ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC vs.
Revision 1.250 by root, Thu May 22 02:44:57 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#if 0 /* debugging */
241# define EV_VERIFY 3
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_VERIFY
247# define EV_VERIFY !EV_MINIMAL
248#endif
249
250#ifndef EV_USE_4HEAP
251# define EV_USE_4HEAP !EV_MINIMAL
252#endif
253
254#ifndef EV_HEAP_CACHE_AT
255# define EV_HEAP_CACHE_AT !EV_MINIMAL
256#endif
257
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 258/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 259
242#ifndef CLOCK_MONOTONIC 260#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 261# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 262# define EV_USE_MONOTONIC 0
279} 297}
280# endif 298# endif
281#endif 299#endif
282 300
283/**/ 301/**/
302
303#if EV_VERIFY >= 3
304# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
305#else
306# define EV_FREQUENT_CHECK do { } while (0)
307#endif
284 308
285/* 309/*
286 * This is used to avoid floating point rounding problems. 310 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 311 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 312 * to ensure progress, time-wise, even when rounding
325 349
326typedef ev_watcher *W; 350typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 351typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 352typedef ev_watcher_time *WT;
329 353
354#define ev_active(w) ((W)(w))->active
330#define ev_at(w) ((WT)(w))->at 355#define ev_at(w) ((WT)(w))->at
331 356
332#if EV_USE_MONOTONIC 357#if EV_USE_MONOTONIC
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 358/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */ 359/* giving it a reasonably high chance of working on typical architetcures */
421 W w; 446 W w;
422 int events; 447 int events;
423} ANPENDING; 448} ANPENDING;
424 449
425#if EV_USE_INOTIFY 450#if EV_USE_INOTIFY
451/* hash table entry per inotify-id */
426typedef struct 452typedef struct
427{ 453{
428 WL head; 454 WL head;
429} ANFS; 455} ANFS;
456#endif
457
458/* Heap Entry */
459#if EV_HEAP_CACHE_AT
460 typedef struct {
461 ev_tstamp at;
462 WT w;
463 } ANHE;
464
465 #define ANHE_w(he) (he).w /* access watcher, read-write */
466 #define ANHE_at(he) (he).at /* access cached at, read-only */
467 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
468#else
469 typedef WT ANHE;
470
471 #define ANHE_w(he) (he)
472 #define ANHE_at(he) (he)->at
473 #define ANHE_at_cache(he)
430#endif 474#endif
431 475
432#if EV_MULTIPLICITY 476#if EV_MULTIPLICITY
433 477
434 struct ev_loop 478 struct ev_loop
519 } 563 }
520} 564}
521 565
522/*****************************************************************************/ 566/*****************************************************************************/
523 567
568#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
569
524int inline_size 570int inline_size
525array_nextsize (int elem, int cur, int cnt) 571array_nextsize (int elem, int cur, int cnt)
526{ 572{
527 int ncur = cur + 1; 573 int ncur = cur + 1;
528 574
529 do 575 do
530 ncur <<= 1; 576 ncur <<= 1;
531 while (cnt > ncur); 577 while (cnt > ncur);
532 578
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 579 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
534 if (elem * ncur > 4096) 580 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
535 { 581 {
536 ncur *= elem; 582 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 583 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
538 ncur = ncur - sizeof (void *) * 4; 584 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem; 585 ncur /= elem;
540 } 586 }
541 587
542 return ncur; 588 return ncur;
756 } 802 }
757} 803}
758 804
759/*****************************************************************************/ 805/*****************************************************************************/
760 806
807/*
808 * the heap functions want a real array index. array index 0 uis guaranteed to not
809 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
810 * the branching factor of the d-tree.
811 */
812
813/*
814 * at the moment we allow libev the luxury of two heaps,
815 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
816 * which is more cache-efficient.
817 * the difference is about 5% with 50000+ watchers.
818 */
819#if EV_USE_4HEAP
820
821#define DHEAP 4
822#define HEAP0 (DHEAP - 1) /* index of first element in heap */
823#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
824#define UPHEAP_DONE(p,k) ((p) == (k))
825
826/* away from the root */
827void inline_speed
828downheap (ANHE *heap, int N, int k)
829{
830 ANHE he = heap [k];
831 ANHE *E = heap + N + HEAP0;
832
833 for (;;)
834 {
835 ev_tstamp minat;
836 ANHE *minpos;
837 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
838
839 /* find minimum child */
840 if (expect_true (pos + DHEAP - 1 < E))
841 {
842 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
843 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
846 }
847 else if (pos < E)
848 {
849 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
850 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
851 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
852 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
853 }
854 else
855 break;
856
857 if (ANHE_at (he) <= minat)
858 break;
859
860 heap [k] = *minpos;
861 ev_active (ANHE_w (*minpos)) = k;
862
863 k = minpos - heap;
864 }
865
866 heap [k] = he;
867 ev_active (ANHE_w (he)) = k;
868}
869
870#else /* 4HEAP */
871
872#define HEAP0 1
873#define HPARENT(k) ((k) >> 1)
874#define UPHEAP_DONE(p,k) (!(p))
875
876/* away from the root */
877void inline_speed
878downheap (ANHE *heap, int N, int k)
879{
880 ANHE he = heap [k];
881
882 for (;;)
883 {
884 int c = k << 1;
885
886 if (c > N + HEAP0 - 1)
887 break;
888
889 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
890 ? 1 : 0;
891
892 if (ANHE_at (he) <= ANHE_at (heap [c]))
893 break;
894
895 heap [k] = heap [c];
896 ev_active (ANHE_w (heap [k])) = k;
897
898 k = c;
899 }
900
901 heap [k] = he;
902 ev_active (ANHE_w (he)) = k;
903}
904#endif
905
761/* towards the root */ 906/* towards the root */
762void inline_speed 907void inline_speed
763upheap (WT *heap, int k) 908upheap (ANHE *heap, int k)
764{ 909{
765 WT w = heap [k]; 910 ANHE he = heap [k];
766 911
767 for (;;) 912 for (;;)
768 { 913 {
769 int p = k >> 1; 914 int p = HPARENT (k);
770 915
771 /* maybe we could use a dummy element at heap [0]? */ 916 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
772 if (!p || heap [p]->at <= w->at)
773 break; 917 break;
774 918
775 heap [k] = heap [p]; 919 heap [k] = heap [p];
776 ((W)heap [k])->active = k; 920 ev_active (ANHE_w (heap [k])) = k;
777 k = p; 921 k = p;
778 } 922 }
779 923
780 heap [k] = w; 924 heap [k] = he;
781 ((W)heap [k])->active = k; 925 ev_active (ANHE_w (he)) = k;
782}
783
784/* away from the root */
785void inline_speed
786downheap (WT *heap, int N, int k)
787{
788 WT w = heap [k];
789
790 for (;;)
791 {
792 int c = k << 1;
793
794 if (c > N)
795 break;
796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
803 heap [k] = heap [c];
804 ((W)heap [k])->active = k;
805
806 k = c;
807 }
808
809 heap [k] = w;
810 ((W)heap [k])->active = k;
811} 926}
812 927
813void inline_size 928void inline_size
814adjustheap (WT *heap, int N, int k) 929adjustheap (ANHE *heap, int N, int k)
815{ 930{
931 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
816 upheap (heap, k); 932 upheap (heap, k);
933 else
817 downheap (heap, N, k); 934 downheap (heap, N, k);
818} 935}
936
937/* rebuild the heap: this function is used only once and executed rarely */
938void inline_size
939reheap (ANHE *heap, int N)
940{
941 int i;
942 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
943 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
944 for (i = 0; i < N; ++i)
945 upheap (heap, i + HEAP0);
946}
947
948#if EV_VERIFY
949static void
950checkheap (ANHE *heap, int N)
951{
952 int i;
953
954 for (i = HEAP0; i < N + HEAP0; ++i)
955 {
956 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
957 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
958 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
959 }
960}
961#endif
819 962
820/*****************************************************************************/ 963/*****************************************************************************/
821 964
822typedef struct 965typedef struct
823{ 966{
911pipecb (EV_P_ ev_io *iow, int revents) 1054pipecb (EV_P_ ev_io *iow, int revents)
912{ 1055{
913#if EV_USE_EVENTFD 1056#if EV_USE_EVENTFD
914 if (evfd >= 0) 1057 if (evfd >= 0)
915 { 1058 {
916 uint64_t counter = 1; 1059 uint64_t counter;
917 read (evfd, &counter, sizeof (uint64_t)); 1060 read (evfd, &counter, sizeof (uint64_t));
918 } 1061 }
919 else 1062 else
920#endif 1063#endif
921 { 1064 {
1340 1483
1341 postfork = 0; 1484 postfork = 0;
1342} 1485}
1343 1486
1344#if EV_MULTIPLICITY 1487#if EV_MULTIPLICITY
1488
1345struct ev_loop * 1489struct ev_loop *
1346ev_loop_new (unsigned int flags) 1490ev_loop_new (unsigned int flags)
1347{ 1491{
1348 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1492 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1349 1493
1368ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
1369{ 1513{
1370 postfork = 1; /* must be in line with ev_default_fork */ 1514 postfork = 1; /* must be in line with ev_default_fork */
1371} 1515}
1372 1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1373#endif 1524#endif
1525
1526void
1527ev_loop_verify (EV_P)
1528{
1529#if EV_VERIFY
1530 int i;
1531
1532 checkheap (timers, timercnt);
1533#if EV_PERIODIC_ENABLE
1534 checkheap (periodics, periodiccnt);
1535#endif
1536
1537#if EV_IDLE_ENABLE
1538 for (i = NUMPRI; i--; )
1539 array_check ((W **)idles [i], idlecnt [i]);
1540#endif
1541#if EV_FORK_ENABLE
1542 array_check ((W **)forks, forkcnt);
1543#endif
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547 array_check ((W **)prepares, preparecnt);
1548 array_check ((W **)checks, checkcnt);
1549#endif
1550}
1551
1552#endif /* multiplicity */
1374 1553
1375#if EV_MULTIPLICITY 1554#if EV_MULTIPLICITY
1376struct ev_loop * 1555struct ev_loop *
1377ev_default_loop_init (unsigned int flags) 1556ev_default_loop_init (unsigned int flags)
1378#else 1557#else
1454 { 1633 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1634 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1456 1635
1457 p->w->pending = 0; 1636 p->w->pending = 0;
1458 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1638 EV_FREQUENT_CHECK;
1459 } 1639 }
1460 } 1640 }
1461} 1641}
1462
1463void inline_size
1464timers_reify (EV_P)
1465{
1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1467 {
1468 ev_timer *w = (ev_timer *)timers [1];
1469
1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->repeat)
1474 {
1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1476
1477 ev_at (w) += w->repeat;
1478 if (ev_at (w) < mn_now)
1479 ev_at (w) = mn_now;
1480
1481 downheap (timers, timercnt, 1);
1482 }
1483 else
1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1485
1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1487 }
1488}
1489
1490#if EV_PERIODIC_ENABLE
1491void inline_size
1492periodics_reify (EV_P)
1493{
1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1495 {
1496 ev_periodic *w = (ev_periodic *)periodics [1];
1497
1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1499
1500 /* first reschedule or stop timer */
1501 if (w->reschedule_cb)
1502 {
1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1505 downheap (periodics, periodiccnt, 1);
1506 }
1507 else if (w->interval)
1508 {
1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1512 downheap (periodics, periodiccnt, 1);
1513 }
1514 else
1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1516
1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1518 }
1519}
1520
1521static void noinline
1522periodics_reschedule (EV_P)
1523{
1524 int i;
1525
1526 /* adjust periodics after time jump */
1527 for (i = 0; i < periodiccnt; ++i)
1528 {
1529 ev_periodic *w = (ev_periodic *)periodics [i];
1530
1531 if (w->reschedule_cb)
1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1533 else if (w->interval)
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 }
1536
1537 /* now rebuild the heap */
1538 for (i = periodiccnt >> 1; i--; )
1539 downheap (periodics, periodiccnt, i);
1540}
1541#endif
1542 1642
1543#if EV_IDLE_ENABLE 1643#if EV_IDLE_ENABLE
1544void inline_size 1644void inline_size
1545idle_reify (EV_P) 1645idle_reify (EV_P)
1546{ 1646{
1558 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1658 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1559 break; 1659 break;
1560 } 1660 }
1561 } 1661 }
1562 } 1662 }
1663}
1664#endif
1665
1666void inline_size
1667timers_reify (EV_P)
1668{
1669 EV_FREQUENT_CHECK;
1670
1671 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1672 {
1673 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1674
1675 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1676
1677 /* first reschedule or stop timer */
1678 if (w->repeat)
1679 {
1680 ev_at (w) += w->repeat;
1681 if (ev_at (w) < mn_now)
1682 ev_at (w) = mn_now;
1683
1684 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1685
1686 ANHE_at_cache (timers [HEAP0]);
1687 downheap (timers, timercnt, HEAP0);
1688 }
1689 else
1690 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1691
1692 EV_FREQUENT_CHECK;
1693 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1694 }
1695}
1696
1697#if EV_PERIODIC_ENABLE
1698void inline_size
1699periodics_reify (EV_P)
1700{
1701 EV_FREQUENT_CHECK;
1702
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1706
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0);
1718 }
1719 else if (w->interval)
1720 {
1721 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1722 /* if next trigger time is not sufficiently in the future, put it there */
1723 /* this might happen because of floating point inexactness */
1724 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1725 {
1726 ev_at (w) += w->interval;
1727
1728 /* if interval is unreasonably low we might still have a time in the past */
1729 /* so correct this. this will make the periodic very inexact, but the user */
1730 /* has effectively asked to get triggered more often than possible */
1731 if (ev_at (w) < ev_rt_now)
1732 ev_at (w) = ev_rt_now;
1733 }
1734
1735 ANHE_at_cache (periodics [HEAP0]);
1736 downheap (periodics, periodiccnt, HEAP0);
1737 }
1738 else
1739 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1740
1741 EV_FREQUENT_CHECK;
1742 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1743 }
1744}
1745
1746static void noinline
1747periodics_reschedule (EV_P)
1748{
1749 int i;
1750
1751 /* adjust periodics after time jump */
1752 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1753 {
1754 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1755
1756 if (w->reschedule_cb)
1757 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1758 else if (w->interval)
1759 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1760
1761 ANHE_at_cache (periodics [i]);
1762 }
1763
1764 reheap (periodics, periodiccnt);
1563} 1765}
1564#endif 1766#endif
1565 1767
1566void inline_speed 1768void inline_speed
1567time_update (EV_P_ ev_tstamp max_block) 1769time_update (EV_P_ ev_tstamp max_block)
1596 */ 1798 */
1597 for (i = 4; --i; ) 1799 for (i = 4; --i; )
1598 { 1800 {
1599 rtmn_diff = ev_rt_now - mn_now; 1801 rtmn_diff = ev_rt_now - mn_now;
1600 1802
1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1803 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1602 return; /* all is well */ 1804 return; /* all is well */
1603 1805
1604 ev_rt_now = ev_time (); 1806 ev_rt_now = ev_time ();
1605 mn_now = get_clock (); 1807 mn_now = get_clock ();
1606 now_floor = mn_now; 1808 now_floor = mn_now;
1621 { 1823 {
1622#if EV_PERIODIC_ENABLE 1824#if EV_PERIODIC_ENABLE
1623 periodics_reschedule (EV_A); 1825 periodics_reschedule (EV_A);
1624#endif 1826#endif
1625 /* adjust timers. this is easy, as the offset is the same for all of them */ 1827 /* adjust timers. this is easy, as the offset is the same for all of them */
1626 for (i = 1; i <= timercnt; ++i) 1828 for (i = 0; i < timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now; 1829 {
1830 ANHE *he = timers + i + HEAP0;
1831 ANHE_w (*he)->at += ev_rt_now - mn_now;
1832 ANHE_at_cache (*he);
1833 }
1628 } 1834 }
1629 1835
1630 mn_now = ev_rt_now; 1836 mn_now = ev_rt_now;
1631 } 1837 }
1632} 1838}
1652 1858
1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1859 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1654 1860
1655 do 1861 do
1656 { 1862 {
1863#if EV_VERIFY >= 2
1864 ev_loop_verify (EV_A);
1865#endif
1866
1657#ifndef _WIN32 1867#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */ 1868 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid)) 1869 if (expect_false (getpid () != curpid))
1660 { 1870 {
1661 curpid = getpid (); 1871 curpid = getpid ();
1702 1912
1703 waittime = MAX_BLOCKTIME; 1913 waittime = MAX_BLOCKTIME;
1704 1914
1705 if (timercnt) 1915 if (timercnt)
1706 { 1916 {
1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 1917 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1708 if (waittime > to) waittime = to; 1918 if (waittime > to) waittime = to;
1709 } 1919 }
1710 1920
1711#if EV_PERIODIC_ENABLE 1921#if EV_PERIODIC_ENABLE
1712 if (periodiccnt) 1922 if (periodiccnt)
1713 { 1923 {
1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 1924 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1715 if (waittime > to) waittime = to; 1925 if (waittime > to) waittime = to;
1716 } 1926 }
1717#endif 1927#endif
1718 1928
1719 if (expect_false (waittime < timeout_blocktime)) 1929 if (expect_false (waittime < timeout_blocktime))
1856 if (expect_false (ev_is_active (w))) 2066 if (expect_false (ev_is_active (w)))
1857 return; 2067 return;
1858 2068
1859 assert (("ev_io_start called with negative fd", fd >= 0)); 2069 assert (("ev_io_start called with negative fd", fd >= 0));
1860 2070
2071 EV_FREQUENT_CHECK;
2072
1861 ev_start (EV_A_ (W)w, 1); 2073 ev_start (EV_A_ (W)w, 1);
1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2074 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1863 wlist_add (&anfds[fd].head, (WL)w); 2075 wlist_add (&anfds[fd].head, (WL)w);
1864 2076
1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2077 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1866 w->events &= ~EV_IOFDSET; 2078 w->events &= ~EV_IOFDSET;
2079
2080 EV_FREQUENT_CHECK;
1867} 2081}
1868 2082
1869void noinline 2083void noinline
1870ev_io_stop (EV_P_ ev_io *w) 2084ev_io_stop (EV_P_ ev_io *w)
1871{ 2085{
1872 clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 2087 if (expect_false (!ev_is_active (w)))
1874 return; 2088 return;
1875 2089
1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2090 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2091
2092 EV_FREQUENT_CHECK;
1877 2093
1878 wlist_del (&anfds[w->fd].head, (WL)w); 2094 wlist_del (&anfds[w->fd].head, (WL)w);
1879 ev_stop (EV_A_ (W)w); 2095 ev_stop (EV_A_ (W)w);
1880 2096
1881 fd_change (EV_A_ w->fd, 1); 2097 fd_change (EV_A_ w->fd, 1);
2098
2099 EV_FREQUENT_CHECK;
1882} 2100}
1883 2101
1884void noinline 2102void noinline
1885ev_timer_start (EV_P_ ev_timer *w) 2103ev_timer_start (EV_P_ ev_timer *w)
1886{ 2104{
1889 2107
1890 ev_at (w) += mn_now; 2108 ev_at (w) += mn_now;
1891 2109
1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2110 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1893 2111
2112 EV_FREQUENT_CHECK;
2113
2114 ++timercnt;
1894 ev_start (EV_A_ (W)w, ++timercnt); 2115 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2116 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1896 timers [timercnt] = (WT)w; 2117 ANHE_w (timers [ev_active (w)]) = (WT)w;
2118 ANHE_at_cache (timers [ev_active (w)]);
1897 upheap (timers, timercnt); 2119 upheap (timers, ev_active (w));
1898 2120
2121 EV_FREQUENT_CHECK;
2122
1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 2123 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1900} 2124}
1901 2125
1902void noinline 2126void noinline
1903ev_timer_stop (EV_P_ ev_timer *w) 2127ev_timer_stop (EV_P_ ev_timer *w)
1904{ 2128{
1905 clear_pending (EV_A_ (W)w); 2129 clear_pending (EV_A_ (W)w);
1906 if (expect_false (!ev_is_active (w))) 2130 if (expect_false (!ev_is_active (w)))
1907 return; 2131 return;
1908 2132
1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 2133 EV_FREQUENT_CHECK;
1910 2134
1911 { 2135 {
1912 int active = ((W)w)->active; 2136 int active = ev_active (w);
1913 2137
2138 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2139
2140 --timercnt;
2141
1914 if (expect_true (active < timercnt)) 2142 if (expect_true (active < timercnt + HEAP0))
1915 { 2143 {
1916 timers [active] = timers [timercnt]; 2144 timers [active] = timers [timercnt + HEAP0];
1917 adjustheap (timers, timercnt, active); 2145 adjustheap (timers, timercnt, active);
1918 } 2146 }
1919
1920 --timercnt;
1921 } 2147 }
2148
2149 EV_FREQUENT_CHECK;
1922 2150
1923 ev_at (w) -= mn_now; 2151 ev_at (w) -= mn_now;
1924 2152
1925 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1926} 2154}
1927 2155
1928void noinline 2156void noinline
1929ev_timer_again (EV_P_ ev_timer *w) 2157ev_timer_again (EV_P_ ev_timer *w)
1930{ 2158{
2159 EV_FREQUENT_CHECK;
2160
1931 if (ev_is_active (w)) 2161 if (ev_is_active (w))
1932 { 2162 {
1933 if (w->repeat) 2163 if (w->repeat)
1934 { 2164 {
1935 ev_at (w) = mn_now + w->repeat; 2165 ev_at (w) = mn_now + w->repeat;
2166 ANHE_at_cache (timers [ev_active (w)]);
1936 adjustheap (timers, timercnt, ((W)w)->active); 2167 adjustheap (timers, timercnt, ev_active (w));
1937 } 2168 }
1938 else 2169 else
1939 ev_timer_stop (EV_A_ w); 2170 ev_timer_stop (EV_A_ w);
1940 } 2171 }
1941 else if (w->repeat) 2172 else if (w->repeat)
1942 { 2173 {
1943 w->at = w->repeat; 2174 ev_at (w) = w->repeat;
1944 ev_timer_start (EV_A_ w); 2175 ev_timer_start (EV_A_ w);
1945 } 2176 }
2177
2178 EV_FREQUENT_CHECK;
1946} 2179}
1947 2180
1948#if EV_PERIODIC_ENABLE 2181#if EV_PERIODIC_ENABLE
1949void noinline 2182void noinline
1950ev_periodic_start (EV_P_ ev_periodic *w) 2183ev_periodic_start (EV_P_ ev_periodic *w)
1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2194 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1962 } 2195 }
1963 else 2196 else
1964 ev_at (w) = w->offset; 2197 ev_at (w) = w->offset;
1965 2198
2199 EV_FREQUENT_CHECK;
2200
2201 ++periodiccnt;
1966 ev_start (EV_A_ (W)w, ++periodiccnt); 2202 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2203 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1968 periodics [periodiccnt] = (WT)w; 2204 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1969 upheap (periodics, periodiccnt); 2205 ANHE_at_cache (periodics [ev_active (w)]);
2206 upheap (periodics, ev_active (w));
1970 2207
2208 EV_FREQUENT_CHECK;
2209
1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2210 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1972} 2211}
1973 2212
1974void noinline 2213void noinline
1975ev_periodic_stop (EV_P_ ev_periodic *w) 2214ev_periodic_stop (EV_P_ ev_periodic *w)
1976{ 2215{
1977 clear_pending (EV_A_ (W)w); 2216 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2217 if (expect_false (!ev_is_active (w)))
1979 return; 2218 return;
1980 2219
1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 2220 EV_FREQUENT_CHECK;
1982 2221
1983 { 2222 {
1984 int active = ((W)w)->active; 2223 int active = ev_active (w);
1985 2224
2225 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2226
2227 --periodiccnt;
2228
1986 if (expect_true (active < periodiccnt)) 2229 if (expect_true (active < periodiccnt + HEAP0))
1987 { 2230 {
1988 periodics [active] = periodics [periodiccnt]; 2231 periodics [active] = periodics [periodiccnt + HEAP0];
1989 adjustheap (periodics, periodiccnt, active); 2232 adjustheap (periodics, periodiccnt, active);
1990 } 2233 }
1991
1992 --periodiccnt;
1993 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1994 2237
1995 ev_stop (EV_A_ (W)w); 2238 ev_stop (EV_A_ (W)w);
1996} 2239}
1997 2240
1998void noinline 2241void noinline
2018 return; 2261 return;
2019 2262
2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2263 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2021 2264
2022 evpipe_init (EV_A); 2265 evpipe_init (EV_A);
2266
2267 EV_FREQUENT_CHECK;
2023 2268
2024 { 2269 {
2025#ifndef _WIN32 2270#ifndef _WIN32
2026 sigset_t full, prev; 2271 sigset_t full, prev;
2027 sigfillset (&full); 2272 sigfillset (&full);
2048 sigfillset (&sa.sa_mask); 2293 sigfillset (&sa.sa_mask);
2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2294 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2050 sigaction (w->signum, &sa, 0); 2295 sigaction (w->signum, &sa, 0);
2051#endif 2296#endif
2052 } 2297 }
2298
2299 EV_FREQUENT_CHECK;
2053} 2300}
2054 2301
2055void noinline 2302void noinline
2056ev_signal_stop (EV_P_ ev_signal *w) 2303ev_signal_stop (EV_P_ ev_signal *w)
2057{ 2304{
2058 clear_pending (EV_A_ (W)w); 2305 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 2306 if (expect_false (!ev_is_active (w)))
2060 return; 2307 return;
2061 2308
2309 EV_FREQUENT_CHECK;
2310
2062 wlist_del (&signals [w->signum - 1].head, (WL)w); 2311 wlist_del (&signals [w->signum - 1].head, (WL)w);
2063 ev_stop (EV_A_ (W)w); 2312 ev_stop (EV_A_ (W)w);
2064 2313
2065 if (!signals [w->signum - 1].head) 2314 if (!signals [w->signum - 1].head)
2066 signal (w->signum, SIG_DFL); 2315 signal (w->signum, SIG_DFL);
2316
2317 EV_FREQUENT_CHECK;
2067} 2318}
2068 2319
2069void 2320void
2070ev_child_start (EV_P_ ev_child *w) 2321ev_child_start (EV_P_ ev_child *w)
2071{ 2322{
2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2324 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2074#endif 2325#endif
2075 if (expect_false (ev_is_active (w))) 2326 if (expect_false (ev_is_active (w)))
2076 return; 2327 return;
2077 2328
2329 EV_FREQUENT_CHECK;
2330
2078 ev_start (EV_A_ (W)w, 1); 2331 ev_start (EV_A_ (W)w, 1);
2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2332 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2333
2334 EV_FREQUENT_CHECK;
2080} 2335}
2081 2336
2082void 2337void
2083ev_child_stop (EV_P_ ev_child *w) 2338ev_child_stop (EV_P_ ev_child *w)
2084{ 2339{
2085 clear_pending (EV_A_ (W)w); 2340 clear_pending (EV_A_ (W)w);
2086 if (expect_false (!ev_is_active (w))) 2341 if (expect_false (!ev_is_active (w)))
2087 return; 2342 return;
2088 2343
2344 EV_FREQUENT_CHECK;
2345
2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2346 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2090 ev_stop (EV_A_ (W)w); 2347 ev_stop (EV_A_ (W)w);
2348
2349 EV_FREQUENT_CHECK;
2091} 2350}
2092 2351
2093#if EV_STAT_ENABLE 2352#if EV_STAT_ENABLE
2094 2353
2095# ifdef _WIN32 2354# ifdef _WIN32
2113 if (w->wd < 0) 2372 if (w->wd < 0)
2114 { 2373 {
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2374 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2116 2375
2117 /* monitor some parent directory for speedup hints */ 2376 /* monitor some parent directory for speedup hints */
2377 /* note that exceeding the hardcoded limit is not a correctness issue, */
2378 /* but an efficiency issue only */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2379 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 { 2380 {
2120 char path [4096]; 2381 char path [4096];
2121 strcpy (path, w->path); 2382 strcpy (path, w->path);
2122 2383
2321 else 2582 else
2322#endif 2583#endif
2323 ev_timer_start (EV_A_ &w->timer); 2584 ev_timer_start (EV_A_ &w->timer);
2324 2585
2325 ev_start (EV_A_ (W)w, 1); 2586 ev_start (EV_A_ (W)w, 1);
2587
2588 EV_FREQUENT_CHECK;
2326} 2589}
2327 2590
2328void 2591void
2329ev_stat_stop (EV_P_ ev_stat *w) 2592ev_stat_stop (EV_P_ ev_stat *w)
2330{ 2593{
2331 clear_pending (EV_A_ (W)w); 2594 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 2595 if (expect_false (!ev_is_active (w)))
2333 return; 2596 return;
2334 2597
2598 EV_FREQUENT_CHECK;
2599
2335#if EV_USE_INOTIFY 2600#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w); 2601 infy_del (EV_A_ w);
2337#endif 2602#endif
2338 ev_timer_stop (EV_A_ &w->timer); 2603 ev_timer_stop (EV_A_ &w->timer);
2339 2604
2340 ev_stop (EV_A_ (W)w); 2605 ev_stop (EV_A_ (W)w);
2606
2607 EV_FREQUENT_CHECK;
2341} 2608}
2342#endif 2609#endif
2343 2610
2344#if EV_IDLE_ENABLE 2611#if EV_IDLE_ENABLE
2345void 2612void
2347{ 2614{
2348 if (expect_false (ev_is_active (w))) 2615 if (expect_false (ev_is_active (w)))
2349 return; 2616 return;
2350 2617
2351 pri_adjust (EV_A_ (W)w); 2618 pri_adjust (EV_A_ (W)w);
2619
2620 EV_FREQUENT_CHECK;
2352 2621
2353 { 2622 {
2354 int active = ++idlecnt [ABSPRI (w)]; 2623 int active = ++idlecnt [ABSPRI (w)];
2355 2624
2356 ++idleall; 2625 ++idleall;
2357 ev_start (EV_A_ (W)w, active); 2626 ev_start (EV_A_ (W)w, active);
2358 2627
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2628 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w; 2629 idles [ABSPRI (w)][active - 1] = w;
2361 } 2630 }
2631
2632 EV_FREQUENT_CHECK;
2362} 2633}
2363 2634
2364void 2635void
2365ev_idle_stop (EV_P_ ev_idle *w) 2636ev_idle_stop (EV_P_ ev_idle *w)
2366{ 2637{
2367 clear_pending (EV_A_ (W)w); 2638 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 2639 if (expect_false (!ev_is_active (w)))
2369 return; 2640 return;
2370 2641
2642 EV_FREQUENT_CHECK;
2643
2371 { 2644 {
2372 int active = ((W)w)->active; 2645 int active = ev_active (w);
2373 2646
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2647 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2648 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2376 2649
2377 ev_stop (EV_A_ (W)w); 2650 ev_stop (EV_A_ (W)w);
2378 --idleall; 2651 --idleall;
2379 } 2652 }
2653
2654 EV_FREQUENT_CHECK;
2380} 2655}
2381#endif 2656#endif
2382 2657
2383void 2658void
2384ev_prepare_start (EV_P_ ev_prepare *w) 2659ev_prepare_start (EV_P_ ev_prepare *w)
2385{ 2660{
2386 if (expect_false (ev_is_active (w))) 2661 if (expect_false (ev_is_active (w)))
2387 return; 2662 return;
2663
2664 EV_FREQUENT_CHECK;
2388 2665
2389 ev_start (EV_A_ (W)w, ++preparecnt); 2666 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2667 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w; 2668 prepares [preparecnt - 1] = w;
2669
2670 EV_FREQUENT_CHECK;
2392} 2671}
2393 2672
2394void 2673void
2395ev_prepare_stop (EV_P_ ev_prepare *w) 2674ev_prepare_stop (EV_P_ ev_prepare *w)
2396{ 2675{
2397 clear_pending (EV_A_ (W)w); 2676 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 2677 if (expect_false (!ev_is_active (w)))
2399 return; 2678 return;
2400 2679
2680 EV_FREQUENT_CHECK;
2681
2401 { 2682 {
2402 int active = ((W)w)->active; 2683 int active = ev_active (w);
2684
2403 prepares [active - 1] = prepares [--preparecnt]; 2685 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active; 2686 ev_active (prepares [active - 1]) = active;
2405 } 2687 }
2406 2688
2407 ev_stop (EV_A_ (W)w); 2689 ev_stop (EV_A_ (W)w);
2690
2691 EV_FREQUENT_CHECK;
2408} 2692}
2409 2693
2410void 2694void
2411ev_check_start (EV_P_ ev_check *w) 2695ev_check_start (EV_P_ ev_check *w)
2412{ 2696{
2413 if (expect_false (ev_is_active (w))) 2697 if (expect_false (ev_is_active (w)))
2414 return; 2698 return;
2699
2700 EV_FREQUENT_CHECK;
2415 2701
2416 ev_start (EV_A_ (W)w, ++checkcnt); 2702 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2703 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w; 2704 checks [checkcnt - 1] = w;
2705
2706 EV_FREQUENT_CHECK;
2419} 2707}
2420 2708
2421void 2709void
2422ev_check_stop (EV_P_ ev_check *w) 2710ev_check_stop (EV_P_ ev_check *w)
2423{ 2711{
2424 clear_pending (EV_A_ (W)w); 2712 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w))) 2713 if (expect_false (!ev_is_active (w)))
2426 return; 2714 return;
2427 2715
2716 EV_FREQUENT_CHECK;
2717
2428 { 2718 {
2429 int active = ((W)w)->active; 2719 int active = ev_active (w);
2720
2430 checks [active - 1] = checks [--checkcnt]; 2721 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active; 2722 ev_active (checks [active - 1]) = active;
2432 } 2723 }
2433 2724
2434 ev_stop (EV_A_ (W)w); 2725 ev_stop (EV_A_ (W)w);
2726
2727 EV_FREQUENT_CHECK;
2435} 2728}
2436 2729
2437#if EV_EMBED_ENABLE 2730#if EV_EMBED_ENABLE
2438void noinline 2731void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w) 2732ev_embed_sweep (EV_P_ ev_embed *w)
2486 struct ev_loop *loop = w->other; 2779 struct ev_loop *loop = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2780 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2781 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 } 2782 }
2490 2783
2784 EV_FREQUENT_CHECK;
2785
2491 ev_set_priority (&w->io, ev_priority (w)); 2786 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io); 2787 ev_io_start (EV_A_ &w->io);
2493 2788
2494 ev_prepare_init (&w->prepare, embed_prepare_cb); 2789 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI); 2790 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare); 2791 ev_prepare_start (EV_A_ &w->prepare);
2497 2792
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2793 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499 2794
2500 ev_start (EV_A_ (W)w, 1); 2795 ev_start (EV_A_ (W)w, 1);
2796
2797 EV_FREQUENT_CHECK;
2501} 2798}
2502 2799
2503void 2800void
2504ev_embed_stop (EV_P_ ev_embed *w) 2801ev_embed_stop (EV_P_ ev_embed *w)
2505{ 2802{
2506 clear_pending (EV_A_ (W)w); 2803 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 2804 if (expect_false (!ev_is_active (w)))
2508 return; 2805 return;
2509 2806
2807 EV_FREQUENT_CHECK;
2808
2510 ev_io_stop (EV_A_ &w->io); 2809 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare); 2810 ev_prepare_stop (EV_A_ &w->prepare);
2512 2811
2513 ev_stop (EV_A_ (W)w); 2812 ev_stop (EV_A_ (W)w);
2813
2814 EV_FREQUENT_CHECK;
2514} 2815}
2515#endif 2816#endif
2516 2817
2517#if EV_FORK_ENABLE 2818#if EV_FORK_ENABLE
2518void 2819void
2519ev_fork_start (EV_P_ ev_fork *w) 2820ev_fork_start (EV_P_ ev_fork *w)
2520{ 2821{
2521 if (expect_false (ev_is_active (w))) 2822 if (expect_false (ev_is_active (w)))
2522 return; 2823 return;
2824
2825 EV_FREQUENT_CHECK;
2523 2826
2524 ev_start (EV_A_ (W)w, ++forkcnt); 2827 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2828 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w; 2829 forks [forkcnt - 1] = w;
2830
2831 EV_FREQUENT_CHECK;
2527} 2832}
2528 2833
2529void 2834void
2530ev_fork_stop (EV_P_ ev_fork *w) 2835ev_fork_stop (EV_P_ ev_fork *w)
2531{ 2836{
2532 clear_pending (EV_A_ (W)w); 2837 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w))) 2838 if (expect_false (!ev_is_active (w)))
2534 return; 2839 return;
2535 2840
2841 EV_FREQUENT_CHECK;
2842
2536 { 2843 {
2537 int active = ((W)w)->active; 2844 int active = ev_active (w);
2845
2538 forks [active - 1] = forks [--forkcnt]; 2846 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active; 2847 ev_active (forks [active - 1]) = active;
2540 } 2848 }
2541 2849
2542 ev_stop (EV_A_ (W)w); 2850 ev_stop (EV_A_ (W)w);
2851
2852 EV_FREQUENT_CHECK;
2543} 2853}
2544#endif 2854#endif
2545 2855
2546#if EV_ASYNC_ENABLE 2856#if EV_ASYNC_ENABLE
2547void 2857void
2549{ 2859{
2550 if (expect_false (ev_is_active (w))) 2860 if (expect_false (ev_is_active (w)))
2551 return; 2861 return;
2552 2862
2553 evpipe_init (EV_A); 2863 evpipe_init (EV_A);
2864
2865 EV_FREQUENT_CHECK;
2554 2866
2555 ev_start (EV_A_ (W)w, ++asynccnt); 2867 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2868 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w; 2869 asyncs [asynccnt - 1] = w;
2870
2871 EV_FREQUENT_CHECK;
2558} 2872}
2559 2873
2560void 2874void
2561ev_async_stop (EV_P_ ev_async *w) 2875ev_async_stop (EV_P_ ev_async *w)
2562{ 2876{
2563 clear_pending (EV_A_ (W)w); 2877 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w))) 2878 if (expect_false (!ev_is_active (w)))
2565 return; 2879 return;
2566 2880
2881 EV_FREQUENT_CHECK;
2882
2567 { 2883 {
2568 int active = ((W)w)->active; 2884 int active = ev_active (w);
2885
2569 asyncs [active - 1] = asyncs [--asynccnt]; 2886 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active; 2887 ev_active (asyncs [active - 1]) = active;
2571 } 2888 }
2572 2889
2573 ev_stop (EV_A_ (W)w); 2890 ev_stop (EV_A_ (W)w);
2891
2892 EV_FREQUENT_CHECK;
2574} 2893}
2575 2894
2576void 2895void
2577ev_async_send (EV_P_ ev_async *w) 2896ev_async_send (EV_P_ ev_async *w)
2578{ 2897{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines