ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.166 by root, Sat Dec 8 03:53:36 2007 UTC vs.
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
102# else 119# else
103# define EV_USE_INOTIFY 0 120# define EV_USE_INOTIFY 0
104# endif 121# endif
105# endif 122# endif
106 123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
107#endif 132#endif
108 133
109#include <math.h> 134#include <math.h>
110#include <stdlib.h> 135#include <stdlib.h>
111#include <fcntl.h> 136#include <fcntl.h>
136# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
137# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
138# endif 163# endif
139#endif 164#endif
140 165
141/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
142 167
143#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
144# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
145#endif 170#endif
146 171
147#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
148# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
149#endif 178#endif
150 179
151#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
152# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
153#endif 182#endif
159# define EV_USE_POLL 1 188# define EV_USE_POLL 1
160# endif 189# endif
161#endif 190#endif
162 191
163#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
164# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
165#endif 198#endif
166 199
167#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
168# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
169#endif 202#endif
171#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
172# define EV_USE_PORT 0 205# define EV_USE_PORT 0
173#endif 206#endif
174 207
175#ifndef EV_USE_INOTIFY 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
176# define EV_USE_INOTIFY 0 212# define EV_USE_INOTIFY 0
213# endif
177#endif 214#endif
178 215
179#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
180# if EV_MINIMAL 217# if EV_MINIMAL
181# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
190# else 227# else
191# define EV_INOTIFY_HASHSIZE 16 228# define EV_INOTIFY_HASHSIZE 16
192# endif 229# endif
193#endif 230#endif
194 231
195/**/ 232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
196 241
197#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
198# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
199# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
200#endif 245#endif
202#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
203# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
204# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
205#endif 250#endif
206 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
207#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
208# include <winsock.h> 268# include <winsock.h>
209#endif 269#endif
210 270
211#if !EV_STAT_ENABLE 271#if EV_USE_EVENTFD
212# define EV_USE_INOTIFY 0 272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
213#endif 276# endif
214 277int eventfd (unsigned int initval, int flags);
215#if EV_USE_INOTIFY 278# ifdef __cplusplus
216# include <sys/inotify.h> 279}
280# endif
217#endif 281#endif
218 282
219/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
220 294
221#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
222#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
223/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
224 298
225#if __GNUC__ >= 3 299#if __GNUC__ >= 4
226# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
227# define inline_size static inline /* inline for codesize */
228# if EV_MINIMAL
229# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
230# define inline_speed static noinline
231# else
232# define noinline
233# define inline_speed static inline
234# endif
235#else 302#else
236# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
237# define inline_speed static
238# define inline_size static
239# define noinline 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
240#endif 308#endif
241 309
242#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
243#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
244 319
245#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
246#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
247 322
248#define EMPTY /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
250 325
251typedef ev_watcher *W; 326typedef ev_watcher *W;
252typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
253typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
254 329
330#define ev_at(w) ((WT)(w))->at
331
332#if EV_USE_MONOTONIC
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */
255static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
336#endif
256 337
257#ifdef _WIN32 338#ifdef _WIN32
258# include "ev_win32.c" 339# include "ev_win32.c"
259#endif 340#endif
260 341
281 perror (msg); 362 perror (msg);
282 abort (); 363 abort ();
283 } 364 }
284} 365}
285 366
367static void *
368ev_realloc_emul (void *ptr, long size)
369{
370 /* some systems, notably openbsd and darwin, fail to properly
371 * implement realloc (x, 0) (as required by both ansi c-98 and
372 * the single unix specification, so work around them here.
373 */
374
375 if (size)
376 return realloc (ptr, size);
377
378 free (ptr);
379 return 0;
380}
381
286static void *(*alloc)(void *ptr, long size); 382static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
287 383
288void 384void
289ev_set_allocator (void *(*cb)(void *ptr, long size)) 385ev_set_allocator (void *(*cb)(void *ptr, long size))
290{ 386{
291 alloc = cb; 387 alloc = cb;
292} 388}
293 389
294inline_speed void * 390inline_speed void *
295ev_realloc (void *ptr, long size) 391ev_realloc (void *ptr, long size)
296{ 392{
297 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 393 ptr = alloc (ptr, size);
298 394
299 if (!ptr && size) 395 if (!ptr && size)
300 { 396 {
301 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 397 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
302 abort (); 398 abort ();
396{ 492{
397 return ev_rt_now; 493 return ev_rt_now;
398} 494}
399#endif 495#endif
400 496
497void
498ev_sleep (ev_tstamp delay)
499{
500 if (delay > 0.)
501 {
502#if EV_USE_NANOSLEEP
503 struct timespec ts;
504
505 ts.tv_sec = (time_t)delay;
506 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
507
508 nanosleep (&ts, 0);
509#elif defined(_WIN32)
510 Sleep ((unsigned long)(delay * 1e3));
511#else
512 struct timeval tv;
513
514 tv.tv_sec = (time_t)delay;
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
516
517 select (0, 0, 0, 0, &tv);
518#endif
519 }
520}
521
522/*****************************************************************************/
523
401int inline_size 524int inline_size
402array_nextsize (int elem, int cur, int cnt) 525array_nextsize (int elem, int cur, int cnt)
403{ 526{
404 int ncur = cur + 1; 527 int ncur = cur + 1;
405 528
417 } 540 }
418 541
419 return ncur; 542 return ncur;
420} 543}
421 544
422inline_speed void * 545static noinline void *
423array_realloc (int elem, void *base, int *cur, int cnt) 546array_realloc (int elem, void *base, int *cur, int cnt)
424{ 547{
425 *cur = array_nextsize (elem, *cur, cnt); 548 *cur = array_nextsize (elem, *cur, cnt);
426 return ev_realloc (base, elem * *cur); 549 return ev_realloc (base, elem * *cur);
427} 550}
452 575
453void noinline 576void noinline
454ev_feed_event (EV_P_ void *w, int revents) 577ev_feed_event (EV_P_ void *w, int revents)
455{ 578{
456 W w_ = (W)w; 579 W w_ = (W)w;
580 int pri = ABSPRI (w_);
457 581
458 if (expect_false (w_->pending)) 582 if (expect_false (w_->pending))
583 pendings [pri][w_->pending - 1].events |= revents;
584 else
459 { 585 {
586 w_->pending = ++pendingcnt [pri];
587 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
588 pendings [pri][w_->pending - 1].w = w_;
460 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 589 pendings [pri][w_->pending - 1].events = revents;
461 return;
462 } 590 }
463
464 w_->pending = ++pendingcnt [ABSPRI (w_)];
465 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
466 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
467 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
468} 591}
469 592
470void inline_size 593void inline_speed
471queue_events (EV_P_ W *events, int eventcnt, int type) 594queue_events (EV_P_ W *events, int eventcnt, int type)
472{ 595{
473 int i; 596 int i;
474 597
475 for (i = 0; i < eventcnt; ++i) 598 for (i = 0; i < eventcnt; ++i)
507} 630}
508 631
509void 632void
510ev_feed_fd_event (EV_P_ int fd, int revents) 633ev_feed_fd_event (EV_P_ int fd, int revents)
511{ 634{
635 if (fd >= 0 && fd < anfdmax)
512 fd_event (EV_A_ fd, revents); 636 fd_event (EV_A_ fd, revents);
513} 637}
514 638
515void inline_size 639void inline_size
516fd_reify (EV_P) 640fd_reify (EV_P)
517{ 641{
521 { 645 {
522 int fd = fdchanges [i]; 646 int fd = fdchanges [i];
523 ANFD *anfd = anfds + fd; 647 ANFD *anfd = anfds + fd;
524 ev_io *w; 648 ev_io *w;
525 649
526 int events = 0; 650 unsigned char events = 0;
527 651
528 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 652 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
529 events |= w->events; 653 events |= (unsigned char)w->events;
530 654
531#if EV_SELECT_IS_WINSOCKET 655#if EV_SELECT_IS_WINSOCKET
532 if (events) 656 if (events)
533 { 657 {
534 unsigned long argp; 658 unsigned long argp;
659 #ifdef EV_FD_TO_WIN32_HANDLE
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
661 #else
535 anfd->handle = _get_osfhandle (fd); 662 anfd->handle = _get_osfhandle (fd);
663 #endif
536 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
537 } 665 }
538#endif 666#endif
539 667
668 {
669 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify;
671
540 anfd->reify = 0; 672 anfd->reify = 0;
541
542 backend_modify (EV_A_ fd, anfd->events, events);
543 anfd->events = events; 673 anfd->events = events;
674
675 if (o_events != events || o_reify & EV_IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events);
677 }
544 } 678 }
545 679
546 fdchangecnt = 0; 680 fdchangecnt = 0;
547} 681}
548 682
549void inline_size 683void inline_size
550fd_change (EV_P_ int fd) 684fd_change (EV_P_ int fd, int flags)
551{ 685{
552 if (expect_false (anfds [fd].reify)) 686 unsigned char reify = anfds [fd].reify;
553 return;
554
555 anfds [fd].reify = 1; 687 anfds [fd].reify |= flags;
556 688
689 if (expect_true (!reify))
690 {
557 ++fdchangecnt; 691 ++fdchangecnt;
558 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
559 fdchanges [fdchangecnt - 1] = fd; 693 fdchanges [fdchangecnt - 1] = fd;
694 }
560} 695}
561 696
562void inline_speed 697void inline_speed
563fd_kill (EV_P_ int fd) 698fd_kill (EV_P_ int fd)
564{ 699{
615 750
616 for (fd = 0; fd < anfdmax; ++fd) 751 for (fd = 0; fd < anfdmax; ++fd)
617 if (anfds [fd].events) 752 if (anfds [fd].events)
618 { 753 {
619 anfds [fd].events = 0; 754 anfds [fd].events = 0;
620 fd_change (EV_A_ fd); 755 fd_change (EV_A_ fd, EV_IOFDSET | 1);
621 } 756 }
622} 757}
623 758
624/*****************************************************************************/ 759/*****************************************************************************/
625 760
761/* towards the root */
626void inline_speed 762void inline_speed
627upheap (WT *heap, int k) 763upheap (WT *heap, int k)
628{ 764{
629 WT w = heap [k]; 765 WT w = heap [k];
630 766
631 while (k && heap [k >> 1]->at > w->at) 767 for (;;)
632 { 768 {
769 int p = k >> 1;
770
771 /* maybe we could use a dummy element at heap [0]? */
772 if (!p || heap [p]->at <= w->at)
773 break;
774
633 heap [k] = heap [k >> 1]; 775 heap [k] = heap [p];
634 ((W)heap [k])->active = k + 1; 776 ((W)heap [k])->active = k;
635 k >>= 1; 777 k = p;
636 } 778 }
637 779
638 heap [k] = w; 780 heap [k] = w;
639 ((W)heap [k])->active = k + 1; 781 ((W)heap [k])->active = k;
640
641} 782}
642 783
784/* away from the root */
643void inline_speed 785void inline_speed
644downheap (WT *heap, int N, int k) 786downheap (WT *heap, int N, int k)
645{ 787{
646 WT w = heap [k]; 788 WT w = heap [k];
647 789
648 while (k < (N >> 1)) 790 for (;;)
649 { 791 {
650 int j = k << 1; 792 int c = k << 1;
651 793
652 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 794 if (c > N)
653 ++j;
654
655 if (w->at <= heap [j]->at)
656 break; 795 break;
657 796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
658 heap [k] = heap [j]; 803 heap [k] = heap [c];
659 ((W)heap [k])->active = k + 1; 804 ((W)heap [k])->active = k;
805
660 k = j; 806 k = c;
661 } 807 }
662 808
663 heap [k] = w; 809 heap [k] = w;
664 ((W)heap [k])->active = k + 1; 810 ((W)heap [k])->active = k;
665} 811}
666 812
667void inline_size 813void inline_size
668adjustheap (WT *heap, int N, int k) 814adjustheap (WT *heap, int N, int k)
669{ 815{
674/*****************************************************************************/ 820/*****************************************************************************/
675 821
676typedef struct 822typedef struct
677{ 823{
678 WL head; 824 WL head;
679 sig_atomic_t volatile gotsig; 825 EV_ATOMIC_T gotsig;
680} ANSIG; 826} ANSIG;
681 827
682static ANSIG *signals; 828static ANSIG *signals;
683static int signalmax; 829static int signalmax;
684 830
685static int sigpipe [2]; 831static EV_ATOMIC_T gotsig;
686static sig_atomic_t volatile gotsig;
687static ev_io sigev;
688 832
689void inline_size 833void inline_size
690signals_init (ANSIG *base, int count) 834signals_init (ANSIG *base, int count)
691{ 835{
692 while (count--) 836 while (count--)
696 840
697 ++base; 841 ++base;
698 } 842 }
699} 843}
700 844
701static void 845/*****************************************************************************/
702sighandler (int signum)
703{
704#if _WIN32
705 signal (signum, sighandler);
706#endif
707 846
708 signals [signum - 1].gotsig = 1;
709
710 if (!gotsig)
711 {
712 int old_errno = errno;
713 gotsig = 1;
714 write (sigpipe [1], &signum, 1);
715 errno = old_errno;
716 }
717}
718
719void noinline
720ev_feed_signal_event (EV_P_ int signum)
721{
722 WL w;
723
724#if EV_MULTIPLICITY
725 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
726#endif
727
728 --signum;
729
730 if (signum < 0 || signum >= signalmax)
731 return;
732
733 signals [signum].gotsig = 0;
734
735 for (w = signals [signum].head; w; w = w->next)
736 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
737}
738
739static void
740sigcb (EV_P_ ev_io *iow, int revents)
741{
742 int signum;
743
744 read (sigpipe [0], &revents, 1);
745 gotsig = 0;
746
747 for (signum = signalmax; signum--; )
748 if (signals [signum].gotsig)
749 ev_feed_signal_event (EV_A_ signum + 1);
750}
751
752void inline_size 847void inline_speed
753fd_intern (int fd) 848fd_intern (int fd)
754{ 849{
755#ifdef _WIN32 850#ifdef _WIN32
756 int arg = 1; 851 int arg = 1;
757 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
760 fcntl (fd, F_SETFL, O_NONBLOCK); 855 fcntl (fd, F_SETFL, O_NONBLOCK);
761#endif 856#endif
762} 857}
763 858
764static void noinline 859static void noinline
765siginit (EV_P) 860evpipe_init (EV_P)
766{ 861{
862 if (!ev_is_active (&pipeev))
863 {
864#if EV_USE_EVENTFD
865 if ((evfd = eventfd (0, 0)) >= 0)
866 {
867 evpipe [0] = -1;
868 fd_intern (evfd);
869 ev_io_set (&pipeev, evfd, EV_READ);
870 }
871 else
872#endif
873 {
874 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe");
876
767 fd_intern (sigpipe [0]); 877 fd_intern (evpipe [0]);
768 fd_intern (sigpipe [1]); 878 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ);
880 }
769 881
770 ev_io_set (&sigev, sigpipe [0], EV_READ);
771 ev_io_start (EV_A_ &sigev); 882 ev_io_start (EV_A_ &pipeev);
772 ev_unref (EV_A); /* child watcher should not keep loop alive */ 883 ev_unref (EV_A); /* watcher should not keep loop alive */
884 }
885}
886
887void inline_size
888evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{
890 if (!*flag)
891 {
892 int old_errno = errno; /* save errno because write might clobber it */
893
894 *flag = 1;
895
896#if EV_USE_EVENTFD
897 if (evfd >= 0)
898 {
899 uint64_t counter = 1;
900 write (evfd, &counter, sizeof (uint64_t));
901 }
902 else
903#endif
904 write (evpipe [1], &old_errno, 1);
905
906 errno = old_errno;
907 }
908}
909
910static void
911pipecb (EV_P_ ev_io *iow, int revents)
912{
913#if EV_USE_EVENTFD
914 if (evfd >= 0)
915 {
916 uint64_t counter = 1;
917 read (evfd, &counter, sizeof (uint64_t));
918 }
919 else
920#endif
921 {
922 char dummy;
923 read (evpipe [0], &dummy, 1);
924 }
925
926 if (gotsig && ev_is_default_loop (EV_A))
927 {
928 int signum;
929 gotsig = 0;
930
931 for (signum = signalmax; signum--; )
932 if (signals [signum].gotsig)
933 ev_feed_signal_event (EV_A_ signum + 1);
934 }
935
936#if EV_ASYNC_ENABLE
937 if (gotasync)
938 {
939 int i;
940 gotasync = 0;
941
942 for (i = asynccnt; i--; )
943 if (asyncs [i]->sent)
944 {
945 asyncs [i]->sent = 0;
946 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
947 }
948 }
949#endif
773} 950}
774 951
775/*****************************************************************************/ 952/*****************************************************************************/
776 953
954static void
955ev_sighandler (int signum)
956{
957#if EV_MULTIPLICITY
958 struct ev_loop *loop = &default_loop_struct;
959#endif
960
961#if _WIN32
962 signal (signum, ev_sighandler);
963#endif
964
965 signals [signum - 1].gotsig = 1;
966 evpipe_write (EV_A_ &gotsig);
967}
968
969void noinline
970ev_feed_signal_event (EV_P_ int signum)
971{
972 WL w;
973
974#if EV_MULTIPLICITY
975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
976#endif
977
978 --signum;
979
980 if (signum < 0 || signum >= signalmax)
981 return;
982
983 signals [signum].gotsig = 0;
984
985 for (w = signals [signum].head; w; w = w->next)
986 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
987}
988
989/*****************************************************************************/
990
777static ev_child *childs [EV_PID_HASHSIZE]; 991static WL childs [EV_PID_HASHSIZE];
778 992
779#ifndef _WIN32 993#ifndef _WIN32
780 994
781static ev_signal childev; 995static ev_signal childev;
782 996
997#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0
999#endif
1000
783void inline_speed 1001void inline_speed
784child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1002child_reap (EV_P_ int chain, int pid, int status)
785{ 1003{
786 ev_child *w; 1004 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
787 1006
788 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1007 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1008 {
789 if (w->pid == pid || !w->pid) 1009 if ((w->pid == pid || !w->pid)
1010 && (!traced || (w->flags & 1)))
790 { 1011 {
791 ev_set_priority (w, ev_priority (sw)); /* need to do it *now* */ 1012 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
792 w->rpid = pid; 1013 w->rpid = pid;
793 w->rstatus = status; 1014 w->rstatus = status;
794 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1015 ev_feed_event (EV_A_ (W)w, EV_CHILD);
795 } 1016 }
1017 }
796} 1018}
797 1019
798#ifndef WCONTINUED 1020#ifndef WCONTINUED
799# define WCONTINUED 0 1021# define WCONTINUED 0
800#endif 1022#endif
809 if (!WCONTINUED 1031 if (!WCONTINUED
810 || errno != EINVAL 1032 || errno != EINVAL
811 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1033 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
812 return; 1034 return;
813 1035
814 /* make sure we are called again until all childs have been reaped */ 1036 /* make sure we are called again until all children have been reaped */
815 /* we need to do it this way so that the callback gets called before we continue */ 1037 /* we need to do it this way so that the callback gets called before we continue */
816 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1038 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
817 1039
818 child_reap (EV_A_ sw, pid, pid, status); 1040 child_reap (EV_A_ pid, pid, status);
819 if (EV_PID_HASHSIZE > 1) 1041 if (EV_PID_HASHSIZE > 1)
820 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1042 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
821} 1043}
822 1044
823#endif 1045#endif
824 1046
825/*****************************************************************************/ 1047/*****************************************************************************/
897} 1119}
898 1120
899unsigned int 1121unsigned int
900ev_embeddable_backends (void) 1122ev_embeddable_backends (void)
901{ 1123{
902 return EVBACKEND_EPOLL 1124 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
903 | EVBACKEND_KQUEUE 1125
904 | EVBACKEND_PORT; 1126 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1127 /* please fix it and tell me how to detect the fix */
1128 flags &= ~EVBACKEND_EPOLL;
1129
1130 return flags;
905} 1131}
906 1132
907unsigned int 1133unsigned int
908ev_backend (EV_P) 1134ev_backend (EV_P)
909{ 1135{
912 1138
913unsigned int 1139unsigned int
914ev_loop_count (EV_P) 1140ev_loop_count (EV_P)
915{ 1141{
916 return loop_count; 1142 return loop_count;
1143}
1144
1145void
1146ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1147{
1148 io_blocktime = interval;
1149}
1150
1151void
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1153{
1154 timeout_blocktime = interval;
917} 1155}
918 1156
919static void noinline 1157static void noinline
920loop_init (EV_P_ unsigned int flags) 1158loop_init (EV_P_ unsigned int flags)
921{ 1159{
927 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
928 have_monotonic = 1; 1166 have_monotonic = 1;
929 } 1167 }
930#endif 1168#endif
931 1169
932 ev_rt_now = ev_time (); 1170 ev_rt_now = ev_time ();
933 mn_now = get_clock (); 1171 mn_now = get_clock ();
934 now_floor = mn_now; 1172 now_floor = mn_now;
935 rtmn_diff = ev_rt_now - mn_now; 1173 rtmn_diff = ev_rt_now - mn_now;
1174
1175 io_blocktime = 0.;
1176 timeout_blocktime = 0.;
1177 backend = 0;
1178 backend_fd = -1;
1179 gotasync = 0;
1180#if EV_USE_INOTIFY
1181 fs_fd = -2;
1182#endif
936 1183
937 /* pid check not overridable via env */ 1184 /* pid check not overridable via env */
938#ifndef _WIN32 1185#ifndef _WIN32
939 if (flags & EVFLAG_FORKCHECK) 1186 if (flags & EVFLAG_FORKCHECK)
940 curpid = getpid (); 1187 curpid = getpid ();
943 if (!(flags & EVFLAG_NOENV) 1190 if (!(flags & EVFLAG_NOENV)
944 && !enable_secure () 1191 && !enable_secure ()
945 && getenv ("LIBEV_FLAGS")) 1192 && getenv ("LIBEV_FLAGS"))
946 flags = atoi (getenv ("LIBEV_FLAGS")); 1193 flags = atoi (getenv ("LIBEV_FLAGS"));
947 1194
948 if (!(flags & 0x0000ffffUL)) 1195 if (!(flags & 0x0000ffffU))
949 flags |= ev_recommended_backends (); 1196 flags |= ev_recommended_backends ();
950
951 backend = 0;
952 backend_fd = -1;
953#if EV_USE_INOTIFY
954 fs_fd = -2;
955#endif
956 1197
957#if EV_USE_PORT 1198#if EV_USE_PORT
958 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1199 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
959#endif 1200#endif
960#if EV_USE_KQUEUE 1201#if EV_USE_KQUEUE
968#endif 1209#endif
969#if EV_USE_SELECT 1210#if EV_USE_SELECT
970 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
971#endif 1212#endif
972 1213
973 ev_init (&sigev, sigcb); 1214 ev_init (&pipeev, pipecb);
974 ev_set_priority (&sigev, EV_MAXPRI); 1215 ev_set_priority (&pipeev, EV_MAXPRI);
975 } 1216 }
976} 1217}
977 1218
978static void noinline 1219static void noinline
979loop_destroy (EV_P) 1220loop_destroy (EV_P)
980{ 1221{
981 int i; 1222 int i;
1223
1224 if (ev_is_active (&pipeev))
1225 {
1226 ev_ref (EV_A); /* signal watcher */
1227 ev_io_stop (EV_A_ &pipeev);
1228
1229#if EV_USE_EVENTFD
1230 if (evfd >= 0)
1231 close (evfd);
1232#endif
1233
1234 if (evpipe [0] >= 0)
1235 {
1236 close (evpipe [0]);
1237 close (evpipe [1]);
1238 }
1239 }
982 1240
983#if EV_USE_INOTIFY 1241#if EV_USE_INOTIFY
984 if (fs_fd >= 0) 1242 if (fs_fd >= 0)
985 close (fs_fd); 1243 close (fs_fd);
986#endif 1244#endif
1009 array_free (pending, [i]); 1267 array_free (pending, [i]);
1010#if EV_IDLE_ENABLE 1268#if EV_IDLE_ENABLE
1011 array_free (idle, [i]); 1269 array_free (idle, [i]);
1012#endif 1270#endif
1013 } 1271 }
1272
1273 ev_free (anfds); anfdmax = 0;
1014 1274
1015 /* have to use the microsoft-never-gets-it-right macro */ 1275 /* have to use the microsoft-never-gets-it-right macro */
1016 array_free (fdchange, EMPTY); 1276 array_free (fdchange, EMPTY);
1017 array_free (timer, EMPTY); 1277 array_free (timer, EMPTY);
1018#if EV_PERIODIC_ENABLE 1278#if EV_PERIODIC_ENABLE
1019 array_free (periodic, EMPTY); 1279 array_free (periodic, EMPTY);
1020#endif 1280#endif
1281#if EV_FORK_ENABLE
1282 array_free (fork, EMPTY);
1283#endif
1021 array_free (prepare, EMPTY); 1284 array_free (prepare, EMPTY);
1022 array_free (check, EMPTY); 1285 array_free (check, EMPTY);
1286#if EV_ASYNC_ENABLE
1287 array_free (async, EMPTY);
1288#endif
1023 1289
1024 backend = 0; 1290 backend = 0;
1025} 1291}
1026 1292
1293#if EV_USE_INOTIFY
1027void inline_size infy_fork (EV_P); 1294void inline_size infy_fork (EV_P);
1295#endif
1028 1296
1029void inline_size 1297void inline_size
1030loop_fork (EV_P) 1298loop_fork (EV_P)
1031{ 1299{
1032#if EV_USE_PORT 1300#if EV_USE_PORT
1040#endif 1308#endif
1041#if EV_USE_INOTIFY 1309#if EV_USE_INOTIFY
1042 infy_fork (EV_A); 1310 infy_fork (EV_A);
1043#endif 1311#endif
1044 1312
1045 if (ev_is_active (&sigev)) 1313 if (ev_is_active (&pipeev))
1046 { 1314 {
1047 /* default loop */ 1315 /* this "locks" the handlers against writing to the pipe */
1316 /* while we modify the fd vars */
1317 gotsig = 1;
1318#if EV_ASYNC_ENABLE
1319 gotasync = 1;
1320#endif
1048 1321
1049 ev_ref (EV_A); 1322 ev_ref (EV_A);
1050 ev_io_stop (EV_A_ &sigev); 1323 ev_io_stop (EV_A_ &pipeev);
1324
1325#if EV_USE_EVENTFD
1326 if (evfd >= 0)
1327 close (evfd);
1328#endif
1329
1330 if (evpipe [0] >= 0)
1331 {
1051 close (sigpipe [0]); 1332 close (evpipe [0]);
1052 close (sigpipe [1]); 1333 close (evpipe [1]);
1334 }
1053 1335
1054 while (pipe (sigpipe))
1055 syserr ("(libev) error creating pipe");
1056
1057 siginit (EV_A); 1336 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */
1338 pipecb (EV_A_ &pipeev, EV_READ);
1058 } 1339 }
1059 1340
1060 postfork = 0; 1341 postfork = 0;
1061} 1342}
1062 1343
1084} 1365}
1085 1366
1086void 1367void
1087ev_loop_fork (EV_P) 1368ev_loop_fork (EV_P)
1088{ 1369{
1089 postfork = 1; 1370 postfork = 1; /* must be in line with ev_default_fork */
1090} 1371}
1091 1372
1092#endif 1373#endif
1093 1374
1094#if EV_MULTIPLICITY 1375#if EV_MULTIPLICITY
1097#else 1378#else
1098int 1379int
1099ev_default_loop (unsigned int flags) 1380ev_default_loop (unsigned int flags)
1100#endif 1381#endif
1101{ 1382{
1102 if (sigpipe [0] == sigpipe [1])
1103 if (pipe (sigpipe))
1104 return 0;
1105
1106 if (!ev_default_loop_ptr) 1383 if (!ev_default_loop_ptr)
1107 { 1384 {
1108#if EV_MULTIPLICITY 1385#if EV_MULTIPLICITY
1109 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1386 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1110#else 1387#else
1113 1390
1114 loop_init (EV_A_ flags); 1391 loop_init (EV_A_ flags);
1115 1392
1116 if (ev_backend (EV_A)) 1393 if (ev_backend (EV_A))
1117 { 1394 {
1118 siginit (EV_A);
1119
1120#ifndef _WIN32 1395#ifndef _WIN32
1121 ev_signal_init (&childev, childcb, SIGCHLD); 1396 ev_signal_init (&childev, childcb, SIGCHLD);
1122 ev_set_priority (&childev, EV_MAXPRI); 1397 ev_set_priority (&childev, EV_MAXPRI);
1123 ev_signal_start (EV_A_ &childev); 1398 ev_signal_start (EV_A_ &childev);
1124 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1399 ev_unref (EV_A); /* child watcher should not keep loop alive */
1141#ifndef _WIN32 1416#ifndef _WIN32
1142 ev_ref (EV_A); /* child watcher */ 1417 ev_ref (EV_A); /* child watcher */
1143 ev_signal_stop (EV_A_ &childev); 1418 ev_signal_stop (EV_A_ &childev);
1144#endif 1419#endif
1145 1420
1146 ev_ref (EV_A); /* signal watcher */
1147 ev_io_stop (EV_A_ &sigev);
1148
1149 close (sigpipe [0]); sigpipe [0] = 0;
1150 close (sigpipe [1]); sigpipe [1] = 0;
1151
1152 loop_destroy (EV_A); 1421 loop_destroy (EV_A);
1153} 1422}
1154 1423
1155void 1424void
1156ev_default_fork (void) 1425ev_default_fork (void)
1158#if EV_MULTIPLICITY 1427#if EV_MULTIPLICITY
1159 struct ev_loop *loop = ev_default_loop_ptr; 1428 struct ev_loop *loop = ev_default_loop_ptr;
1160#endif 1429#endif
1161 1430
1162 if (backend) 1431 if (backend)
1163 postfork = 1; 1432 postfork = 1; /* must be in line with ev_loop_fork */
1164} 1433}
1165 1434
1166/*****************************************************************************/ 1435/*****************************************************************************/
1436
1437void
1438ev_invoke (EV_P_ void *w, int revents)
1439{
1440 EV_CB_INVOKE ((W)w, revents);
1441}
1167 1442
1168void inline_speed 1443void inline_speed
1169call_pending (EV_P) 1444call_pending (EV_P)
1170{ 1445{
1171 int pri; 1446 int pri;
1186} 1461}
1187 1462
1188void inline_size 1463void inline_size
1189timers_reify (EV_P) 1464timers_reify (EV_P)
1190{ 1465{
1191 while (timercnt && ((WT)timers [0])->at <= mn_now) 1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1192 { 1467 {
1193 ev_timer *w = timers [0]; 1468 ev_timer *w = (ev_timer *)timers [1];
1194 1469
1195 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1196 1471
1197 /* first reschedule or stop timer */ 1472 /* first reschedule or stop timer */
1198 if (w->repeat) 1473 if (w->repeat)
1199 { 1474 {
1200 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1201 1476
1202 ((WT)w)->at += w->repeat; 1477 ev_at (w) += w->repeat;
1203 if (((WT)w)->at < mn_now) 1478 if (ev_at (w) < mn_now)
1204 ((WT)w)->at = mn_now; 1479 ev_at (w) = mn_now;
1205 1480
1206 downheap ((WT *)timers, timercnt, 0); 1481 downheap (timers, timercnt, 1);
1207 } 1482 }
1208 else 1483 else
1209 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1210 1485
1211 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1214 1489
1215#if EV_PERIODIC_ENABLE 1490#if EV_PERIODIC_ENABLE
1216void inline_size 1491void inline_size
1217periodics_reify (EV_P) 1492periodics_reify (EV_P)
1218{ 1493{
1219 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1220 { 1495 {
1221 ev_periodic *w = periodics [0]; 1496 ev_periodic *w = (ev_periodic *)periodics [1];
1222 1497
1223 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1224 1499
1225 /* first reschedule or stop timer */ 1500 /* first reschedule or stop timer */
1226 if (w->reschedule_cb) 1501 if (w->reschedule_cb)
1227 { 1502 {
1228 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1229 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1230 downheap ((WT *)periodics, periodiccnt, 0); 1505 downheap (periodics, periodiccnt, 1);
1231 } 1506 }
1232 else if (w->interval) 1507 else if (w->interval)
1233 { 1508 {
1234 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1235 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1236 downheap ((WT *)periodics, periodiccnt, 0); 1512 downheap (periodics, periodiccnt, 1);
1237 } 1513 }
1238 else 1514 else
1239 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1240 1516
1241 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1248 int i; 1524 int i;
1249 1525
1250 /* adjust periodics after time jump */ 1526 /* adjust periodics after time jump */
1251 for (i = 0; i < periodiccnt; ++i) 1527 for (i = 0; i < periodiccnt; ++i)
1252 { 1528 {
1253 ev_periodic *w = periodics [i]; 1529 ev_periodic *w = (ev_periodic *)periodics [i];
1254 1530
1255 if (w->reschedule_cb) 1531 if (w->reschedule_cb)
1256 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1257 else if (w->interval) 1533 else if (w->interval)
1258 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1259 } 1535 }
1260 1536
1261 /* now rebuild the heap */ 1537 /* now rebuild the heap */
1262 for (i = periodiccnt >> 1; i--; ) 1538 for (i = periodiccnt >> 1; i--; )
1263 downheap ((WT *)periodics, periodiccnt, i); 1539 downheap (periodics, periodiccnt, i);
1264} 1540}
1265#endif 1541#endif
1266 1542
1267#if EV_IDLE_ENABLE 1543#if EV_IDLE_ENABLE
1268void inline_size 1544void inline_size
1285 } 1561 }
1286 } 1562 }
1287} 1563}
1288#endif 1564#endif
1289 1565
1290int inline_size 1566void inline_speed
1291time_update_monotonic (EV_P) 1567time_update (EV_P_ ev_tstamp max_block)
1292{ 1568{
1569 int i;
1570
1571#if EV_USE_MONOTONIC
1572 if (expect_true (have_monotonic))
1573 {
1574 ev_tstamp odiff = rtmn_diff;
1575
1293 mn_now = get_clock (); 1576 mn_now = get_clock ();
1294 1577
1578 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1579 /* interpolate in the meantime */
1295 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1580 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1296 { 1581 {
1297 ev_rt_now = rtmn_diff + mn_now; 1582 ev_rt_now = rtmn_diff + mn_now;
1298 return 0; 1583 return;
1299 } 1584 }
1300 else 1585
1301 {
1302 now_floor = mn_now; 1586 now_floor = mn_now;
1303 ev_rt_now = ev_time (); 1587 ev_rt_now = ev_time ();
1304 return 1;
1305 }
1306}
1307 1588
1308void inline_size 1589 /* loop a few times, before making important decisions.
1309time_update (EV_P) 1590 * on the choice of "4": one iteration isn't enough,
1310{ 1591 * in case we get preempted during the calls to
1311 int i; 1592 * ev_time and get_clock. a second call is almost guaranteed
1312 1593 * to succeed in that case, though. and looping a few more times
1313#if EV_USE_MONOTONIC 1594 * doesn't hurt either as we only do this on time-jumps or
1314 if (expect_true (have_monotonic)) 1595 * in the unlikely event of having been preempted here.
1315 { 1596 */
1316 if (time_update_monotonic (EV_A)) 1597 for (i = 4; --i; )
1317 { 1598 {
1318 ev_tstamp odiff = rtmn_diff;
1319
1320 /* loop a few times, before making important decisions.
1321 * on the choice of "4": one iteration isn't enough,
1322 * in case we get preempted during the calls to
1323 * ev_time and get_clock. a second call is almost guaranteed
1324 * to succeed in that case, though. and looping a few more times
1325 * doesn't hurt either as we only do this on time-jumps or
1326 * in the unlikely event of having been preempted here.
1327 */
1328 for (i = 4; --i; )
1329 {
1330 rtmn_diff = ev_rt_now - mn_now; 1599 rtmn_diff = ev_rt_now - mn_now;
1331 1600
1332 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1333 return; /* all is well */ 1602 return; /* all is well */
1334 1603
1335 ev_rt_now = ev_time (); 1604 ev_rt_now = ev_time ();
1336 mn_now = get_clock (); 1605 mn_now = get_clock ();
1337 now_floor = mn_now; 1606 now_floor = mn_now;
1338 } 1607 }
1339 1608
1340# if EV_PERIODIC_ENABLE 1609# if EV_PERIODIC_ENABLE
1341 periodics_reschedule (EV_A); 1610 periodics_reschedule (EV_A);
1342# endif 1611# endif
1343 /* no timer adjustment, as the monotonic clock doesn't jump */ 1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1344 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1345 }
1346 } 1614 }
1347 else 1615 else
1348#endif 1616#endif
1349 { 1617 {
1350 ev_rt_now = ev_time (); 1618 ev_rt_now = ev_time ();
1351 1619
1352 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1353 { 1621 {
1354#if EV_PERIODIC_ENABLE 1622#if EV_PERIODIC_ENABLE
1355 periodics_reschedule (EV_A); 1623 periodics_reschedule (EV_A);
1356#endif 1624#endif
1357
1358 /* adjust timers. this is easy, as the offset is the same for all of them */ 1625 /* adjust timers. this is easy, as the offset is the same for all of them */
1359 for (i = 0; i < timercnt; ++i) 1626 for (i = 1; i <= timercnt; ++i)
1360 ((WT)timers [i])->at += ev_rt_now - mn_now; 1627 ev_at (timers [i]) += ev_rt_now - mn_now;
1361 } 1628 }
1362 1629
1363 mn_now = ev_rt_now; 1630 mn_now = ev_rt_now;
1364 } 1631 }
1365} 1632}
1379static int loop_done; 1646static int loop_done;
1380 1647
1381void 1648void
1382ev_loop (EV_P_ int flags) 1649ev_loop (EV_P_ int flags)
1383{ 1650{
1384 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1651 loop_done = EVUNLOOP_CANCEL;
1385 ? EVUNLOOP_ONE
1386 : EVUNLOOP_CANCEL;
1387 1652
1388 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1389 1654
1390 do 1655 do
1391 { 1656 {
1406 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1671 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1407 call_pending (EV_A); 1672 call_pending (EV_A);
1408 } 1673 }
1409#endif 1674#endif
1410 1675
1411 /* queue check watchers (and execute them) */ 1676 /* queue prepare watchers (and execute them) */
1412 if (expect_false (preparecnt)) 1677 if (expect_false (preparecnt))
1413 { 1678 {
1414 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1415 call_pending (EV_A); 1680 call_pending (EV_A);
1416 } 1681 }
1425 /* update fd-related kernel structures */ 1690 /* update fd-related kernel structures */
1426 fd_reify (EV_A); 1691 fd_reify (EV_A);
1427 1692
1428 /* calculate blocking time */ 1693 /* calculate blocking time */
1429 { 1694 {
1430 ev_tstamp block; 1695 ev_tstamp waittime = 0.;
1696 ev_tstamp sleeptime = 0.;
1431 1697
1432 if (expect_false (flags & EVLOOP_NONBLOCK || idleall || !activecnt)) 1698 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1433 block = 0.; /* do not block at all */
1434 else
1435 { 1699 {
1436 /* update time to cancel out callback processing overhead */ 1700 /* update time to cancel out callback processing overhead */
1437#if EV_USE_MONOTONIC
1438 if (expect_true (have_monotonic))
1439 time_update_monotonic (EV_A); 1701 time_update (EV_A_ 1e100);
1440 else
1441#endif
1442 {
1443 ev_rt_now = ev_time ();
1444 mn_now = ev_rt_now;
1445 }
1446 1702
1447 block = MAX_BLOCKTIME; 1703 waittime = MAX_BLOCKTIME;
1448 1704
1449 if (timercnt) 1705 if (timercnt)
1450 { 1706 {
1451 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1452 if (block > to) block = to; 1708 if (waittime > to) waittime = to;
1453 } 1709 }
1454 1710
1455#if EV_PERIODIC_ENABLE 1711#if EV_PERIODIC_ENABLE
1456 if (periodiccnt) 1712 if (periodiccnt)
1457 { 1713 {
1458 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1459 if (block > to) block = to; 1715 if (waittime > to) waittime = to;
1460 } 1716 }
1461#endif 1717#endif
1462 1718
1463 if (expect_false (block < 0.)) block = 0.; 1719 if (expect_false (waittime < timeout_blocktime))
1720 waittime = timeout_blocktime;
1721
1722 sleeptime = waittime - backend_fudge;
1723
1724 if (expect_true (sleeptime > io_blocktime))
1725 sleeptime = io_blocktime;
1726
1727 if (sleeptime)
1728 {
1729 ev_sleep (sleeptime);
1730 waittime -= sleeptime;
1731 }
1464 } 1732 }
1465 1733
1466 ++loop_count; 1734 ++loop_count;
1467 backend_poll (EV_A_ block); 1735 backend_poll (EV_A_ waittime);
1736
1737 /* update ev_rt_now, do magic */
1738 time_update (EV_A_ waittime + sleeptime);
1468 } 1739 }
1469
1470 /* update ev_rt_now, do magic */
1471 time_update (EV_A);
1472 1740
1473 /* queue pending timers and reschedule them */ 1741 /* queue pending timers and reschedule them */
1474 timers_reify (EV_A); /* relative timers called last */ 1742 timers_reify (EV_A); /* relative timers called last */
1475#if EV_PERIODIC_ENABLE 1743#if EV_PERIODIC_ENABLE
1476 periodics_reify (EV_A); /* absolute timers called first */ 1744 periodics_reify (EV_A); /* absolute timers called first */
1484 /* queue check watchers, to be executed first */ 1752 /* queue check watchers, to be executed first */
1485 if (expect_false (checkcnt)) 1753 if (expect_false (checkcnt))
1486 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1754 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1487 1755
1488 call_pending (EV_A); 1756 call_pending (EV_A);
1489
1490 } 1757 }
1491 while (expect_true (activecnt && !loop_done)); 1758 while (expect_true (
1759 activecnt
1760 && !loop_done
1761 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1762 ));
1492 1763
1493 if (loop_done == EVUNLOOP_ONE) 1764 if (loop_done == EVUNLOOP_ONE)
1494 loop_done = EVUNLOOP_CANCEL; 1765 loop_done = EVUNLOOP_CANCEL;
1495} 1766}
1496 1767
1532 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1803 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1533 w->pending = 0; 1804 w->pending = 0;
1534 } 1805 }
1535} 1806}
1536 1807
1537void 1808int
1538ev_clear_pending (EV_P_ void *w, int invoke) 1809ev_clear_pending (EV_P_ void *w)
1539{ 1810{
1540 W w_ = (W)w; 1811 W w_ = (W)w;
1541 int pending = w_->pending; 1812 int pending = w_->pending;
1542 1813
1543 if (pending) 1814 if (expect_true (pending))
1544 { 1815 {
1545 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1546
1547 w_->pending = 0; 1817 w_->pending = 0;
1548 p->w = 0; 1818 p->w = 0;
1549 1819 return p->events;
1550 if (invoke)
1551 EV_CB_INVOKE (w_, p->events);
1552 } 1820 }
1821 else
1822 return 0;
1553} 1823}
1554 1824
1555void inline_size 1825void inline_size
1556pri_adjust (EV_P_ W w) 1826pri_adjust (EV_P_ W w)
1557{ 1827{
1576 w->active = 0; 1846 w->active = 0;
1577} 1847}
1578 1848
1579/*****************************************************************************/ 1849/*****************************************************************************/
1580 1850
1581void 1851void noinline
1582ev_io_start (EV_P_ ev_io *w) 1852ev_io_start (EV_P_ ev_io *w)
1583{ 1853{
1584 int fd = w->fd; 1854 int fd = w->fd;
1585 1855
1586 if (expect_false (ev_is_active (w))) 1856 if (expect_false (ev_is_active (w)))
1588 1858
1589 assert (("ev_io_start called with negative fd", fd >= 0)); 1859 assert (("ev_io_start called with negative fd", fd >= 0));
1590 1860
1591 ev_start (EV_A_ (W)w, 1); 1861 ev_start (EV_A_ (W)w, 1);
1592 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1593 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1863 wlist_add (&anfds[fd].head, (WL)w);
1594 1864
1595 fd_change (EV_A_ fd); 1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1866 w->events &= ~EV_IOFDSET;
1596} 1867}
1597 1868
1598void 1869void noinline
1599ev_io_stop (EV_P_ ev_io *w) 1870ev_io_stop (EV_P_ ev_io *w)
1600{ 1871{
1601 clear_pending (EV_A_ (W)w); 1872 clear_pending (EV_A_ (W)w);
1602 if (expect_false (!ev_is_active (w))) 1873 if (expect_false (!ev_is_active (w)))
1603 return; 1874 return;
1604 1875
1605 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1606 1877
1607 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1878 wlist_del (&anfds[w->fd].head, (WL)w);
1608 ev_stop (EV_A_ (W)w); 1879 ev_stop (EV_A_ (W)w);
1609 1880
1610 fd_change (EV_A_ w->fd); 1881 fd_change (EV_A_ w->fd, 1);
1611} 1882}
1612 1883
1613void 1884void noinline
1614ev_timer_start (EV_P_ ev_timer *w) 1885ev_timer_start (EV_P_ ev_timer *w)
1615{ 1886{
1616 if (expect_false (ev_is_active (w))) 1887 if (expect_false (ev_is_active (w)))
1617 return; 1888 return;
1618 1889
1619 ((WT)w)->at += mn_now; 1890 ev_at (w) += mn_now;
1620 1891
1621 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1622 1893
1623 ev_start (EV_A_ (W)w, ++timercnt); 1894 ev_start (EV_A_ (W)w, ++timercnt);
1624 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1625 timers [timercnt - 1] = w; 1896 timers [timercnt] = (WT)w;
1626 upheap ((WT *)timers, timercnt - 1); 1897 upheap (timers, timercnt);
1627 1898
1628 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/
1629} 1900}
1630 1901
1631void 1902void noinline
1632ev_timer_stop (EV_P_ ev_timer *w) 1903ev_timer_stop (EV_P_ ev_timer *w)
1633{ 1904{
1634 clear_pending (EV_A_ (W)w); 1905 clear_pending (EV_A_ (W)w);
1635 if (expect_false (!ev_is_active (w))) 1906 if (expect_false (!ev_is_active (w)))
1636 return; 1907 return;
1637 1908
1638 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w));
1639 1910
1640 { 1911 {
1641 int active = ((W)w)->active; 1912 int active = ((W)w)->active;
1642 1913
1643 if (expect_true (--active < --timercnt)) 1914 if (expect_true (active < timercnt))
1644 { 1915 {
1645 timers [active] = timers [timercnt]; 1916 timers [active] = timers [timercnt];
1646 adjustheap ((WT *)timers, timercnt, active); 1917 adjustheap (timers, timercnt, active);
1647 } 1918 }
1919
1920 --timercnt;
1648 } 1921 }
1649 1922
1650 ((WT)w)->at -= mn_now; 1923 ev_at (w) -= mn_now;
1651 1924
1652 ev_stop (EV_A_ (W)w); 1925 ev_stop (EV_A_ (W)w);
1653} 1926}
1654 1927
1655void 1928void noinline
1656ev_timer_again (EV_P_ ev_timer *w) 1929ev_timer_again (EV_P_ ev_timer *w)
1657{ 1930{
1658 if (ev_is_active (w)) 1931 if (ev_is_active (w))
1659 { 1932 {
1660 if (w->repeat) 1933 if (w->repeat)
1661 { 1934 {
1662 ((WT)w)->at = mn_now + w->repeat; 1935 ev_at (w) = mn_now + w->repeat;
1663 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1936 adjustheap (timers, timercnt, ((W)w)->active);
1664 } 1937 }
1665 else 1938 else
1666 ev_timer_stop (EV_A_ w); 1939 ev_timer_stop (EV_A_ w);
1667 } 1940 }
1668 else if (w->repeat) 1941 else if (w->repeat)
1671 ev_timer_start (EV_A_ w); 1944 ev_timer_start (EV_A_ w);
1672 } 1945 }
1673} 1946}
1674 1947
1675#if EV_PERIODIC_ENABLE 1948#if EV_PERIODIC_ENABLE
1676void 1949void noinline
1677ev_periodic_start (EV_P_ ev_periodic *w) 1950ev_periodic_start (EV_P_ ev_periodic *w)
1678{ 1951{
1679 if (expect_false (ev_is_active (w))) 1952 if (expect_false (ev_is_active (w)))
1680 return; 1953 return;
1681 1954
1682 if (w->reschedule_cb) 1955 if (w->reschedule_cb)
1683 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1684 else if (w->interval) 1957 else if (w->interval)
1685 { 1958 {
1686 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1687 /* this formula differs from the one in periodic_reify because we do not always round up */ 1960 /* this formula differs from the one in periodic_reify because we do not always round up */
1688 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1689 } 1962 }
1963 else
1964 ev_at (w) = w->offset;
1690 1965
1691 ev_start (EV_A_ (W)w, ++periodiccnt); 1966 ev_start (EV_A_ (W)w, ++periodiccnt);
1692 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1693 periodics [periodiccnt - 1] = w; 1968 periodics [periodiccnt] = (WT)w;
1694 upheap ((WT *)periodics, periodiccnt - 1); 1969 upheap (periodics, periodiccnt);
1695 1970
1696 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1697} 1972}
1698 1973
1699void 1974void noinline
1700ev_periodic_stop (EV_P_ ev_periodic *w) 1975ev_periodic_stop (EV_P_ ev_periodic *w)
1701{ 1976{
1702 clear_pending (EV_A_ (W)w); 1977 clear_pending (EV_A_ (W)w);
1703 if (expect_false (!ev_is_active (w))) 1978 if (expect_false (!ev_is_active (w)))
1704 return; 1979 return;
1705 1980
1706 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w));
1707 1982
1708 { 1983 {
1709 int active = ((W)w)->active; 1984 int active = ((W)w)->active;
1710 1985
1711 if (expect_true (--active < --periodiccnt)) 1986 if (expect_true (active < periodiccnt))
1712 { 1987 {
1713 periodics [active] = periodics [periodiccnt]; 1988 periodics [active] = periodics [periodiccnt];
1714 adjustheap ((WT *)periodics, periodiccnt, active); 1989 adjustheap (periodics, periodiccnt, active);
1715 } 1990 }
1991
1992 --periodiccnt;
1716 } 1993 }
1717 1994
1718 ev_stop (EV_A_ (W)w); 1995 ev_stop (EV_A_ (W)w);
1719} 1996}
1720 1997
1721void 1998void noinline
1722ev_periodic_again (EV_P_ ev_periodic *w) 1999ev_periodic_again (EV_P_ ev_periodic *w)
1723{ 2000{
1724 /* TODO: use adjustheap and recalculation */ 2001 /* TODO: use adjustheap and recalculation */
1725 ev_periodic_stop (EV_A_ w); 2002 ev_periodic_stop (EV_A_ w);
1726 ev_periodic_start (EV_A_ w); 2003 ev_periodic_start (EV_A_ w);
1729 2006
1730#ifndef SA_RESTART 2007#ifndef SA_RESTART
1731# define SA_RESTART 0 2008# define SA_RESTART 0
1732#endif 2009#endif
1733 2010
1734void 2011void noinline
1735ev_signal_start (EV_P_ ev_signal *w) 2012ev_signal_start (EV_P_ ev_signal *w)
1736{ 2013{
1737#if EV_MULTIPLICITY 2014#if EV_MULTIPLICITY
1738 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1739#endif 2016#endif
1740 if (expect_false (ev_is_active (w))) 2017 if (expect_false (ev_is_active (w)))
1741 return; 2018 return;
1742 2019
1743 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1744 2021
2022 evpipe_init (EV_A);
2023
2024 {
2025#ifndef _WIN32
2026 sigset_t full, prev;
2027 sigfillset (&full);
2028 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif
2030
2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2032
2033#ifndef _WIN32
2034 sigprocmask (SIG_SETMASK, &prev, 0);
2035#endif
2036 }
2037
1745 ev_start (EV_A_ (W)w, 1); 2038 ev_start (EV_A_ (W)w, 1);
1746 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1747 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2039 wlist_add (&signals [w->signum - 1].head, (WL)w);
1748 2040
1749 if (!((WL)w)->next) 2041 if (!((WL)w)->next)
1750 { 2042 {
1751#if _WIN32 2043#if _WIN32
1752 signal (w->signum, sighandler); 2044 signal (w->signum, ev_sighandler);
1753#else 2045#else
1754 struct sigaction sa; 2046 struct sigaction sa;
1755 sa.sa_handler = sighandler; 2047 sa.sa_handler = ev_sighandler;
1756 sigfillset (&sa.sa_mask); 2048 sigfillset (&sa.sa_mask);
1757 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1758 sigaction (w->signum, &sa, 0); 2050 sigaction (w->signum, &sa, 0);
1759#endif 2051#endif
1760 } 2052 }
1761} 2053}
1762 2054
1763void 2055void noinline
1764ev_signal_stop (EV_P_ ev_signal *w) 2056ev_signal_stop (EV_P_ ev_signal *w)
1765{ 2057{
1766 clear_pending (EV_A_ (W)w); 2058 clear_pending (EV_A_ (W)w);
1767 if (expect_false (!ev_is_active (w))) 2059 if (expect_false (!ev_is_active (w)))
1768 return; 2060 return;
1769 2061
1770 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2062 wlist_del (&signals [w->signum - 1].head, (WL)w);
1771 ev_stop (EV_A_ (W)w); 2063 ev_stop (EV_A_ (W)w);
1772 2064
1773 if (!signals [w->signum - 1].head) 2065 if (!signals [w->signum - 1].head)
1774 signal (w->signum, SIG_DFL); 2066 signal (w->signum, SIG_DFL);
1775} 2067}
1782#endif 2074#endif
1783 if (expect_false (ev_is_active (w))) 2075 if (expect_false (ev_is_active (w)))
1784 return; 2076 return;
1785 2077
1786 ev_start (EV_A_ (W)w, 1); 2078 ev_start (EV_A_ (W)w, 1);
1787 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1788} 2080}
1789 2081
1790void 2082void
1791ev_child_stop (EV_P_ ev_child *w) 2083ev_child_stop (EV_P_ ev_child *w)
1792{ 2084{
1793 clear_pending (EV_A_ (W)w); 2085 clear_pending (EV_A_ (W)w);
1794 if (expect_false (!ev_is_active (w))) 2086 if (expect_false (!ev_is_active (w)))
1795 return; 2087 return;
1796 2088
1797 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1798 ev_stop (EV_A_ (W)w); 2090 ev_stop (EV_A_ (W)w);
1799} 2091}
1800 2092
1801#if EV_STAT_ENABLE 2093#if EV_STAT_ENABLE
1802 2094
2144 2436
2145#if EV_EMBED_ENABLE 2437#if EV_EMBED_ENABLE
2146void noinline 2438void noinline
2147ev_embed_sweep (EV_P_ ev_embed *w) 2439ev_embed_sweep (EV_P_ ev_embed *w)
2148{ 2440{
2149 ev_loop (w->loop, EVLOOP_NONBLOCK); 2441 ev_loop (w->other, EVLOOP_NONBLOCK);
2150} 2442}
2151 2443
2152static void 2444static void
2153embed_cb (EV_P_ ev_io *io, int revents) 2445embed_io_cb (EV_P_ ev_io *io, int revents)
2154{ 2446{
2155 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2156 2448
2157 if (ev_cb (w)) 2449 if (ev_cb (w))
2158 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2450 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2159 else 2451 else
2160 ev_embed_sweep (loop, w); 2452 ev_loop (w->other, EVLOOP_NONBLOCK);
2161} 2453}
2454
2455static void
2456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2457{
2458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2459
2460 {
2461 struct ev_loop *loop = w->other;
2462
2463 while (fdchangecnt)
2464 {
2465 fd_reify (EV_A);
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2467 }
2468 }
2469}
2470
2471#if 0
2472static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2474{
2475 ev_idle_stop (EV_A_ idle);
2476}
2477#endif
2162 2478
2163void 2479void
2164ev_embed_start (EV_P_ ev_embed *w) 2480ev_embed_start (EV_P_ ev_embed *w)
2165{ 2481{
2166 if (expect_false (ev_is_active (w))) 2482 if (expect_false (ev_is_active (w)))
2167 return; 2483 return;
2168 2484
2169 { 2485 {
2170 struct ev_loop *loop = w->loop; 2486 struct ev_loop *loop = w->other;
2171 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2172 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2173 } 2489 }
2174 2490
2175 ev_set_priority (&w->io, ev_priority (w)); 2491 ev_set_priority (&w->io, ev_priority (w));
2176 ev_io_start (EV_A_ &w->io); 2492 ev_io_start (EV_A_ &w->io);
2177 2493
2494 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare);
2497
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499
2178 ev_start (EV_A_ (W)w, 1); 2500 ev_start (EV_A_ (W)w, 1);
2179} 2501}
2180 2502
2181void 2503void
2182ev_embed_stop (EV_P_ ev_embed *w) 2504ev_embed_stop (EV_P_ ev_embed *w)
2184 clear_pending (EV_A_ (W)w); 2506 clear_pending (EV_A_ (W)w);
2185 if (expect_false (!ev_is_active (w))) 2507 if (expect_false (!ev_is_active (w)))
2186 return; 2508 return;
2187 2509
2188 ev_io_stop (EV_A_ &w->io); 2510 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare);
2189 2512
2190 ev_stop (EV_A_ (W)w); 2513 ev_stop (EV_A_ (W)w);
2191} 2514}
2192#endif 2515#endif
2193 2516
2218 2541
2219 ev_stop (EV_A_ (W)w); 2542 ev_stop (EV_A_ (W)w);
2220} 2543}
2221#endif 2544#endif
2222 2545
2546#if EV_ASYNC_ENABLE
2547void
2548ev_async_start (EV_P_ ev_async *w)
2549{
2550 if (expect_false (ev_is_active (w)))
2551 return;
2552
2553 evpipe_init (EV_A);
2554
2555 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w;
2558}
2559
2560void
2561ev_async_stop (EV_P_ ev_async *w)
2562{
2563 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w)))
2565 return;
2566
2567 {
2568 int active = ((W)w)->active;
2569 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active;
2571 }
2572
2573 ev_stop (EV_A_ (W)w);
2574}
2575
2576void
2577ev_async_send (EV_P_ ev_async *w)
2578{
2579 w->sent = 1;
2580 evpipe_write (EV_A_ &gotasync);
2581}
2582#endif
2583
2223/*****************************************************************************/ 2584/*****************************************************************************/
2224 2585
2225struct ev_once 2586struct ev_once
2226{ 2587{
2227 ev_io io; 2588 ev_io io;
2282 ev_timer_set (&once->to, timeout, 0.); 2643 ev_timer_set (&once->to, timeout, 0.);
2283 ev_timer_start (EV_A_ &once->to); 2644 ev_timer_start (EV_A_ &once->to);
2284 } 2645 }
2285} 2646}
2286 2647
2648#if EV_MULTIPLICITY
2649 #include "ev_wrap.h"
2650#endif
2651
2287#ifdef __cplusplus 2652#ifdef __cplusplus
2288} 2653}
2289#endif 2654#endif
2290 2655

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines