2001 /* TODO: use adjustheap and recalculation */
1516 ev_periodic_stop (EV_A_ w); 2002 ev_periodic_stop (EV_A_ w);
1517 ev_periodic_start (EV_A_ w); 2003 ev_periodic_start (EV_A_ w);
1518} 2004}
1519#endif 2005#endif
1520 2006
1521void
1522ev_idle_start (EV_P_ struct ev_idle *w)
1523{
1524 if (expect_false (ev_is_active (w)))
1525 return;
1526
1527 ev_start (EV_A_ (W)w, ++idlecnt);
1528 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1529 idles [idlecnt - 1] = w;
1530}
1531
1532void
1533ev_idle_stop (EV_P_ struct ev_idle *w)
1534{
1535 ev_clear_pending (EV_A_ (W)w);
1536 if (expect_false (!ev_is_active (w)))
1537 return;
1538
1539 idles [((W)w)->active - 1] = idles [--idlecnt];
1540 ev_stop (EV_A_ (W)w);
1541}
1542
1543void
1544ev_prepare_start (EV_P_ struct ev_prepare *w)
1545{
1546 if (expect_false (ev_is_active (w)))
1547 return;
1548
1549 ev_start (EV_A_ (W)w, ++preparecnt);
1550 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1551 prepares [preparecnt - 1] = w;
1552}
1553
1554void
1555ev_prepare_stop (EV_P_ struct ev_prepare *w)
1556{
1557 ev_clear_pending (EV_A_ (W)w);
1558 if (expect_false (!ev_is_active (w)))
1559 return;
1560
1561 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1562 ev_stop (EV_A_ (W)w);
1563}
1564
1565void
1566ev_check_start (EV_P_ struct ev_check *w)
1567{
1568 if (expect_false (ev_is_active (w)))
1569 return;
1570
1571 ev_start (EV_A_ (W)w, ++checkcnt);
1572 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1573 checks [checkcnt - 1] = w;
1574}
1575
1576void
1577ev_check_stop (EV_P_ struct ev_check *w)
1578{
1579 ev_clear_pending (EV_A_ (W)w);
1580 if (expect_false (!ev_is_active (w)))
1581 return;
1582
1583 checks [((W)w)->active - 1] = checks [--checkcnt];
1584 ev_stop (EV_A_ (W)w);
1585}
1586
1587#ifndef SA_RESTART 2007#ifndef SA_RESTART
1588# define SA_RESTART 0 2008# define SA_RESTART 0
1589#endif 2009#endif
1590 2010
1591void 2011void noinline
1592ev_signal_start (EV_P_ struct ev_signal *w) 2012ev_signal_start (EV_P_ ev_signal *w)
1593{ 2013{
1594#if EV_MULTIPLICITY 2014#if EV_MULTIPLICITY
1595 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1596#endif 2016#endif
1597 if (expect_false (ev_is_active (w))) 2017 if (expect_false (ev_is_active (w)))
1598 return; 2018 return;
1599 2019
1600 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1601 2021
2022 evpipe_init (EV_A);
2023
2024 {
2025#ifndef _WIN32
2026 sigset_t full, prev;
2027 sigfillset (&full);
2028 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif
2030
2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2032
2033#ifndef _WIN32
2034 sigprocmask (SIG_SETMASK, &prev, 0);
2035#endif
2036 }
2037
1602 ev_start (EV_A_ (W)w, 1); 2038 ev_start (EV_A_ (W)w, 1);
1603 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1604 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2039 wlist_add (&signals [w->signum - 1].head, (WL)w);
1605 2040
1606 if (!((WL)w)->next) 2041 if (!((WL)w)->next)
1607 { 2042 {
1608#if _WIN32 2043#if _WIN32
1609 signal (w->signum, sighandler); 2044 signal (w->signum, ev_sighandler);
1610#else 2045#else
1611 struct sigaction sa; 2046 struct sigaction sa;
1612 sa.sa_handler = sighandler; 2047 sa.sa_handler = ev_sighandler;
1613 sigfillset (&sa.sa_mask); 2048 sigfillset (&sa.sa_mask);
1614 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1615 sigaction (w->signum, &sa, 0); 2050 sigaction (w->signum, &sa, 0);
1616#endif 2051#endif
1617 } 2052 }
1618} 2053}
1619 2054
1620void 2055void noinline
1621ev_signal_stop (EV_P_ struct ev_signal *w) 2056ev_signal_stop (EV_P_ ev_signal *w)
1622{ 2057{
1623 ev_clear_pending (EV_A_ (W)w); 2058 clear_pending (EV_A_ (W)w);
1624 if (expect_false (!ev_is_active (w))) 2059 if (expect_false (!ev_is_active (w)))
1625 return; 2060 return;
1626 2061
1627 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2062 wlist_del (&signals [w->signum - 1].head, (WL)w);
1628 ev_stop (EV_A_ (W)w); 2063 ev_stop (EV_A_ (W)w);
1629 2064
1630 if (!signals [w->signum - 1].head) 2065 if (!signals [w->signum - 1].head)
1631 signal (w->signum, SIG_DFL); 2066 signal (w->signum, SIG_DFL);
1632} 2067}
1633 2068
1634void 2069void
1635ev_child_start (EV_P_ struct ev_child *w) 2070ev_child_start (EV_P_ ev_child *w)
1636{ 2071{
1637#if EV_MULTIPLICITY 2072#if EV_MULTIPLICITY
1638 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1639#endif 2074#endif
1640 if (expect_false (ev_is_active (w))) 2075 if (expect_false (ev_is_active (w)))
1641 return; 2076 return;
1642 2077
1643 ev_start (EV_A_ (W)w, 1); 2078 ev_start (EV_A_ (W)w, 1);
1644 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1645} 2080}
1646 2081
1647void 2082void
1648ev_child_stop (EV_P_ struct ev_child *w) 2083ev_child_stop (EV_P_ ev_child *w)
1649{ 2084{
1650 ev_clear_pending (EV_A_ (W)w); 2085 clear_pending (EV_A_ (W)w);
1651 if (expect_false (!ev_is_active (w))) 2086 if (expect_false (!ev_is_active (w)))
1652 return; 2087 return;
1653 2088
1654 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1655 ev_stop (EV_A_ (W)w); 2090 ev_stop (EV_A_ (W)w);
1656} 2091}
1657 2092
2093#if EV_STAT_ENABLE
2094
2095# ifdef _WIN32
2096# undef lstat
2097# define lstat(a,b) _stati64 (a,b)
2098# endif
2099
2100#define DEF_STAT_INTERVAL 5.0074891
2101#define MIN_STAT_INTERVAL 0.1074891
2102
2103static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2104
2105#if EV_USE_INOTIFY
2106# define EV_INOTIFY_BUFSIZE 8192
2107
2108static void noinline
2109infy_add (EV_P_ ev_stat *w)
2110{
2111 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2112
2113 if (w->wd < 0)
2114 {
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2116
2117 /* monitor some parent directory for speedup hints */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 {
2120 char path [4096];
2121 strcpy (path, w->path);
2122
2123 do
2124 {
2125 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2126 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2127
2128 char *pend = strrchr (path, '/');
2129
2130 if (!pend)
2131 break; /* whoops, no '/', complain to your admin */
2132
2133 *pend = 0;
2134 w->wd = inotify_add_watch (fs_fd, path, mask);
2135 }
2136 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2137 }
2138 }
2139 else
2140 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2141
2142 if (w->wd >= 0)
2143 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2144}
2145
2146static void noinline
2147infy_del (EV_P_ ev_stat *w)
2148{
2149 int slot;
2150 int wd = w->wd;
2151
2152 if (wd < 0)
2153 return;
2154
2155 w->wd = -2;
2156 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2157 wlist_del (&fs_hash [slot].head, (WL)w);
2158
2159 /* remove this watcher, if others are watching it, they will rearm */
2160 inotify_rm_watch (fs_fd, wd);
2161}
2162
2163static void noinline
2164infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2165{
2166 if (slot < 0)
2167 /* overflow, need to check for all hahs slots */
2168 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2169 infy_wd (EV_A_ slot, wd, ev);
2170 else
2171 {
2172 WL w_;
2173
2174 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2175 {
2176 ev_stat *w = (ev_stat *)w_;
2177 w_ = w_->next; /* lets us remove this watcher and all before it */
2178
2179 if (w->wd == wd || wd == -1)
2180 {
2181 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2182 {
2183 w->wd = -1;
2184 infy_add (EV_A_ w); /* re-add, no matter what */
2185 }
2186
2187 stat_timer_cb (EV_A_ &w->timer, 0);
2188 }
2189 }
2190 }
2191}
2192
2193static void
2194infy_cb (EV_P_ ev_io *w, int revents)
2195{
2196 char buf [EV_INOTIFY_BUFSIZE];
2197 struct inotify_event *ev = (struct inotify_event *)buf;
2198 int ofs;
2199 int len = read (fs_fd, buf, sizeof (buf));
2200
2201 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2202 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2203}
2204
2205void inline_size
2206infy_init (EV_P)
2207{
2208 if (fs_fd != -2)
2209 return;
2210
2211 fs_fd = inotify_init ();
2212
2213 if (fs_fd >= 0)
2214 {
2215 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2216 ev_set_priority (&fs_w, EV_MAXPRI);
2217 ev_io_start (EV_A_ &fs_w);
2218 }
2219}
2220
2221void inline_size
2222infy_fork (EV_P)
2223{
2224 int slot;
2225
2226 if (fs_fd < 0)
2227 return;
2228
2229 close (fs_fd);
2230 fs_fd = inotify_init ();
2231
2232 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2233 {
2234 WL w_ = fs_hash [slot].head;
2235 fs_hash [slot].head = 0;
2236
2237 while (w_)
2238 {
2239 ev_stat *w = (ev_stat *)w_;
2240 w_ = w_->next; /* lets us add this watcher */
2241
2242 w->wd = -1;
2243
2244 if (fs_fd >= 0)
2245 infy_add (EV_A_ w); /* re-add, no matter what */
2246 else
2247 ev_timer_start (EV_A_ &w->timer);
2248 }
2249
2250 }
2251}
2252
2253#endif
2254
2255void
2256ev_stat_stat (EV_P_ ev_stat *w)
2257{
2258 if (lstat (w->path, &w->attr) < 0)
2259 w->attr.st_nlink = 0;
2260 else if (!w->attr.st_nlink)
2261 w->attr.st_nlink = 1;
2262}
2263
2264static void noinline
2265stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2266{
2267 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2268
2269 /* we copy this here each the time so that */
2270 /* prev has the old value when the callback gets invoked */
2271 w->prev = w->attr;
2272 ev_stat_stat (EV_A_ w);
2273
2274 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2275 if (
2276 w->prev.st_dev != w->attr.st_dev
2277 || w->prev.st_ino != w->attr.st_ino
2278 || w->prev.st_mode != w->attr.st_mode
2279 || w->prev.st_nlink != w->attr.st_nlink
2280 || w->prev.st_uid != w->attr.st_uid
2281 || w->prev.st_gid != w->attr.st_gid
2282 || w->prev.st_rdev != w->attr.st_rdev
2283 || w->prev.st_size != w->attr.st_size
2284 || w->prev.st_atime != w->attr.st_atime
2285 || w->prev.st_mtime != w->attr.st_mtime
2286 || w->prev.st_ctime != w->attr.st_ctime
2287 ) {
2288 #if EV_USE_INOTIFY
2289 infy_del (EV_A_ w);
2290 infy_add (EV_A_ w);
2291 ev_stat_stat (EV_A_ w); /* avoid race... */
2292 #endif
2293
2294 ev_feed_event (EV_A_ w, EV_STAT);
2295 }
2296}
2297
2298void
2299ev_stat_start (EV_P_ ev_stat *w)
2300{
2301 if (expect_false (ev_is_active (w)))
2302 return;
2303
2304 /* since we use memcmp, we need to clear any padding data etc. */
2305 memset (&w->prev, 0, sizeof (ev_statdata));
2306 memset (&w->attr, 0, sizeof (ev_statdata));
2307
2308 ev_stat_stat (EV_A_ w);
2309
2310 if (w->interval < MIN_STAT_INTERVAL)
2311 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2312
2313 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2314 ev_set_priority (&w->timer, ev_priority (w));
2315
2316#if EV_USE_INOTIFY
2317 infy_init (EV_A);
2318
2319 if (fs_fd >= 0)
2320 infy_add (EV_A_ w);
2321 else
2322#endif
2323 ev_timer_start (EV_A_ &w->timer);
2324
2325 ev_start (EV_A_ (W)w, 1);
2326}
2327
2328void
2329ev_stat_stop (EV_P_ ev_stat *w)
2330{
2331 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w)))
2333 return;
2334
2335#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w);
2337#endif
2338 ev_timer_stop (EV_A_ &w->timer);
2339
2340 ev_stop (EV_A_ (W)w);
2341}
2342#endif
2343
2344#if EV_IDLE_ENABLE
2345void
2346ev_idle_start (EV_P_ ev_idle *w)
2347{
2348 if (expect_false (ev_is_active (w)))
2349 return;
2350
2351 pri_adjust (EV_A_ (W)w);
2352
2353 {
2354 int active = ++idlecnt [ABSPRI (w)];
2355
2356 ++idleall;
2357 ev_start (EV_A_ (W)w, active);
2358
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w;
2361 }
2362}
2363
2364void
2365ev_idle_stop (EV_P_ ev_idle *w)
2366{
2367 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w)))
2369 return;
2370
2371 {
2372 int active = ((W)w)->active;
2373
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2376
2377 ev_stop (EV_A_ (W)w);
2378 --idleall;
2379 }
2380}
2381#endif
2382
2383void
2384ev_prepare_start (EV_P_ ev_prepare *w)
2385{
2386 if (expect_false (ev_is_active (w)))
2387 return;
2388
2389 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w;
2392}
2393
2394void
2395ev_prepare_stop (EV_P_ ev_prepare *w)
2396{
2397 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w)))
2399 return;
2400
2401 {
2402 int active = ((W)w)->active;
2403 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active;
2405 }
2406
2407 ev_stop (EV_A_ (W)w);
2408}
2409
2410void
2411ev_check_start (EV_P_ ev_check *w)
2412{
2413 if (expect_false (ev_is_active (w)))
2414 return;
2415
2416 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w;
2419}
2420
2421void
2422ev_check_stop (EV_P_ ev_check *w)
2423{
2424 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w)))
2426 return;
2427
2428 {
2429 int active = ((W)w)->active;
2430 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active;
2432 }
2433
2434 ev_stop (EV_A_ (W)w);
2435}
2436
2437#if EV_EMBED_ENABLE
2438void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w)
2440{
2441 ev_loop (w->other, EVLOOP_NONBLOCK);
2442}
2443
2444static void
2445embed_io_cb (EV_P_ ev_io *io, int revents)
2446{
2447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2448
2449 if (ev_cb (w))
2450 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2451 else
2452 ev_loop (w->other, EVLOOP_NONBLOCK);
2453}
2454
2455static void
2456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2457{
2458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2459
2460 {
2461 struct ev_loop *loop = w->other;
2462
2463 while (fdchangecnt)
2464 {
2465 fd_reify (EV_A);
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2467 }
2468 }
2469}
2470
2471#if 0
2472static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2474{
2475 ev_idle_stop (EV_A_ idle);
2476}
2477#endif
2478
2479void
2480ev_embed_start (EV_P_ ev_embed *w)
2481{
2482 if (expect_false (ev_is_active (w)))
2483 return;
2484
2485 {
2486 struct ev_loop *loop = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 }
2490
2491 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io);
2493
2494 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare);
2497
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499
2500 ev_start (EV_A_ (W)w, 1);
2501}
2502
2503void
2504ev_embed_stop (EV_P_ ev_embed *w)
2505{
2506 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w)))
2508 return;
2509
2510 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare);
2512
2513 ev_stop (EV_A_ (W)w);
2514}
2515#endif
2516
2517#if EV_FORK_ENABLE
2518void
2519ev_fork_start (EV_P_ ev_fork *w)
2520{
2521 if (expect_false (ev_is_active (w)))
2522 return;
2523
2524 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w;
2527}
2528
2529void
2530ev_fork_stop (EV_P_ ev_fork *w)
2531{
2532 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w)))
2534 return;
2535
2536 {
2537 int active = ((W)w)->active;
2538 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active;
2540 }
2541
2542 ev_stop (EV_A_ (W)w);
2543}
2544#endif
2545
2546#if EV_ASYNC_ENABLE
2547void
2548ev_async_start (EV_P_ ev_async *w)
2549{
2550 if (expect_false (ev_is_active (w)))
2551 return;
2552
2553 evpipe_init (EV_A);
2554
2555 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w;
2558}
2559
2560void
2561ev_async_stop (EV_P_ ev_async *w)
2562{
2563 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w)))
2565 return;
2566
2567 {
2568 int active = ((W)w)->active;
2569 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active;
2571 }
2572
2573 ev_stop (EV_A_ (W)w);
2574}
2575
2576void
2577ev_async_send (EV_P_ ev_async *w)
2578{
2579 w->sent = 1;
2580 evpipe_write (EV_A_ &gotasync);
2581}
2582#endif
2583
1658/*****************************************************************************/ 2584/*****************************************************************************/
1659 2585
1660struct ev_once 2586struct ev_once
1661{ 2587{
1662 struct ev_io io; 2588 ev_io io;
1663 struct ev_timer to; 2589 ev_timer to;
1664 void (*cb)(int revents, void *arg); 2590 void (*cb)(int revents, void *arg);
1665 void *arg; 2591 void *arg;
1666}; 2592};
1667 2593
1668static void 2594static void
1677 2603
1678 cb (revents, arg); 2604 cb (revents, arg);
1679} 2605}
1680 2606
1681static void 2607static void
1682once_cb_io (EV_P_ struct ev_io *w, int revents) 2608once_cb_io (EV_P_ ev_io *w, int revents)
1683{ 2609{
1684 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1685} 2611}
1686 2612
1687static void 2613static void
1688once_cb_to (EV_P_ struct ev_timer *w, int revents) 2614once_cb_to (EV_P_ ev_timer *w, int revents)
1689{ 2615{
1690 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1691} 2617}
1692 2618
1693void 2619void
1717 ev_timer_set (&once->to, timeout, 0.); 2643 ev_timer_set (&once->to, timeout, 0.);
1718 ev_timer_start (EV_A_ &once->to); 2644 ev_timer_start (EV_A_ &once->to);
1719 } 2645 }
1720} 2646}
1721 2647
2648#if EV_MULTIPLICITY
2649 #include "ev_wrap.h"
2650#endif
2651
1722#ifdef __cplusplus 2652#ifdef __cplusplus
1723} 2653}
1724#endif 2654#endif
1725 2655

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines