ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC vs.
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
325 333
326typedef ev_watcher *W; 334typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 335typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 336typedef ev_watcher_time *WT;
329 337
338#define ev_active(w) ((W)(w))->active
330#define ev_at(w) ((WT)(w))->at 339#define ev_at(w) ((WT)(w))->at
331 340
332#if EV_USE_MONOTONIC 341#if EV_USE_MONOTONIC
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 342/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */ 343/* giving it a reasonably high chance of working on typical architetcures */
421 W w; 430 W w;
422 int events; 431 int events;
423} ANPENDING; 432} ANPENDING;
424 433
425#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
426typedef struct 436typedef struct
427{ 437{
428 WL head; 438 WL head;
429} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
430#endif 458#endif
431 459
432#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
433 461
434 struct ev_loop 462 struct ev_loop
519 } 547 }
520} 548}
521 549
522/*****************************************************************************/ 550/*****************************************************************************/
523 551
552#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
553
524int inline_size 554int inline_size
525array_nextsize (int elem, int cur, int cnt) 555array_nextsize (int elem, int cur, int cnt)
526{ 556{
527 int ncur = cur + 1; 557 int ncur = cur + 1;
528 558
529 do 559 do
530 ncur <<= 1; 560 ncur <<= 1;
531 while (cnt > ncur); 561 while (cnt > ncur);
532 562
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 563 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
534 if (elem * ncur > 4096) 564 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
535 { 565 {
536 ncur *= elem; 566 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 567 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
538 ncur = ncur - sizeof (void *) * 4; 568 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem; 569 ncur /= elem;
540 } 570 }
541 571
542 return ncur; 572 return ncur;
756 } 786 }
757} 787}
758 788
759/*****************************************************************************/ 789/*****************************************************************************/
760 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808
761/* towards the root */ 809/* towards the root */
762void inline_speed 810void inline_speed
763upheap (WT *heap, int k) 811upheap (ANHE *heap, int k)
764{ 812{
765 WT w = heap [k]; 813 ANHE he = heap [k];
766 814
767 for (;;) 815 for (;;)
768 { 816 {
769 int p = k >> 1; 817 int p = HPARENT (k);
770 818
771 /* maybe we could use a dummy element at heap [0]? */ 819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
772 if (!p || heap [p]->at <= w->at)
773 break; 820 break;
774 821
775 heap [k] = heap [p]; 822 heap [k] = heap [p];
776 ((W)heap [k])->active = k; 823 ev_active (ANHE_w (heap [k])) = k;
777 k = p; 824 k = p;
778 } 825 }
779 826
780 heap [k] = w; 827 heap [k] = he;
781 ((W)heap [k])->active = k; 828 ev_active (ANHE_w (he)) = k;
782} 829}
783 830
784/* away from the root */ 831/* away from the root */
785void inline_speed 832void inline_speed
786downheap (WT *heap, int N, int k) 833downheap (ANHE *heap, int N, int k)
787{ 834{
788 WT w = heap [k]; 835 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0;
837
838 for (;;)
839 {
840 ev_tstamp minat;
841 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
843
844 // find minimum child
845 if (expect_true (pos + DHEAP - 1 < E))
846 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else if (pos < E)
853 {
854 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else
860 break;
861
862 if (ANHE_at (he) <= minat)
863 break;
864
865 heap [k] = *minpos;
866 ev_active (ANHE_w (*minpos)) = k;
867
868 k = minpos - heap;
869 }
870
871 heap [k] = he;
872 ev_active (ANHE_w (he)) = k;
873}
874
875#else // 4HEAP
876
877#define HEAP0 1
878#define HPARENT(k) ((k) >> 1)
879
880/* towards the root */
881void inline_speed
882upheap (ANHE *heap, int k)
883{
884 ANHE he = heap [k];
885
886 for (;;)
887 {
888 int p = HPARENT (k);
889
890 /* maybe we could use a dummy element at heap [0]? */
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break;
893
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
789 908
790 for (;;) 909 for (;;)
791 { 910 {
792 int c = k << 1; 911 int c = k << 1;
793 912
794 if (c > N) 913 if (c > N)
795 break; 914 break;
796 915
797 c += c < N && heap [c]->at > heap [c + 1]->at 916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
798 ? 1 : 0; 917 ? 1 : 0;
799 918
800 if (w->at <= heap [c]->at) 919 if (ANHE_at (he) <= ANHE_at (heap [c]))
801 break; 920 break;
802 921
803 heap [k] = heap [c]; 922 heap [k] = heap [c];
804 ((W)heap [k])->active = k; 923 ev_active (ANHE_w (heap [k])) = k;
805 924
806 k = c; 925 k = c;
807 } 926 }
808 927
809 heap [k] = w; 928 heap [k] = he;
810 ((W)heap [k])->active = k; 929 ev_active (ANHE_w (he)) = k;
811} 930}
931#endif
812 932
813void inline_size 933void inline_size
814adjustheap (WT *heap, int N, int k) 934adjustheap (ANHE *heap, int N, int k)
815{ 935{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
816 upheap (heap, k); 937 upheap (heap, k);
938 else
817 downheap (heap, N, k); 939 downheap (heap, N, k);
818} 940}
819 941
820/*****************************************************************************/ 942/*****************************************************************************/
821 943
822typedef struct 944typedef struct
911pipecb (EV_P_ ev_io *iow, int revents) 1033pipecb (EV_P_ ev_io *iow, int revents)
912{ 1034{
913#if EV_USE_EVENTFD 1035#if EV_USE_EVENTFD
914 if (evfd >= 0) 1036 if (evfd >= 0)
915 { 1037 {
916 uint64_t counter = 1; 1038 uint64_t counter;
917 read (evfd, &counter, sizeof (uint64_t)); 1039 read (evfd, &counter, sizeof (uint64_t));
918 } 1040 }
919 else 1041 else
920#endif 1042#endif
921 { 1043 {
1367void 1489void
1368ev_loop_fork (EV_P) 1490ev_loop_fork (EV_P)
1369{ 1491{
1370 postfork = 1; /* must be in line with ev_default_fork */ 1492 postfork = 1; /* must be in line with ev_default_fork */
1371} 1493}
1372
1373#endif 1494#endif
1374 1495
1375#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
1376struct ev_loop * 1497struct ev_loop *
1377ev_default_loop_init (unsigned int flags) 1498ev_default_loop_init (unsigned int flags)
1458 EV_CB_INVOKE (p->w, p->events); 1579 EV_CB_INVOKE (p->w, p->events);
1459 } 1580 }
1460 } 1581 }
1461} 1582}
1462 1583
1463void inline_size
1464timers_reify (EV_P)
1465{
1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1467 {
1468 ev_timer *w = (ev_timer *)timers [1];
1469
1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->repeat)
1474 {
1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1476
1477 ev_at (w) += w->repeat;
1478 if (ev_at (w) < mn_now)
1479 ev_at (w) = mn_now;
1480
1481 downheap (timers, timercnt, 1);
1482 }
1483 else
1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1485
1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1487 }
1488}
1489
1490#if EV_PERIODIC_ENABLE
1491void inline_size
1492periodics_reify (EV_P)
1493{
1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1495 {
1496 ev_periodic *w = (ev_periodic *)periodics [1];
1497
1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1499
1500 /* first reschedule or stop timer */
1501 if (w->reschedule_cb)
1502 {
1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1505 downheap (periodics, periodiccnt, 1);
1506 }
1507 else if (w->interval)
1508 {
1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1512 downheap (periodics, periodiccnt, 1);
1513 }
1514 else
1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1516
1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1518 }
1519}
1520
1521static void noinline
1522periodics_reschedule (EV_P)
1523{
1524 int i;
1525
1526 /* adjust periodics after time jump */
1527 for (i = 0; i < periodiccnt; ++i)
1528 {
1529 ev_periodic *w = (ev_periodic *)periodics [i];
1530
1531 if (w->reschedule_cb)
1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1533 else if (w->interval)
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 }
1536
1537 /* now rebuild the heap */
1538 for (i = periodiccnt >> 1; i--; )
1539 downheap (periodics, periodiccnt, i);
1540}
1541#endif
1542
1543#if EV_IDLE_ENABLE 1584#if EV_IDLE_ENABLE
1544void inline_size 1585void inline_size
1545idle_reify (EV_P) 1586idle_reify (EV_P)
1546{ 1587{
1547 if (expect_false (idleall)) 1588 if (expect_false (idleall))
1558 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1599 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1559 break; 1600 break;
1560 } 1601 }
1561 } 1602 }
1562 } 1603 }
1604}
1605#endif
1606
1607void inline_size
1608timers_reify (EV_P)
1609{
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 {
1619 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now;
1622
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624
1625 ANHE_at_set (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0);
1627 }
1628 else
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1632 }
1633}
1634
1635#if EV_PERIODIC_ENABLE
1636void inline_size
1637periodics_reify (EV_P)
1638{
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1642
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651
1652 ANHE_at_set (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0);
1654 }
1655 else if (w->interval)
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1678 }
1679}
1680
1681static void noinline
1682periodics_reschedule (EV_P)
1683{
1684 int i;
1685
1686 /* adjust periodics after time jump */
1687 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1688 {
1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1690
1691 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695
1696 ANHE_at_set (periodics [i]);
1697 }
1698
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1701 for (i = 0; i < periodiccnt; ++i)
1702 upheap (periodics, i + HEAP0);
1563} 1703}
1564#endif 1704#endif
1565 1705
1566void inline_speed 1706void inline_speed
1567time_update (EV_P_ ev_tstamp max_block) 1707time_update (EV_P_ ev_tstamp max_block)
1596 */ 1736 */
1597 for (i = 4; --i; ) 1737 for (i = 4; --i; )
1598 { 1738 {
1599 rtmn_diff = ev_rt_now - mn_now; 1739 rtmn_diff = ev_rt_now - mn_now;
1600 1740
1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1741 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1602 return; /* all is well */ 1742 return; /* all is well */
1603 1743
1604 ev_rt_now = ev_time (); 1744 ev_rt_now = ev_time ();
1605 mn_now = get_clock (); 1745 mn_now = get_clock ();
1606 now_floor = mn_now; 1746 now_floor = mn_now;
1621 { 1761 {
1622#if EV_PERIODIC_ENABLE 1762#if EV_PERIODIC_ENABLE
1623 periodics_reschedule (EV_A); 1763 periodics_reschedule (EV_A);
1624#endif 1764#endif
1625 /* adjust timers. this is easy, as the offset is the same for all of them */ 1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1626 for (i = 1; i <= timercnt; ++i) 1766 for (i = 0; i < timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now; 1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1628 } 1772 }
1629 1773
1630 mn_now = ev_rt_now; 1774 mn_now = ev_rt_now;
1631 } 1775 }
1632} 1776}
1702 1846
1703 waittime = MAX_BLOCKTIME; 1847 waittime = MAX_BLOCKTIME;
1704 1848
1705 if (timercnt) 1849 if (timercnt)
1706 { 1850 {
1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1708 if (waittime > to) waittime = to; 1852 if (waittime > to) waittime = to;
1709 } 1853 }
1710 1854
1711#if EV_PERIODIC_ENABLE 1855#if EV_PERIODIC_ENABLE
1712 if (periodiccnt) 1856 if (periodiccnt)
1713 { 1857 {
1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1715 if (waittime > to) waittime = to; 1859 if (waittime > to) waittime = to;
1716 } 1860 }
1717#endif 1861#endif
1718 1862
1719 if (expect_false (waittime < timeout_blocktime)) 1863 if (expect_false (waittime < timeout_blocktime))
1871{ 2015{
1872 clear_pending (EV_A_ (W)w); 2016 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 2017 if (expect_false (!ev_is_active (w)))
1874 return; 2018 return;
1875 2019
1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1877 2021
1878 wlist_del (&anfds[w->fd].head, (WL)w); 2022 wlist_del (&anfds[w->fd].head, (WL)w);
1879 ev_stop (EV_A_ (W)w); 2023 ev_stop (EV_A_ (W)w);
1880 2024
1881 fd_change (EV_A_ w->fd, 1); 2025 fd_change (EV_A_ w->fd, 1);
1889 2033
1890 ev_at (w) += mn_now; 2034 ev_at (w) += mn_now;
1891 2035
1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1893 2037
1894 ev_start (EV_A_ (W)w, ++timercnt); 2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1896 timers [timercnt] = (WT)w; 2040 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]);
1897 upheap (timers, timercnt); 2042 upheap (timers, ev_active (w));
1898 2043
1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1900} 2045}
1901 2046
1902void noinline 2047void noinline
1903ev_timer_stop (EV_P_ ev_timer *w) 2048ev_timer_stop (EV_P_ ev_timer *w)
1904{ 2049{
1905 clear_pending (EV_A_ (W)w); 2050 clear_pending (EV_A_ (W)w);
1906 if (expect_false (!ev_is_active (w))) 2051 if (expect_false (!ev_is_active (w)))
1907 return; 2052 return;
1908 2053
1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w));
1910
1911 { 2054 {
1912 int active = ((W)w)->active; 2055 int active = ev_active (w);
1913 2056
2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2058
1914 if (expect_true (active < timercnt)) 2059 if (expect_true (active < timercnt + HEAP0 - 1))
1915 { 2060 {
1916 timers [active] = timers [timercnt]; 2061 timers [active] = timers [timercnt + HEAP0 - 1];
1917 adjustheap (timers, timercnt, active); 2062 adjustheap (timers, timercnt, active);
1918 } 2063 }
1919 2064
1920 --timercnt; 2065 --timercnt;
1921 } 2066 }
1931 if (ev_is_active (w)) 2076 if (ev_is_active (w))
1932 { 2077 {
1933 if (w->repeat) 2078 if (w->repeat)
1934 { 2079 {
1935 ev_at (w) = mn_now + w->repeat; 2080 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]);
1936 adjustheap (timers, timercnt, ((W)w)->active); 2082 adjustheap (timers, timercnt, ev_active (w));
1937 } 2083 }
1938 else 2084 else
1939 ev_timer_stop (EV_A_ w); 2085 ev_timer_stop (EV_A_ w);
1940 } 2086 }
1941 else if (w->repeat) 2087 else if (w->repeat)
1942 { 2088 {
1943 w->at = w->repeat; 2089 ev_at (w) = w->repeat;
1944 ev_timer_start (EV_A_ w); 2090 ev_timer_start (EV_A_ w);
1945 } 2091 }
1946} 2092}
1947 2093
1948#if EV_PERIODIC_ENABLE 2094#if EV_PERIODIC_ENABLE
1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1962 } 2108 }
1963 else 2109 else
1964 ev_at (w) = w->offset; 2110 ev_at (w) = w->offset;
1965 2111
1966 ev_start (EV_A_ (W)w, ++periodiccnt); 2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1968 periodics [periodiccnt] = (WT)w; 2114 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1969 upheap (periodics, periodiccnt); 2115 ANHE_at_set (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w));
1970 2117
1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1972} 2119}
1973 2120
1974void noinline 2121void noinline
1975ev_periodic_stop (EV_P_ ev_periodic *w) 2122ev_periodic_stop (EV_P_ ev_periodic *w)
1976{ 2123{
1977 clear_pending (EV_A_ (W)w); 2124 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2125 if (expect_false (!ev_is_active (w)))
1979 return; 2126 return;
1980 2127
1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w));
1982
1983 { 2128 {
1984 int active = ((W)w)->active; 2129 int active = ev_active (w);
1985 2130
2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2132
1986 if (expect_true (active < periodiccnt)) 2133 if (expect_true (active < periodiccnt + HEAP0 - 1))
1987 { 2134 {
1988 periodics [active] = periodics [periodiccnt]; 2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1989 adjustheap (periodics, periodiccnt, active); 2136 adjustheap (periodics, periodiccnt, active);
1990 } 2137 }
1991 2138
1992 --periodiccnt; 2139 --periodiccnt;
1993 } 2140 }
2113 if (w->wd < 0) 2260 if (w->wd < 0)
2114 { 2261 {
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2262 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2116 2263
2117 /* monitor some parent directory for speedup hints */ 2264 /* monitor some parent directory for speedup hints */
2265 /* note that exceeding the hardcoded limit is not a correctness issue, */
2266 /* but an efficiency issue only */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2267 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 { 2268 {
2120 char path [4096]; 2269 char path [4096];
2121 strcpy (path, w->path); 2270 strcpy (path, w->path);
2122 2271
2367 clear_pending (EV_A_ (W)w); 2516 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 2517 if (expect_false (!ev_is_active (w)))
2369 return; 2518 return;
2370 2519
2371 { 2520 {
2372 int active = ((W)w)->active; 2521 int active = ev_active (w);
2373 2522
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2523 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2524 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2376 2525
2377 ev_stop (EV_A_ (W)w); 2526 ev_stop (EV_A_ (W)w);
2378 --idleall; 2527 --idleall;
2379 } 2528 }
2380} 2529}
2397 clear_pending (EV_A_ (W)w); 2546 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 2547 if (expect_false (!ev_is_active (w)))
2399 return; 2548 return;
2400 2549
2401 { 2550 {
2402 int active = ((W)w)->active; 2551 int active = ev_active (w);
2552
2403 prepares [active - 1] = prepares [--preparecnt]; 2553 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active; 2554 ev_active (prepares [active - 1]) = active;
2405 } 2555 }
2406 2556
2407 ev_stop (EV_A_ (W)w); 2557 ev_stop (EV_A_ (W)w);
2408} 2558}
2409 2559
2424 clear_pending (EV_A_ (W)w); 2574 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w))) 2575 if (expect_false (!ev_is_active (w)))
2426 return; 2576 return;
2427 2577
2428 { 2578 {
2429 int active = ((W)w)->active; 2579 int active = ev_active (w);
2580
2430 checks [active - 1] = checks [--checkcnt]; 2581 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active; 2582 ev_active (checks [active - 1]) = active;
2432 } 2583 }
2433 2584
2434 ev_stop (EV_A_ (W)w); 2585 ev_stop (EV_A_ (W)w);
2435} 2586}
2436 2587
2532 clear_pending (EV_A_ (W)w); 2683 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w))) 2684 if (expect_false (!ev_is_active (w)))
2534 return; 2685 return;
2535 2686
2536 { 2687 {
2537 int active = ((W)w)->active; 2688 int active = ev_active (w);
2689
2538 forks [active - 1] = forks [--forkcnt]; 2690 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active; 2691 ev_active (forks [active - 1]) = active;
2540 } 2692 }
2541 2693
2542 ev_stop (EV_A_ (W)w); 2694 ev_stop (EV_A_ (W)w);
2543} 2695}
2544#endif 2696#endif
2563 clear_pending (EV_A_ (W)w); 2715 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w))) 2716 if (expect_false (!ev_is_active (w)))
2565 return; 2717 return;
2566 2718
2567 { 2719 {
2568 int active = ((W)w)->active; 2720 int active = ev_active (w);
2721
2569 asyncs [active - 1] = asyncs [--asynccnt]; 2722 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active; 2723 ev_active (asyncs [active - 1]) = active;
2571 } 2724 }
2572 2725
2573 ev_stop (EV_A_ (W)w); 2726 ev_stop (EV_A_ (W)w);
2574} 2727}
2575 2728

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines