ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC vs.
Revision 1.263 by root, Wed Oct 1 18:50:03 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
154#ifndef _WIN32 154#ifndef _WIN32
155# include <sys/time.h> 155# include <sys/time.h>
156# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h> 157# include <unistd.h>
158#else 158#else
159# include <io.h>
159# define WIN32_LEAN_AND_MEAN 160# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 161# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 162# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 163# define EV_SELECT_IS_WINSOCKET 1
163# endif 164# endif
164#endif 165#endif
165 166
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 167/* this block tries to deduce configuration from header-defined symbols and defaults */
167 168
168#ifndef EV_USE_MONOTONIC 169#ifndef EV_USE_MONOTONIC
170# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
171# define EV_USE_MONOTONIC 1
172# else
169# define EV_USE_MONOTONIC 0 173# define EV_USE_MONOTONIC 0
174# endif
170#endif 175#endif
171 176
172#ifndef EV_USE_REALTIME 177#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 178# define EV_USE_REALTIME 0
174#endif 179#endif
175 180
176#ifndef EV_USE_NANOSLEEP 181#ifndef EV_USE_NANOSLEEP
182# if _POSIX_C_SOURCE >= 199309L
183# define EV_USE_NANOSLEEP 1
184# else
177# define EV_USE_NANOSLEEP 0 185# define EV_USE_NANOSLEEP 0
186# endif
178#endif 187#endif
179 188
180#ifndef EV_USE_SELECT 189#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 190# define EV_USE_SELECT 1
182#endif 191#endif
235# else 244# else
236# define EV_USE_EVENTFD 0 245# define EV_USE_EVENTFD 0
237# endif 246# endif
238#endif 247#endif
239 248
249#if 0 /* debugging */
250# define EV_VERIFY 3
251# define EV_USE_4HEAP 1
252# define EV_HEAP_CACHE_AT 1
253#endif
254
255#ifndef EV_VERIFY
256# define EV_VERIFY !EV_MINIMAL
257#endif
258
259#ifndef EV_USE_4HEAP
260# define EV_USE_4HEAP !EV_MINIMAL
261#endif
262
263#ifndef EV_HEAP_CACHE_AT
264# define EV_HEAP_CACHE_AT !EV_MINIMAL
265#endif
266
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 267/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 268
242#ifndef CLOCK_MONOTONIC 269#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 270# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 271# define EV_USE_MONOTONIC 0
260# endif 287# endif
261#endif 288#endif
262 289
263#if EV_USE_INOTIFY 290#if EV_USE_INOTIFY
264# include <sys/inotify.h> 291# include <sys/inotify.h>
292/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
293# ifndef IN_DONT_FOLLOW
294# undef EV_USE_INOTIFY
295# define EV_USE_INOTIFY 0
296# endif
265#endif 297#endif
266 298
267#if EV_SELECT_IS_WINSOCKET 299#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 300# include <winsock.h>
269#endif 301#endif
279} 311}
280# endif 312# endif
281#endif 313#endif
282 314
283/**/ 315/**/
316
317#if EV_VERIFY >= 3
318# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
319#else
320# define EV_FREQUENT_CHECK do { } while (0)
321#endif
284 322
285/* 323/*
286 * This is used to avoid floating point rounding problems. 324 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 325 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 326 * to ensure progress, time-wise, even when rounding
325 363
326typedef ev_watcher *W; 364typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 365typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 366typedef ev_watcher_time *WT;
329 367
368#define ev_active(w) ((W)(w))->active
330#define ev_at(w) ((WT)(w))->at 369#define ev_at(w) ((WT)(w))->at
331 370
332#if EV_USE_MONOTONIC 371#if EV_USE_MONOTONIC
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 372/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */ 373/* giving it a reasonably high chance of working on typical architetcures */
421 W w; 460 W w;
422 int events; 461 int events;
423} ANPENDING; 462} ANPENDING;
424 463
425#if EV_USE_INOTIFY 464#if EV_USE_INOTIFY
465/* hash table entry per inotify-id */
426typedef struct 466typedef struct
427{ 467{
428 WL head; 468 WL head;
429} ANFS; 469} ANFS;
470#endif
471
472/* Heap Entry */
473#if EV_HEAP_CACHE_AT
474 typedef struct {
475 ev_tstamp at;
476 WT w;
477 } ANHE;
478
479 #define ANHE_w(he) (he).w /* access watcher, read-write */
480 #define ANHE_at(he) (he).at /* access cached at, read-only */
481 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
482#else
483 typedef WT ANHE;
484
485 #define ANHE_w(he) (he)
486 #define ANHE_at(he) (he)->at
487 #define ANHE_at_cache(he)
430#endif 488#endif
431 489
432#if EV_MULTIPLICITY 490#if EV_MULTIPLICITY
433 491
434 struct ev_loop 492 struct ev_loop
512 struct timeval tv; 570 struct timeval tv;
513 571
514 tv.tv_sec = (time_t)delay; 572 tv.tv_sec = (time_t)delay;
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 573 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
516 574
575 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
576 /* somehting nto guaranteed by newer posix versions, but guaranteed */
577 /* by older ones */
517 select (0, 0, 0, 0, &tv); 578 select (0, 0, 0, 0, &tv);
518#endif 579#endif
519 } 580 }
520} 581}
521 582
522/*****************************************************************************/ 583/*****************************************************************************/
584
585#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
523 586
524int inline_size 587int inline_size
525array_nextsize (int elem, int cur, int cnt) 588array_nextsize (int elem, int cur, int cnt)
526{ 589{
527 int ncur = cur + 1; 590 int ncur = cur + 1;
528 591
529 do 592 do
530 ncur <<= 1; 593 ncur <<= 1;
531 while (cnt > ncur); 594 while (cnt > ncur);
532 595
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 596 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
534 if (elem * ncur > 4096) 597 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
535 { 598 {
536 ncur *= elem; 599 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 600 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
538 ncur = ncur - sizeof (void *) * 4; 601 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem; 602 ncur /= elem;
540 } 603 }
541 604
542 return ncur; 605 return ncur;
653 events |= (unsigned char)w->events; 716 events |= (unsigned char)w->events;
654 717
655#if EV_SELECT_IS_WINSOCKET 718#if EV_SELECT_IS_WINSOCKET
656 if (events) 719 if (events)
657 { 720 {
658 unsigned long argp; 721 unsigned long arg;
659 #ifdef EV_FD_TO_WIN32_HANDLE 722 #ifdef EV_FD_TO_WIN32_HANDLE
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 723 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
661 #else 724 #else
662 anfd->handle = _get_osfhandle (fd); 725 anfd->handle = _get_osfhandle (fd);
663 #endif 726 #endif
664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 727 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
665 } 728 }
666#endif 729#endif
667 730
668 { 731 {
669 unsigned char o_events = anfd->events; 732 unsigned char o_events = anfd->events;
722{ 785{
723 int fd; 786 int fd;
724 787
725 for (fd = 0; fd < anfdmax; ++fd) 788 for (fd = 0; fd < anfdmax; ++fd)
726 if (anfds [fd].events) 789 if (anfds [fd].events)
727 if (!fd_valid (fd) == -1 && errno == EBADF) 790 if (!fd_valid (fd) && errno == EBADF)
728 fd_kill (EV_A_ fd); 791 fd_kill (EV_A_ fd);
729} 792}
730 793
731/* called on ENOMEM in select/poll to kill some fds and retry */ 794/* called on ENOMEM in select/poll to kill some fds and retry */
732static void noinline 795static void noinline
756 } 819 }
757} 820}
758 821
759/*****************************************************************************/ 822/*****************************************************************************/
760 823
824/*
825 * the heap functions want a real array index. array index 0 uis guaranteed to not
826 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
827 * the branching factor of the d-tree.
828 */
829
830/*
831 * at the moment we allow libev the luxury of two heaps,
832 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
833 * which is more cache-efficient.
834 * the difference is about 5% with 50000+ watchers.
835 */
836#if EV_USE_4HEAP
837
838#define DHEAP 4
839#define HEAP0 (DHEAP - 1) /* index of first element in heap */
840#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
841#define UPHEAP_DONE(p,k) ((p) == (k))
842
843/* away from the root */
844void inline_speed
845downheap (ANHE *heap, int N, int k)
846{
847 ANHE he = heap [k];
848 ANHE *E = heap + N + HEAP0;
849
850 for (;;)
851 {
852 ev_tstamp minat;
853 ANHE *minpos;
854 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
855
856 /* find minimum child */
857 if (expect_true (pos + DHEAP - 1 < E))
858 {
859 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
860 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
861 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
862 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
863 }
864 else if (pos < E)
865 {
866 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
867 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
868 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
869 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
870 }
871 else
872 break;
873
874 if (ANHE_at (he) <= minat)
875 break;
876
877 heap [k] = *minpos;
878 ev_active (ANHE_w (*minpos)) = k;
879
880 k = minpos - heap;
881 }
882
883 heap [k] = he;
884 ev_active (ANHE_w (he)) = k;
885}
886
887#else /* 4HEAP */
888
889#define HEAP0 1
890#define HPARENT(k) ((k) >> 1)
891#define UPHEAP_DONE(p,k) (!(p))
892
893/* away from the root */
894void inline_speed
895downheap (ANHE *heap, int N, int k)
896{
897 ANHE he = heap [k];
898
899 for (;;)
900 {
901 int c = k << 1;
902
903 if (c > N + HEAP0 - 1)
904 break;
905
906 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
907 ? 1 : 0;
908
909 if (ANHE_at (he) <= ANHE_at (heap [c]))
910 break;
911
912 heap [k] = heap [c];
913 ev_active (ANHE_w (heap [k])) = k;
914
915 k = c;
916 }
917
918 heap [k] = he;
919 ev_active (ANHE_w (he)) = k;
920}
921#endif
922
761/* towards the root */ 923/* towards the root */
762void inline_speed 924void inline_speed
763upheap (WT *heap, int k) 925upheap (ANHE *heap, int k)
764{ 926{
765 WT w = heap [k]; 927 ANHE he = heap [k];
766 928
767 for (;;) 929 for (;;)
768 { 930 {
769 int p = k >> 1; 931 int p = HPARENT (k);
770 932
771 /* maybe we could use a dummy element at heap [0]? */ 933 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
772 if (!p || heap [p]->at <= w->at)
773 break; 934 break;
774 935
775 heap [k] = heap [p]; 936 heap [k] = heap [p];
776 ((W)heap [k])->active = k; 937 ev_active (ANHE_w (heap [k])) = k;
777 k = p; 938 k = p;
778 } 939 }
779 940
780 heap [k] = w; 941 heap [k] = he;
781 ((W)heap [k])->active = k; 942 ev_active (ANHE_w (he)) = k;
782}
783
784/* away from the root */
785void inline_speed
786downheap (WT *heap, int N, int k)
787{
788 WT w = heap [k];
789
790 for (;;)
791 {
792 int c = k << 1;
793
794 if (c > N)
795 break;
796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
803 heap [k] = heap [c];
804 ((W)heap [k])->active = k;
805
806 k = c;
807 }
808
809 heap [k] = w;
810 ((W)heap [k])->active = k;
811} 943}
812 944
813void inline_size 945void inline_size
814adjustheap (WT *heap, int N, int k) 946adjustheap (ANHE *heap, int N, int k)
815{ 947{
948 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
816 upheap (heap, k); 949 upheap (heap, k);
950 else
817 downheap (heap, N, k); 951 downheap (heap, N, k);
952}
953
954/* rebuild the heap: this function is used only once and executed rarely */
955void inline_size
956reheap (ANHE *heap, int N)
957{
958 int i;
959
960 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
961 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
962 for (i = 0; i < N; ++i)
963 upheap (heap, i + HEAP0);
818} 964}
819 965
820/*****************************************************************************/ 966/*****************************************************************************/
821 967
822typedef struct 968typedef struct
846 992
847void inline_speed 993void inline_speed
848fd_intern (int fd) 994fd_intern (int fd)
849{ 995{
850#ifdef _WIN32 996#ifdef _WIN32
851 int arg = 1; 997 unsigned long arg = 1;
852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 998 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
853#else 999#else
854 fcntl (fd, F_SETFD, FD_CLOEXEC); 1000 fcntl (fd, F_SETFD, FD_CLOEXEC);
855 fcntl (fd, F_SETFL, O_NONBLOCK); 1001 fcntl (fd, F_SETFL, O_NONBLOCK);
856#endif 1002#endif
911pipecb (EV_P_ ev_io *iow, int revents) 1057pipecb (EV_P_ ev_io *iow, int revents)
912{ 1058{
913#if EV_USE_EVENTFD 1059#if EV_USE_EVENTFD
914 if (evfd >= 0) 1060 if (evfd >= 0)
915 { 1061 {
916 uint64_t counter = 1; 1062 uint64_t counter;
917 read (evfd, &counter, sizeof (uint64_t)); 1063 read (evfd, &counter, sizeof (uint64_t));
918 } 1064 }
919 else 1065 else
920#endif 1066#endif
921 { 1067 {
1340 1486
1341 postfork = 0; 1487 postfork = 0;
1342} 1488}
1343 1489
1344#if EV_MULTIPLICITY 1490#if EV_MULTIPLICITY
1491
1345struct ev_loop * 1492struct ev_loop *
1346ev_loop_new (unsigned int flags) 1493ev_loop_new (unsigned int flags)
1347{ 1494{
1348 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1495 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1349 1496
1368ev_loop_fork (EV_P) 1515ev_loop_fork (EV_P)
1369{ 1516{
1370 postfork = 1; /* must be in line with ev_default_fork */ 1517 postfork = 1; /* must be in line with ev_default_fork */
1371} 1518}
1372 1519
1520#if EV_VERIFY
1521static void noinline
1522verify_watcher (EV_P_ W w)
1523{
1524 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1525
1526 if (w->pending)
1527 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1528}
1529
1530static void noinline
1531verify_heap (EV_P_ ANHE *heap, int N)
1532{
1533 int i;
1534
1535 for (i = HEAP0; i < N + HEAP0; ++i)
1536 {
1537 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1538 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1539 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1540
1541 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1542 }
1543}
1544
1545static void noinline
1546array_verify (EV_P_ W *ws, int cnt)
1547{
1548 while (cnt--)
1549 {
1550 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1551 verify_watcher (EV_A_ ws [cnt]);
1552 }
1553}
1554#endif
1555
1556void
1557ev_loop_verify (EV_P)
1558{
1559#if EV_VERIFY
1560 int i;
1561 WL w;
1562
1563 assert (activecnt >= -1);
1564
1565 assert (fdchangemax >= fdchangecnt);
1566 for (i = 0; i < fdchangecnt; ++i)
1567 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1568
1569 assert (anfdmax >= 0);
1570 for (i = 0; i < anfdmax; ++i)
1571 for (w = anfds [i].head; w; w = w->next)
1572 {
1573 verify_watcher (EV_A_ (W)w);
1574 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1575 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1576 }
1577
1578 assert (timermax >= timercnt);
1579 verify_heap (EV_A_ timers, timercnt);
1580
1581#if EV_PERIODIC_ENABLE
1582 assert (periodicmax >= periodiccnt);
1583 verify_heap (EV_A_ periodics, periodiccnt);
1584#endif
1585
1586 for (i = NUMPRI; i--; )
1587 {
1588 assert (pendingmax [i] >= pendingcnt [i]);
1589#if EV_IDLE_ENABLE
1590 assert (idleall >= 0);
1591 assert (idlemax [i] >= idlecnt [i]);
1592 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1593#endif
1594 }
1595
1596#if EV_FORK_ENABLE
1597 assert (forkmax >= forkcnt);
1598 array_verify (EV_A_ (W *)forks, forkcnt);
1599#endif
1600
1601#if EV_ASYNC_ENABLE
1602 assert (asyncmax >= asynccnt);
1603 array_verify (EV_A_ (W *)asyncs, asynccnt);
1604#endif
1605
1606 assert (preparemax >= preparecnt);
1607 array_verify (EV_A_ (W *)prepares, preparecnt);
1608
1609 assert (checkmax >= checkcnt);
1610 array_verify (EV_A_ (W *)checks, checkcnt);
1611
1612# if 0
1613 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1614 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1373#endif 1615# endif
1616#endif
1617}
1618
1619#endif /* multiplicity */
1374 1620
1375#if EV_MULTIPLICITY 1621#if EV_MULTIPLICITY
1376struct ev_loop * 1622struct ev_loop *
1377ev_default_loop_init (unsigned int flags) 1623ev_default_loop_init (unsigned int flags)
1378#else 1624#else
1454 { 1700 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1701 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1456 1702
1457 p->w->pending = 0; 1703 p->w->pending = 0;
1458 EV_CB_INVOKE (p->w, p->events); 1704 EV_CB_INVOKE (p->w, p->events);
1705 EV_FREQUENT_CHECK;
1459 } 1706 }
1460 } 1707 }
1461} 1708}
1462
1463void inline_size
1464timers_reify (EV_P)
1465{
1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1467 {
1468 ev_timer *w = (ev_timer *)timers [1];
1469
1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->repeat)
1474 {
1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1476
1477 ev_at (w) += w->repeat;
1478 if (ev_at (w) < mn_now)
1479 ev_at (w) = mn_now;
1480
1481 downheap (timers, timercnt, 1);
1482 }
1483 else
1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1485
1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1487 }
1488}
1489
1490#if EV_PERIODIC_ENABLE
1491void inline_size
1492periodics_reify (EV_P)
1493{
1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1495 {
1496 ev_periodic *w = (ev_periodic *)periodics [1];
1497
1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1499
1500 /* first reschedule or stop timer */
1501 if (w->reschedule_cb)
1502 {
1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1505 downheap (periodics, periodiccnt, 1);
1506 }
1507 else if (w->interval)
1508 {
1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1512 downheap (periodics, periodiccnt, 1);
1513 }
1514 else
1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1516
1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1518 }
1519}
1520
1521static void noinline
1522periodics_reschedule (EV_P)
1523{
1524 int i;
1525
1526 /* adjust periodics after time jump */
1527 for (i = 0; i < periodiccnt; ++i)
1528 {
1529 ev_periodic *w = (ev_periodic *)periodics [i];
1530
1531 if (w->reschedule_cb)
1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1533 else if (w->interval)
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 }
1536
1537 /* now rebuild the heap */
1538 for (i = periodiccnt >> 1; i--; )
1539 downheap (periodics, periodiccnt, i);
1540}
1541#endif
1542 1709
1543#if EV_IDLE_ENABLE 1710#if EV_IDLE_ENABLE
1544void inline_size 1711void inline_size
1545idle_reify (EV_P) 1712idle_reify (EV_P)
1546{ 1713{
1558 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1725 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1559 break; 1726 break;
1560 } 1727 }
1561 } 1728 }
1562 } 1729 }
1730}
1731#endif
1732
1733void inline_size
1734timers_reify (EV_P)
1735{
1736 EV_FREQUENT_CHECK;
1737
1738 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1739 {
1740 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1741
1742 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1743
1744 /* first reschedule or stop timer */
1745 if (w->repeat)
1746 {
1747 ev_at (w) += w->repeat;
1748 if (ev_at (w) < mn_now)
1749 ev_at (w) = mn_now;
1750
1751 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1752
1753 ANHE_at_cache (timers [HEAP0]);
1754 downheap (timers, timercnt, HEAP0);
1755 }
1756 else
1757 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1758
1759 EV_FREQUENT_CHECK;
1760 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1761 }
1762}
1763
1764#if EV_PERIODIC_ENABLE
1765void inline_size
1766periodics_reify (EV_P)
1767{
1768 EV_FREQUENT_CHECK;
1769
1770 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1771 {
1772 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1773
1774 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1775
1776 /* first reschedule or stop timer */
1777 if (w->reschedule_cb)
1778 {
1779 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1780
1781 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1782
1783 ANHE_at_cache (periodics [HEAP0]);
1784 downheap (periodics, periodiccnt, HEAP0);
1785 }
1786 else if (w->interval)
1787 {
1788 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1789 /* if next trigger time is not sufficiently in the future, put it there */
1790 /* this might happen because of floating point inexactness */
1791 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1792 {
1793 ev_at (w) += w->interval;
1794
1795 /* if interval is unreasonably low we might still have a time in the past */
1796 /* so correct this. this will make the periodic very inexact, but the user */
1797 /* has effectively asked to get triggered more often than possible */
1798 if (ev_at (w) < ev_rt_now)
1799 ev_at (w) = ev_rt_now;
1800 }
1801
1802 ANHE_at_cache (periodics [HEAP0]);
1803 downheap (periodics, periodiccnt, HEAP0);
1804 }
1805 else
1806 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1807
1808 EV_FREQUENT_CHECK;
1809 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1810 }
1811}
1812
1813static void noinline
1814periodics_reschedule (EV_P)
1815{
1816 int i;
1817
1818 /* adjust periodics after time jump */
1819 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1820 {
1821 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1822
1823 if (w->reschedule_cb)
1824 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1825 else if (w->interval)
1826 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1827
1828 ANHE_at_cache (periodics [i]);
1829 }
1830
1831 reheap (periodics, periodiccnt);
1563} 1832}
1564#endif 1833#endif
1565 1834
1566void inline_speed 1835void inline_speed
1567time_update (EV_P_ ev_tstamp max_block) 1836time_update (EV_P_ ev_tstamp max_block)
1596 */ 1865 */
1597 for (i = 4; --i; ) 1866 for (i = 4; --i; )
1598 { 1867 {
1599 rtmn_diff = ev_rt_now - mn_now; 1868 rtmn_diff = ev_rt_now - mn_now;
1600 1869
1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1870 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1602 return; /* all is well */ 1871 return; /* all is well */
1603 1872
1604 ev_rt_now = ev_time (); 1873 ev_rt_now = ev_time ();
1605 mn_now = get_clock (); 1874 mn_now = get_clock ();
1606 now_floor = mn_now; 1875 now_floor = mn_now;
1621 { 1890 {
1622#if EV_PERIODIC_ENABLE 1891#if EV_PERIODIC_ENABLE
1623 periodics_reschedule (EV_A); 1892 periodics_reschedule (EV_A);
1624#endif 1893#endif
1625 /* adjust timers. this is easy, as the offset is the same for all of them */ 1894 /* adjust timers. this is easy, as the offset is the same for all of them */
1626 for (i = 1; i <= timercnt; ++i) 1895 for (i = 0; i < timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now; 1896 {
1897 ANHE *he = timers + i + HEAP0;
1898 ANHE_w (*he)->at += ev_rt_now - mn_now;
1899 ANHE_at_cache (*he);
1900 }
1628 } 1901 }
1629 1902
1630 mn_now = ev_rt_now; 1903 mn_now = ev_rt_now;
1631 } 1904 }
1632} 1905}
1641ev_unref (EV_P) 1914ev_unref (EV_P)
1642{ 1915{
1643 --activecnt; 1916 --activecnt;
1644} 1917}
1645 1918
1919void
1920ev_now_update (EV_P)
1921{
1922 time_update (EV_A_ 1e100);
1923}
1924
1646static int loop_done; 1925static int loop_done;
1647 1926
1648void 1927void
1649ev_loop (EV_P_ int flags) 1928ev_loop (EV_P_ int flags)
1650{ 1929{
1652 1931
1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1932 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1654 1933
1655 do 1934 do
1656 { 1935 {
1936#if EV_VERIFY >= 2
1937 ev_loop_verify (EV_A);
1938#endif
1939
1657#ifndef _WIN32 1940#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */ 1941 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid)) 1942 if (expect_false (getpid () != curpid))
1660 { 1943 {
1661 curpid = getpid (); 1944 curpid = getpid ();
1702 1985
1703 waittime = MAX_BLOCKTIME; 1986 waittime = MAX_BLOCKTIME;
1704 1987
1705 if (timercnt) 1988 if (timercnt)
1706 { 1989 {
1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 1990 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1708 if (waittime > to) waittime = to; 1991 if (waittime > to) waittime = to;
1709 } 1992 }
1710 1993
1711#if EV_PERIODIC_ENABLE 1994#if EV_PERIODIC_ENABLE
1712 if (periodiccnt) 1995 if (periodiccnt)
1713 { 1996 {
1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 1997 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1715 if (waittime > to) waittime = to; 1998 if (waittime > to) waittime = to;
1716 } 1999 }
1717#endif 2000#endif
1718 2001
1719 if (expect_false (waittime < timeout_blocktime)) 2002 if (expect_false (waittime < timeout_blocktime))
1856 if (expect_false (ev_is_active (w))) 2139 if (expect_false (ev_is_active (w)))
1857 return; 2140 return;
1858 2141
1859 assert (("ev_io_start called with negative fd", fd >= 0)); 2142 assert (("ev_io_start called with negative fd", fd >= 0));
1860 2143
2144 EV_FREQUENT_CHECK;
2145
1861 ev_start (EV_A_ (W)w, 1); 2146 ev_start (EV_A_ (W)w, 1);
1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2147 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1863 wlist_add (&anfds[fd].head, (WL)w); 2148 wlist_add (&anfds[fd].head, (WL)w);
1864 2149
1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2150 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1866 w->events &= ~EV_IOFDSET; 2151 w->events &= ~EV_IOFDSET;
2152
2153 EV_FREQUENT_CHECK;
1867} 2154}
1868 2155
1869void noinline 2156void noinline
1870ev_io_stop (EV_P_ ev_io *w) 2157ev_io_stop (EV_P_ ev_io *w)
1871{ 2158{
1872 clear_pending (EV_A_ (W)w); 2159 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 2160 if (expect_false (!ev_is_active (w)))
1874 return; 2161 return;
1875 2162
1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2163 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2164
2165 EV_FREQUENT_CHECK;
1877 2166
1878 wlist_del (&anfds[w->fd].head, (WL)w); 2167 wlist_del (&anfds[w->fd].head, (WL)w);
1879 ev_stop (EV_A_ (W)w); 2168 ev_stop (EV_A_ (W)w);
1880 2169
1881 fd_change (EV_A_ w->fd, 1); 2170 fd_change (EV_A_ w->fd, 1);
2171
2172 EV_FREQUENT_CHECK;
1882} 2173}
1883 2174
1884void noinline 2175void noinline
1885ev_timer_start (EV_P_ ev_timer *w) 2176ev_timer_start (EV_P_ ev_timer *w)
1886{ 2177{
1889 2180
1890 ev_at (w) += mn_now; 2181 ev_at (w) += mn_now;
1891 2182
1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2183 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1893 2184
2185 EV_FREQUENT_CHECK;
2186
2187 ++timercnt;
1894 ev_start (EV_A_ (W)w, ++timercnt); 2188 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2189 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1896 timers [timercnt] = (WT)w; 2190 ANHE_w (timers [ev_active (w)]) = (WT)w;
2191 ANHE_at_cache (timers [ev_active (w)]);
1897 upheap (timers, timercnt); 2192 upheap (timers, ev_active (w));
1898 2193
2194 EV_FREQUENT_CHECK;
2195
1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 2196 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1900} 2197}
1901 2198
1902void noinline 2199void noinline
1903ev_timer_stop (EV_P_ ev_timer *w) 2200ev_timer_stop (EV_P_ ev_timer *w)
1904{ 2201{
1905 clear_pending (EV_A_ (W)w); 2202 clear_pending (EV_A_ (W)w);
1906 if (expect_false (!ev_is_active (w))) 2203 if (expect_false (!ev_is_active (w)))
1907 return; 2204 return;
1908 2205
1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 2206 EV_FREQUENT_CHECK;
1910 2207
1911 { 2208 {
1912 int active = ((W)w)->active; 2209 int active = ev_active (w);
1913 2210
2211 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2212
2213 --timercnt;
2214
1914 if (expect_true (active < timercnt)) 2215 if (expect_true (active < timercnt + HEAP0))
1915 { 2216 {
1916 timers [active] = timers [timercnt]; 2217 timers [active] = timers [timercnt + HEAP0];
1917 adjustheap (timers, timercnt, active); 2218 adjustheap (timers, timercnt, active);
1918 } 2219 }
1919
1920 --timercnt;
1921 } 2220 }
2221
2222 EV_FREQUENT_CHECK;
1922 2223
1923 ev_at (w) -= mn_now; 2224 ev_at (w) -= mn_now;
1924 2225
1925 ev_stop (EV_A_ (W)w); 2226 ev_stop (EV_A_ (W)w);
1926} 2227}
1927 2228
1928void noinline 2229void noinline
1929ev_timer_again (EV_P_ ev_timer *w) 2230ev_timer_again (EV_P_ ev_timer *w)
1930{ 2231{
2232 EV_FREQUENT_CHECK;
2233
1931 if (ev_is_active (w)) 2234 if (ev_is_active (w))
1932 { 2235 {
1933 if (w->repeat) 2236 if (w->repeat)
1934 { 2237 {
1935 ev_at (w) = mn_now + w->repeat; 2238 ev_at (w) = mn_now + w->repeat;
2239 ANHE_at_cache (timers [ev_active (w)]);
1936 adjustheap (timers, timercnt, ((W)w)->active); 2240 adjustheap (timers, timercnt, ev_active (w));
1937 } 2241 }
1938 else 2242 else
1939 ev_timer_stop (EV_A_ w); 2243 ev_timer_stop (EV_A_ w);
1940 } 2244 }
1941 else if (w->repeat) 2245 else if (w->repeat)
1942 { 2246 {
1943 w->at = w->repeat; 2247 ev_at (w) = w->repeat;
1944 ev_timer_start (EV_A_ w); 2248 ev_timer_start (EV_A_ w);
1945 } 2249 }
2250
2251 EV_FREQUENT_CHECK;
1946} 2252}
1947 2253
1948#if EV_PERIODIC_ENABLE 2254#if EV_PERIODIC_ENABLE
1949void noinline 2255void noinline
1950ev_periodic_start (EV_P_ ev_periodic *w) 2256ev_periodic_start (EV_P_ ev_periodic *w)
1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2267 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1962 } 2268 }
1963 else 2269 else
1964 ev_at (w) = w->offset; 2270 ev_at (w) = w->offset;
1965 2271
2272 EV_FREQUENT_CHECK;
2273
2274 ++periodiccnt;
1966 ev_start (EV_A_ (W)w, ++periodiccnt); 2275 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2276 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1968 periodics [periodiccnt] = (WT)w; 2277 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1969 upheap (periodics, periodiccnt); 2278 ANHE_at_cache (periodics [ev_active (w)]);
2279 upheap (periodics, ev_active (w));
1970 2280
2281 EV_FREQUENT_CHECK;
2282
1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2283 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1972} 2284}
1973 2285
1974void noinline 2286void noinline
1975ev_periodic_stop (EV_P_ ev_periodic *w) 2287ev_periodic_stop (EV_P_ ev_periodic *w)
1976{ 2288{
1977 clear_pending (EV_A_ (W)w); 2289 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2290 if (expect_false (!ev_is_active (w)))
1979 return; 2291 return;
1980 2292
1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 2293 EV_FREQUENT_CHECK;
1982 2294
1983 { 2295 {
1984 int active = ((W)w)->active; 2296 int active = ev_active (w);
1985 2297
2298 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2299
2300 --periodiccnt;
2301
1986 if (expect_true (active < periodiccnt)) 2302 if (expect_true (active < periodiccnt + HEAP0))
1987 { 2303 {
1988 periodics [active] = periodics [periodiccnt]; 2304 periodics [active] = periodics [periodiccnt + HEAP0];
1989 adjustheap (periodics, periodiccnt, active); 2305 adjustheap (periodics, periodiccnt, active);
1990 } 2306 }
1991
1992 --periodiccnt;
1993 } 2307 }
2308
2309 EV_FREQUENT_CHECK;
1994 2310
1995 ev_stop (EV_A_ (W)w); 2311 ev_stop (EV_A_ (W)w);
1996} 2312}
1997 2313
1998void noinline 2314void noinline
2018 return; 2334 return;
2019 2335
2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2336 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2021 2337
2022 evpipe_init (EV_A); 2338 evpipe_init (EV_A);
2339
2340 EV_FREQUENT_CHECK;
2023 2341
2024 { 2342 {
2025#ifndef _WIN32 2343#ifndef _WIN32
2026 sigset_t full, prev; 2344 sigset_t full, prev;
2027 sigfillset (&full); 2345 sigfillset (&full);
2048 sigfillset (&sa.sa_mask); 2366 sigfillset (&sa.sa_mask);
2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2367 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2050 sigaction (w->signum, &sa, 0); 2368 sigaction (w->signum, &sa, 0);
2051#endif 2369#endif
2052 } 2370 }
2371
2372 EV_FREQUENT_CHECK;
2053} 2373}
2054 2374
2055void noinline 2375void noinline
2056ev_signal_stop (EV_P_ ev_signal *w) 2376ev_signal_stop (EV_P_ ev_signal *w)
2057{ 2377{
2058 clear_pending (EV_A_ (W)w); 2378 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 2379 if (expect_false (!ev_is_active (w)))
2060 return; 2380 return;
2061 2381
2382 EV_FREQUENT_CHECK;
2383
2062 wlist_del (&signals [w->signum - 1].head, (WL)w); 2384 wlist_del (&signals [w->signum - 1].head, (WL)w);
2063 ev_stop (EV_A_ (W)w); 2385 ev_stop (EV_A_ (W)w);
2064 2386
2065 if (!signals [w->signum - 1].head) 2387 if (!signals [w->signum - 1].head)
2066 signal (w->signum, SIG_DFL); 2388 signal (w->signum, SIG_DFL);
2389
2390 EV_FREQUENT_CHECK;
2067} 2391}
2068 2392
2069void 2393void
2070ev_child_start (EV_P_ ev_child *w) 2394ev_child_start (EV_P_ ev_child *w)
2071{ 2395{
2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2397 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2074#endif 2398#endif
2075 if (expect_false (ev_is_active (w))) 2399 if (expect_false (ev_is_active (w)))
2076 return; 2400 return;
2077 2401
2402 EV_FREQUENT_CHECK;
2403
2078 ev_start (EV_A_ (W)w, 1); 2404 ev_start (EV_A_ (W)w, 1);
2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2405 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2406
2407 EV_FREQUENT_CHECK;
2080} 2408}
2081 2409
2082void 2410void
2083ev_child_stop (EV_P_ ev_child *w) 2411ev_child_stop (EV_P_ ev_child *w)
2084{ 2412{
2085 clear_pending (EV_A_ (W)w); 2413 clear_pending (EV_A_ (W)w);
2086 if (expect_false (!ev_is_active (w))) 2414 if (expect_false (!ev_is_active (w)))
2087 return; 2415 return;
2088 2416
2417 EV_FREQUENT_CHECK;
2418
2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2419 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2090 ev_stop (EV_A_ (W)w); 2420 ev_stop (EV_A_ (W)w);
2421
2422 EV_FREQUENT_CHECK;
2091} 2423}
2092 2424
2093#if EV_STAT_ENABLE 2425#if EV_STAT_ENABLE
2094 2426
2095# ifdef _WIN32 2427# ifdef _WIN32
2113 if (w->wd < 0) 2445 if (w->wd < 0)
2114 { 2446 {
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2447 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2116 2448
2117 /* monitor some parent directory for speedup hints */ 2449 /* monitor some parent directory for speedup hints */
2450 /* note that exceeding the hardcoded limit is not a correctness issue, */
2451 /* but an efficiency issue only */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2452 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 { 2453 {
2120 char path [4096]; 2454 char path [4096];
2121 strcpy (path, w->path); 2455 strcpy (path, w->path);
2122 2456
2248 } 2582 }
2249 2583
2250 } 2584 }
2251} 2585}
2252 2586
2587#endif
2588
2589#ifdef _WIN32
2590# define EV_LSTAT(p,b) _stati64 (p, b)
2591#else
2592# define EV_LSTAT(p,b) lstat (p, b)
2253#endif 2593#endif
2254 2594
2255void 2595void
2256ev_stat_stat (EV_P_ ev_stat *w) 2596ev_stat_stat (EV_P_ ev_stat *w)
2257{ 2597{
2321 else 2661 else
2322#endif 2662#endif
2323 ev_timer_start (EV_A_ &w->timer); 2663 ev_timer_start (EV_A_ &w->timer);
2324 2664
2325 ev_start (EV_A_ (W)w, 1); 2665 ev_start (EV_A_ (W)w, 1);
2666
2667 EV_FREQUENT_CHECK;
2326} 2668}
2327 2669
2328void 2670void
2329ev_stat_stop (EV_P_ ev_stat *w) 2671ev_stat_stop (EV_P_ ev_stat *w)
2330{ 2672{
2331 clear_pending (EV_A_ (W)w); 2673 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 2674 if (expect_false (!ev_is_active (w)))
2333 return; 2675 return;
2334 2676
2677 EV_FREQUENT_CHECK;
2678
2335#if EV_USE_INOTIFY 2679#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w); 2680 infy_del (EV_A_ w);
2337#endif 2681#endif
2338 ev_timer_stop (EV_A_ &w->timer); 2682 ev_timer_stop (EV_A_ &w->timer);
2339 2683
2340 ev_stop (EV_A_ (W)w); 2684 ev_stop (EV_A_ (W)w);
2685
2686 EV_FREQUENT_CHECK;
2341} 2687}
2342#endif 2688#endif
2343 2689
2344#if EV_IDLE_ENABLE 2690#if EV_IDLE_ENABLE
2345void 2691void
2347{ 2693{
2348 if (expect_false (ev_is_active (w))) 2694 if (expect_false (ev_is_active (w)))
2349 return; 2695 return;
2350 2696
2351 pri_adjust (EV_A_ (W)w); 2697 pri_adjust (EV_A_ (W)w);
2698
2699 EV_FREQUENT_CHECK;
2352 2700
2353 { 2701 {
2354 int active = ++idlecnt [ABSPRI (w)]; 2702 int active = ++idlecnt [ABSPRI (w)];
2355 2703
2356 ++idleall; 2704 ++idleall;
2357 ev_start (EV_A_ (W)w, active); 2705 ev_start (EV_A_ (W)w, active);
2358 2706
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2707 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w; 2708 idles [ABSPRI (w)][active - 1] = w;
2361 } 2709 }
2710
2711 EV_FREQUENT_CHECK;
2362} 2712}
2363 2713
2364void 2714void
2365ev_idle_stop (EV_P_ ev_idle *w) 2715ev_idle_stop (EV_P_ ev_idle *w)
2366{ 2716{
2367 clear_pending (EV_A_ (W)w); 2717 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 2718 if (expect_false (!ev_is_active (w)))
2369 return; 2719 return;
2370 2720
2721 EV_FREQUENT_CHECK;
2722
2371 { 2723 {
2372 int active = ((W)w)->active; 2724 int active = ev_active (w);
2373 2725
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2726 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active; 2727 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2376 2728
2377 ev_stop (EV_A_ (W)w); 2729 ev_stop (EV_A_ (W)w);
2378 --idleall; 2730 --idleall;
2379 } 2731 }
2732
2733 EV_FREQUENT_CHECK;
2380} 2734}
2381#endif 2735#endif
2382 2736
2383void 2737void
2384ev_prepare_start (EV_P_ ev_prepare *w) 2738ev_prepare_start (EV_P_ ev_prepare *w)
2385{ 2739{
2386 if (expect_false (ev_is_active (w))) 2740 if (expect_false (ev_is_active (w)))
2387 return; 2741 return;
2742
2743 EV_FREQUENT_CHECK;
2388 2744
2389 ev_start (EV_A_ (W)w, ++preparecnt); 2745 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2746 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w; 2747 prepares [preparecnt - 1] = w;
2748
2749 EV_FREQUENT_CHECK;
2392} 2750}
2393 2751
2394void 2752void
2395ev_prepare_stop (EV_P_ ev_prepare *w) 2753ev_prepare_stop (EV_P_ ev_prepare *w)
2396{ 2754{
2397 clear_pending (EV_A_ (W)w); 2755 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 2756 if (expect_false (!ev_is_active (w)))
2399 return; 2757 return;
2400 2758
2759 EV_FREQUENT_CHECK;
2760
2401 { 2761 {
2402 int active = ((W)w)->active; 2762 int active = ev_active (w);
2763
2403 prepares [active - 1] = prepares [--preparecnt]; 2764 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active; 2765 ev_active (prepares [active - 1]) = active;
2405 } 2766 }
2406 2767
2407 ev_stop (EV_A_ (W)w); 2768 ev_stop (EV_A_ (W)w);
2769
2770 EV_FREQUENT_CHECK;
2408} 2771}
2409 2772
2410void 2773void
2411ev_check_start (EV_P_ ev_check *w) 2774ev_check_start (EV_P_ ev_check *w)
2412{ 2775{
2413 if (expect_false (ev_is_active (w))) 2776 if (expect_false (ev_is_active (w)))
2414 return; 2777 return;
2778
2779 EV_FREQUENT_CHECK;
2415 2780
2416 ev_start (EV_A_ (W)w, ++checkcnt); 2781 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2782 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w; 2783 checks [checkcnt - 1] = w;
2784
2785 EV_FREQUENT_CHECK;
2419} 2786}
2420 2787
2421void 2788void
2422ev_check_stop (EV_P_ ev_check *w) 2789ev_check_stop (EV_P_ ev_check *w)
2423{ 2790{
2424 clear_pending (EV_A_ (W)w); 2791 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w))) 2792 if (expect_false (!ev_is_active (w)))
2426 return; 2793 return;
2427 2794
2795 EV_FREQUENT_CHECK;
2796
2428 { 2797 {
2429 int active = ((W)w)->active; 2798 int active = ev_active (w);
2799
2430 checks [active - 1] = checks [--checkcnt]; 2800 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active; 2801 ev_active (checks [active - 1]) = active;
2432 } 2802 }
2433 2803
2434 ev_stop (EV_A_ (W)w); 2804 ev_stop (EV_A_ (W)w);
2805
2806 EV_FREQUENT_CHECK;
2435} 2807}
2436 2808
2437#if EV_EMBED_ENABLE 2809#if EV_EMBED_ENABLE
2438void noinline 2810void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w) 2811ev_embed_sweep (EV_P_ ev_embed *w)
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK); 2838 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2467 } 2839 }
2468 } 2840 }
2469} 2841}
2470 2842
2843static void
2844embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
2845{
2846 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
2847
2848 {
2849 struct ev_loop *loop = w->other;
2850
2851 ev_loop_fork (EV_A);
2852 }
2853}
2854
2471#if 0 2855#if 0
2472static void 2856static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents) 2857embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2474{ 2858{
2475 ev_idle_stop (EV_A_ idle); 2859 ev_idle_stop (EV_A_ idle);
2486 struct ev_loop *loop = w->other; 2870 struct ev_loop *loop = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2871 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2872 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 } 2873 }
2490 2874
2875 EV_FREQUENT_CHECK;
2876
2491 ev_set_priority (&w->io, ev_priority (w)); 2877 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io); 2878 ev_io_start (EV_A_ &w->io);
2493 2879
2494 ev_prepare_init (&w->prepare, embed_prepare_cb); 2880 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI); 2881 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare); 2882 ev_prepare_start (EV_A_ &w->prepare);
2497 2883
2884 ev_fork_init (&w->fork, embed_fork_cb);
2885 ev_fork_start (EV_A_ &w->fork);
2886
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2887 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499 2888
2500 ev_start (EV_A_ (W)w, 1); 2889 ev_start (EV_A_ (W)w, 1);
2890
2891 EV_FREQUENT_CHECK;
2501} 2892}
2502 2893
2503void 2894void
2504ev_embed_stop (EV_P_ ev_embed *w) 2895ev_embed_stop (EV_P_ ev_embed *w)
2505{ 2896{
2506 clear_pending (EV_A_ (W)w); 2897 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 2898 if (expect_false (!ev_is_active (w)))
2508 return; 2899 return;
2509 2900
2901 EV_FREQUENT_CHECK;
2902
2510 ev_io_stop (EV_A_ &w->io); 2903 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare); 2904 ev_prepare_stop (EV_A_ &w->prepare);
2905 ev_fork_stop (EV_A_ &w->fork);
2512 2906
2513 ev_stop (EV_A_ (W)w); 2907 EV_FREQUENT_CHECK;
2514} 2908}
2515#endif 2909#endif
2516 2910
2517#if EV_FORK_ENABLE 2911#if EV_FORK_ENABLE
2518void 2912void
2519ev_fork_start (EV_P_ ev_fork *w) 2913ev_fork_start (EV_P_ ev_fork *w)
2520{ 2914{
2521 if (expect_false (ev_is_active (w))) 2915 if (expect_false (ev_is_active (w)))
2522 return; 2916 return;
2917
2918 EV_FREQUENT_CHECK;
2523 2919
2524 ev_start (EV_A_ (W)w, ++forkcnt); 2920 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2921 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w; 2922 forks [forkcnt - 1] = w;
2923
2924 EV_FREQUENT_CHECK;
2527} 2925}
2528 2926
2529void 2927void
2530ev_fork_stop (EV_P_ ev_fork *w) 2928ev_fork_stop (EV_P_ ev_fork *w)
2531{ 2929{
2532 clear_pending (EV_A_ (W)w); 2930 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w))) 2931 if (expect_false (!ev_is_active (w)))
2534 return; 2932 return;
2535 2933
2934 EV_FREQUENT_CHECK;
2935
2536 { 2936 {
2537 int active = ((W)w)->active; 2937 int active = ev_active (w);
2938
2538 forks [active - 1] = forks [--forkcnt]; 2939 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active; 2940 ev_active (forks [active - 1]) = active;
2540 } 2941 }
2541 2942
2542 ev_stop (EV_A_ (W)w); 2943 ev_stop (EV_A_ (W)w);
2944
2945 EV_FREQUENT_CHECK;
2543} 2946}
2544#endif 2947#endif
2545 2948
2546#if EV_ASYNC_ENABLE 2949#if EV_ASYNC_ENABLE
2547void 2950void
2549{ 2952{
2550 if (expect_false (ev_is_active (w))) 2953 if (expect_false (ev_is_active (w)))
2551 return; 2954 return;
2552 2955
2553 evpipe_init (EV_A); 2956 evpipe_init (EV_A);
2957
2958 EV_FREQUENT_CHECK;
2554 2959
2555 ev_start (EV_A_ (W)w, ++asynccnt); 2960 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2961 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w; 2962 asyncs [asynccnt - 1] = w;
2963
2964 EV_FREQUENT_CHECK;
2558} 2965}
2559 2966
2560void 2967void
2561ev_async_stop (EV_P_ ev_async *w) 2968ev_async_stop (EV_P_ ev_async *w)
2562{ 2969{
2563 clear_pending (EV_A_ (W)w); 2970 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w))) 2971 if (expect_false (!ev_is_active (w)))
2565 return; 2972 return;
2566 2973
2974 EV_FREQUENT_CHECK;
2975
2567 { 2976 {
2568 int active = ((W)w)->active; 2977 int active = ev_active (w);
2978
2569 asyncs [active - 1] = asyncs [--asynccnt]; 2979 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active; 2980 ev_active (asyncs [active - 1]) = active;
2571 } 2981 }
2572 2982
2573 ev_stop (EV_A_ (W)w); 2983 ev_stop (EV_A_ (W)w);
2984
2985 EV_FREQUENT_CHECK;
2574} 2986}
2575 2987
2576void 2988void
2577ev_async_send (EV_P_ ev_async *w) 2989ev_async_send (EV_P_ ev_async *w)
2578{ 2990{
2595once_cb (EV_P_ struct ev_once *once, int revents) 3007once_cb (EV_P_ struct ev_once *once, int revents)
2596{ 3008{
2597 void (*cb)(int revents, void *arg) = once->cb; 3009 void (*cb)(int revents, void *arg) = once->cb;
2598 void *arg = once->arg; 3010 void *arg = once->arg;
2599 3011
2600 ev_io_stop (EV_A_ &once->io); 3012 ev_io_stop (EV_A_ &once->io);
2601 ev_timer_stop (EV_A_ &once->to); 3013 ev_timer_stop (EV_A_ &once->to);
2602 ev_free (once); 3014 ev_free (once);
2603 3015
2604 cb (revents, arg); 3016 cb (revents, arg);
2605} 3017}
2606 3018
2607static void 3019static void
2608once_cb_io (EV_P_ ev_io *w, int revents) 3020once_cb_io (EV_P_ ev_io *w, int revents)
2609{ 3021{
2610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3022 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3023
3024 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2611} 3025}
2612 3026
2613static void 3027static void
2614once_cb_to (EV_P_ ev_timer *w, int revents) 3028once_cb_to (EV_P_ ev_timer *w, int revents)
2615{ 3029{
2616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3030 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3031
3032 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2617} 3033}
2618 3034
2619void 3035void
2620ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3036ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2621{ 3037{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines