ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.135 by root, Sat Nov 24 06:23:27 2007 UTC vs.
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
114 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <unistd.h>
117# include <sys/time.h> 155# include <sys/time.h>
118# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
119#else 158#else
120# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
121# include <windows.h> 160# include <windows.h>
122# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
124# endif 163# endif
125#endif 164#endif
126 165
127/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
128 167
129#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
130# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
131#endif 170#endif
132 171
133#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
135#endif 178#endif
136 179
137#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
139#endif 182#endif
145# define EV_USE_POLL 1 188# define EV_USE_POLL 1
146# endif 189# endif
147#endif 190#endif
148 191
149#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
150# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
151#endif 198#endif
152 199
153#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
155#endif 202#endif
156 203
157#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 205# define EV_USE_PORT 0
159#endif 206#endif
160 207
161/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
162 241
163#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
164# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
165# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
166#endif 245#endif
168#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
169# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
170# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
171#endif 250#endif
172 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
173#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
174# include <winsock.h> 268# include <winsock.h>
175#endif 269#endif
176 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
177/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
178 294
179#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
180#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
181#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
182/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
183 298
184#ifdef EV_H
185# include EV_H
186#else
187# include "ev.h"
188#endif
189
190#if __GNUC__ >= 3 299#if __GNUC__ >= 4
191# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
192# define inline static inline 301# define noinline __attribute__ ((noinline))
193#else 302#else
194# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
195# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
196#endif 308#endif
197 309
198#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
199#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
200 319
201#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
202#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
203 322
204#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
205#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
206 325
207typedef struct ev_watcher *W; 326typedef ev_watcher *W;
208typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
209typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
210 329
330#define ev_at(w) ((WT)(w))->at
331
332#if EV_USE_MONOTONIC
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */
211static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
336#endif
212 337
213#ifdef _WIN32 338#ifdef _WIN32
214# include "ev_win32.c" 339# include "ev_win32.c"
215#endif 340#endif
216 341
217/*****************************************************************************/ 342/*****************************************************************************/
218 343
219static void (*syserr_cb)(const char *msg); 344static void (*syserr_cb)(const char *msg);
220 345
346void
221void ev_set_syserr_cb (void (*cb)(const char *msg)) 347ev_set_syserr_cb (void (*cb)(const char *msg))
222{ 348{
223 syserr_cb = cb; 349 syserr_cb = cb;
224} 350}
225 351
226static void 352static void noinline
227syserr (const char *msg) 353syserr (const char *msg)
228{ 354{
229 if (!msg) 355 if (!msg)
230 msg = "(libev) system error"; 356 msg = "(libev) system error";
231 357
236 perror (msg); 362 perror (msg);
237 abort (); 363 abort ();
238 } 364 }
239} 365}
240 366
367static void *
368ev_realloc_emul (void *ptr, long size)
369{
370 /* some systems, notably openbsd and darwin, fail to properly
371 * implement realloc (x, 0) (as required by both ansi c-98 and
372 * the single unix specification, so work around them here.
373 */
374
375 if (size)
376 return realloc (ptr, size);
377
378 free (ptr);
379 return 0;
380}
381
241static void *(*alloc)(void *ptr, long size); 382static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
242 383
384void
243void ev_set_allocator (void *(*cb)(void *ptr, long size)) 385ev_set_allocator (void *(*cb)(void *ptr, long size))
244{ 386{
245 alloc = cb; 387 alloc = cb;
246} 388}
247 389
248static void * 390inline_speed void *
249ev_realloc (void *ptr, long size) 391ev_realloc (void *ptr, long size)
250{ 392{
251 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 393 ptr = alloc (ptr, size);
252 394
253 if (!ptr && size) 395 if (!ptr && size)
254 { 396 {
255 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 397 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
256 abort (); 398 abort ();
277typedef struct 419typedef struct
278{ 420{
279 W w; 421 W w;
280 int events; 422 int events;
281} ANPENDING; 423} ANPENDING;
424
425#if EV_USE_INOTIFY
426typedef struct
427{
428 WL head;
429} ANFS;
430#endif
282 431
283#if EV_MULTIPLICITY 432#if EV_MULTIPLICITY
284 433
285 struct ev_loop 434 struct ev_loop
286 { 435 {
320 gettimeofday (&tv, 0); 469 gettimeofday (&tv, 0);
321 return tv.tv_sec + tv.tv_usec * 1e-6; 470 return tv.tv_sec + tv.tv_usec * 1e-6;
322#endif 471#endif
323} 472}
324 473
325inline ev_tstamp 474ev_tstamp inline_size
326get_clock (void) 475get_clock (void)
327{ 476{
328#if EV_USE_MONOTONIC 477#if EV_USE_MONOTONIC
329 if (expect_true (have_monotonic)) 478 if (expect_true (have_monotonic))
330 { 479 {
343{ 492{
344 return ev_rt_now; 493 return ev_rt_now;
345} 494}
346#endif 495#endif
347 496
348#define array_roundsize(type,n) (((n) | 4) & ~3) 497void
498ev_sleep (ev_tstamp delay)
499{
500 if (delay > 0.)
501 {
502#if EV_USE_NANOSLEEP
503 struct timespec ts;
504
505 ts.tv_sec = (time_t)delay;
506 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
507
508 nanosleep (&ts, 0);
509#elif defined(_WIN32)
510 Sleep ((unsigned long)(delay * 1e3));
511#else
512 struct timeval tv;
513
514 tv.tv_sec = (time_t)delay;
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
516
517 select (0, 0, 0, 0, &tv);
518#endif
519 }
520}
521
522/*****************************************************************************/
523
524int inline_size
525array_nextsize (int elem, int cur, int cnt)
526{
527 int ncur = cur + 1;
528
529 do
530 ncur <<= 1;
531 while (cnt > ncur);
532
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
534 if (elem * ncur > 4096)
535 {
536 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
538 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem;
540 }
541
542 return ncur;
543}
544
545static noinline void *
546array_realloc (int elem, void *base, int *cur, int cnt)
547{
548 *cur = array_nextsize (elem, *cur, cnt);
549 return ev_realloc (base, elem * *cur);
550}
349 551
350#define array_needsize(type,base,cur,cnt,init) \ 552#define array_needsize(type,base,cur,cnt,init) \
351 if (expect_false ((cnt) > cur)) \ 553 if (expect_false ((cnt) > (cur))) \
352 { \ 554 { \
353 int newcnt = cur; \ 555 int ocur_ = (cur); \
354 do \ 556 (base) = (type *)array_realloc \
355 { \ 557 (sizeof (type), (base), &(cur), (cnt)); \
356 newcnt = array_roundsize (type, newcnt << 1); \ 558 init ((base) + (ocur_), (cur) - ocur_); \
357 } \
358 while ((cnt) > newcnt); \
359 \
360 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
361 init (base + cur, newcnt - cur); \
362 cur = newcnt; \
363 } 559 }
364 560
561#if 0
365#define array_slim(type,stem) \ 562#define array_slim(type,stem) \
366 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 563 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
367 { \ 564 { \
368 stem ## max = array_roundsize (stem ## cnt >> 1); \ 565 stem ## max = array_roundsize (stem ## cnt >> 1); \
369 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 566 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
370 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 567 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
371 } 568 }
569#endif
372 570
373#define array_free(stem, idx) \ 571#define array_free(stem, idx) \
374 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 572 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
375 573
376/*****************************************************************************/ 574/*****************************************************************************/
377 575
378static void 576void noinline
577ev_feed_event (EV_P_ void *w, int revents)
578{
579 W w_ = (W)w;
580 int pri = ABSPRI (w_);
581
582 if (expect_false (w_->pending))
583 pendings [pri][w_->pending - 1].events |= revents;
584 else
585 {
586 w_->pending = ++pendingcnt [pri];
587 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
588 pendings [pri][w_->pending - 1].w = w_;
589 pendings [pri][w_->pending - 1].events = revents;
590 }
591}
592
593void inline_speed
594queue_events (EV_P_ W *events, int eventcnt, int type)
595{
596 int i;
597
598 for (i = 0; i < eventcnt; ++i)
599 ev_feed_event (EV_A_ events [i], type);
600}
601
602/*****************************************************************************/
603
604void inline_size
379anfds_init (ANFD *base, int count) 605anfds_init (ANFD *base, int count)
380{ 606{
381 while (count--) 607 while (count--)
382 { 608 {
383 base->head = 0; 609 base->head = 0;
386 612
387 ++base; 613 ++base;
388 } 614 }
389} 615}
390 616
391void 617void inline_speed
392ev_feed_event (EV_P_ void *w, int revents)
393{
394 W w_ = (W)w;
395
396 if (expect_false (w_->pending))
397 {
398 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
399 return;
400 }
401
402 if (expect_false (!w_->cb))
403 return;
404
405 w_->pending = ++pendingcnt [ABSPRI (w_)];
406 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
407 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
408 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
409}
410
411static void
412queue_events (EV_P_ W *events, int eventcnt, int type)
413{
414 int i;
415
416 for (i = 0; i < eventcnt; ++i)
417 ev_feed_event (EV_A_ events [i], type);
418}
419
420inline void
421fd_event (EV_P_ int fd, int revents) 618fd_event (EV_P_ int fd, int revents)
422{ 619{
423 ANFD *anfd = anfds + fd; 620 ANFD *anfd = anfds + fd;
424 struct ev_io *w; 621 ev_io *w;
425 622
426 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 623 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
427 { 624 {
428 int ev = w->events & revents; 625 int ev = w->events & revents;
429 626
430 if (ev) 627 if (ev)
431 ev_feed_event (EV_A_ (W)w, ev); 628 ev_feed_event (EV_A_ (W)w, ev);
433} 630}
434 631
435void 632void
436ev_feed_fd_event (EV_P_ int fd, int revents) 633ev_feed_fd_event (EV_P_ int fd, int revents)
437{ 634{
635 if (fd >= 0 && fd < anfdmax)
438 fd_event (EV_A_ fd, revents); 636 fd_event (EV_A_ fd, revents);
439} 637}
440 638
441/*****************************************************************************/ 639void inline_size
442
443inline void
444fd_reify (EV_P) 640fd_reify (EV_P)
445{ 641{
446 int i; 642 int i;
447 643
448 for (i = 0; i < fdchangecnt; ++i) 644 for (i = 0; i < fdchangecnt; ++i)
449 { 645 {
450 int fd = fdchanges [i]; 646 int fd = fdchanges [i];
451 ANFD *anfd = anfds + fd; 647 ANFD *anfd = anfds + fd;
452 struct ev_io *w; 648 ev_io *w;
453 649
454 int events = 0; 650 unsigned char events = 0;
455 651
456 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 652 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
457 events |= w->events; 653 events |= (unsigned char)w->events;
458 654
459#if EV_SELECT_IS_WINSOCKET 655#if EV_SELECT_IS_WINSOCKET
460 if (events) 656 if (events)
461 { 657 {
462 unsigned long argp; 658 unsigned long argp;
659 #ifdef EV_FD_TO_WIN32_HANDLE
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
661 #else
463 anfd->handle = _get_osfhandle (fd); 662 anfd->handle = _get_osfhandle (fd);
663 #endif
464 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
465 } 665 }
466#endif 666#endif
467 667
668 {
669 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify;
671
468 anfd->reify = 0; 672 anfd->reify = 0;
469
470 backend_modify (EV_A_ fd, anfd->events, events);
471 anfd->events = events; 673 anfd->events = events;
674
675 if (o_events != events || o_reify & EV_IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events);
677 }
472 } 678 }
473 679
474 fdchangecnt = 0; 680 fdchangecnt = 0;
475} 681}
476 682
477static void 683void inline_size
478fd_change (EV_P_ int fd) 684fd_change (EV_P_ int fd, int flags)
479{ 685{
480 if (expect_false (anfds [fd].reify)) 686 unsigned char reify = anfds [fd].reify;
481 return;
482
483 anfds [fd].reify = 1; 687 anfds [fd].reify |= flags;
484 688
689 if (expect_true (!reify))
690 {
485 ++fdchangecnt; 691 ++fdchangecnt;
486 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
487 fdchanges [fdchangecnt - 1] = fd; 693 fdchanges [fdchangecnt - 1] = fd;
694 }
488} 695}
489 696
490static void 697void inline_speed
491fd_kill (EV_P_ int fd) 698fd_kill (EV_P_ int fd)
492{ 699{
493 struct ev_io *w; 700 ev_io *w;
494 701
495 while ((w = (struct ev_io *)anfds [fd].head)) 702 while ((w = (ev_io *)anfds [fd].head))
496 { 703 {
497 ev_io_stop (EV_A_ w); 704 ev_io_stop (EV_A_ w);
498 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 705 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
499 } 706 }
500} 707}
501 708
502inline int 709int inline_size
503fd_valid (int fd) 710fd_valid (int fd)
504{ 711{
505#ifdef _WIN32 712#ifdef _WIN32
506 return _get_osfhandle (fd) != -1; 713 return _get_osfhandle (fd) != -1;
507#else 714#else
508 return fcntl (fd, F_GETFD) != -1; 715 return fcntl (fd, F_GETFD) != -1;
509#endif 716#endif
510} 717}
511 718
512/* called on EBADF to verify fds */ 719/* called on EBADF to verify fds */
513static void 720static void noinline
514fd_ebadf (EV_P) 721fd_ebadf (EV_P)
515{ 722{
516 int fd; 723 int fd;
517 724
518 for (fd = 0; fd < anfdmax; ++fd) 725 for (fd = 0; fd < anfdmax; ++fd)
520 if (!fd_valid (fd) == -1 && errno == EBADF) 727 if (!fd_valid (fd) == -1 && errno == EBADF)
521 fd_kill (EV_A_ fd); 728 fd_kill (EV_A_ fd);
522} 729}
523 730
524/* called on ENOMEM in select/poll to kill some fds and retry */ 731/* called on ENOMEM in select/poll to kill some fds and retry */
525static void 732static void noinline
526fd_enomem (EV_P) 733fd_enomem (EV_P)
527{ 734{
528 int fd; 735 int fd;
529 736
530 for (fd = anfdmax; fd--; ) 737 for (fd = anfdmax; fd--; )
534 return; 741 return;
535 } 742 }
536} 743}
537 744
538/* usually called after fork if backend needs to re-arm all fds from scratch */ 745/* usually called after fork if backend needs to re-arm all fds from scratch */
539static void 746static void noinline
540fd_rearm_all (EV_P) 747fd_rearm_all (EV_P)
541{ 748{
542 int fd; 749 int fd;
543 750
544 /* this should be highly optimised to not do anything but set a flag */
545 for (fd = 0; fd < anfdmax; ++fd) 751 for (fd = 0; fd < anfdmax; ++fd)
546 if (anfds [fd].events) 752 if (anfds [fd].events)
547 { 753 {
548 anfds [fd].events = 0; 754 anfds [fd].events = 0;
549 fd_change (EV_A_ fd); 755 fd_change (EV_A_ fd, EV_IOFDSET | 1);
550 } 756 }
551} 757}
552 758
553/*****************************************************************************/ 759/*****************************************************************************/
554 760
555static void 761/* towards the root */
762void inline_speed
556upheap (WT *heap, int k) 763upheap (WT *heap, int k)
557{ 764{
558 WT w = heap [k]; 765 WT w = heap [k];
559 766
560 while (k && heap [k >> 1]->at > w->at) 767 for (;;)
561 { 768 {
769 int p = k >> 1;
770
771 /* maybe we could use a dummy element at heap [0]? */
772 if (!p || heap [p]->at <= w->at)
773 break;
774
562 heap [k] = heap [k >> 1]; 775 heap [k] = heap [p];
563 ((W)heap [k])->active = k + 1; 776 ((W)heap [k])->active = k;
564 k >>= 1; 777 k = p;
565 } 778 }
566 779
567 heap [k] = w; 780 heap [k] = w;
568 ((W)heap [k])->active = k + 1; 781 ((W)heap [k])->active = k;
569
570} 782}
571 783
572static void 784/* away from the root */
785void inline_speed
573downheap (WT *heap, int N, int k) 786downheap (WT *heap, int N, int k)
574{ 787{
575 WT w = heap [k]; 788 WT w = heap [k];
576 789
577 while (k < (N >> 1)) 790 for (;;)
578 { 791 {
579 int j = k << 1; 792 int c = k << 1;
580 793
581 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 794 if (c > N)
582 ++j;
583
584 if (w->at <= heap [j]->at)
585 break; 795 break;
586 796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
587 heap [k] = heap [j]; 803 heap [k] = heap [c];
588 ((W)heap [k])->active = k + 1; 804 ((W)heap [k])->active = k;
805
589 k = j; 806 k = c;
590 } 807 }
591 808
592 heap [k] = w; 809 heap [k] = w;
593 ((W)heap [k])->active = k + 1; 810 ((W)heap [k])->active = k;
594} 811}
595 812
596inline void 813void inline_size
597adjustheap (WT *heap, int N, int k) 814adjustheap (WT *heap, int N, int k)
598{ 815{
599 upheap (heap, k); 816 upheap (heap, k);
600 downheap (heap, N, k); 817 downheap (heap, N, k);
601} 818}
603/*****************************************************************************/ 820/*****************************************************************************/
604 821
605typedef struct 822typedef struct
606{ 823{
607 WL head; 824 WL head;
608 sig_atomic_t volatile gotsig; 825 EV_ATOMIC_T gotsig;
609} ANSIG; 826} ANSIG;
610 827
611static ANSIG *signals; 828static ANSIG *signals;
612static int signalmax; 829static int signalmax;
613 830
614static int sigpipe [2]; 831static EV_ATOMIC_T gotsig;
615static sig_atomic_t volatile gotsig;
616static struct ev_io sigev;
617 832
618static void 833void inline_size
619signals_init (ANSIG *base, int count) 834signals_init (ANSIG *base, int count)
620{ 835{
621 while (count--) 836 while (count--)
622 { 837 {
623 base->head = 0; 838 base->head = 0;
625 840
626 ++base; 841 ++base;
627 } 842 }
628} 843}
629 844
630static void 845/*****************************************************************************/
631sighandler (int signum)
632{
633#if _WIN32
634 signal (signum, sighandler);
635#endif
636 846
637 signals [signum - 1].gotsig = 1; 847void inline_speed
638
639 if (!gotsig)
640 {
641 int old_errno = errno;
642 gotsig = 1;
643 write (sigpipe [1], &signum, 1);
644 errno = old_errno;
645 }
646}
647
648void
649ev_feed_signal_event (EV_P_ int signum)
650{
651 WL w;
652
653#if EV_MULTIPLICITY
654 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
655#endif
656
657 --signum;
658
659 if (signum < 0 || signum >= signalmax)
660 return;
661
662 signals [signum].gotsig = 0;
663
664 for (w = signals [signum].head; w; w = w->next)
665 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
666}
667
668static void
669sigcb (EV_P_ struct ev_io *iow, int revents)
670{
671 int signum;
672
673 read (sigpipe [0], &revents, 1);
674 gotsig = 0;
675
676 for (signum = signalmax; signum--; )
677 if (signals [signum].gotsig)
678 ev_feed_signal_event (EV_A_ signum + 1);
679}
680
681static void
682fd_intern (int fd) 848fd_intern (int fd)
683{ 849{
684#ifdef _WIN32 850#ifdef _WIN32
685 int arg = 1; 851 int arg = 1;
686 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
688 fcntl (fd, F_SETFD, FD_CLOEXEC); 854 fcntl (fd, F_SETFD, FD_CLOEXEC);
689 fcntl (fd, F_SETFL, O_NONBLOCK); 855 fcntl (fd, F_SETFL, O_NONBLOCK);
690#endif 856#endif
691} 857}
692 858
859static void noinline
860evpipe_init (EV_P)
861{
862 if (!ev_is_active (&pipeev))
863 {
864#if EV_USE_EVENTFD
865 if ((evfd = eventfd (0, 0)) >= 0)
866 {
867 evpipe [0] = -1;
868 fd_intern (evfd);
869 ev_io_set (&pipeev, evfd, EV_READ);
870 }
871 else
872#endif
873 {
874 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe");
876
877 fd_intern (evpipe [0]);
878 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ);
880 }
881
882 ev_io_start (EV_A_ &pipeev);
883 ev_unref (EV_A); /* watcher should not keep loop alive */
884 }
885}
886
887void inline_size
888evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{
890 if (!*flag)
891 {
892 int old_errno = errno; /* save errno because write might clobber it */
893
894 *flag = 1;
895
896#if EV_USE_EVENTFD
897 if (evfd >= 0)
898 {
899 uint64_t counter = 1;
900 write (evfd, &counter, sizeof (uint64_t));
901 }
902 else
903#endif
904 write (evpipe [1], &old_errno, 1);
905
906 errno = old_errno;
907 }
908}
909
693static void 910static void
694siginit (EV_P) 911pipecb (EV_P_ ev_io *iow, int revents)
695{ 912{
696 fd_intern (sigpipe [0]); 913#if EV_USE_EVENTFD
697 fd_intern (sigpipe [1]); 914 if (evfd >= 0)
915 {
916 uint64_t counter = 1;
917 read (evfd, &counter, sizeof (uint64_t));
918 }
919 else
920#endif
921 {
922 char dummy;
923 read (evpipe [0], &dummy, 1);
924 }
698 925
699 ev_io_set (&sigev, sigpipe [0], EV_READ); 926 if (gotsig && ev_is_default_loop (EV_A))
700 ev_io_start (EV_A_ &sigev); 927 {
701 ev_unref (EV_A); /* child watcher should not keep loop alive */ 928 int signum;
929 gotsig = 0;
930
931 for (signum = signalmax; signum--; )
932 if (signals [signum].gotsig)
933 ev_feed_signal_event (EV_A_ signum + 1);
934 }
935
936#if EV_ASYNC_ENABLE
937 if (gotasync)
938 {
939 int i;
940 gotasync = 0;
941
942 for (i = asynccnt; i--; )
943 if (asyncs [i]->sent)
944 {
945 asyncs [i]->sent = 0;
946 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
947 }
948 }
949#endif
702} 950}
703 951
704/*****************************************************************************/ 952/*****************************************************************************/
705 953
706static struct ev_child *childs [PID_HASHSIZE]; 954static void
955ev_sighandler (int signum)
956{
957#if EV_MULTIPLICITY
958 struct ev_loop *loop = &default_loop_struct;
959#endif
960
961#if _WIN32
962 signal (signum, ev_sighandler);
963#endif
964
965 signals [signum - 1].gotsig = 1;
966 evpipe_write (EV_A_ &gotsig);
967}
968
969void noinline
970ev_feed_signal_event (EV_P_ int signum)
971{
972 WL w;
973
974#if EV_MULTIPLICITY
975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
976#endif
977
978 --signum;
979
980 if (signum < 0 || signum >= signalmax)
981 return;
982
983 signals [signum].gotsig = 0;
984
985 for (w = signals [signum].head; w; w = w->next)
986 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
987}
988
989/*****************************************************************************/
990
991static WL childs [EV_PID_HASHSIZE];
707 992
708#ifndef _WIN32 993#ifndef _WIN32
709 994
710static struct ev_signal childev; 995static ev_signal childev;
996
997#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0
999#endif
1000
1001void inline_speed
1002child_reap (EV_P_ int chain, int pid, int status)
1003{
1004 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1006
1007 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1008 {
1009 if ((w->pid == pid || !w->pid)
1010 && (!traced || (w->flags & 1)))
1011 {
1012 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1013 w->rpid = pid;
1014 w->rstatus = status;
1015 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1016 }
1017 }
1018}
711 1019
712#ifndef WCONTINUED 1020#ifndef WCONTINUED
713# define WCONTINUED 0 1021# define WCONTINUED 0
714#endif 1022#endif
715 1023
716static void 1024static void
717child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
718{
719 struct ev_child *w;
720
721 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
722 if (w->pid == pid || !w->pid)
723 {
724 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
725 w->rpid = pid;
726 w->rstatus = status;
727 ev_feed_event (EV_A_ (W)w, EV_CHILD);
728 }
729}
730
731static void
732childcb (EV_P_ struct ev_signal *sw, int revents) 1025childcb (EV_P_ ev_signal *sw, int revents)
733{ 1026{
734 int pid, status; 1027 int pid, status;
735 1028
1029 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
736 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1030 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
737 { 1031 if (!WCONTINUED
1032 || errno != EINVAL
1033 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1034 return;
1035
738 /* make sure we are called again until all childs have been reaped */ 1036 /* make sure we are called again until all children have been reaped */
739 /* we need to do it this way so that the callback gets called before we continue */ 1037 /* we need to do it this way so that the callback gets called before we continue */
740 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1038 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
741 1039
742 child_reap (EV_A_ sw, pid, pid, status); 1040 child_reap (EV_A_ pid, pid, status);
1041 if (EV_PID_HASHSIZE > 1)
743 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1042 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
744 }
745} 1043}
746 1044
747#endif 1045#endif
748 1046
749/*****************************************************************************/ 1047/*****************************************************************************/
775{ 1073{
776 return EV_VERSION_MINOR; 1074 return EV_VERSION_MINOR;
777} 1075}
778 1076
779/* return true if we are running with elevated privileges and should ignore env variables */ 1077/* return true if we are running with elevated privileges and should ignore env variables */
780static int 1078int inline_size
781enable_secure (void) 1079enable_secure (void)
782{ 1080{
783#ifdef _WIN32 1081#ifdef _WIN32
784 return 0; 1082 return 0;
785#else 1083#else
821} 1119}
822 1120
823unsigned int 1121unsigned int
824ev_embeddable_backends (void) 1122ev_embeddable_backends (void)
825{ 1123{
826 return EVBACKEND_EPOLL 1124 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
827 | EVBACKEND_KQUEUE 1125
828 | EVBACKEND_PORT; 1126 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1127 /* please fix it and tell me how to detect the fix */
1128 flags &= ~EVBACKEND_EPOLL;
1129
1130 return flags;
829} 1131}
830 1132
831unsigned int 1133unsigned int
832ev_backend (EV_P) 1134ev_backend (EV_P)
833{ 1135{
834 return backend; 1136 return backend;
835} 1137}
836 1138
837static void 1139unsigned int
1140ev_loop_count (EV_P)
1141{
1142 return loop_count;
1143}
1144
1145void
1146ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1147{
1148 io_blocktime = interval;
1149}
1150
1151void
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1153{
1154 timeout_blocktime = interval;
1155}
1156
1157static void noinline
838loop_init (EV_P_ unsigned int flags) 1158loop_init (EV_P_ unsigned int flags)
839{ 1159{
840 if (!backend) 1160 if (!backend)
841 { 1161 {
842#if EV_USE_MONOTONIC 1162#if EV_USE_MONOTONIC
845 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
846 have_monotonic = 1; 1166 have_monotonic = 1;
847 } 1167 }
848#endif 1168#endif
849 1169
850 ev_rt_now = ev_time (); 1170 ev_rt_now = ev_time ();
851 mn_now = get_clock (); 1171 mn_now = get_clock ();
852 now_floor = mn_now; 1172 now_floor = mn_now;
853 rtmn_diff = ev_rt_now - mn_now; 1173 rtmn_diff = ev_rt_now - mn_now;
1174
1175 io_blocktime = 0.;
1176 timeout_blocktime = 0.;
1177 backend = 0;
1178 backend_fd = -1;
1179 gotasync = 0;
1180#if EV_USE_INOTIFY
1181 fs_fd = -2;
1182#endif
1183
1184 /* pid check not overridable via env */
1185#ifndef _WIN32
1186 if (flags & EVFLAG_FORKCHECK)
1187 curpid = getpid ();
1188#endif
854 1189
855 if (!(flags & EVFLAG_NOENV) 1190 if (!(flags & EVFLAG_NOENV)
856 && !enable_secure () 1191 && !enable_secure ()
857 && getenv ("LIBEV_FLAGS")) 1192 && getenv ("LIBEV_FLAGS"))
858 flags = atoi (getenv ("LIBEV_FLAGS")); 1193 flags = atoi (getenv ("LIBEV_FLAGS"));
859 1194
860 if (!(flags & 0x0000ffffUL)) 1195 if (!(flags & 0x0000ffffU))
861 flags |= ev_recommended_backends (); 1196 flags |= ev_recommended_backends ();
862 1197
863 backend = 0;
864#if EV_USE_PORT 1198#if EV_USE_PORT
865 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1199 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
866#endif 1200#endif
867#if EV_USE_KQUEUE 1201#if EV_USE_KQUEUE
868 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1202 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
875#endif 1209#endif
876#if EV_USE_SELECT 1210#if EV_USE_SELECT
877 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
878#endif 1212#endif
879 1213
880 ev_init (&sigev, sigcb); 1214 ev_init (&pipeev, pipecb);
881 ev_set_priority (&sigev, EV_MAXPRI); 1215 ev_set_priority (&pipeev, EV_MAXPRI);
882 } 1216 }
883} 1217}
884 1218
885static void 1219static void noinline
886loop_destroy (EV_P) 1220loop_destroy (EV_P)
887{ 1221{
888 int i; 1222 int i;
1223
1224 if (ev_is_active (&pipeev))
1225 {
1226 ev_ref (EV_A); /* signal watcher */
1227 ev_io_stop (EV_A_ &pipeev);
1228
1229#if EV_USE_EVENTFD
1230 if (evfd >= 0)
1231 close (evfd);
1232#endif
1233
1234 if (evpipe [0] >= 0)
1235 {
1236 close (evpipe [0]);
1237 close (evpipe [1]);
1238 }
1239 }
1240
1241#if EV_USE_INOTIFY
1242 if (fs_fd >= 0)
1243 close (fs_fd);
1244#endif
1245
1246 if (backend_fd >= 0)
1247 close (backend_fd);
889 1248
890#if EV_USE_PORT 1249#if EV_USE_PORT
891 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1250 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
892#endif 1251#endif
893#if EV_USE_KQUEUE 1252#if EV_USE_KQUEUE
902#if EV_USE_SELECT 1261#if EV_USE_SELECT
903 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1262 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
904#endif 1263#endif
905 1264
906 for (i = NUMPRI; i--; ) 1265 for (i = NUMPRI; i--; )
1266 {
907 array_free (pending, [i]); 1267 array_free (pending, [i]);
1268#if EV_IDLE_ENABLE
1269 array_free (idle, [i]);
1270#endif
1271 }
1272
1273 ev_free (anfds); anfdmax = 0;
908 1274
909 /* have to use the microsoft-never-gets-it-right macro */ 1275 /* have to use the microsoft-never-gets-it-right macro */
910 array_free (fdchange, EMPTY0); 1276 array_free (fdchange, EMPTY);
911 array_free (timer, EMPTY0); 1277 array_free (timer, EMPTY);
912#if EV_PERIODICS 1278#if EV_PERIODIC_ENABLE
913 array_free (periodic, EMPTY0); 1279 array_free (periodic, EMPTY);
914#endif 1280#endif
1281#if EV_FORK_ENABLE
915 array_free (idle, EMPTY0); 1282 array_free (fork, EMPTY);
1283#endif
916 array_free (prepare, EMPTY0); 1284 array_free (prepare, EMPTY);
917 array_free (check, EMPTY0); 1285 array_free (check, EMPTY);
1286#if EV_ASYNC_ENABLE
1287 array_free (async, EMPTY);
1288#endif
918 1289
919 backend = 0; 1290 backend = 0;
920} 1291}
921 1292
922static void 1293#if EV_USE_INOTIFY
1294void inline_size infy_fork (EV_P);
1295#endif
1296
1297void inline_size
923loop_fork (EV_P) 1298loop_fork (EV_P)
924{ 1299{
925#if EV_USE_PORT 1300#if EV_USE_PORT
926 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1301 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
927#endif 1302#endif
929 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1304 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
930#endif 1305#endif
931#if EV_USE_EPOLL 1306#if EV_USE_EPOLL
932 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1307 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
933#endif 1308#endif
1309#if EV_USE_INOTIFY
1310 infy_fork (EV_A);
1311#endif
934 1312
935 if (ev_is_active (&sigev)) 1313 if (ev_is_active (&pipeev))
936 { 1314 {
937 /* default loop */ 1315 /* this "locks" the handlers against writing to the pipe */
1316 /* while we modify the fd vars */
1317 gotsig = 1;
1318#if EV_ASYNC_ENABLE
1319 gotasync = 1;
1320#endif
938 1321
939 ev_ref (EV_A); 1322 ev_ref (EV_A);
940 ev_io_stop (EV_A_ &sigev); 1323 ev_io_stop (EV_A_ &pipeev);
1324
1325#if EV_USE_EVENTFD
1326 if (evfd >= 0)
1327 close (evfd);
1328#endif
1329
1330 if (evpipe [0] >= 0)
1331 {
941 close (sigpipe [0]); 1332 close (evpipe [0]);
942 close (sigpipe [1]); 1333 close (evpipe [1]);
1334 }
943 1335
944 while (pipe (sigpipe))
945 syserr ("(libev) error creating pipe");
946
947 siginit (EV_A); 1336 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */
1338 pipecb (EV_A_ &pipeev, EV_READ);
948 } 1339 }
949 1340
950 postfork = 0; 1341 postfork = 0;
951} 1342}
952 1343
974} 1365}
975 1366
976void 1367void
977ev_loop_fork (EV_P) 1368ev_loop_fork (EV_P)
978{ 1369{
979 postfork = 1; 1370 postfork = 1; /* must be in line with ev_default_fork */
980} 1371}
981 1372
982#endif 1373#endif
983 1374
984#if EV_MULTIPLICITY 1375#if EV_MULTIPLICITY
987#else 1378#else
988int 1379int
989ev_default_loop (unsigned int flags) 1380ev_default_loop (unsigned int flags)
990#endif 1381#endif
991{ 1382{
992 if (sigpipe [0] == sigpipe [1])
993 if (pipe (sigpipe))
994 return 0;
995
996 if (!ev_default_loop_ptr) 1383 if (!ev_default_loop_ptr)
997 { 1384 {
998#if EV_MULTIPLICITY 1385#if EV_MULTIPLICITY
999 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1386 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1000#else 1387#else
1003 1390
1004 loop_init (EV_A_ flags); 1391 loop_init (EV_A_ flags);
1005 1392
1006 if (ev_backend (EV_A)) 1393 if (ev_backend (EV_A))
1007 { 1394 {
1008 siginit (EV_A);
1009
1010#ifndef _WIN32 1395#ifndef _WIN32
1011 ev_signal_init (&childev, childcb, SIGCHLD); 1396 ev_signal_init (&childev, childcb, SIGCHLD);
1012 ev_set_priority (&childev, EV_MAXPRI); 1397 ev_set_priority (&childev, EV_MAXPRI);
1013 ev_signal_start (EV_A_ &childev); 1398 ev_signal_start (EV_A_ &childev);
1014 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1399 ev_unref (EV_A); /* child watcher should not keep loop alive */
1031#ifndef _WIN32 1416#ifndef _WIN32
1032 ev_ref (EV_A); /* child watcher */ 1417 ev_ref (EV_A); /* child watcher */
1033 ev_signal_stop (EV_A_ &childev); 1418 ev_signal_stop (EV_A_ &childev);
1034#endif 1419#endif
1035 1420
1036 ev_ref (EV_A); /* signal watcher */
1037 ev_io_stop (EV_A_ &sigev);
1038
1039 close (sigpipe [0]); sigpipe [0] = 0;
1040 close (sigpipe [1]); sigpipe [1] = 0;
1041
1042 loop_destroy (EV_A); 1421 loop_destroy (EV_A);
1043} 1422}
1044 1423
1045void 1424void
1046ev_default_fork (void) 1425ev_default_fork (void)
1048#if EV_MULTIPLICITY 1427#if EV_MULTIPLICITY
1049 struct ev_loop *loop = ev_default_loop_ptr; 1428 struct ev_loop *loop = ev_default_loop_ptr;
1050#endif 1429#endif
1051 1430
1052 if (backend) 1431 if (backend)
1053 postfork = 1; 1432 postfork = 1; /* must be in line with ev_loop_fork */
1054} 1433}
1055 1434
1056/*****************************************************************************/ 1435/*****************************************************************************/
1057 1436
1058static int 1437void
1059any_pending (EV_P) 1438ev_invoke (EV_P_ void *w, int revents)
1060{ 1439{
1061 int pri; 1440 EV_CB_INVOKE ((W)w, revents);
1062
1063 for (pri = NUMPRI; pri--; )
1064 if (pendingcnt [pri])
1065 return 1;
1066
1067 return 0;
1068} 1441}
1069 1442
1070inline void 1443void inline_speed
1071call_pending (EV_P) 1444call_pending (EV_P)
1072{ 1445{
1073 int pri; 1446 int pri;
1074 1447
1075 for (pri = NUMPRI; pri--; ) 1448 for (pri = NUMPRI; pri--; )
1077 { 1450 {
1078 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1451 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1079 1452
1080 if (expect_true (p->w)) 1453 if (expect_true (p->w))
1081 { 1454 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1456
1082 p->w->pending = 0; 1457 p->w->pending = 0;
1083 EV_CB_INVOKE (p->w, p->events); 1458 EV_CB_INVOKE (p->w, p->events);
1084 } 1459 }
1085 } 1460 }
1086} 1461}
1087 1462
1088inline void 1463void inline_size
1089timers_reify (EV_P) 1464timers_reify (EV_P)
1090{ 1465{
1091 while (timercnt && ((WT)timers [0])->at <= mn_now) 1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1092 { 1467 {
1093 struct ev_timer *w = timers [0]; 1468 ev_timer *w = (ev_timer *)timers [1];
1094 1469
1095 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1096 1471
1097 /* first reschedule or stop timer */ 1472 /* first reschedule or stop timer */
1098 if (w->repeat) 1473 if (w->repeat)
1099 { 1474 {
1100 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1101 1476
1102 ((WT)w)->at += w->repeat; 1477 ev_at (w) += w->repeat;
1103 if (((WT)w)->at < mn_now) 1478 if (ev_at (w) < mn_now)
1104 ((WT)w)->at = mn_now; 1479 ev_at (w) = mn_now;
1105 1480
1106 downheap ((WT *)timers, timercnt, 0); 1481 downheap (timers, timercnt, 1);
1107 } 1482 }
1108 else 1483 else
1109 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1110 1485
1111 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1112 } 1487 }
1113} 1488}
1114 1489
1115#if EV_PERIODICS 1490#if EV_PERIODIC_ENABLE
1116inline void 1491void inline_size
1117periodics_reify (EV_P) 1492periodics_reify (EV_P)
1118{ 1493{
1119 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1120 { 1495 {
1121 struct ev_periodic *w = periodics [0]; 1496 ev_periodic *w = (ev_periodic *)periodics [1];
1122 1497
1123 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1124 1499
1125 /* first reschedule or stop timer */ 1500 /* first reschedule or stop timer */
1126 if (w->reschedule_cb) 1501 if (w->reschedule_cb)
1127 { 1502 {
1128 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1129 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1130 downheap ((WT *)periodics, periodiccnt, 0); 1505 downheap (periodics, periodiccnt, 1);
1131 } 1506 }
1132 else if (w->interval) 1507 else if (w->interval)
1133 { 1508 {
1134 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1135 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1136 downheap ((WT *)periodics, periodiccnt, 0); 1512 downheap (periodics, periodiccnt, 1);
1137 } 1513 }
1138 else 1514 else
1139 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1140 1516
1141 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1142 } 1518 }
1143} 1519}
1144 1520
1145static void 1521static void noinline
1146periodics_reschedule (EV_P) 1522periodics_reschedule (EV_P)
1147{ 1523{
1148 int i; 1524 int i;
1149 1525
1150 /* adjust periodics after time jump */ 1526 /* adjust periodics after time jump */
1151 for (i = 0; i < periodiccnt; ++i) 1527 for (i = 0; i < periodiccnt; ++i)
1152 { 1528 {
1153 struct ev_periodic *w = periodics [i]; 1529 ev_periodic *w = (ev_periodic *)periodics [i];
1154 1530
1155 if (w->reschedule_cb) 1531 if (w->reschedule_cb)
1156 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1157 else if (w->interval) 1533 else if (w->interval)
1158 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1159 } 1535 }
1160 1536
1161 /* now rebuild the heap */ 1537 /* now rebuild the heap */
1162 for (i = periodiccnt >> 1; i--; ) 1538 for (i = periodiccnt >> 1; i--; )
1163 downheap ((WT *)periodics, periodiccnt, i); 1539 downheap (periodics, periodiccnt, i);
1164} 1540}
1165#endif 1541#endif
1166 1542
1167inline int 1543#if EV_IDLE_ENABLE
1168time_update_monotonic (EV_P) 1544void inline_size
1545idle_reify (EV_P)
1169{ 1546{
1547 if (expect_false (idleall))
1548 {
1549 int pri;
1550
1551 for (pri = NUMPRI; pri--; )
1552 {
1553 if (pendingcnt [pri])
1554 break;
1555
1556 if (idlecnt [pri])
1557 {
1558 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1559 break;
1560 }
1561 }
1562 }
1563}
1564#endif
1565
1566void inline_speed
1567time_update (EV_P_ ev_tstamp max_block)
1568{
1569 int i;
1570
1571#if EV_USE_MONOTONIC
1572 if (expect_true (have_monotonic))
1573 {
1574 ev_tstamp odiff = rtmn_diff;
1575
1170 mn_now = get_clock (); 1576 mn_now = get_clock ();
1171 1577
1578 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1579 /* interpolate in the meantime */
1172 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1580 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1173 { 1581 {
1174 ev_rt_now = rtmn_diff + mn_now; 1582 ev_rt_now = rtmn_diff + mn_now;
1175 return 0; 1583 return;
1176 } 1584 }
1177 else 1585
1178 {
1179 now_floor = mn_now; 1586 now_floor = mn_now;
1180 ev_rt_now = ev_time (); 1587 ev_rt_now = ev_time ();
1181 return 1;
1182 }
1183}
1184 1588
1185inline void 1589 /* loop a few times, before making important decisions.
1186time_update (EV_P) 1590 * on the choice of "4": one iteration isn't enough,
1187{ 1591 * in case we get preempted during the calls to
1188 int i; 1592 * ev_time and get_clock. a second call is almost guaranteed
1189 1593 * to succeed in that case, though. and looping a few more times
1190#if EV_USE_MONOTONIC 1594 * doesn't hurt either as we only do this on time-jumps or
1191 if (expect_true (have_monotonic)) 1595 * in the unlikely event of having been preempted here.
1192 { 1596 */
1193 if (time_update_monotonic (EV_A)) 1597 for (i = 4; --i; )
1194 { 1598 {
1195 ev_tstamp odiff = rtmn_diff;
1196
1197 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1198 {
1199 rtmn_diff = ev_rt_now - mn_now; 1599 rtmn_diff = ev_rt_now - mn_now;
1200 1600
1201 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1202 return; /* all is well */ 1602 return; /* all is well */
1203 1603
1204 ev_rt_now = ev_time (); 1604 ev_rt_now = ev_time ();
1205 mn_now = get_clock (); 1605 mn_now = get_clock ();
1206 now_floor = mn_now; 1606 now_floor = mn_now;
1207 } 1607 }
1208 1608
1209# if EV_PERIODICS 1609# if EV_PERIODIC_ENABLE
1610 periodics_reschedule (EV_A);
1611# endif
1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1614 }
1615 else
1616#endif
1617 {
1618 ev_rt_now = ev_time ();
1619
1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1621 {
1622#if EV_PERIODIC_ENABLE
1210 periodics_reschedule (EV_A); 1623 periodics_reschedule (EV_A);
1211# endif 1624#endif
1212 /* no timer adjustment, as the monotonic clock doesn't jump */ 1625 /* adjust timers. this is easy, as the offset is the same for all of them */
1213 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1626 for (i = 1; i <= timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now;
1214 } 1628 }
1215 }
1216 else
1217#endif
1218 {
1219 ev_rt_now = ev_time ();
1220
1221 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1222 {
1223#if EV_PERIODICS
1224 periodics_reschedule (EV_A);
1225#endif
1226
1227 /* adjust timers. this is easy, as the offset is the same for all */
1228 for (i = 0; i < timercnt; ++i)
1229 ((WT)timers [i])->at += ev_rt_now - mn_now;
1230 }
1231 1629
1232 mn_now = ev_rt_now; 1630 mn_now = ev_rt_now;
1233 } 1631 }
1234} 1632}
1235 1633
1248static int loop_done; 1646static int loop_done;
1249 1647
1250void 1648void
1251ev_loop (EV_P_ int flags) 1649ev_loop (EV_P_ int flags)
1252{ 1650{
1253 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1651 loop_done = EVUNLOOP_CANCEL;
1254 ? EVUNLOOP_ONE
1255 : EVUNLOOP_CANCEL;
1256 1652
1257 while (activecnt) 1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1654
1655 do
1258 { 1656 {
1657#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid))
1660 {
1661 curpid = getpid ();
1662 postfork = 1;
1663 }
1664#endif
1665
1666#if EV_FORK_ENABLE
1667 /* we might have forked, so queue fork handlers */
1668 if (expect_false (postfork))
1669 if (forkcnt)
1670 {
1671 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1672 call_pending (EV_A);
1673 }
1674#endif
1675
1259 /* queue check watchers (and execute them) */ 1676 /* queue prepare watchers (and execute them) */
1260 if (expect_false (preparecnt)) 1677 if (expect_false (preparecnt))
1261 { 1678 {
1262 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1263 call_pending (EV_A); 1680 call_pending (EV_A);
1264 } 1681 }
1265 1682
1683 if (expect_false (!activecnt))
1684 break;
1685
1266 /* we might have forked, so reify kernel state if necessary */ 1686 /* we might have forked, so reify kernel state if necessary */
1267 if (expect_false (postfork)) 1687 if (expect_false (postfork))
1268 loop_fork (EV_A); 1688 loop_fork (EV_A);
1269 1689
1270 /* update fd-related kernel structures */ 1690 /* update fd-related kernel structures */
1271 fd_reify (EV_A); 1691 fd_reify (EV_A);
1272 1692
1273 /* calculate blocking time */ 1693 /* calculate blocking time */
1274 { 1694 {
1275 double block; 1695 ev_tstamp waittime = 0.;
1696 ev_tstamp sleeptime = 0.;
1276 1697
1277 if (flags & EVLOOP_NONBLOCK || idlecnt) 1698 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1278 block = 0.; /* do not block at all */
1279 else
1280 { 1699 {
1281 /* update time to cancel out callback processing overhead */ 1700 /* update time to cancel out callback processing overhead */
1282#if EV_USE_MONOTONIC
1283 if (expect_true (have_monotonic))
1284 time_update_monotonic (EV_A); 1701 time_update (EV_A_ 1e100);
1285 else
1286#endif
1287 {
1288 ev_rt_now = ev_time ();
1289 mn_now = ev_rt_now;
1290 }
1291 1702
1292 block = MAX_BLOCKTIME; 1703 waittime = MAX_BLOCKTIME;
1293 1704
1294 if (timercnt) 1705 if (timercnt)
1295 { 1706 {
1296 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1297 if (block > to) block = to; 1708 if (waittime > to) waittime = to;
1298 } 1709 }
1299 1710
1300#if EV_PERIODICS 1711#if EV_PERIODIC_ENABLE
1301 if (periodiccnt) 1712 if (periodiccnt)
1302 { 1713 {
1303 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1304 if (block > to) block = to; 1715 if (waittime > to) waittime = to;
1305 } 1716 }
1306#endif 1717#endif
1307 1718
1308 if (expect_false (block < 0.)) block = 0.; 1719 if (expect_false (waittime < timeout_blocktime))
1720 waittime = timeout_blocktime;
1721
1722 sleeptime = waittime - backend_fudge;
1723
1724 if (expect_true (sleeptime > io_blocktime))
1725 sleeptime = io_blocktime;
1726
1727 if (sleeptime)
1728 {
1729 ev_sleep (sleeptime);
1730 waittime -= sleeptime;
1731 }
1309 } 1732 }
1310 1733
1734 ++loop_count;
1311 backend_poll (EV_A_ block); 1735 backend_poll (EV_A_ waittime);
1736
1737 /* update ev_rt_now, do magic */
1738 time_update (EV_A_ waittime + sleeptime);
1312 } 1739 }
1313
1314 /* update ev_rt_now, do magic */
1315 time_update (EV_A);
1316 1740
1317 /* queue pending timers and reschedule them */ 1741 /* queue pending timers and reschedule them */
1318 timers_reify (EV_A); /* relative timers called last */ 1742 timers_reify (EV_A); /* relative timers called last */
1319#if EV_PERIODICS 1743#if EV_PERIODIC_ENABLE
1320 periodics_reify (EV_A); /* absolute timers called first */ 1744 periodics_reify (EV_A); /* absolute timers called first */
1321#endif 1745#endif
1322 1746
1747#if EV_IDLE_ENABLE
1323 /* queue idle watchers unless io or timers are pending */ 1748 /* queue idle watchers unless other events are pending */
1324 if (idlecnt && !any_pending (EV_A)) 1749 idle_reify (EV_A);
1325 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1750#endif
1326 1751
1327 /* queue check watchers, to be executed first */ 1752 /* queue check watchers, to be executed first */
1328 if (expect_false (checkcnt)) 1753 if (expect_false (checkcnt))
1329 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1754 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1330 1755
1331 call_pending (EV_A); 1756 call_pending (EV_A);
1332
1333 if (expect_false (loop_done))
1334 break;
1335 } 1757 }
1758 while (expect_true (
1759 activecnt
1760 && !loop_done
1761 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1762 ));
1336 1763
1337 if (loop_done == EVUNLOOP_ONE) 1764 if (loop_done == EVUNLOOP_ONE)
1338 loop_done = EVUNLOOP_CANCEL; 1765 loop_done = EVUNLOOP_CANCEL;
1339} 1766}
1340 1767
1344 loop_done = how; 1771 loop_done = how;
1345} 1772}
1346 1773
1347/*****************************************************************************/ 1774/*****************************************************************************/
1348 1775
1349inline void 1776void inline_size
1350wlist_add (WL *head, WL elem) 1777wlist_add (WL *head, WL elem)
1351{ 1778{
1352 elem->next = *head; 1779 elem->next = *head;
1353 *head = elem; 1780 *head = elem;
1354} 1781}
1355 1782
1356inline void 1783void inline_size
1357wlist_del (WL *head, WL elem) 1784wlist_del (WL *head, WL elem)
1358{ 1785{
1359 while (*head) 1786 while (*head)
1360 { 1787 {
1361 if (*head == elem) 1788 if (*head == elem)
1366 1793
1367 head = &(*head)->next; 1794 head = &(*head)->next;
1368 } 1795 }
1369} 1796}
1370 1797
1371inline void 1798void inline_speed
1372ev_clear_pending (EV_P_ W w) 1799clear_pending (EV_P_ W w)
1373{ 1800{
1374 if (w->pending) 1801 if (w->pending)
1375 { 1802 {
1376 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1803 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1377 w->pending = 0; 1804 w->pending = 0;
1378 } 1805 }
1379} 1806}
1380 1807
1381inline void 1808int
1809ev_clear_pending (EV_P_ void *w)
1810{
1811 W w_ = (W)w;
1812 int pending = w_->pending;
1813
1814 if (expect_true (pending))
1815 {
1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1817 w_->pending = 0;
1818 p->w = 0;
1819 return p->events;
1820 }
1821 else
1822 return 0;
1823}
1824
1825void inline_size
1826pri_adjust (EV_P_ W w)
1827{
1828 int pri = w->priority;
1829 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1830 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1831 w->priority = pri;
1832}
1833
1834void inline_speed
1382ev_start (EV_P_ W w, int active) 1835ev_start (EV_P_ W w, int active)
1383{ 1836{
1384 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1837 pri_adjust (EV_A_ w);
1385 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1386
1387 w->active = active; 1838 w->active = active;
1388 ev_ref (EV_A); 1839 ev_ref (EV_A);
1389} 1840}
1390 1841
1391inline void 1842void inline_size
1392ev_stop (EV_P_ W w) 1843ev_stop (EV_P_ W w)
1393{ 1844{
1394 ev_unref (EV_A); 1845 ev_unref (EV_A);
1395 w->active = 0; 1846 w->active = 0;
1396} 1847}
1397 1848
1398/*****************************************************************************/ 1849/*****************************************************************************/
1399 1850
1400void 1851void noinline
1401ev_io_start (EV_P_ struct ev_io *w) 1852ev_io_start (EV_P_ ev_io *w)
1402{ 1853{
1403 int fd = w->fd; 1854 int fd = w->fd;
1404 1855
1405 if (expect_false (ev_is_active (w))) 1856 if (expect_false (ev_is_active (w)))
1406 return; 1857 return;
1407 1858
1408 assert (("ev_io_start called with negative fd", fd >= 0)); 1859 assert (("ev_io_start called with negative fd", fd >= 0));
1409 1860
1410 ev_start (EV_A_ (W)w, 1); 1861 ev_start (EV_A_ (W)w, 1);
1411 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1412 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1863 wlist_add (&anfds[fd].head, (WL)w);
1413 1864
1414 fd_change (EV_A_ fd); 1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1866 w->events &= ~EV_IOFDSET;
1415} 1867}
1416 1868
1417void 1869void noinline
1418ev_io_stop (EV_P_ struct ev_io *w) 1870ev_io_stop (EV_P_ ev_io *w)
1419{ 1871{
1420 ev_clear_pending (EV_A_ (W)w); 1872 clear_pending (EV_A_ (W)w);
1421 if (expect_false (!ev_is_active (w))) 1873 if (expect_false (!ev_is_active (w)))
1422 return; 1874 return;
1423 1875
1424 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1425 1877
1426 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1878 wlist_del (&anfds[w->fd].head, (WL)w);
1427 ev_stop (EV_A_ (W)w); 1879 ev_stop (EV_A_ (W)w);
1428 1880
1429 fd_change (EV_A_ w->fd); 1881 fd_change (EV_A_ w->fd, 1);
1430} 1882}
1431 1883
1432void 1884void noinline
1433ev_timer_start (EV_P_ struct ev_timer *w) 1885ev_timer_start (EV_P_ ev_timer *w)
1434{ 1886{
1435 if (expect_false (ev_is_active (w))) 1887 if (expect_false (ev_is_active (w)))
1436 return; 1888 return;
1437 1889
1438 ((WT)w)->at += mn_now; 1890 ev_at (w) += mn_now;
1439 1891
1440 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1441 1893
1442 ev_start (EV_A_ (W)w, ++timercnt); 1894 ev_start (EV_A_ (W)w, ++timercnt);
1443 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1444 timers [timercnt - 1] = w; 1896 timers [timercnt] = (WT)w;
1445 upheap ((WT *)timers, timercnt - 1); 1897 upheap (timers, timercnt);
1446 1898
1447 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/
1448} 1900}
1449 1901
1450void 1902void noinline
1451ev_timer_stop (EV_P_ struct ev_timer *w) 1903ev_timer_stop (EV_P_ ev_timer *w)
1452{ 1904{
1453 ev_clear_pending (EV_A_ (W)w); 1905 clear_pending (EV_A_ (W)w);
1454 if (expect_false (!ev_is_active (w))) 1906 if (expect_false (!ev_is_active (w)))
1455 return; 1907 return;
1456 1908
1457 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w));
1458 1910
1911 {
1912 int active = ((W)w)->active;
1913
1459 if (expect_true (((W)w)->active < timercnt--)) 1914 if (expect_true (active < timercnt))
1460 { 1915 {
1461 timers [((W)w)->active - 1] = timers [timercnt]; 1916 timers [active] = timers [timercnt];
1462 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1917 adjustheap (timers, timercnt, active);
1463 } 1918 }
1464 1919
1465 ((WT)w)->at -= mn_now; 1920 --timercnt;
1921 }
1922
1923 ev_at (w) -= mn_now;
1466 1924
1467 ev_stop (EV_A_ (W)w); 1925 ev_stop (EV_A_ (W)w);
1468} 1926}
1469 1927
1470void 1928void noinline
1471ev_timer_again (EV_P_ struct ev_timer *w) 1929ev_timer_again (EV_P_ ev_timer *w)
1472{ 1930{
1473 if (ev_is_active (w)) 1931 if (ev_is_active (w))
1474 { 1932 {
1475 if (w->repeat) 1933 if (w->repeat)
1476 { 1934 {
1477 ((WT)w)->at = mn_now + w->repeat; 1935 ev_at (w) = mn_now + w->repeat;
1478 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1936 adjustheap (timers, timercnt, ((W)w)->active);
1479 } 1937 }
1480 else 1938 else
1481 ev_timer_stop (EV_A_ w); 1939 ev_timer_stop (EV_A_ w);
1482 } 1940 }
1483 else if (w->repeat) 1941 else if (w->repeat)
1485 w->at = w->repeat; 1943 w->at = w->repeat;
1486 ev_timer_start (EV_A_ w); 1944 ev_timer_start (EV_A_ w);
1487 } 1945 }
1488} 1946}
1489 1947
1490#if EV_PERIODICS 1948#if EV_PERIODIC_ENABLE
1491void 1949void noinline
1492ev_periodic_start (EV_P_ struct ev_periodic *w) 1950ev_periodic_start (EV_P_ ev_periodic *w)
1493{ 1951{
1494 if (expect_false (ev_is_active (w))) 1952 if (expect_false (ev_is_active (w)))
1495 return; 1953 return;
1496 1954
1497 if (w->reschedule_cb) 1955 if (w->reschedule_cb)
1498 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1499 else if (w->interval) 1957 else if (w->interval)
1500 { 1958 {
1501 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1502 /* this formula differs from the one in periodic_reify because we do not always round up */ 1960 /* this formula differs from the one in periodic_reify because we do not always round up */
1503 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1504 } 1962 }
1963 else
1964 ev_at (w) = w->offset;
1505 1965
1506 ev_start (EV_A_ (W)w, ++periodiccnt); 1966 ev_start (EV_A_ (W)w, ++periodiccnt);
1507 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1508 periodics [periodiccnt - 1] = w; 1968 periodics [periodiccnt] = (WT)w;
1509 upheap ((WT *)periodics, periodiccnt - 1); 1969 upheap (periodics, periodiccnt);
1510 1970
1511 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1512} 1972}
1513 1973
1514void 1974void noinline
1515ev_periodic_stop (EV_P_ struct ev_periodic *w) 1975ev_periodic_stop (EV_P_ ev_periodic *w)
1516{ 1976{
1517 ev_clear_pending (EV_A_ (W)w); 1977 clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w))) 1978 if (expect_false (!ev_is_active (w)))
1519 return; 1979 return;
1520 1980
1521 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w));
1522 1982
1983 {
1984 int active = ((W)w)->active;
1985
1523 if (expect_true (((W)w)->active < periodiccnt--)) 1986 if (expect_true (active < periodiccnt))
1524 { 1987 {
1525 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1988 periodics [active] = periodics [periodiccnt];
1526 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1989 adjustheap (periodics, periodiccnt, active);
1527 } 1990 }
1991
1992 --periodiccnt;
1993 }
1528 1994
1529 ev_stop (EV_A_ (W)w); 1995 ev_stop (EV_A_ (W)w);
1530} 1996}
1531 1997
1532void 1998void noinline
1533ev_periodic_again (EV_P_ struct ev_periodic *w) 1999ev_periodic_again (EV_P_ ev_periodic *w)
1534{ 2000{
1535 /* TODO: use adjustheap and recalculation */ 2001 /* TODO: use adjustheap and recalculation */
1536 ev_periodic_stop (EV_A_ w); 2002 ev_periodic_stop (EV_A_ w);
1537 ev_periodic_start (EV_A_ w); 2003 ev_periodic_start (EV_A_ w);
1538} 2004}
1539#endif 2005#endif
1540 2006
1541void
1542ev_idle_start (EV_P_ struct ev_idle *w)
1543{
1544 if (expect_false (ev_is_active (w)))
1545 return;
1546
1547 ev_start (EV_A_ (W)w, ++idlecnt);
1548 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1549 idles [idlecnt - 1] = w;
1550}
1551
1552void
1553ev_idle_stop (EV_P_ struct ev_idle *w)
1554{
1555 ev_clear_pending (EV_A_ (W)w);
1556 if (expect_false (!ev_is_active (w)))
1557 return;
1558
1559 idles [((W)w)->active - 1] = idles [--idlecnt];
1560 ev_stop (EV_A_ (W)w);
1561}
1562
1563void
1564ev_prepare_start (EV_P_ struct ev_prepare *w)
1565{
1566 if (expect_false (ev_is_active (w)))
1567 return;
1568
1569 ev_start (EV_A_ (W)w, ++preparecnt);
1570 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1571 prepares [preparecnt - 1] = w;
1572}
1573
1574void
1575ev_prepare_stop (EV_P_ struct ev_prepare *w)
1576{
1577 ev_clear_pending (EV_A_ (W)w);
1578 if (expect_false (!ev_is_active (w)))
1579 return;
1580
1581 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1582 ev_stop (EV_A_ (W)w);
1583}
1584
1585void
1586ev_check_start (EV_P_ struct ev_check *w)
1587{
1588 if (expect_false (ev_is_active (w)))
1589 return;
1590
1591 ev_start (EV_A_ (W)w, ++checkcnt);
1592 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1593 checks [checkcnt - 1] = w;
1594}
1595
1596void
1597ev_check_stop (EV_P_ struct ev_check *w)
1598{
1599 ev_clear_pending (EV_A_ (W)w);
1600 if (expect_false (!ev_is_active (w)))
1601 return;
1602
1603 checks [((W)w)->active - 1] = checks [--checkcnt];
1604 ev_stop (EV_A_ (W)w);
1605}
1606
1607#ifndef SA_RESTART 2007#ifndef SA_RESTART
1608# define SA_RESTART 0 2008# define SA_RESTART 0
1609#endif 2009#endif
1610 2010
1611void 2011void noinline
1612ev_signal_start (EV_P_ struct ev_signal *w) 2012ev_signal_start (EV_P_ ev_signal *w)
1613{ 2013{
1614#if EV_MULTIPLICITY 2014#if EV_MULTIPLICITY
1615 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1616#endif 2016#endif
1617 if (expect_false (ev_is_active (w))) 2017 if (expect_false (ev_is_active (w)))
1618 return; 2018 return;
1619 2019
1620 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1621 2021
2022 evpipe_init (EV_A);
2023
2024 {
2025#ifndef _WIN32
2026 sigset_t full, prev;
2027 sigfillset (&full);
2028 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif
2030
2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2032
2033#ifndef _WIN32
2034 sigprocmask (SIG_SETMASK, &prev, 0);
2035#endif
2036 }
2037
1622 ev_start (EV_A_ (W)w, 1); 2038 ev_start (EV_A_ (W)w, 1);
1623 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1624 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2039 wlist_add (&signals [w->signum - 1].head, (WL)w);
1625 2040
1626 if (!((WL)w)->next) 2041 if (!((WL)w)->next)
1627 { 2042 {
1628#if _WIN32 2043#if _WIN32
1629 signal (w->signum, sighandler); 2044 signal (w->signum, ev_sighandler);
1630#else 2045#else
1631 struct sigaction sa; 2046 struct sigaction sa;
1632 sa.sa_handler = sighandler; 2047 sa.sa_handler = ev_sighandler;
1633 sigfillset (&sa.sa_mask); 2048 sigfillset (&sa.sa_mask);
1634 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1635 sigaction (w->signum, &sa, 0); 2050 sigaction (w->signum, &sa, 0);
1636#endif 2051#endif
1637 } 2052 }
1638} 2053}
1639 2054
1640void 2055void noinline
1641ev_signal_stop (EV_P_ struct ev_signal *w) 2056ev_signal_stop (EV_P_ ev_signal *w)
1642{ 2057{
1643 ev_clear_pending (EV_A_ (W)w); 2058 clear_pending (EV_A_ (W)w);
1644 if (expect_false (!ev_is_active (w))) 2059 if (expect_false (!ev_is_active (w)))
1645 return; 2060 return;
1646 2061
1647 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2062 wlist_del (&signals [w->signum - 1].head, (WL)w);
1648 ev_stop (EV_A_ (W)w); 2063 ev_stop (EV_A_ (W)w);
1649 2064
1650 if (!signals [w->signum - 1].head) 2065 if (!signals [w->signum - 1].head)
1651 signal (w->signum, SIG_DFL); 2066 signal (w->signum, SIG_DFL);
1652} 2067}
1653 2068
1654void 2069void
1655ev_child_start (EV_P_ struct ev_child *w) 2070ev_child_start (EV_P_ ev_child *w)
1656{ 2071{
1657#if EV_MULTIPLICITY 2072#if EV_MULTIPLICITY
1658 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1659#endif 2074#endif
1660 if (expect_false (ev_is_active (w))) 2075 if (expect_false (ev_is_active (w)))
1661 return; 2076 return;
1662 2077
1663 ev_start (EV_A_ (W)w, 1); 2078 ev_start (EV_A_ (W)w, 1);
1664 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1665} 2080}
1666 2081
1667void 2082void
1668ev_child_stop (EV_P_ struct ev_child *w) 2083ev_child_stop (EV_P_ ev_child *w)
1669{ 2084{
1670 ev_clear_pending (EV_A_ (W)w); 2085 clear_pending (EV_A_ (W)w);
1671 if (expect_false (!ev_is_active (w))) 2086 if (expect_false (!ev_is_active (w)))
1672 return; 2087 return;
1673 2088
1674 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1675 ev_stop (EV_A_ (W)w); 2090 ev_stop (EV_A_ (W)w);
1676} 2091}
1677 2092
1678#if EV_MULTIPLICITY 2093#if EV_STAT_ENABLE
2094
2095# ifdef _WIN32
2096# undef lstat
2097# define lstat(a,b) _stati64 (a,b)
2098# endif
2099
2100#define DEF_STAT_INTERVAL 5.0074891
2101#define MIN_STAT_INTERVAL 0.1074891
2102
2103static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2104
2105#if EV_USE_INOTIFY
2106# define EV_INOTIFY_BUFSIZE 8192
2107
2108static void noinline
2109infy_add (EV_P_ ev_stat *w)
2110{
2111 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2112
2113 if (w->wd < 0)
2114 {
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2116
2117 /* monitor some parent directory for speedup hints */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 {
2120 char path [4096];
2121 strcpy (path, w->path);
2122
2123 do
2124 {
2125 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2126 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2127
2128 char *pend = strrchr (path, '/');
2129
2130 if (!pend)
2131 break; /* whoops, no '/', complain to your admin */
2132
2133 *pend = 0;
2134 w->wd = inotify_add_watch (fs_fd, path, mask);
2135 }
2136 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2137 }
2138 }
2139 else
2140 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2141
2142 if (w->wd >= 0)
2143 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2144}
2145
2146static void noinline
2147infy_del (EV_P_ ev_stat *w)
2148{
2149 int slot;
2150 int wd = w->wd;
2151
2152 if (wd < 0)
2153 return;
2154
2155 w->wd = -2;
2156 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2157 wlist_del (&fs_hash [slot].head, (WL)w);
2158
2159 /* remove this watcher, if others are watching it, they will rearm */
2160 inotify_rm_watch (fs_fd, wd);
2161}
2162
2163static void noinline
2164infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2165{
2166 if (slot < 0)
2167 /* overflow, need to check for all hahs slots */
2168 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2169 infy_wd (EV_A_ slot, wd, ev);
2170 else
2171 {
2172 WL w_;
2173
2174 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2175 {
2176 ev_stat *w = (ev_stat *)w_;
2177 w_ = w_->next; /* lets us remove this watcher and all before it */
2178
2179 if (w->wd == wd || wd == -1)
2180 {
2181 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2182 {
2183 w->wd = -1;
2184 infy_add (EV_A_ w); /* re-add, no matter what */
2185 }
2186
2187 stat_timer_cb (EV_A_ &w->timer, 0);
2188 }
2189 }
2190 }
2191}
2192
1679static void 2193static void
1680embed_cb (EV_P_ struct ev_io *io, int revents) 2194infy_cb (EV_P_ ev_io *w, int revents)
1681{ 2195{
1682 struct ev_embed *w = (struct ev_embed *)(((char *)io) - offsetof (struct ev_embed, io)); 2196 char buf [EV_INOTIFY_BUFSIZE];
2197 struct inotify_event *ev = (struct inotify_event *)buf;
2198 int ofs;
2199 int len = read (fs_fd, buf, sizeof (buf));
1683 2200
2201 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2202 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2203}
2204
2205void inline_size
2206infy_init (EV_P)
2207{
2208 if (fs_fd != -2)
2209 return;
2210
2211 fs_fd = inotify_init ();
2212
2213 if (fs_fd >= 0)
2214 {
2215 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2216 ev_set_priority (&fs_w, EV_MAXPRI);
2217 ev_io_start (EV_A_ &fs_w);
2218 }
2219}
2220
2221void inline_size
2222infy_fork (EV_P)
2223{
2224 int slot;
2225
2226 if (fs_fd < 0)
2227 return;
2228
2229 close (fs_fd);
2230 fs_fd = inotify_init ();
2231
2232 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2233 {
2234 WL w_ = fs_hash [slot].head;
2235 fs_hash [slot].head = 0;
2236
2237 while (w_)
2238 {
2239 ev_stat *w = (ev_stat *)w_;
2240 w_ = w_->next; /* lets us add this watcher */
2241
2242 w->wd = -1;
2243
2244 if (fs_fd >= 0)
2245 infy_add (EV_A_ w); /* re-add, no matter what */
2246 else
2247 ev_timer_start (EV_A_ &w->timer);
2248 }
2249
2250 }
2251}
2252
2253#endif
2254
2255void
2256ev_stat_stat (EV_P_ ev_stat *w)
2257{
2258 if (lstat (w->path, &w->attr) < 0)
2259 w->attr.st_nlink = 0;
2260 else if (!w->attr.st_nlink)
2261 w->attr.st_nlink = 1;
2262}
2263
2264static void noinline
2265stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2266{
2267 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2268
2269 /* we copy this here each the time so that */
2270 /* prev has the old value when the callback gets invoked */
2271 w->prev = w->attr;
2272 ev_stat_stat (EV_A_ w);
2273
2274 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2275 if (
2276 w->prev.st_dev != w->attr.st_dev
2277 || w->prev.st_ino != w->attr.st_ino
2278 || w->prev.st_mode != w->attr.st_mode
2279 || w->prev.st_nlink != w->attr.st_nlink
2280 || w->prev.st_uid != w->attr.st_uid
2281 || w->prev.st_gid != w->attr.st_gid
2282 || w->prev.st_rdev != w->attr.st_rdev
2283 || w->prev.st_size != w->attr.st_size
2284 || w->prev.st_atime != w->attr.st_atime
2285 || w->prev.st_mtime != w->attr.st_mtime
2286 || w->prev.st_ctime != w->attr.st_ctime
2287 ) {
2288 #if EV_USE_INOTIFY
2289 infy_del (EV_A_ w);
2290 infy_add (EV_A_ w);
2291 ev_stat_stat (EV_A_ w); /* avoid race... */
2292 #endif
2293
1684 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2294 ev_feed_event (EV_A_ w, EV_STAT);
1685 ev_loop (w->loop, EVLOOP_NONBLOCK); 2295 }
1686} 2296}
1687 2297
1688void 2298void
1689ev_embed_start (EV_P_ struct ev_embed *w) 2299ev_stat_start (EV_P_ ev_stat *w)
1690{ 2300{
1691 if (expect_false (ev_is_active (w))) 2301 if (expect_false (ev_is_active (w)))
1692 return; 2302 return;
1693 2303
2304 /* since we use memcmp, we need to clear any padding data etc. */
2305 memset (&w->prev, 0, sizeof (ev_statdata));
2306 memset (&w->attr, 0, sizeof (ev_statdata));
2307
2308 ev_stat_stat (EV_A_ w);
2309
2310 if (w->interval < MIN_STAT_INTERVAL)
2311 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2312
2313 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2314 ev_set_priority (&w->timer, ev_priority (w));
2315
2316#if EV_USE_INOTIFY
2317 infy_init (EV_A);
2318
2319 if (fs_fd >= 0)
2320 infy_add (EV_A_ w);
2321 else
2322#endif
2323 ev_timer_start (EV_A_ &w->timer);
2324
2325 ev_start (EV_A_ (W)w, 1);
2326}
2327
2328void
2329ev_stat_stop (EV_P_ ev_stat *w)
2330{
2331 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w)))
2333 return;
2334
2335#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w);
2337#endif
2338 ev_timer_stop (EV_A_ &w->timer);
2339
2340 ev_stop (EV_A_ (W)w);
2341}
2342#endif
2343
2344#if EV_IDLE_ENABLE
2345void
2346ev_idle_start (EV_P_ ev_idle *w)
2347{
2348 if (expect_false (ev_is_active (w)))
2349 return;
2350
2351 pri_adjust (EV_A_ (W)w);
2352
1694 { 2353 {
2354 int active = ++idlecnt [ABSPRI (w)];
2355
2356 ++idleall;
2357 ev_start (EV_A_ (W)w, active);
2358
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w;
2361 }
2362}
2363
2364void
2365ev_idle_stop (EV_P_ ev_idle *w)
2366{
2367 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w)))
2369 return;
2370
2371 {
2372 int active = ((W)w)->active;
2373
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2376
2377 ev_stop (EV_A_ (W)w);
2378 --idleall;
2379 }
2380}
2381#endif
2382
2383void
2384ev_prepare_start (EV_P_ ev_prepare *w)
2385{
2386 if (expect_false (ev_is_active (w)))
2387 return;
2388
2389 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w;
2392}
2393
2394void
2395ev_prepare_stop (EV_P_ ev_prepare *w)
2396{
2397 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w)))
2399 return;
2400
2401 {
2402 int active = ((W)w)->active;
2403 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active;
2405 }
2406
2407 ev_stop (EV_A_ (W)w);
2408}
2409
2410void
2411ev_check_start (EV_P_ ev_check *w)
2412{
2413 if (expect_false (ev_is_active (w)))
2414 return;
2415
2416 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w;
2419}
2420
2421void
2422ev_check_stop (EV_P_ ev_check *w)
2423{
2424 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w)))
2426 return;
2427
2428 {
2429 int active = ((W)w)->active;
2430 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active;
2432 }
2433
2434 ev_stop (EV_A_ (W)w);
2435}
2436
2437#if EV_EMBED_ENABLE
2438void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w)
2440{
2441 ev_loop (w->other, EVLOOP_NONBLOCK);
2442}
2443
2444static void
2445embed_io_cb (EV_P_ ev_io *io, int revents)
2446{
2447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2448
2449 if (ev_cb (w))
2450 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2451 else
2452 ev_loop (w->other, EVLOOP_NONBLOCK);
2453}
2454
2455static void
2456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2457{
2458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2459
2460 {
1695 struct ev_loop *loop = w->loop; 2461 struct ev_loop *loop = w->other;
2462
2463 while (fdchangecnt)
2464 {
2465 fd_reify (EV_A);
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2467 }
2468 }
2469}
2470
2471#if 0
2472static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2474{
2475 ev_idle_stop (EV_A_ idle);
2476}
2477#endif
2478
2479void
2480ev_embed_start (EV_P_ ev_embed *w)
2481{
2482 if (expect_false (ev_is_active (w)))
2483 return;
2484
2485 {
2486 struct ev_loop *loop = w->other;
1696 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1697 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1698 } 2489 }
1699 2490
2491 ev_set_priority (&w->io, ev_priority (w));
1700 ev_io_start (EV_A_ &w->io); 2492 ev_io_start (EV_A_ &w->io);
2493
2494 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare);
2497
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499
1701 ev_start (EV_A_ (W)w, 1); 2500 ev_start (EV_A_ (W)w, 1);
1702} 2501}
1703 2502
1704void 2503void
1705ev_embed_stop (EV_P_ struct ev_embed *w) 2504ev_embed_stop (EV_P_ ev_embed *w)
1706{ 2505{
1707 ev_clear_pending (EV_A_ (W)w); 2506 clear_pending (EV_A_ (W)w);
1708 if (expect_false (!ev_is_active (w))) 2507 if (expect_false (!ev_is_active (w)))
1709 return; 2508 return;
1710 2509
1711 ev_io_stop (EV_A_ &w->io); 2510 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare);
2512
1712 ev_stop (EV_A_ (W)w); 2513 ev_stop (EV_A_ (W)w);
1713} 2514}
1714#endif 2515#endif
1715 2516
2517#if EV_FORK_ENABLE
2518void
2519ev_fork_start (EV_P_ ev_fork *w)
2520{
2521 if (expect_false (ev_is_active (w)))
2522 return;
2523
2524 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w;
2527}
2528
2529void
2530ev_fork_stop (EV_P_ ev_fork *w)
2531{
2532 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w)))
2534 return;
2535
2536 {
2537 int active = ((W)w)->active;
2538 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active;
2540 }
2541
2542 ev_stop (EV_A_ (W)w);
2543}
2544#endif
2545
2546#if EV_ASYNC_ENABLE
2547void
2548ev_async_start (EV_P_ ev_async *w)
2549{
2550 if (expect_false (ev_is_active (w)))
2551 return;
2552
2553 evpipe_init (EV_A);
2554
2555 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w;
2558}
2559
2560void
2561ev_async_stop (EV_P_ ev_async *w)
2562{
2563 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w)))
2565 return;
2566
2567 {
2568 int active = ((W)w)->active;
2569 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active;
2571 }
2572
2573 ev_stop (EV_A_ (W)w);
2574}
2575
2576void
2577ev_async_send (EV_P_ ev_async *w)
2578{
2579 w->sent = 1;
2580 evpipe_write (EV_A_ &gotasync);
2581}
2582#endif
2583
1716/*****************************************************************************/ 2584/*****************************************************************************/
1717 2585
1718struct ev_once 2586struct ev_once
1719{ 2587{
1720 struct ev_io io; 2588 ev_io io;
1721 struct ev_timer to; 2589 ev_timer to;
1722 void (*cb)(int revents, void *arg); 2590 void (*cb)(int revents, void *arg);
1723 void *arg; 2591 void *arg;
1724}; 2592};
1725 2593
1726static void 2594static void
1735 2603
1736 cb (revents, arg); 2604 cb (revents, arg);
1737} 2605}
1738 2606
1739static void 2607static void
1740once_cb_io (EV_P_ struct ev_io *w, int revents) 2608once_cb_io (EV_P_ ev_io *w, int revents)
1741{ 2609{
1742 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1743} 2611}
1744 2612
1745static void 2613static void
1746once_cb_to (EV_P_ struct ev_timer *w, int revents) 2614once_cb_to (EV_P_ ev_timer *w, int revents)
1747{ 2615{
1748 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1749} 2617}
1750 2618
1751void 2619void
1775 ev_timer_set (&once->to, timeout, 0.); 2643 ev_timer_set (&once->to, timeout, 0.);
1776 ev_timer_start (EV_A_ &once->to); 2644 ev_timer_start (EV_A_ &once->to);
1777 } 2645 }
1778} 2646}
1779 2647
2648#if EV_MULTIPLICITY
2649 #include "ev_wrap.h"
2650#endif
2651
1780#ifdef __cplusplus 2652#ifdef __cplusplus
1781} 2653}
1782#endif 2654#endif
1783 2655

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines