ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC vs.
Revision 1.336 by root, Wed Mar 10 08:19:38 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
154#ifndef _WIN32 178#ifndef _WIN32
155# include <sys/time.h> 179# include <sys/time.h>
156# include <sys/wait.h> 180# include <sys/wait.h>
157# include <unistd.h> 181# include <unistd.h>
158#else 182#else
183# include <io.h>
159# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 185# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
163# endif 188# endif
189# undef EV_AVOID_STDIO
164#endif 190#endif
165 191
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 192/* this block tries to deduce configuration from header-defined symbols and defaults */
167 193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL 1
225# else
226# define EV_USE_CLOCK_SYSCALL 0
227# endif
228#endif
229
168#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC 1
233# else
169# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
170#endif 236#endif
171 237
172#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 240#endif
175 241
176#ifndef EV_USE_NANOSLEEP 242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP 1
245# else
177# define EV_USE_NANOSLEEP 0 246# define EV_USE_NANOSLEEP 0
247# endif
178#endif 248#endif
179 249
180#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 251# define EV_USE_SELECT 1
182#endif 252#endif
235# else 305# else
236# define EV_USE_EVENTFD 0 306# define EV_USE_EVENTFD 0
237# endif 307# endif
238#endif 308#endif
239 309
310#ifndef EV_USE_SIGNALFD
311# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
312# define EV_USE_SIGNALFD 1
313# else
314# define EV_USE_SIGNALFD 0
315# endif
316#endif
317
318#if 0 /* debugging */
319# define EV_VERIFY 3
320# define EV_USE_4HEAP 1
321# define EV_HEAP_CACHE_AT 1
322#endif
323
324#ifndef EV_VERIFY
325# define EV_VERIFY !EV_MINIMAL
326#endif
327
328#ifndef EV_USE_4HEAP
329# define EV_USE_4HEAP !EV_MINIMAL
330#endif
331
332#ifndef EV_HEAP_CACHE_AT
333# define EV_HEAP_CACHE_AT !EV_MINIMAL
334#endif
335
336/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
337/* which makes programs even slower. might work on other unices, too. */
338#if EV_USE_CLOCK_SYSCALL
339# include <syscall.h>
340# ifdef SYS_clock_gettime
341# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
342# undef EV_USE_MONOTONIC
343# define EV_USE_MONOTONIC 1
344# else
345# undef EV_USE_CLOCK_SYSCALL
346# define EV_USE_CLOCK_SYSCALL 0
347# endif
348#endif
349
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 350/* this block fixes any misconfiguration where we know we run into trouble otherwise */
351
352#ifdef _AIX
353/* AIX has a completely broken poll.h header */
354# undef EV_USE_POLL
355# define EV_USE_POLL 0
356#endif
241 357
242#ifndef CLOCK_MONOTONIC 358#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 359# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 360# define EV_USE_MONOTONIC 0
245#endif 361#endif
259# include <sys/select.h> 375# include <sys/select.h>
260# endif 376# endif
261#endif 377#endif
262 378
263#if EV_USE_INOTIFY 379#if EV_USE_INOTIFY
380# include <sys/utsname.h>
381# include <sys/statfs.h>
264# include <sys/inotify.h> 382# include <sys/inotify.h>
383/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
384# ifndef IN_DONT_FOLLOW
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387# endif
265#endif 388#endif
266 389
267#if EV_SELECT_IS_WINSOCKET 390#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 391# include <winsock.h>
269#endif 392#endif
270 393
271#if EV_USE_EVENTFD 394#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 395/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 396# include <stdint.h>
397# ifndef EFD_NONBLOCK
398# define EFD_NONBLOCK O_NONBLOCK
399# endif
400# ifndef EFD_CLOEXEC
401# ifdef O_CLOEXEC
402# define EFD_CLOEXEC O_CLOEXEC
403# else
404# define EFD_CLOEXEC 02000000
405# endif
406# endif
274# ifdef __cplusplus 407# ifdef __cplusplus
275extern "C" { 408extern "C" {
276# endif 409# endif
277int eventfd (unsigned int initval, int flags); 410int (eventfd) (unsigned int initval, int flags);
278# ifdef __cplusplus 411# ifdef __cplusplus
279} 412}
280# endif 413# endif
281#endif 414#endif
282 415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429# ifdef __cplusplus
430extern "C" {
431# endif
432int signalfd (int fd, const sigset_t *mask, int flags);
433
434struct signalfd_siginfo
435{
436 uint32_t ssi_signo;
437 char pad[128 - sizeof (uint32_t)];
438};
439# ifdef __cplusplus
440}
441# endif
442#endif
443
444
283/**/ 445/**/
446
447#if EV_VERIFY >= 3
448# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
449#else
450# define EV_FREQUENT_CHECK do { } while (0)
451#endif
284 452
285/* 453/*
286 * This is used to avoid floating point rounding problems. 454 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 455 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 456 * to ensure progress, time-wise, even when rounding
292 */ 460 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 461#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 462
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 465
299#if __GNUC__ >= 4 466#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 467# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 468# define noinline __attribute__ ((noinline))
302#else 469#else
315# define inline_speed static noinline 482# define inline_speed static noinline
316#else 483#else
317# define inline_speed static inline 484# define inline_speed static inline
318#endif 485#endif
319 486
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 487#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
488
489#if EV_MINPRI == EV_MAXPRI
490# define ABSPRI(w) (((W)w), 0)
491#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 492# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
493#endif
322 494
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 495#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 496#define EMPTY2(a,b) /* used to suppress some warnings */
325 497
326typedef ev_watcher *W; 498typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 499typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 500typedef ev_watcher_time *WT;
329 501
502#define ev_active(w) ((W)(w))->active
330#define ev_at(w) ((WT)(w))->at 503#define ev_at(w) ((WT)(w))->at
331 504
332#if EV_USE_MONOTONIC 505#if EV_USE_REALTIME
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 506/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */ 507/* giving it a reasonably high chance of working on typical architetcures */
508static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
509#endif
510
511#if EV_USE_MONOTONIC
335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 512static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
513#endif
514
515#ifndef EV_FD_TO_WIN32_HANDLE
516# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
517#endif
518#ifndef EV_WIN32_HANDLE_TO_FD
519# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
520#endif
521#ifndef EV_WIN32_CLOSE_FD
522# define EV_WIN32_CLOSE_FD(fd) close (fd)
336#endif 523#endif
337 524
338#ifdef _WIN32 525#ifdef _WIN32
339# include "ev_win32.c" 526# include "ev_win32.c"
340#endif 527#endif
341 528
342/*****************************************************************************/ 529/*****************************************************************************/
343 530
531#if EV_AVOID_STDIO
532static void noinline
533ev_printerr (const char *msg)
534{
535 write (STDERR_FILENO, msg, strlen (msg));
536}
537#endif
538
344static void (*syserr_cb)(const char *msg); 539static void (*syserr_cb)(const char *msg);
345 540
346void 541void
347ev_set_syserr_cb (void (*cb)(const char *msg)) 542ev_set_syserr_cb (void (*cb)(const char *msg))
348{ 543{
349 syserr_cb = cb; 544 syserr_cb = cb;
350} 545}
351 546
352static void noinline 547static void noinline
353syserr (const char *msg) 548ev_syserr (const char *msg)
354{ 549{
355 if (!msg) 550 if (!msg)
356 msg = "(libev) system error"; 551 msg = "(libev) system error";
357 552
358 if (syserr_cb) 553 if (syserr_cb)
359 syserr_cb (msg); 554 syserr_cb (msg);
360 else 555 else
361 { 556 {
557#if EV_AVOID_STDIO
558 const char *err = strerror (errno);
559
560 ev_printerr (msg);
561 ev_printerr (": ");
562 ev_printerr (err);
563 ev_printerr ("\n");
564#else
362 perror (msg); 565 perror (msg);
566#endif
363 abort (); 567 abort ();
364 } 568 }
365} 569}
366 570
367static void * 571static void *
368ev_realloc_emul (void *ptr, long size) 572ev_realloc_emul (void *ptr, long size)
369{ 573{
574#if __GLIBC__
575 return realloc (ptr, size);
576#else
370 /* some systems, notably openbsd and darwin, fail to properly 577 /* some systems, notably openbsd and darwin, fail to properly
371 * implement realloc (x, 0) (as required by both ansi c-98 and 578 * implement realloc (x, 0) (as required by both ansi c-89 and
372 * the single unix specification, so work around them here. 579 * the single unix specification, so work around them here.
373 */ 580 */
374 581
375 if (size) 582 if (size)
376 return realloc (ptr, size); 583 return realloc (ptr, size);
377 584
378 free (ptr); 585 free (ptr);
379 return 0; 586 return 0;
587#endif
380} 588}
381 589
382static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 590static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
383 591
384void 592void
392{ 600{
393 ptr = alloc (ptr, size); 601 ptr = alloc (ptr, size);
394 602
395 if (!ptr && size) 603 if (!ptr && size)
396 { 604 {
605#if EV_AVOID_STDIO
606 ev_printerr ("libev: memory allocation failed, aborting.\n");
607#else
397 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 608 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
609#endif
398 abort (); 610 abort ();
399 } 611 }
400 612
401 return ptr; 613 return ptr;
402} 614}
404#define ev_malloc(size) ev_realloc (0, (size)) 616#define ev_malloc(size) ev_realloc (0, (size))
405#define ev_free(ptr) ev_realloc ((ptr), 0) 617#define ev_free(ptr) ev_realloc ((ptr), 0)
406 618
407/*****************************************************************************/ 619/*****************************************************************************/
408 620
621/* set in reify when reification needed */
622#define EV_ANFD_REIFY 1
623
624/* file descriptor info structure */
409typedef struct 625typedef struct
410{ 626{
411 WL head; 627 WL head;
412 unsigned char events; 628 unsigned char events; /* the events watched for */
629 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
630 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
413 unsigned char reify; 631 unsigned char unused;
632#if EV_USE_EPOLL
633 unsigned int egen; /* generation counter to counter epoll bugs */
634#endif
414#if EV_SELECT_IS_WINSOCKET 635#if EV_SELECT_IS_WINSOCKET
415 SOCKET handle; 636 SOCKET handle;
416#endif 637#endif
417} ANFD; 638} ANFD;
418 639
640/* stores the pending event set for a given watcher */
419typedef struct 641typedef struct
420{ 642{
421 W w; 643 W w;
422 int events; 644 int events; /* the pending event set for the given watcher */
423} ANPENDING; 645} ANPENDING;
424 646
425#if EV_USE_INOTIFY 647#if EV_USE_INOTIFY
648/* hash table entry per inotify-id */
426typedef struct 649typedef struct
427{ 650{
428 WL head; 651 WL head;
429} ANFS; 652} ANFS;
653#endif
654
655/* Heap Entry */
656#if EV_HEAP_CACHE_AT
657 /* a heap element */
658 typedef struct {
659 ev_tstamp at;
660 WT w;
661 } ANHE;
662
663 #define ANHE_w(he) (he).w /* access watcher, read-write */
664 #define ANHE_at(he) (he).at /* access cached at, read-only */
665 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
666#else
667 /* a heap element */
668 typedef WT ANHE;
669
670 #define ANHE_w(he) (he)
671 #define ANHE_at(he) (he)->at
672 #define ANHE_at_cache(he)
430#endif 673#endif
431 674
432#if EV_MULTIPLICITY 675#if EV_MULTIPLICITY
433 676
434 struct ev_loop 677 struct ev_loop
453 696
454 static int ev_default_loop_ptr; 697 static int ev_default_loop_ptr;
455 698
456#endif 699#endif
457 700
701#if EV_MINIMAL < 2
702# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
703# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
704# define EV_INVOKE_PENDING invoke_cb (EV_A)
705#else
706# define EV_RELEASE_CB (void)0
707# define EV_ACQUIRE_CB (void)0
708# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
709#endif
710
711#define EVUNLOOP_RECURSE 0x80
712
458/*****************************************************************************/ 713/*****************************************************************************/
459 714
715#ifndef EV_HAVE_EV_TIME
460ev_tstamp 716ev_tstamp
461ev_time (void) 717ev_time (void)
462{ 718{
463#if EV_USE_REALTIME 719#if EV_USE_REALTIME
720 if (expect_true (have_realtime))
721 {
464 struct timespec ts; 722 struct timespec ts;
465 clock_gettime (CLOCK_REALTIME, &ts); 723 clock_gettime (CLOCK_REALTIME, &ts);
466 return ts.tv_sec + ts.tv_nsec * 1e-9; 724 return ts.tv_sec + ts.tv_nsec * 1e-9;
467#else 725 }
726#endif
727
468 struct timeval tv; 728 struct timeval tv;
469 gettimeofday (&tv, 0); 729 gettimeofday (&tv, 0);
470 return tv.tv_sec + tv.tv_usec * 1e-6; 730 return tv.tv_sec + tv.tv_usec * 1e-6;
471#endif
472} 731}
732#endif
473 733
474ev_tstamp inline_size 734inline_size ev_tstamp
475get_clock (void) 735get_clock (void)
476{ 736{
477#if EV_USE_MONOTONIC 737#if EV_USE_MONOTONIC
478 if (expect_true (have_monotonic)) 738 if (expect_true (have_monotonic))
479 { 739 {
512 struct timeval tv; 772 struct timeval tv;
513 773
514 tv.tv_sec = (time_t)delay; 774 tv.tv_sec = (time_t)delay;
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 775 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
516 776
777 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
778 /* something not guaranteed by newer posix versions, but guaranteed */
779 /* by older ones */
517 select (0, 0, 0, 0, &tv); 780 select (0, 0, 0, 0, &tv);
518#endif 781#endif
519 } 782 }
520} 783}
521 784
522/*****************************************************************************/ 785/*****************************************************************************/
523 786
524int inline_size 787#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
788
789/* find a suitable new size for the given array, */
790/* hopefully by rounding to a ncie-to-malloc size */
791inline_size int
525array_nextsize (int elem, int cur, int cnt) 792array_nextsize (int elem, int cur, int cnt)
526{ 793{
527 int ncur = cur + 1; 794 int ncur = cur + 1;
528 795
529 do 796 do
530 ncur <<= 1; 797 ncur <<= 1;
531 while (cnt > ncur); 798 while (cnt > ncur);
532 799
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 800 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
534 if (elem * ncur > 4096) 801 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
535 { 802 {
536 ncur *= elem; 803 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 804 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
538 ncur = ncur - sizeof (void *) * 4; 805 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem; 806 ncur /= elem;
540 } 807 }
541 808
542 return ncur; 809 return ncur;
546array_realloc (int elem, void *base, int *cur, int cnt) 813array_realloc (int elem, void *base, int *cur, int cnt)
547{ 814{
548 *cur = array_nextsize (elem, *cur, cnt); 815 *cur = array_nextsize (elem, *cur, cnt);
549 return ev_realloc (base, elem * *cur); 816 return ev_realloc (base, elem * *cur);
550} 817}
818
819#define array_init_zero(base,count) \
820 memset ((void *)(base), 0, sizeof (*(base)) * (count))
551 821
552#define array_needsize(type,base,cur,cnt,init) \ 822#define array_needsize(type,base,cur,cnt,init) \
553 if (expect_false ((cnt) > (cur))) \ 823 if (expect_false ((cnt) > (cur))) \
554 { \ 824 { \
555 int ocur_ = (cur); \ 825 int ocur_ = (cur); \
567 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 837 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
568 } 838 }
569#endif 839#endif
570 840
571#define array_free(stem, idx) \ 841#define array_free(stem, idx) \
572 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 842 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
573 843
574/*****************************************************************************/ 844/*****************************************************************************/
845
846/* dummy callback for pending events */
847static void noinline
848pendingcb (EV_P_ ev_prepare *w, int revents)
849{
850}
575 851
576void noinline 852void noinline
577ev_feed_event (EV_P_ void *w, int revents) 853ev_feed_event (EV_P_ void *w, int revents)
578{ 854{
579 W w_ = (W)w; 855 W w_ = (W)w;
588 pendings [pri][w_->pending - 1].w = w_; 864 pendings [pri][w_->pending - 1].w = w_;
589 pendings [pri][w_->pending - 1].events = revents; 865 pendings [pri][w_->pending - 1].events = revents;
590 } 866 }
591} 867}
592 868
593void inline_speed 869inline_speed void
870feed_reverse (EV_P_ W w)
871{
872 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
873 rfeeds [rfeedcnt++] = w;
874}
875
876inline_size void
877feed_reverse_done (EV_P_ int revents)
878{
879 do
880 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
881 while (rfeedcnt);
882}
883
884inline_speed void
594queue_events (EV_P_ W *events, int eventcnt, int type) 885queue_events (EV_P_ W *events, int eventcnt, int type)
595{ 886{
596 int i; 887 int i;
597 888
598 for (i = 0; i < eventcnt; ++i) 889 for (i = 0; i < eventcnt; ++i)
599 ev_feed_event (EV_A_ events [i], type); 890 ev_feed_event (EV_A_ events [i], type);
600} 891}
601 892
602/*****************************************************************************/ 893/*****************************************************************************/
603 894
604void inline_size 895inline_speed void
605anfds_init (ANFD *base, int count)
606{
607 while (count--)
608 {
609 base->head = 0;
610 base->events = EV_NONE;
611 base->reify = 0;
612
613 ++base;
614 }
615}
616
617void inline_speed
618fd_event (EV_P_ int fd, int revents) 896fd_event_nc (EV_P_ int fd, int revents)
619{ 897{
620 ANFD *anfd = anfds + fd; 898 ANFD *anfd = anfds + fd;
621 ev_io *w; 899 ev_io *w;
622 900
623 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 901 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
627 if (ev) 905 if (ev)
628 ev_feed_event (EV_A_ (W)w, ev); 906 ev_feed_event (EV_A_ (W)w, ev);
629 } 907 }
630} 908}
631 909
910/* do not submit kernel events for fds that have reify set */
911/* because that means they changed while we were polling for new events */
912inline_speed void
913fd_event (EV_P_ int fd, int revents)
914{
915 ANFD *anfd = anfds + fd;
916
917 if (expect_true (!anfd->reify))
918 fd_event_nc (EV_A_ fd, revents);
919}
920
632void 921void
633ev_feed_fd_event (EV_P_ int fd, int revents) 922ev_feed_fd_event (EV_P_ int fd, int revents)
634{ 923{
635 if (fd >= 0 && fd < anfdmax) 924 if (fd >= 0 && fd < anfdmax)
636 fd_event (EV_A_ fd, revents); 925 fd_event_nc (EV_A_ fd, revents);
637} 926}
638 927
639void inline_size 928/* make sure the external fd watch events are in-sync */
929/* with the kernel/libev internal state */
930inline_size void
640fd_reify (EV_P) 931fd_reify (EV_P)
641{ 932{
642 int i; 933 int i;
643 934
644 for (i = 0; i < fdchangecnt; ++i) 935 for (i = 0; i < fdchangecnt; ++i)
653 events |= (unsigned char)w->events; 944 events |= (unsigned char)w->events;
654 945
655#if EV_SELECT_IS_WINSOCKET 946#if EV_SELECT_IS_WINSOCKET
656 if (events) 947 if (events)
657 { 948 {
658 unsigned long argp; 949 unsigned long arg;
659 #ifdef EV_FD_TO_WIN32_HANDLE
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 950 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
661 #else
662 anfd->handle = _get_osfhandle (fd);
663 #endif
664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 951 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
665 } 952 }
666#endif 953#endif
667 954
668 { 955 {
669 unsigned char o_events = anfd->events; 956 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify; 957 unsigned char o_reify = anfd->reify;
671 958
672 anfd->reify = 0; 959 anfd->reify = 0;
673 anfd->events = events; 960 anfd->events = events;
674 961
675 if (o_events != events || o_reify & EV_IOFDSET) 962 if (o_events != events || o_reify & EV__IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events); 963 backend_modify (EV_A_ fd, o_events, events);
677 } 964 }
678 } 965 }
679 966
680 fdchangecnt = 0; 967 fdchangecnt = 0;
681} 968}
682 969
683void inline_size 970/* something about the given fd changed */
971inline_size void
684fd_change (EV_P_ int fd, int flags) 972fd_change (EV_P_ int fd, int flags)
685{ 973{
686 unsigned char reify = anfds [fd].reify; 974 unsigned char reify = anfds [fd].reify;
687 anfds [fd].reify |= flags; 975 anfds [fd].reify |= flags;
688 976
692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 980 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
693 fdchanges [fdchangecnt - 1] = fd; 981 fdchanges [fdchangecnt - 1] = fd;
694 } 982 }
695} 983}
696 984
697void inline_speed 985/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
986inline_speed void
698fd_kill (EV_P_ int fd) 987fd_kill (EV_P_ int fd)
699{ 988{
700 ev_io *w; 989 ev_io *w;
701 990
702 while ((w = (ev_io *)anfds [fd].head)) 991 while ((w = (ev_io *)anfds [fd].head))
704 ev_io_stop (EV_A_ w); 993 ev_io_stop (EV_A_ w);
705 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 994 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
706 } 995 }
707} 996}
708 997
709int inline_size 998/* check whether the given fd is actually valid, for error recovery */
999inline_size int
710fd_valid (int fd) 1000fd_valid (int fd)
711{ 1001{
712#ifdef _WIN32 1002#ifdef _WIN32
713 return _get_osfhandle (fd) != -1; 1003 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
714#else 1004#else
715 return fcntl (fd, F_GETFD) != -1; 1005 return fcntl (fd, F_GETFD) != -1;
716#endif 1006#endif
717} 1007}
718 1008
722{ 1012{
723 int fd; 1013 int fd;
724 1014
725 for (fd = 0; fd < anfdmax; ++fd) 1015 for (fd = 0; fd < anfdmax; ++fd)
726 if (anfds [fd].events) 1016 if (anfds [fd].events)
727 if (!fd_valid (fd) == -1 && errno == EBADF) 1017 if (!fd_valid (fd) && errno == EBADF)
728 fd_kill (EV_A_ fd); 1018 fd_kill (EV_A_ fd);
729} 1019}
730 1020
731/* called on ENOMEM in select/poll to kill some fds and retry */ 1021/* called on ENOMEM in select/poll to kill some fds and retry */
732static void noinline 1022static void noinline
736 1026
737 for (fd = anfdmax; fd--; ) 1027 for (fd = anfdmax; fd--; )
738 if (anfds [fd].events) 1028 if (anfds [fd].events)
739 { 1029 {
740 fd_kill (EV_A_ fd); 1030 fd_kill (EV_A_ fd);
741 return; 1031 break;
742 } 1032 }
743} 1033}
744 1034
745/* usually called after fork if backend needs to re-arm all fds from scratch */ 1035/* usually called after fork if backend needs to re-arm all fds from scratch */
746static void noinline 1036static void noinline
750 1040
751 for (fd = 0; fd < anfdmax; ++fd) 1041 for (fd = 0; fd < anfdmax; ++fd)
752 if (anfds [fd].events) 1042 if (anfds [fd].events)
753 { 1043 {
754 anfds [fd].events = 0; 1044 anfds [fd].events = 0;
1045 anfds [fd].emask = 0;
755 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1046 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
756 } 1047 }
757} 1048}
758 1049
759/*****************************************************************************/ 1050/* used to prepare libev internal fd's */
760 1051/* this is not fork-safe */
761/* towards the root */ 1052inline_speed void
762void inline_speed
763upheap (WT *heap, int k)
764{
765 WT w = heap [k];
766
767 for (;;)
768 {
769 int p = k >> 1;
770
771 /* maybe we could use a dummy element at heap [0]? */
772 if (!p || heap [p]->at <= w->at)
773 break;
774
775 heap [k] = heap [p];
776 ((W)heap [k])->active = k;
777 k = p;
778 }
779
780 heap [k] = w;
781 ((W)heap [k])->active = k;
782}
783
784/* away from the root */
785void inline_speed
786downheap (WT *heap, int N, int k)
787{
788 WT w = heap [k];
789
790 for (;;)
791 {
792 int c = k << 1;
793
794 if (c > N)
795 break;
796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
803 heap [k] = heap [c];
804 ((W)heap [k])->active = k;
805
806 k = c;
807 }
808
809 heap [k] = w;
810 ((W)heap [k])->active = k;
811}
812
813void inline_size
814adjustheap (WT *heap, int N, int k)
815{
816 upheap (heap, k);
817 downheap (heap, N, k);
818}
819
820/*****************************************************************************/
821
822typedef struct
823{
824 WL head;
825 EV_ATOMIC_T gotsig;
826} ANSIG;
827
828static ANSIG *signals;
829static int signalmax;
830
831static EV_ATOMIC_T gotsig;
832
833void inline_size
834signals_init (ANSIG *base, int count)
835{
836 while (count--)
837 {
838 base->head = 0;
839 base->gotsig = 0;
840
841 ++base;
842 }
843}
844
845/*****************************************************************************/
846
847void inline_speed
848fd_intern (int fd) 1053fd_intern (int fd)
849{ 1054{
850#ifdef _WIN32 1055#ifdef _WIN32
851 int arg = 1; 1056 unsigned long arg = 1;
852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1057 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
853#else 1058#else
854 fcntl (fd, F_SETFD, FD_CLOEXEC); 1059 fcntl (fd, F_SETFD, FD_CLOEXEC);
855 fcntl (fd, F_SETFL, O_NONBLOCK); 1060 fcntl (fd, F_SETFL, O_NONBLOCK);
856#endif 1061#endif
857} 1062}
858 1063
1064/*****************************************************************************/
1065
1066/*
1067 * the heap functions want a real array index. array index 0 uis guaranteed to not
1068 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1069 * the branching factor of the d-tree.
1070 */
1071
1072/*
1073 * at the moment we allow libev the luxury of two heaps,
1074 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1075 * which is more cache-efficient.
1076 * the difference is about 5% with 50000+ watchers.
1077 */
1078#if EV_USE_4HEAP
1079
1080#define DHEAP 4
1081#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1082#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1083#define UPHEAP_DONE(p,k) ((p) == (k))
1084
1085/* away from the root */
1086inline_speed void
1087downheap (ANHE *heap, int N, int k)
1088{
1089 ANHE he = heap [k];
1090 ANHE *E = heap + N + HEAP0;
1091
1092 for (;;)
1093 {
1094 ev_tstamp minat;
1095 ANHE *minpos;
1096 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1097
1098 /* find minimum child */
1099 if (expect_true (pos + DHEAP - 1 < E))
1100 {
1101 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1102 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1103 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1104 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1105 }
1106 else if (pos < E)
1107 {
1108 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1109 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1110 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1111 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1112 }
1113 else
1114 break;
1115
1116 if (ANHE_at (he) <= minat)
1117 break;
1118
1119 heap [k] = *minpos;
1120 ev_active (ANHE_w (*minpos)) = k;
1121
1122 k = minpos - heap;
1123 }
1124
1125 heap [k] = he;
1126 ev_active (ANHE_w (he)) = k;
1127}
1128
1129#else /* 4HEAP */
1130
1131#define HEAP0 1
1132#define HPARENT(k) ((k) >> 1)
1133#define UPHEAP_DONE(p,k) (!(p))
1134
1135/* away from the root */
1136inline_speed void
1137downheap (ANHE *heap, int N, int k)
1138{
1139 ANHE he = heap [k];
1140
1141 for (;;)
1142 {
1143 int c = k << 1;
1144
1145 if (c >= N + HEAP0)
1146 break;
1147
1148 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1149 ? 1 : 0;
1150
1151 if (ANHE_at (he) <= ANHE_at (heap [c]))
1152 break;
1153
1154 heap [k] = heap [c];
1155 ev_active (ANHE_w (heap [k])) = k;
1156
1157 k = c;
1158 }
1159
1160 heap [k] = he;
1161 ev_active (ANHE_w (he)) = k;
1162}
1163#endif
1164
1165/* towards the root */
1166inline_speed void
1167upheap (ANHE *heap, int k)
1168{
1169 ANHE he = heap [k];
1170
1171 for (;;)
1172 {
1173 int p = HPARENT (k);
1174
1175 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1176 break;
1177
1178 heap [k] = heap [p];
1179 ev_active (ANHE_w (heap [k])) = k;
1180 k = p;
1181 }
1182
1183 heap [k] = he;
1184 ev_active (ANHE_w (he)) = k;
1185}
1186
1187/* move an element suitably so it is in a correct place */
1188inline_size void
1189adjustheap (ANHE *heap, int N, int k)
1190{
1191 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1192 upheap (heap, k);
1193 else
1194 downheap (heap, N, k);
1195}
1196
1197/* rebuild the heap: this function is used only once and executed rarely */
1198inline_size void
1199reheap (ANHE *heap, int N)
1200{
1201 int i;
1202
1203 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1204 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1205 for (i = 0; i < N; ++i)
1206 upheap (heap, i + HEAP0);
1207}
1208
1209/*****************************************************************************/
1210
1211/* associate signal watchers to a signal signal */
1212typedef struct
1213{
1214 EV_ATOMIC_T pending;
1215#if EV_MULTIPLICITY
1216 EV_P;
1217#endif
1218 WL head;
1219} ANSIG;
1220
1221static ANSIG signals [EV_NSIG - 1];
1222
1223/*****************************************************************************/
1224
1225#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1226
859static void noinline 1227static void noinline
860evpipe_init (EV_P) 1228evpipe_init (EV_P)
861{ 1229{
862 if (!ev_is_active (&pipeev)) 1230 if (!ev_is_active (&pipe_w))
863 { 1231 {
864#if EV_USE_EVENTFD 1232# if EV_USE_EVENTFD
1233 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1234 if (evfd < 0 && errno == EINVAL)
865 if ((evfd = eventfd (0, 0)) >= 0) 1235 evfd = eventfd (0, 0);
1236
1237 if (evfd >= 0)
866 { 1238 {
867 evpipe [0] = -1; 1239 evpipe [0] = -1;
868 fd_intern (evfd); 1240 fd_intern (evfd); /* doing it twice doesn't hurt */
869 ev_io_set (&pipeev, evfd, EV_READ); 1241 ev_io_set (&pipe_w, evfd, EV_READ);
870 } 1242 }
871 else 1243 else
872#endif 1244# endif
873 { 1245 {
874 while (pipe (evpipe)) 1246 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe"); 1247 ev_syserr ("(libev) error creating signal/async pipe");
876 1248
877 fd_intern (evpipe [0]); 1249 fd_intern (evpipe [0]);
878 fd_intern (evpipe [1]); 1250 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ); 1251 ev_io_set (&pipe_w, evpipe [0], EV_READ);
880 } 1252 }
881 1253
882 ev_io_start (EV_A_ &pipeev); 1254 ev_io_start (EV_A_ &pipe_w);
883 ev_unref (EV_A); /* watcher should not keep loop alive */ 1255 ev_unref (EV_A); /* watcher should not keep loop alive */
884 } 1256 }
885} 1257}
886 1258
887void inline_size 1259inline_size void
888evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1260evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{ 1261{
890 if (!*flag) 1262 if (!*flag)
891 { 1263 {
892 int old_errno = errno; /* save errno because write might clobber it */ 1264 int old_errno = errno; /* save errno because write might clobber it */
1265 char dummy;
893 1266
894 *flag = 1; 1267 *flag = 1;
895 1268
896#if EV_USE_EVENTFD 1269#if EV_USE_EVENTFD
897 if (evfd >= 0) 1270 if (evfd >= 0)
899 uint64_t counter = 1; 1272 uint64_t counter = 1;
900 write (evfd, &counter, sizeof (uint64_t)); 1273 write (evfd, &counter, sizeof (uint64_t));
901 } 1274 }
902 else 1275 else
903#endif 1276#endif
904 write (evpipe [1], &old_errno, 1); 1277 write (evpipe [1], &dummy, 1);
905 1278
906 errno = old_errno; 1279 errno = old_errno;
907 } 1280 }
908} 1281}
909 1282
1283/* called whenever the libev signal pipe */
1284/* got some events (signal, async) */
910static void 1285static void
911pipecb (EV_P_ ev_io *iow, int revents) 1286pipecb (EV_P_ ev_io *iow, int revents)
912{ 1287{
1288 int i;
1289
913#if EV_USE_EVENTFD 1290#if EV_USE_EVENTFD
914 if (evfd >= 0) 1291 if (evfd >= 0)
915 { 1292 {
916 uint64_t counter = 1; 1293 uint64_t counter;
917 read (evfd, &counter, sizeof (uint64_t)); 1294 read (evfd, &counter, sizeof (uint64_t));
918 } 1295 }
919 else 1296 else
920#endif 1297#endif
921 { 1298 {
922 char dummy; 1299 char dummy;
923 read (evpipe [0], &dummy, 1); 1300 read (evpipe [0], &dummy, 1);
924 } 1301 }
925 1302
926 if (gotsig && ev_is_default_loop (EV_A)) 1303 if (sig_pending)
927 { 1304 {
928 int signum; 1305 sig_pending = 0;
929 gotsig = 0;
930 1306
931 for (signum = signalmax; signum--; ) 1307 for (i = EV_NSIG - 1; i--; )
932 if (signals [signum].gotsig) 1308 if (expect_false (signals [i].pending))
933 ev_feed_signal_event (EV_A_ signum + 1); 1309 ev_feed_signal_event (EV_A_ i + 1);
934 } 1310 }
935 1311
936#if EV_ASYNC_ENABLE 1312#if EV_ASYNC_ENABLE
937 if (gotasync) 1313 if (async_pending)
938 { 1314 {
939 int i; 1315 async_pending = 0;
940 gotasync = 0;
941 1316
942 for (i = asynccnt; i--; ) 1317 for (i = asynccnt; i--; )
943 if (asyncs [i]->sent) 1318 if (asyncs [i]->sent)
944 { 1319 {
945 asyncs [i]->sent = 0; 1320 asyncs [i]->sent = 0;
953 1328
954static void 1329static void
955ev_sighandler (int signum) 1330ev_sighandler (int signum)
956{ 1331{
957#if EV_MULTIPLICITY 1332#if EV_MULTIPLICITY
958 struct ev_loop *loop = &default_loop_struct; 1333 EV_P = signals [signum - 1].loop;
959#endif 1334#endif
960 1335
961#if _WIN32 1336#ifdef _WIN32
962 signal (signum, ev_sighandler); 1337 signal (signum, ev_sighandler);
963#endif 1338#endif
964 1339
965 signals [signum - 1].gotsig = 1; 1340 signals [signum - 1].pending = 1;
966 evpipe_write (EV_A_ &gotsig); 1341 evpipe_write (EV_A_ &sig_pending);
967} 1342}
968 1343
969void noinline 1344void noinline
970ev_feed_signal_event (EV_P_ int signum) 1345ev_feed_signal_event (EV_P_ int signum)
971{ 1346{
972 WL w; 1347 WL w;
973 1348
1349 if (expect_false (signum <= 0 || signum > EV_NSIG))
1350 return;
1351
1352 --signum;
1353
974#if EV_MULTIPLICITY 1354#if EV_MULTIPLICITY
975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1355 /* it is permissible to try to feed a signal to the wrong loop */
976#endif 1356 /* or, likely more useful, feeding a signal nobody is waiting for */
977 1357
978 --signum; 1358 if (expect_false (signals [signum].loop != EV_A))
979
980 if (signum < 0 || signum >= signalmax)
981 return; 1359 return;
1360#endif
982 1361
983 signals [signum].gotsig = 0; 1362 signals [signum].pending = 0;
984 1363
985 for (w = signals [signum].head; w; w = w->next) 1364 for (w = signals [signum].head; w; w = w->next)
986 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1365 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
987} 1366}
988 1367
1368#if EV_USE_SIGNALFD
1369static void
1370sigfdcb (EV_P_ ev_io *iow, int revents)
1371{
1372 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1373
1374 for (;;)
1375 {
1376 ssize_t res = read (sigfd, si, sizeof (si));
1377
1378 /* not ISO-C, as res might be -1, but works with SuS */
1379 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1380 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1381
1382 if (res < (ssize_t)sizeof (si))
1383 break;
1384 }
1385}
1386#endif
1387
1388#endif
1389
989/*****************************************************************************/ 1390/*****************************************************************************/
990 1391
1392#if EV_CHILD_ENABLE
991static WL childs [EV_PID_HASHSIZE]; 1393static WL childs [EV_PID_HASHSIZE];
992
993#ifndef _WIN32
994 1394
995static ev_signal childev; 1395static ev_signal childev;
996 1396
997#ifndef WIFCONTINUED 1397#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0 1398# define WIFCONTINUED(status) 0
999#endif 1399#endif
1000 1400
1001void inline_speed 1401/* handle a single child status event */
1402inline_speed void
1002child_reap (EV_P_ int chain, int pid, int status) 1403child_reap (EV_P_ int chain, int pid, int status)
1003{ 1404{
1004 ev_child *w; 1405 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1406 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1006 1407
1019 1420
1020#ifndef WCONTINUED 1421#ifndef WCONTINUED
1021# define WCONTINUED 0 1422# define WCONTINUED 0
1022#endif 1423#endif
1023 1424
1425/* called on sigchld etc., calls waitpid */
1024static void 1426static void
1025childcb (EV_P_ ev_signal *sw, int revents) 1427childcb (EV_P_ ev_signal *sw, int revents)
1026{ 1428{
1027 int pid, status; 1429 int pid, status;
1028 1430
1109 /* kqueue is borked on everything but netbsd apparently */ 1511 /* kqueue is borked on everything but netbsd apparently */
1110 /* it usually doesn't work correctly on anything but sockets and pipes */ 1512 /* it usually doesn't work correctly on anything but sockets and pipes */
1111 flags &= ~EVBACKEND_KQUEUE; 1513 flags &= ~EVBACKEND_KQUEUE;
1112#endif 1514#endif
1113#ifdef __APPLE__ 1515#ifdef __APPLE__
1114 // flags &= ~EVBACKEND_KQUEUE; for documentation 1516 /* only select works correctly on that "unix-certified" platform */
1115 flags &= ~EVBACKEND_POLL; 1517 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1518 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1116#endif 1519#endif
1117 1520
1118 return flags; 1521 return flags;
1119} 1522}
1120 1523
1134ev_backend (EV_P) 1537ev_backend (EV_P)
1135{ 1538{
1136 return backend; 1539 return backend;
1137} 1540}
1138 1541
1542#if EV_MINIMAL < 2
1139unsigned int 1543unsigned int
1140ev_loop_count (EV_P) 1544ev_loop_count (EV_P)
1141{ 1545{
1142 return loop_count; 1546 return loop_count;
1143} 1547}
1144 1548
1549unsigned int
1550ev_loop_depth (EV_P)
1551{
1552 return loop_depth;
1553}
1554
1145void 1555void
1146ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1556ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1147{ 1557{
1148 io_blocktime = interval; 1558 io_blocktime = interval;
1149} 1559}
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1562ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1153{ 1563{
1154 timeout_blocktime = interval; 1564 timeout_blocktime = interval;
1155} 1565}
1156 1566
1567void
1568ev_set_userdata (EV_P_ void *data)
1569{
1570 userdata = data;
1571}
1572
1573void *
1574ev_userdata (EV_P)
1575{
1576 return userdata;
1577}
1578
1579void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1580{
1581 invoke_cb = invoke_pending_cb;
1582}
1583
1584void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1585{
1586 release_cb = release;
1587 acquire_cb = acquire;
1588}
1589#endif
1590
1591/* initialise a loop structure, must be zero-initialised */
1157static void noinline 1592static void noinline
1158loop_init (EV_P_ unsigned int flags) 1593loop_init (EV_P_ unsigned int flags)
1159{ 1594{
1160 if (!backend) 1595 if (!backend)
1161 { 1596 {
1597#if EV_USE_REALTIME
1598 if (!have_realtime)
1599 {
1600 struct timespec ts;
1601
1602 if (!clock_gettime (CLOCK_REALTIME, &ts))
1603 have_realtime = 1;
1604 }
1605#endif
1606
1162#if EV_USE_MONOTONIC 1607#if EV_USE_MONOTONIC
1608 if (!have_monotonic)
1163 { 1609 {
1164 struct timespec ts; 1610 struct timespec ts;
1611
1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1612 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1166 have_monotonic = 1; 1613 have_monotonic = 1;
1167 } 1614 }
1168#endif 1615#endif
1616
1617 /* pid check not overridable via env */
1618#ifndef _WIN32
1619 if (flags & EVFLAG_FORKCHECK)
1620 curpid = getpid ();
1621#endif
1622
1623 if (!(flags & EVFLAG_NOENV)
1624 && !enable_secure ()
1625 && getenv ("LIBEV_FLAGS"))
1626 flags = atoi (getenv ("LIBEV_FLAGS"));
1169 1627
1170 ev_rt_now = ev_time (); 1628 ev_rt_now = ev_time ();
1171 mn_now = get_clock (); 1629 mn_now = get_clock ();
1172 now_floor = mn_now; 1630 now_floor = mn_now;
1173 rtmn_diff = ev_rt_now - mn_now; 1631 rtmn_diff = ev_rt_now - mn_now;
1632#if EV_MINIMAL < 2
1633 invoke_cb = ev_invoke_pending;
1634#endif
1174 1635
1175 io_blocktime = 0.; 1636 io_blocktime = 0.;
1176 timeout_blocktime = 0.; 1637 timeout_blocktime = 0.;
1177 backend = 0; 1638 backend = 0;
1178 backend_fd = -1; 1639 backend_fd = -1;
1179 gotasync = 0; 1640 sig_pending = 0;
1641#if EV_ASYNC_ENABLE
1642 async_pending = 0;
1643#endif
1180#if EV_USE_INOTIFY 1644#if EV_USE_INOTIFY
1181 fs_fd = -2; 1645 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1182#endif 1646#endif
1183 1647#if EV_USE_SIGNALFD
1184 /* pid check not overridable via env */ 1648 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1185#ifndef _WIN32
1186 if (flags & EVFLAG_FORKCHECK)
1187 curpid = getpid ();
1188#endif 1649#endif
1189
1190 if (!(flags & EVFLAG_NOENV)
1191 && !enable_secure ()
1192 && getenv ("LIBEV_FLAGS"))
1193 flags = atoi (getenv ("LIBEV_FLAGS"));
1194 1650
1195 if (!(flags & 0x0000ffffU)) 1651 if (!(flags & 0x0000ffffU))
1196 flags |= ev_recommended_backends (); 1652 flags |= ev_recommended_backends ();
1197 1653
1198#if EV_USE_PORT 1654#if EV_USE_PORT
1209#endif 1665#endif
1210#if EV_USE_SELECT 1666#if EV_USE_SELECT
1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1667 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1212#endif 1668#endif
1213 1669
1670 ev_prepare_init (&pending_w, pendingcb);
1671
1672#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1214 ev_init (&pipeev, pipecb); 1673 ev_init (&pipe_w, pipecb);
1215 ev_set_priority (&pipeev, EV_MAXPRI); 1674 ev_set_priority (&pipe_w, EV_MAXPRI);
1675#endif
1216 } 1676 }
1217} 1677}
1218 1678
1679/* free up a loop structure */
1219static void noinline 1680static void noinline
1220loop_destroy (EV_P) 1681loop_destroy (EV_P)
1221{ 1682{
1222 int i; 1683 int i;
1223 1684
1224 if (ev_is_active (&pipeev)) 1685 if (ev_is_active (&pipe_w))
1225 { 1686 {
1226 ev_ref (EV_A); /* signal watcher */ 1687 /*ev_ref (EV_A);*/
1227 ev_io_stop (EV_A_ &pipeev); 1688 /*ev_io_stop (EV_A_ &pipe_w);*/
1228 1689
1229#if EV_USE_EVENTFD 1690#if EV_USE_EVENTFD
1230 if (evfd >= 0) 1691 if (evfd >= 0)
1231 close (evfd); 1692 close (evfd);
1232#endif 1693#endif
1233 1694
1234 if (evpipe [0] >= 0) 1695 if (evpipe [0] >= 0)
1235 { 1696 {
1236 close (evpipe [0]); 1697 EV_WIN32_CLOSE_FD (evpipe [0]);
1237 close (evpipe [1]); 1698 EV_WIN32_CLOSE_FD (evpipe [1]);
1238 } 1699 }
1239 } 1700 }
1701
1702#if EV_USE_SIGNALFD
1703 if (ev_is_active (&sigfd_w))
1704 close (sigfd);
1705#endif
1240 1706
1241#if EV_USE_INOTIFY 1707#if EV_USE_INOTIFY
1242 if (fs_fd >= 0) 1708 if (fs_fd >= 0)
1243 close (fs_fd); 1709 close (fs_fd);
1244#endif 1710#endif
1268#if EV_IDLE_ENABLE 1734#if EV_IDLE_ENABLE
1269 array_free (idle, [i]); 1735 array_free (idle, [i]);
1270#endif 1736#endif
1271 } 1737 }
1272 1738
1273 ev_free (anfds); anfdmax = 0; 1739 ev_free (anfds); anfds = 0; anfdmax = 0;
1274 1740
1275 /* have to use the microsoft-never-gets-it-right macro */ 1741 /* have to use the microsoft-never-gets-it-right macro */
1742 array_free (rfeed, EMPTY);
1276 array_free (fdchange, EMPTY); 1743 array_free (fdchange, EMPTY);
1277 array_free (timer, EMPTY); 1744 array_free (timer, EMPTY);
1278#if EV_PERIODIC_ENABLE 1745#if EV_PERIODIC_ENABLE
1279 array_free (periodic, EMPTY); 1746 array_free (periodic, EMPTY);
1280#endif 1747#endif
1289 1756
1290 backend = 0; 1757 backend = 0;
1291} 1758}
1292 1759
1293#if EV_USE_INOTIFY 1760#if EV_USE_INOTIFY
1294void inline_size infy_fork (EV_P); 1761inline_size void infy_fork (EV_P);
1295#endif 1762#endif
1296 1763
1297void inline_size 1764inline_size void
1298loop_fork (EV_P) 1765loop_fork (EV_P)
1299{ 1766{
1300#if EV_USE_PORT 1767#if EV_USE_PORT
1301 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1768 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1302#endif 1769#endif
1308#endif 1775#endif
1309#if EV_USE_INOTIFY 1776#if EV_USE_INOTIFY
1310 infy_fork (EV_A); 1777 infy_fork (EV_A);
1311#endif 1778#endif
1312 1779
1313 if (ev_is_active (&pipeev)) 1780 if (ev_is_active (&pipe_w))
1314 { 1781 {
1315 /* this "locks" the handlers against writing to the pipe */ 1782 /* this "locks" the handlers against writing to the pipe */
1316 /* while we modify the fd vars */ 1783 /* while we modify the fd vars */
1317 gotsig = 1; 1784 sig_pending = 1;
1318#if EV_ASYNC_ENABLE 1785#if EV_ASYNC_ENABLE
1319 gotasync = 1; 1786 async_pending = 1;
1320#endif 1787#endif
1321 1788
1322 ev_ref (EV_A); 1789 ev_ref (EV_A);
1323 ev_io_stop (EV_A_ &pipeev); 1790 ev_io_stop (EV_A_ &pipe_w);
1324 1791
1325#if EV_USE_EVENTFD 1792#if EV_USE_EVENTFD
1326 if (evfd >= 0) 1793 if (evfd >= 0)
1327 close (evfd); 1794 close (evfd);
1328#endif 1795#endif
1329 1796
1330 if (evpipe [0] >= 0) 1797 if (evpipe [0] >= 0)
1331 { 1798 {
1332 close (evpipe [0]); 1799 EV_WIN32_CLOSE_FD (evpipe [0]);
1333 close (evpipe [1]); 1800 EV_WIN32_CLOSE_FD (evpipe [1]);
1334 } 1801 }
1335 1802
1336 evpipe_init (EV_A); 1803 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */ 1804 /* now iterate over everything, in case we missed something */
1338 pipecb (EV_A_ &pipeev, EV_READ); 1805 pipecb (EV_A_ &pipe_w, EV_READ);
1339 } 1806 }
1340 1807
1341 postfork = 0; 1808 postfork = 0;
1342} 1809}
1343 1810
1344#if EV_MULTIPLICITY 1811#if EV_MULTIPLICITY
1812
1345struct ev_loop * 1813struct ev_loop *
1346ev_loop_new (unsigned int flags) 1814ev_loop_new (unsigned int flags)
1347{ 1815{
1348 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1816 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1349 1817
1350 memset (loop, 0, sizeof (struct ev_loop)); 1818 memset (EV_A, 0, sizeof (struct ev_loop));
1351
1352 loop_init (EV_A_ flags); 1819 loop_init (EV_A_ flags);
1353 1820
1354 if (ev_backend (EV_A)) 1821 if (ev_backend (EV_A))
1355 return loop; 1822 return EV_A;
1356 1823
1357 return 0; 1824 return 0;
1358} 1825}
1359 1826
1360void 1827void
1367void 1834void
1368ev_loop_fork (EV_P) 1835ev_loop_fork (EV_P)
1369{ 1836{
1370 postfork = 1; /* must be in line with ev_default_fork */ 1837 postfork = 1; /* must be in line with ev_default_fork */
1371} 1838}
1839#endif /* multiplicity */
1372 1840
1841#if EV_VERIFY
1842static void noinline
1843verify_watcher (EV_P_ W w)
1844{
1845 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1846
1847 if (w->pending)
1848 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1849}
1850
1851static void noinline
1852verify_heap (EV_P_ ANHE *heap, int N)
1853{
1854 int i;
1855
1856 for (i = HEAP0; i < N + HEAP0; ++i)
1857 {
1858 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1859 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1860 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1861
1862 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1863 }
1864}
1865
1866static void noinline
1867array_verify (EV_P_ W *ws, int cnt)
1868{
1869 while (cnt--)
1870 {
1871 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1872 verify_watcher (EV_A_ ws [cnt]);
1873 }
1874}
1875#endif
1876
1877#if EV_MINIMAL < 2
1878void
1879ev_loop_verify (EV_P)
1880{
1881#if EV_VERIFY
1882 int i;
1883 WL w;
1884
1885 assert (activecnt >= -1);
1886
1887 assert (fdchangemax >= fdchangecnt);
1888 for (i = 0; i < fdchangecnt; ++i)
1889 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1890
1891 assert (anfdmax >= 0);
1892 for (i = 0; i < anfdmax; ++i)
1893 for (w = anfds [i].head; w; w = w->next)
1894 {
1895 verify_watcher (EV_A_ (W)w);
1896 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1897 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1898 }
1899
1900 assert (timermax >= timercnt);
1901 verify_heap (EV_A_ timers, timercnt);
1902
1903#if EV_PERIODIC_ENABLE
1904 assert (periodicmax >= periodiccnt);
1905 verify_heap (EV_A_ periodics, periodiccnt);
1906#endif
1907
1908 for (i = NUMPRI; i--; )
1909 {
1910 assert (pendingmax [i] >= pendingcnt [i]);
1911#if EV_IDLE_ENABLE
1912 assert (idleall >= 0);
1913 assert (idlemax [i] >= idlecnt [i]);
1914 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1915#endif
1916 }
1917
1918#if EV_FORK_ENABLE
1919 assert (forkmax >= forkcnt);
1920 array_verify (EV_A_ (W *)forks, forkcnt);
1921#endif
1922
1923#if EV_ASYNC_ENABLE
1924 assert (asyncmax >= asynccnt);
1925 array_verify (EV_A_ (W *)asyncs, asynccnt);
1926#endif
1927
1928 assert (preparemax >= preparecnt);
1929 array_verify (EV_A_ (W *)prepares, preparecnt);
1930
1931 assert (checkmax >= checkcnt);
1932 array_verify (EV_A_ (W *)checks, checkcnt);
1933
1934# if 0
1935#if EV_CHILD_ENABLE
1936 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1937 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1938#endif
1939# endif
1940#endif
1941}
1373#endif 1942#endif
1374 1943
1375#if EV_MULTIPLICITY 1944#if EV_MULTIPLICITY
1376struct ev_loop * 1945struct ev_loop *
1377ev_default_loop_init (unsigned int flags) 1946ev_default_loop_init (unsigned int flags)
1381#endif 1950#endif
1382{ 1951{
1383 if (!ev_default_loop_ptr) 1952 if (!ev_default_loop_ptr)
1384 { 1953 {
1385#if EV_MULTIPLICITY 1954#if EV_MULTIPLICITY
1386 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1955 EV_P = ev_default_loop_ptr = &default_loop_struct;
1387#else 1956#else
1388 ev_default_loop_ptr = 1; 1957 ev_default_loop_ptr = 1;
1389#endif 1958#endif
1390 1959
1391 loop_init (EV_A_ flags); 1960 loop_init (EV_A_ flags);
1392 1961
1393 if (ev_backend (EV_A)) 1962 if (ev_backend (EV_A))
1394 { 1963 {
1395#ifndef _WIN32 1964#if EV_CHILD_ENABLE
1396 ev_signal_init (&childev, childcb, SIGCHLD); 1965 ev_signal_init (&childev, childcb, SIGCHLD);
1397 ev_set_priority (&childev, EV_MAXPRI); 1966 ev_set_priority (&childev, EV_MAXPRI);
1398 ev_signal_start (EV_A_ &childev); 1967 ev_signal_start (EV_A_ &childev);
1399 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1968 ev_unref (EV_A); /* child watcher should not keep loop alive */
1400#endif 1969#endif
1408 1977
1409void 1978void
1410ev_default_destroy (void) 1979ev_default_destroy (void)
1411{ 1980{
1412#if EV_MULTIPLICITY 1981#if EV_MULTIPLICITY
1413 struct ev_loop *loop = ev_default_loop_ptr; 1982 EV_P = ev_default_loop_ptr;
1414#endif 1983#endif
1415 1984
1416#ifndef _WIN32 1985 ev_default_loop_ptr = 0;
1986
1987#if EV_CHILD_ENABLE
1417 ev_ref (EV_A); /* child watcher */ 1988 ev_ref (EV_A); /* child watcher */
1418 ev_signal_stop (EV_A_ &childev); 1989 ev_signal_stop (EV_A_ &childev);
1419#endif 1990#endif
1420 1991
1421 loop_destroy (EV_A); 1992 loop_destroy (EV_A);
1423 1994
1424void 1995void
1425ev_default_fork (void) 1996ev_default_fork (void)
1426{ 1997{
1427#if EV_MULTIPLICITY 1998#if EV_MULTIPLICITY
1428 struct ev_loop *loop = ev_default_loop_ptr; 1999 EV_P = ev_default_loop_ptr;
1429#endif 2000#endif
1430 2001
1431 if (backend)
1432 postfork = 1; /* must be in line with ev_loop_fork */ 2002 postfork = 1; /* must be in line with ev_loop_fork */
1433} 2003}
1434 2004
1435/*****************************************************************************/ 2005/*****************************************************************************/
1436 2006
1437void 2007void
1438ev_invoke (EV_P_ void *w, int revents) 2008ev_invoke (EV_P_ void *w, int revents)
1439{ 2009{
1440 EV_CB_INVOKE ((W)w, revents); 2010 EV_CB_INVOKE ((W)w, revents);
1441} 2011}
1442 2012
1443void inline_speed 2013unsigned int
1444call_pending (EV_P) 2014ev_pending_count (EV_P)
2015{
2016 int pri;
2017 unsigned int count = 0;
2018
2019 for (pri = NUMPRI; pri--; )
2020 count += pendingcnt [pri];
2021
2022 return count;
2023}
2024
2025void noinline
2026ev_invoke_pending (EV_P)
1445{ 2027{
1446 int pri; 2028 int pri;
1447 2029
1448 for (pri = NUMPRI; pri--; ) 2030 for (pri = NUMPRI; pri--; )
1449 while (pendingcnt [pri]) 2031 while (pendingcnt [pri])
1450 { 2032 {
1451 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2033 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1452 2034
1453 if (expect_true (p->w))
1454 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2035 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2036 /* ^ this is no longer true, as pending_w could be here */
1456 2037
1457 p->w->pending = 0; 2038 p->w->pending = 0;
1458 EV_CB_INVOKE (p->w, p->events); 2039 EV_CB_INVOKE (p->w, p->events);
1459 } 2040 EV_FREQUENT_CHECK;
1460 } 2041 }
1461} 2042}
1462 2043
1463void inline_size
1464timers_reify (EV_P)
1465{
1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1467 {
1468 ev_timer *w = (ev_timer *)timers [1];
1469
1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->repeat)
1474 {
1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1476
1477 ev_at (w) += w->repeat;
1478 if (ev_at (w) < mn_now)
1479 ev_at (w) = mn_now;
1480
1481 downheap (timers, timercnt, 1);
1482 }
1483 else
1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1485
1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1487 }
1488}
1489
1490#if EV_PERIODIC_ENABLE
1491void inline_size
1492periodics_reify (EV_P)
1493{
1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1495 {
1496 ev_periodic *w = (ev_periodic *)periodics [1];
1497
1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1499
1500 /* first reschedule or stop timer */
1501 if (w->reschedule_cb)
1502 {
1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1505 downheap (periodics, periodiccnt, 1);
1506 }
1507 else if (w->interval)
1508 {
1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1512 downheap (periodics, periodiccnt, 1);
1513 }
1514 else
1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1516
1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1518 }
1519}
1520
1521static void noinline
1522periodics_reschedule (EV_P)
1523{
1524 int i;
1525
1526 /* adjust periodics after time jump */
1527 for (i = 0; i < periodiccnt; ++i)
1528 {
1529 ev_periodic *w = (ev_periodic *)periodics [i];
1530
1531 if (w->reschedule_cb)
1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1533 else if (w->interval)
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 }
1536
1537 /* now rebuild the heap */
1538 for (i = periodiccnt >> 1; i--; )
1539 downheap (periodics, periodiccnt, i);
1540}
1541#endif
1542
1543#if EV_IDLE_ENABLE 2044#if EV_IDLE_ENABLE
1544void inline_size 2045/* make idle watchers pending. this handles the "call-idle */
2046/* only when higher priorities are idle" logic */
2047inline_size void
1545idle_reify (EV_P) 2048idle_reify (EV_P)
1546{ 2049{
1547 if (expect_false (idleall)) 2050 if (expect_false (idleall))
1548 { 2051 {
1549 int pri; 2052 int pri;
1561 } 2064 }
1562 } 2065 }
1563} 2066}
1564#endif 2067#endif
1565 2068
1566void inline_speed 2069/* make timers pending */
2070inline_size void
2071timers_reify (EV_P)
2072{
2073 EV_FREQUENT_CHECK;
2074
2075 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2076 {
2077 do
2078 {
2079 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2080
2081 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2082
2083 /* first reschedule or stop timer */
2084 if (w->repeat)
2085 {
2086 ev_at (w) += w->repeat;
2087 if (ev_at (w) < mn_now)
2088 ev_at (w) = mn_now;
2089
2090 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2091
2092 ANHE_at_cache (timers [HEAP0]);
2093 downheap (timers, timercnt, HEAP0);
2094 }
2095 else
2096 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2097
2098 EV_FREQUENT_CHECK;
2099 feed_reverse (EV_A_ (W)w);
2100 }
2101 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2102
2103 feed_reverse_done (EV_A_ EV_TIMEOUT);
2104 }
2105}
2106
2107#if EV_PERIODIC_ENABLE
2108/* make periodics pending */
2109inline_size void
2110periodics_reify (EV_P)
2111{
2112 EV_FREQUENT_CHECK;
2113
2114 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2115 {
2116 int feed_count = 0;
2117
2118 do
2119 {
2120 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2121
2122 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2123
2124 /* first reschedule or stop timer */
2125 if (w->reschedule_cb)
2126 {
2127 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2128
2129 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2130
2131 ANHE_at_cache (periodics [HEAP0]);
2132 downheap (periodics, periodiccnt, HEAP0);
2133 }
2134 else if (w->interval)
2135 {
2136 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2137 /* if next trigger time is not sufficiently in the future, put it there */
2138 /* this might happen because of floating point inexactness */
2139 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2140 {
2141 ev_at (w) += w->interval;
2142
2143 /* if interval is unreasonably low we might still have a time in the past */
2144 /* so correct this. this will make the periodic very inexact, but the user */
2145 /* has effectively asked to get triggered more often than possible */
2146 if (ev_at (w) < ev_rt_now)
2147 ev_at (w) = ev_rt_now;
2148 }
2149
2150 ANHE_at_cache (periodics [HEAP0]);
2151 downheap (periodics, periodiccnt, HEAP0);
2152 }
2153 else
2154 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2155
2156 EV_FREQUENT_CHECK;
2157 feed_reverse (EV_A_ (W)w);
2158 }
2159 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2160
2161 feed_reverse_done (EV_A_ EV_PERIODIC);
2162 }
2163}
2164
2165/* simply recalculate all periodics */
2166/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2167static void noinline
2168periodics_reschedule (EV_P)
2169{
2170 int i;
2171
2172 /* adjust periodics after time jump */
2173 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2174 {
2175 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2176
2177 if (w->reschedule_cb)
2178 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2179 else if (w->interval)
2180 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2181
2182 ANHE_at_cache (periodics [i]);
2183 }
2184
2185 reheap (periodics, periodiccnt);
2186}
2187#endif
2188
2189/* adjust all timers by a given offset */
2190static void noinline
2191timers_reschedule (EV_P_ ev_tstamp adjust)
2192{
2193 int i;
2194
2195 for (i = 0; i < timercnt; ++i)
2196 {
2197 ANHE *he = timers + i + HEAP0;
2198 ANHE_w (*he)->at += adjust;
2199 ANHE_at_cache (*he);
2200 }
2201}
2202
2203/* fetch new monotonic and realtime times from the kernel */
2204/* also detect if there was a timejump, and act accordingly */
2205inline_speed void
1567time_update (EV_P_ ev_tstamp max_block) 2206time_update (EV_P_ ev_tstamp max_block)
1568{ 2207{
1569 int i;
1570
1571#if EV_USE_MONOTONIC 2208#if EV_USE_MONOTONIC
1572 if (expect_true (have_monotonic)) 2209 if (expect_true (have_monotonic))
1573 { 2210 {
2211 int i;
1574 ev_tstamp odiff = rtmn_diff; 2212 ev_tstamp odiff = rtmn_diff;
1575 2213
1576 mn_now = get_clock (); 2214 mn_now = get_clock ();
1577 2215
1578 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2216 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1596 */ 2234 */
1597 for (i = 4; --i; ) 2235 for (i = 4; --i; )
1598 { 2236 {
1599 rtmn_diff = ev_rt_now - mn_now; 2237 rtmn_diff = ev_rt_now - mn_now;
1600 2238
1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2239 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1602 return; /* all is well */ 2240 return; /* all is well */
1603 2241
1604 ev_rt_now = ev_time (); 2242 ev_rt_now = ev_time ();
1605 mn_now = get_clock (); 2243 mn_now = get_clock ();
1606 now_floor = mn_now; 2244 now_floor = mn_now;
1607 } 2245 }
1608 2246
2247 /* no timer adjustment, as the monotonic clock doesn't jump */
2248 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609# if EV_PERIODIC_ENABLE 2249# if EV_PERIODIC_ENABLE
1610 periodics_reschedule (EV_A); 2250 periodics_reschedule (EV_A);
1611# endif 2251# endif
1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1614 } 2252 }
1615 else 2253 else
1616#endif 2254#endif
1617 { 2255 {
1618 ev_rt_now = ev_time (); 2256 ev_rt_now = ev_time ();
1619 2257
1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2258 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1621 { 2259 {
2260 /* adjust timers. this is easy, as the offset is the same for all of them */
2261 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1622#if EV_PERIODIC_ENABLE 2262#if EV_PERIODIC_ENABLE
1623 periodics_reschedule (EV_A); 2263 periodics_reschedule (EV_A);
1624#endif 2264#endif
1625 /* adjust timers. this is easy, as the offset is the same for all of them */
1626 for (i = 1; i <= timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now;
1628 } 2265 }
1629 2266
1630 mn_now = ev_rt_now; 2267 mn_now = ev_rt_now;
1631 } 2268 }
1632} 2269}
1633 2270
1634void 2271void
1635ev_ref (EV_P)
1636{
1637 ++activecnt;
1638}
1639
1640void
1641ev_unref (EV_P)
1642{
1643 --activecnt;
1644}
1645
1646static int loop_done;
1647
1648void
1649ev_loop (EV_P_ int flags) 2272ev_loop (EV_P_ int flags)
1650{ 2273{
2274#if EV_MINIMAL < 2
2275 ++loop_depth;
2276#endif
2277
2278 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2279
1651 loop_done = EVUNLOOP_CANCEL; 2280 loop_done = EVUNLOOP_CANCEL;
1652 2281
1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2282 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1654 2283
1655 do 2284 do
1656 { 2285 {
2286#if EV_VERIFY >= 2
2287 ev_loop_verify (EV_A);
2288#endif
2289
1657#ifndef _WIN32 2290#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */ 2291 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid)) 2292 if (expect_false (getpid () != curpid))
1660 { 2293 {
1661 curpid = getpid (); 2294 curpid = getpid ();
1667 /* we might have forked, so queue fork handlers */ 2300 /* we might have forked, so queue fork handlers */
1668 if (expect_false (postfork)) 2301 if (expect_false (postfork))
1669 if (forkcnt) 2302 if (forkcnt)
1670 { 2303 {
1671 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2304 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1672 call_pending (EV_A); 2305 EV_INVOKE_PENDING;
1673 } 2306 }
1674#endif 2307#endif
1675 2308
1676 /* queue prepare watchers (and execute them) */ 2309 /* queue prepare watchers (and execute them) */
1677 if (expect_false (preparecnt)) 2310 if (expect_false (preparecnt))
1678 { 2311 {
1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2312 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1680 call_pending (EV_A); 2313 EV_INVOKE_PENDING;
1681 } 2314 }
1682 2315
1683 if (expect_false (!activecnt)) 2316 if (expect_false (loop_done))
1684 break; 2317 break;
1685 2318
1686 /* we might have forked, so reify kernel state if necessary */ 2319 /* we might have forked, so reify kernel state if necessary */
1687 if (expect_false (postfork)) 2320 if (expect_false (postfork))
1688 loop_fork (EV_A); 2321 loop_fork (EV_A);
1695 ev_tstamp waittime = 0.; 2328 ev_tstamp waittime = 0.;
1696 ev_tstamp sleeptime = 0.; 2329 ev_tstamp sleeptime = 0.;
1697 2330
1698 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2331 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1699 { 2332 {
2333 /* remember old timestamp for io_blocktime calculation */
2334 ev_tstamp prev_mn_now = mn_now;
2335
1700 /* update time to cancel out callback processing overhead */ 2336 /* update time to cancel out callback processing overhead */
1701 time_update (EV_A_ 1e100); 2337 time_update (EV_A_ 1e100);
1702 2338
1703 waittime = MAX_BLOCKTIME; 2339 waittime = MAX_BLOCKTIME;
1704 2340
1705 if (timercnt) 2341 if (timercnt)
1706 { 2342 {
1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 2343 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1708 if (waittime > to) waittime = to; 2344 if (waittime > to) waittime = to;
1709 } 2345 }
1710 2346
1711#if EV_PERIODIC_ENABLE 2347#if EV_PERIODIC_ENABLE
1712 if (periodiccnt) 2348 if (periodiccnt)
1713 { 2349 {
1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 2350 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1715 if (waittime > to) waittime = to; 2351 if (waittime > to) waittime = to;
1716 } 2352 }
1717#endif 2353#endif
1718 2354
2355 /* don't let timeouts decrease the waittime below timeout_blocktime */
1719 if (expect_false (waittime < timeout_blocktime)) 2356 if (expect_false (waittime < timeout_blocktime))
1720 waittime = timeout_blocktime; 2357 waittime = timeout_blocktime;
1721 2358
1722 sleeptime = waittime - backend_fudge; 2359 /* extra check because io_blocktime is commonly 0 */
1723
1724 if (expect_true (sleeptime > io_blocktime)) 2360 if (expect_false (io_blocktime))
1725 sleeptime = io_blocktime;
1726
1727 if (sleeptime)
1728 { 2361 {
2362 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2363
2364 if (sleeptime > waittime - backend_fudge)
2365 sleeptime = waittime - backend_fudge;
2366
2367 if (expect_true (sleeptime > 0.))
2368 {
1729 ev_sleep (sleeptime); 2369 ev_sleep (sleeptime);
1730 waittime -= sleeptime; 2370 waittime -= sleeptime;
2371 }
1731 } 2372 }
1732 } 2373 }
1733 2374
2375#if EV_MINIMAL < 2
1734 ++loop_count; 2376 ++loop_count;
2377#endif
2378 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1735 backend_poll (EV_A_ waittime); 2379 backend_poll (EV_A_ waittime);
2380 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1736 2381
1737 /* update ev_rt_now, do magic */ 2382 /* update ev_rt_now, do magic */
1738 time_update (EV_A_ waittime + sleeptime); 2383 time_update (EV_A_ waittime + sleeptime);
1739 } 2384 }
1740 2385
1751 2396
1752 /* queue check watchers, to be executed first */ 2397 /* queue check watchers, to be executed first */
1753 if (expect_false (checkcnt)) 2398 if (expect_false (checkcnt))
1754 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2399 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1755 2400
1756 call_pending (EV_A); 2401 EV_INVOKE_PENDING;
1757 } 2402 }
1758 while (expect_true ( 2403 while (expect_true (
1759 activecnt 2404 activecnt
1760 && !loop_done 2405 && !loop_done
1761 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2406 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1762 )); 2407 ));
1763 2408
1764 if (loop_done == EVUNLOOP_ONE) 2409 if (loop_done == EVUNLOOP_ONE)
1765 loop_done = EVUNLOOP_CANCEL; 2410 loop_done = EVUNLOOP_CANCEL;
2411
2412#if EV_MINIMAL < 2
2413 --loop_depth;
2414#endif
1766} 2415}
1767 2416
1768void 2417void
1769ev_unloop (EV_P_ int how) 2418ev_unloop (EV_P_ int how)
1770{ 2419{
1771 loop_done = how; 2420 loop_done = how;
1772} 2421}
1773 2422
2423void
2424ev_ref (EV_P)
2425{
2426 ++activecnt;
2427}
2428
2429void
2430ev_unref (EV_P)
2431{
2432 --activecnt;
2433}
2434
2435void
2436ev_now_update (EV_P)
2437{
2438 time_update (EV_A_ 1e100);
2439}
2440
2441void
2442ev_suspend (EV_P)
2443{
2444 ev_now_update (EV_A);
2445}
2446
2447void
2448ev_resume (EV_P)
2449{
2450 ev_tstamp mn_prev = mn_now;
2451
2452 ev_now_update (EV_A);
2453 timers_reschedule (EV_A_ mn_now - mn_prev);
2454#if EV_PERIODIC_ENABLE
2455 /* TODO: really do this? */
2456 periodics_reschedule (EV_A);
2457#endif
2458}
2459
1774/*****************************************************************************/ 2460/*****************************************************************************/
2461/* singly-linked list management, used when the expected list length is short */
1775 2462
1776void inline_size 2463inline_size void
1777wlist_add (WL *head, WL elem) 2464wlist_add (WL *head, WL elem)
1778{ 2465{
1779 elem->next = *head; 2466 elem->next = *head;
1780 *head = elem; 2467 *head = elem;
1781} 2468}
1782 2469
1783void inline_size 2470inline_size void
1784wlist_del (WL *head, WL elem) 2471wlist_del (WL *head, WL elem)
1785{ 2472{
1786 while (*head) 2473 while (*head)
1787 { 2474 {
1788 if (*head == elem) 2475 if (expect_true (*head == elem))
1789 { 2476 {
1790 *head = elem->next; 2477 *head = elem->next;
1791 return; 2478 break;
1792 } 2479 }
1793 2480
1794 head = &(*head)->next; 2481 head = &(*head)->next;
1795 } 2482 }
1796} 2483}
1797 2484
1798void inline_speed 2485/* internal, faster, version of ev_clear_pending */
2486inline_speed void
1799clear_pending (EV_P_ W w) 2487clear_pending (EV_P_ W w)
1800{ 2488{
1801 if (w->pending) 2489 if (w->pending)
1802 { 2490 {
1803 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2491 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1804 w->pending = 0; 2492 w->pending = 0;
1805 } 2493 }
1806} 2494}
1807 2495
1808int 2496int
1812 int pending = w_->pending; 2500 int pending = w_->pending;
1813 2501
1814 if (expect_true (pending)) 2502 if (expect_true (pending))
1815 { 2503 {
1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2504 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2505 p->w = (W)&pending_w;
1817 w_->pending = 0; 2506 w_->pending = 0;
1818 p->w = 0;
1819 return p->events; 2507 return p->events;
1820 } 2508 }
1821 else 2509 else
1822 return 0; 2510 return 0;
1823} 2511}
1824 2512
1825void inline_size 2513inline_size void
1826pri_adjust (EV_P_ W w) 2514pri_adjust (EV_P_ W w)
1827{ 2515{
1828 int pri = w->priority; 2516 int pri = ev_priority (w);
1829 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2517 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1830 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2518 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1831 w->priority = pri; 2519 ev_set_priority (w, pri);
1832} 2520}
1833 2521
1834void inline_speed 2522inline_speed void
1835ev_start (EV_P_ W w, int active) 2523ev_start (EV_P_ W w, int active)
1836{ 2524{
1837 pri_adjust (EV_A_ w); 2525 pri_adjust (EV_A_ w);
1838 w->active = active; 2526 w->active = active;
1839 ev_ref (EV_A); 2527 ev_ref (EV_A);
1840} 2528}
1841 2529
1842void inline_size 2530inline_size void
1843ev_stop (EV_P_ W w) 2531ev_stop (EV_P_ W w)
1844{ 2532{
1845 ev_unref (EV_A); 2533 ev_unref (EV_A);
1846 w->active = 0; 2534 w->active = 0;
1847} 2535}
1854 int fd = w->fd; 2542 int fd = w->fd;
1855 2543
1856 if (expect_false (ev_is_active (w))) 2544 if (expect_false (ev_is_active (w)))
1857 return; 2545 return;
1858 2546
1859 assert (("ev_io_start called with negative fd", fd >= 0)); 2547 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2548 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2549
2550 EV_FREQUENT_CHECK;
1860 2551
1861 ev_start (EV_A_ (W)w, 1); 2552 ev_start (EV_A_ (W)w, 1);
1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2553 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1863 wlist_add (&anfds[fd].head, (WL)w); 2554 wlist_add (&anfds[fd].head, (WL)w);
1864 2555
1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2556 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1866 w->events &= ~EV_IOFDSET; 2557 w->events &= ~EV__IOFDSET;
2558
2559 EV_FREQUENT_CHECK;
1867} 2560}
1868 2561
1869void noinline 2562void noinline
1870ev_io_stop (EV_P_ ev_io *w) 2563ev_io_stop (EV_P_ ev_io *w)
1871{ 2564{
1872 clear_pending (EV_A_ (W)w); 2565 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 2566 if (expect_false (!ev_is_active (w)))
1874 return; 2567 return;
1875 2568
1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2569 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2570
2571 EV_FREQUENT_CHECK;
1877 2572
1878 wlist_del (&anfds[w->fd].head, (WL)w); 2573 wlist_del (&anfds[w->fd].head, (WL)w);
1879 ev_stop (EV_A_ (W)w); 2574 ev_stop (EV_A_ (W)w);
1880 2575
1881 fd_change (EV_A_ w->fd, 1); 2576 fd_change (EV_A_ w->fd, 1);
2577
2578 EV_FREQUENT_CHECK;
1882} 2579}
1883 2580
1884void noinline 2581void noinline
1885ev_timer_start (EV_P_ ev_timer *w) 2582ev_timer_start (EV_P_ ev_timer *w)
1886{ 2583{
1887 if (expect_false (ev_is_active (w))) 2584 if (expect_false (ev_is_active (w)))
1888 return; 2585 return;
1889 2586
1890 ev_at (w) += mn_now; 2587 ev_at (w) += mn_now;
1891 2588
1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2589 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1893 2590
2591 EV_FREQUENT_CHECK;
2592
2593 ++timercnt;
1894 ev_start (EV_A_ (W)w, ++timercnt); 2594 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2595 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1896 timers [timercnt] = (WT)w; 2596 ANHE_w (timers [ev_active (w)]) = (WT)w;
2597 ANHE_at_cache (timers [ev_active (w)]);
1897 upheap (timers, timercnt); 2598 upheap (timers, ev_active (w));
1898 2599
2600 EV_FREQUENT_CHECK;
2601
1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 2602 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1900} 2603}
1901 2604
1902void noinline 2605void noinline
1903ev_timer_stop (EV_P_ ev_timer *w) 2606ev_timer_stop (EV_P_ ev_timer *w)
1904{ 2607{
1905 clear_pending (EV_A_ (W)w); 2608 clear_pending (EV_A_ (W)w);
1906 if (expect_false (!ev_is_active (w))) 2609 if (expect_false (!ev_is_active (w)))
1907 return; 2610 return;
1908 2611
1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 2612 EV_FREQUENT_CHECK;
1910 2613
1911 { 2614 {
1912 int active = ((W)w)->active; 2615 int active = ev_active (w);
1913 2616
2617 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2618
2619 --timercnt;
2620
1914 if (expect_true (active < timercnt)) 2621 if (expect_true (active < timercnt + HEAP0))
1915 { 2622 {
1916 timers [active] = timers [timercnt]; 2623 timers [active] = timers [timercnt + HEAP0];
1917 adjustheap (timers, timercnt, active); 2624 adjustheap (timers, timercnt, active);
1918 } 2625 }
1919
1920 --timercnt;
1921 } 2626 }
1922 2627
1923 ev_at (w) -= mn_now; 2628 ev_at (w) -= mn_now;
1924 2629
1925 ev_stop (EV_A_ (W)w); 2630 ev_stop (EV_A_ (W)w);
2631
2632 EV_FREQUENT_CHECK;
1926} 2633}
1927 2634
1928void noinline 2635void noinline
1929ev_timer_again (EV_P_ ev_timer *w) 2636ev_timer_again (EV_P_ ev_timer *w)
1930{ 2637{
2638 EV_FREQUENT_CHECK;
2639
1931 if (ev_is_active (w)) 2640 if (ev_is_active (w))
1932 { 2641 {
1933 if (w->repeat) 2642 if (w->repeat)
1934 { 2643 {
1935 ev_at (w) = mn_now + w->repeat; 2644 ev_at (w) = mn_now + w->repeat;
2645 ANHE_at_cache (timers [ev_active (w)]);
1936 adjustheap (timers, timercnt, ((W)w)->active); 2646 adjustheap (timers, timercnt, ev_active (w));
1937 } 2647 }
1938 else 2648 else
1939 ev_timer_stop (EV_A_ w); 2649 ev_timer_stop (EV_A_ w);
1940 } 2650 }
1941 else if (w->repeat) 2651 else if (w->repeat)
1942 { 2652 {
1943 w->at = w->repeat; 2653 ev_at (w) = w->repeat;
1944 ev_timer_start (EV_A_ w); 2654 ev_timer_start (EV_A_ w);
1945 } 2655 }
2656
2657 EV_FREQUENT_CHECK;
2658}
2659
2660ev_tstamp
2661ev_timer_remaining (EV_P_ ev_timer *w)
2662{
2663 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1946} 2664}
1947 2665
1948#if EV_PERIODIC_ENABLE 2666#if EV_PERIODIC_ENABLE
1949void noinline 2667void noinline
1950ev_periodic_start (EV_P_ ev_periodic *w) 2668ev_periodic_start (EV_P_ ev_periodic *w)
1954 2672
1955 if (w->reschedule_cb) 2673 if (w->reschedule_cb)
1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2674 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1957 else if (w->interval) 2675 else if (w->interval)
1958 { 2676 {
1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2677 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1960 /* this formula differs from the one in periodic_reify because we do not always round up */ 2678 /* this formula differs from the one in periodic_reify because we do not always round up */
1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2679 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1962 } 2680 }
1963 else 2681 else
1964 ev_at (w) = w->offset; 2682 ev_at (w) = w->offset;
1965 2683
2684 EV_FREQUENT_CHECK;
2685
2686 ++periodiccnt;
1966 ev_start (EV_A_ (W)w, ++periodiccnt); 2687 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2688 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1968 periodics [periodiccnt] = (WT)w; 2689 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1969 upheap (periodics, periodiccnt); 2690 ANHE_at_cache (periodics [ev_active (w)]);
2691 upheap (periodics, ev_active (w));
1970 2692
2693 EV_FREQUENT_CHECK;
2694
1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2695 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1972} 2696}
1973 2697
1974void noinline 2698void noinline
1975ev_periodic_stop (EV_P_ ev_periodic *w) 2699ev_periodic_stop (EV_P_ ev_periodic *w)
1976{ 2700{
1977 clear_pending (EV_A_ (W)w); 2701 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2702 if (expect_false (!ev_is_active (w)))
1979 return; 2703 return;
1980 2704
1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 2705 EV_FREQUENT_CHECK;
1982 2706
1983 { 2707 {
1984 int active = ((W)w)->active; 2708 int active = ev_active (w);
1985 2709
2710 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2711
2712 --periodiccnt;
2713
1986 if (expect_true (active < periodiccnt)) 2714 if (expect_true (active < periodiccnt + HEAP0))
1987 { 2715 {
1988 periodics [active] = periodics [periodiccnt]; 2716 periodics [active] = periodics [periodiccnt + HEAP0];
1989 adjustheap (periodics, periodiccnt, active); 2717 adjustheap (periodics, periodiccnt, active);
1990 } 2718 }
1991
1992 --periodiccnt;
1993 } 2719 }
1994 2720
1995 ev_stop (EV_A_ (W)w); 2721 ev_stop (EV_A_ (W)w);
2722
2723 EV_FREQUENT_CHECK;
1996} 2724}
1997 2725
1998void noinline 2726void noinline
1999ev_periodic_again (EV_P_ ev_periodic *w) 2727ev_periodic_again (EV_P_ ev_periodic *w)
2000{ 2728{
2006 2734
2007#ifndef SA_RESTART 2735#ifndef SA_RESTART
2008# define SA_RESTART 0 2736# define SA_RESTART 0
2009#endif 2737#endif
2010 2738
2739#if EV_SIGNAL_ENABLE
2740
2011void noinline 2741void noinline
2012ev_signal_start (EV_P_ ev_signal *w) 2742ev_signal_start (EV_P_ ev_signal *w)
2013{ 2743{
2014#if EV_MULTIPLICITY
2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2016#endif
2017 if (expect_false (ev_is_active (w))) 2744 if (expect_false (ev_is_active (w)))
2018 return; 2745 return;
2019 2746
2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2747 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2021 2748
2022 evpipe_init (EV_A); 2749#if EV_MULTIPLICITY
2750 assert (("libev: a signal must not be attached to two different loops",
2751 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2023 2752
2753 signals [w->signum - 1].loop = EV_A;
2754#endif
2755
2756 EV_FREQUENT_CHECK;
2757
2758#if EV_USE_SIGNALFD
2759 if (sigfd == -2)
2024 { 2760 {
2025#ifndef _WIN32 2761 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2026 sigset_t full, prev; 2762 if (sigfd < 0 && errno == EINVAL)
2027 sigfillset (&full); 2763 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2028 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif
2030 2764
2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2765 if (sigfd >= 0)
2766 {
2767 fd_intern (sigfd); /* doing it twice will not hurt */
2032 2768
2033#ifndef _WIN32 2769 sigemptyset (&sigfd_set);
2034 sigprocmask (SIG_SETMASK, &prev, 0); 2770
2035#endif 2771 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2772 ev_set_priority (&sigfd_w, EV_MAXPRI);
2773 ev_io_start (EV_A_ &sigfd_w);
2774 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2775 }
2036 } 2776 }
2777
2778 if (sigfd >= 0)
2779 {
2780 /* TODO: check .head */
2781 sigaddset (&sigfd_set, w->signum);
2782 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2783
2784 signalfd (sigfd, &sigfd_set, 0);
2785 }
2786#endif
2037 2787
2038 ev_start (EV_A_ (W)w, 1); 2788 ev_start (EV_A_ (W)w, 1);
2039 wlist_add (&signals [w->signum - 1].head, (WL)w); 2789 wlist_add (&signals [w->signum - 1].head, (WL)w);
2040 2790
2041 if (!((WL)w)->next) 2791 if (!((WL)w)->next)
2792# if EV_USE_SIGNALFD
2793 if (sigfd < 0) /*TODO*/
2794# endif
2042 { 2795 {
2043#if _WIN32 2796# ifdef _WIN32
2797 evpipe_init (EV_A);
2798
2044 signal (w->signum, ev_sighandler); 2799 signal (w->signum, ev_sighandler);
2045#else 2800# else
2046 struct sigaction sa; 2801 struct sigaction sa;
2802
2803 evpipe_init (EV_A);
2804
2047 sa.sa_handler = ev_sighandler; 2805 sa.sa_handler = ev_sighandler;
2048 sigfillset (&sa.sa_mask); 2806 sigfillset (&sa.sa_mask);
2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2807 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2050 sigaction (w->signum, &sa, 0); 2808 sigaction (w->signum, &sa, 0);
2809
2810 sigemptyset (&sa.sa_mask);
2811 sigaddset (&sa.sa_mask, w->signum);
2812 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2051#endif 2813#endif
2052 } 2814 }
2815
2816 EV_FREQUENT_CHECK;
2053} 2817}
2054 2818
2055void noinline 2819void noinline
2056ev_signal_stop (EV_P_ ev_signal *w) 2820ev_signal_stop (EV_P_ ev_signal *w)
2057{ 2821{
2058 clear_pending (EV_A_ (W)w); 2822 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 2823 if (expect_false (!ev_is_active (w)))
2060 return; 2824 return;
2061 2825
2826 EV_FREQUENT_CHECK;
2827
2062 wlist_del (&signals [w->signum - 1].head, (WL)w); 2828 wlist_del (&signals [w->signum - 1].head, (WL)w);
2063 ev_stop (EV_A_ (W)w); 2829 ev_stop (EV_A_ (W)w);
2064 2830
2065 if (!signals [w->signum - 1].head) 2831 if (!signals [w->signum - 1].head)
2832 {
2833#if EV_MULTIPLICITY
2834 signals [w->signum - 1].loop = 0; /* unattach from signal */
2835#endif
2836#if EV_USE_SIGNALFD
2837 if (sigfd >= 0)
2838 {
2839 sigset_t ss;
2840
2841 sigemptyset (&ss);
2842 sigaddset (&ss, w->signum);
2843 sigdelset (&sigfd_set, w->signum);
2844
2845 signalfd (sigfd, &sigfd_set, 0);
2846 sigprocmask (SIG_UNBLOCK, &ss, 0);
2847 }
2848 else
2849#endif
2066 signal (w->signum, SIG_DFL); 2850 signal (w->signum, SIG_DFL);
2851 }
2852
2853 EV_FREQUENT_CHECK;
2067} 2854}
2855
2856#endif
2857
2858#if EV_CHILD_ENABLE
2068 2859
2069void 2860void
2070ev_child_start (EV_P_ ev_child *w) 2861ev_child_start (EV_P_ ev_child *w)
2071{ 2862{
2072#if EV_MULTIPLICITY 2863#if EV_MULTIPLICITY
2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2864 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2074#endif 2865#endif
2075 if (expect_false (ev_is_active (w))) 2866 if (expect_false (ev_is_active (w)))
2076 return; 2867 return;
2077 2868
2869 EV_FREQUENT_CHECK;
2870
2078 ev_start (EV_A_ (W)w, 1); 2871 ev_start (EV_A_ (W)w, 1);
2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2872 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2873
2874 EV_FREQUENT_CHECK;
2080} 2875}
2081 2876
2082void 2877void
2083ev_child_stop (EV_P_ ev_child *w) 2878ev_child_stop (EV_P_ ev_child *w)
2084{ 2879{
2085 clear_pending (EV_A_ (W)w); 2880 clear_pending (EV_A_ (W)w);
2086 if (expect_false (!ev_is_active (w))) 2881 if (expect_false (!ev_is_active (w)))
2087 return; 2882 return;
2088 2883
2884 EV_FREQUENT_CHECK;
2885
2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2886 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2090 ev_stop (EV_A_ (W)w); 2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2091} 2890}
2891
2892#endif
2092 2893
2093#if EV_STAT_ENABLE 2894#if EV_STAT_ENABLE
2094 2895
2095# ifdef _WIN32 2896# ifdef _WIN32
2096# undef lstat 2897# undef lstat
2097# define lstat(a,b) _stati64 (a,b) 2898# define lstat(a,b) _stati64 (a,b)
2098# endif 2899# endif
2099 2900
2100#define DEF_STAT_INTERVAL 5.0074891 2901#define DEF_STAT_INTERVAL 5.0074891
2902#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2101#define MIN_STAT_INTERVAL 0.1074891 2903#define MIN_STAT_INTERVAL 0.1074891
2102 2904
2103static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2905static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2104 2906
2105#if EV_USE_INOTIFY 2907#if EV_USE_INOTIFY
2106# define EV_INOTIFY_BUFSIZE 8192 2908
2909/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2910# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2107 2911
2108static void noinline 2912static void noinline
2109infy_add (EV_P_ ev_stat *w) 2913infy_add (EV_P_ ev_stat *w)
2110{ 2914{
2111 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2915 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2112 2916
2113 if (w->wd < 0) 2917 if (w->wd >= 0)
2918 {
2919 struct statfs sfs;
2920
2921 /* now local changes will be tracked by inotify, but remote changes won't */
2922 /* unless the filesystem is known to be local, we therefore still poll */
2923 /* also do poll on <2.6.25, but with normal frequency */
2924
2925 if (!fs_2625)
2926 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2927 else if (!statfs (w->path, &sfs)
2928 && (sfs.f_type == 0x1373 /* devfs */
2929 || sfs.f_type == 0xEF53 /* ext2/3 */
2930 || sfs.f_type == 0x3153464a /* jfs */
2931 || sfs.f_type == 0x52654973 /* reiser3 */
2932 || sfs.f_type == 0x01021994 /* tempfs */
2933 || sfs.f_type == 0x58465342 /* xfs */))
2934 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2935 else
2936 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2114 { 2937 }
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2938 else
2939 {
2940 /* can't use inotify, continue to stat */
2941 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2116 2942
2117 /* monitor some parent directory for speedup hints */ 2943 /* if path is not there, monitor some parent directory for speedup hints */
2944 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2945 /* but an efficiency issue only */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2946 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 { 2947 {
2120 char path [4096]; 2948 char path [4096];
2121 strcpy (path, w->path); 2949 strcpy (path, w->path);
2122 2950
2125 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2953 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2126 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2954 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2127 2955
2128 char *pend = strrchr (path, '/'); 2956 char *pend = strrchr (path, '/');
2129 2957
2130 if (!pend) 2958 if (!pend || pend == path)
2131 break; /* whoops, no '/', complain to your admin */ 2959 break;
2132 2960
2133 *pend = 0; 2961 *pend = 0;
2134 w->wd = inotify_add_watch (fs_fd, path, mask); 2962 w->wd = inotify_add_watch (fs_fd, path, mask);
2135 } 2963 }
2136 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2964 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2137 } 2965 }
2138 } 2966 }
2139 else
2140 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2141 2967
2142 if (w->wd >= 0) 2968 if (w->wd >= 0)
2143 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2969 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2970
2971 /* now re-arm timer, if required */
2972 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2973 ev_timer_again (EV_A_ &w->timer);
2974 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2144} 2975}
2145 2976
2146static void noinline 2977static void noinline
2147infy_del (EV_P_ ev_stat *w) 2978infy_del (EV_P_ ev_stat *w)
2148{ 2979{
2162 2993
2163static void noinline 2994static void noinline
2164infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2995infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2165{ 2996{
2166 if (slot < 0) 2997 if (slot < 0)
2167 /* overflow, need to check for all hahs slots */ 2998 /* overflow, need to check for all hash slots */
2168 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2999 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2169 infy_wd (EV_A_ slot, wd, ev); 3000 infy_wd (EV_A_ slot, wd, ev);
2170 else 3001 else
2171 { 3002 {
2172 WL w_; 3003 WL w_;
2178 3009
2179 if (w->wd == wd || wd == -1) 3010 if (w->wd == wd || wd == -1)
2180 { 3011 {
2181 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3012 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2182 { 3013 {
3014 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2183 w->wd = -1; 3015 w->wd = -1;
2184 infy_add (EV_A_ w); /* re-add, no matter what */ 3016 infy_add (EV_A_ w); /* re-add, no matter what */
2185 } 3017 }
2186 3018
2187 stat_timer_cb (EV_A_ &w->timer, 0); 3019 stat_timer_cb (EV_A_ &w->timer, 0);
2192 3024
2193static void 3025static void
2194infy_cb (EV_P_ ev_io *w, int revents) 3026infy_cb (EV_P_ ev_io *w, int revents)
2195{ 3027{
2196 char buf [EV_INOTIFY_BUFSIZE]; 3028 char buf [EV_INOTIFY_BUFSIZE];
2197 struct inotify_event *ev = (struct inotify_event *)buf;
2198 int ofs; 3029 int ofs;
2199 int len = read (fs_fd, buf, sizeof (buf)); 3030 int len = read (fs_fd, buf, sizeof (buf));
2200 3031
2201 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3032 for (ofs = 0; ofs < len; )
3033 {
3034 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2202 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3035 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3036 ofs += sizeof (struct inotify_event) + ev->len;
3037 }
2203} 3038}
2204 3039
2205void inline_size 3040inline_size unsigned int
3041ev_linux_version (void)
3042{
3043 struct utsname buf;
3044 unsigned int v;
3045 int i;
3046 char *p = buf.release;
3047
3048 if (uname (&buf))
3049 return 0;
3050
3051 for (i = 3+1; --i; )
3052 {
3053 unsigned int c = 0;
3054
3055 for (;;)
3056 {
3057 if (*p >= '0' && *p <= '9')
3058 c = c * 10 + *p++ - '0';
3059 else
3060 {
3061 p += *p == '.';
3062 break;
3063 }
3064 }
3065
3066 v = (v << 8) | c;
3067 }
3068
3069 return v;
3070}
3071
3072inline_size void
3073ev_check_2625 (EV_P)
3074{
3075 /* kernels < 2.6.25 are borked
3076 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3077 */
3078 if (ev_linux_version () < 0x020619)
3079 return;
3080
3081 fs_2625 = 1;
3082}
3083
3084inline_size int
3085infy_newfd (void)
3086{
3087#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3088 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3089 if (fd >= 0)
3090 return fd;
3091#endif
3092 return inotify_init ();
3093}
3094
3095inline_size void
2206infy_init (EV_P) 3096infy_init (EV_P)
2207{ 3097{
2208 if (fs_fd != -2) 3098 if (fs_fd != -2)
2209 return; 3099 return;
2210 3100
3101 fs_fd = -1;
3102
3103 ev_check_2625 (EV_A);
3104
2211 fs_fd = inotify_init (); 3105 fs_fd = infy_newfd ();
2212 3106
2213 if (fs_fd >= 0) 3107 if (fs_fd >= 0)
2214 { 3108 {
3109 fd_intern (fs_fd);
2215 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3110 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2216 ev_set_priority (&fs_w, EV_MAXPRI); 3111 ev_set_priority (&fs_w, EV_MAXPRI);
2217 ev_io_start (EV_A_ &fs_w); 3112 ev_io_start (EV_A_ &fs_w);
3113 ev_unref (EV_A);
2218 } 3114 }
2219} 3115}
2220 3116
2221void inline_size 3117inline_size void
2222infy_fork (EV_P) 3118infy_fork (EV_P)
2223{ 3119{
2224 int slot; 3120 int slot;
2225 3121
2226 if (fs_fd < 0) 3122 if (fs_fd < 0)
2227 return; 3123 return;
2228 3124
3125 ev_ref (EV_A);
3126 ev_io_stop (EV_A_ &fs_w);
2229 close (fs_fd); 3127 close (fs_fd);
2230 fs_fd = inotify_init (); 3128 fs_fd = infy_newfd ();
3129
3130 if (fs_fd >= 0)
3131 {
3132 fd_intern (fs_fd);
3133 ev_io_set (&fs_w, fs_fd, EV_READ);
3134 ev_io_start (EV_A_ &fs_w);
3135 ev_unref (EV_A);
3136 }
2231 3137
2232 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3138 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2233 { 3139 {
2234 WL w_ = fs_hash [slot].head; 3140 WL w_ = fs_hash [slot].head;
2235 fs_hash [slot].head = 0; 3141 fs_hash [slot].head = 0;
2242 w->wd = -1; 3148 w->wd = -1;
2243 3149
2244 if (fs_fd >= 0) 3150 if (fs_fd >= 0)
2245 infy_add (EV_A_ w); /* re-add, no matter what */ 3151 infy_add (EV_A_ w); /* re-add, no matter what */
2246 else 3152 else
3153 {
3154 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3155 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2247 ev_timer_start (EV_A_ &w->timer); 3156 ev_timer_again (EV_A_ &w->timer);
3157 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3158 }
2248 } 3159 }
2249
2250 } 3160 }
2251} 3161}
2252 3162
3163#endif
3164
3165#ifdef _WIN32
3166# define EV_LSTAT(p,b) _stati64 (p, b)
3167#else
3168# define EV_LSTAT(p,b) lstat (p, b)
2253#endif 3169#endif
2254 3170
2255void 3171void
2256ev_stat_stat (EV_P_ ev_stat *w) 3172ev_stat_stat (EV_P_ ev_stat *w)
2257{ 3173{
2264static void noinline 3180static void noinline
2265stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3181stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2266{ 3182{
2267 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3183 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2268 3184
2269 /* we copy this here each the time so that */ 3185 ev_statdata prev = w->attr;
2270 /* prev has the old value when the callback gets invoked */
2271 w->prev = w->attr;
2272 ev_stat_stat (EV_A_ w); 3186 ev_stat_stat (EV_A_ w);
2273 3187
2274 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3188 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2275 if ( 3189 if (
2276 w->prev.st_dev != w->attr.st_dev 3190 prev.st_dev != w->attr.st_dev
2277 || w->prev.st_ino != w->attr.st_ino 3191 || prev.st_ino != w->attr.st_ino
2278 || w->prev.st_mode != w->attr.st_mode 3192 || prev.st_mode != w->attr.st_mode
2279 || w->prev.st_nlink != w->attr.st_nlink 3193 || prev.st_nlink != w->attr.st_nlink
2280 || w->prev.st_uid != w->attr.st_uid 3194 || prev.st_uid != w->attr.st_uid
2281 || w->prev.st_gid != w->attr.st_gid 3195 || prev.st_gid != w->attr.st_gid
2282 || w->prev.st_rdev != w->attr.st_rdev 3196 || prev.st_rdev != w->attr.st_rdev
2283 || w->prev.st_size != w->attr.st_size 3197 || prev.st_size != w->attr.st_size
2284 || w->prev.st_atime != w->attr.st_atime 3198 || prev.st_atime != w->attr.st_atime
2285 || w->prev.st_mtime != w->attr.st_mtime 3199 || prev.st_mtime != w->attr.st_mtime
2286 || w->prev.st_ctime != w->attr.st_ctime 3200 || prev.st_ctime != w->attr.st_ctime
2287 ) { 3201 ) {
3202 /* we only update w->prev on actual differences */
3203 /* in case we test more often than invoke the callback, */
3204 /* to ensure that prev is always different to attr */
3205 w->prev = prev;
3206
2288 #if EV_USE_INOTIFY 3207 #if EV_USE_INOTIFY
3208 if (fs_fd >= 0)
3209 {
2289 infy_del (EV_A_ w); 3210 infy_del (EV_A_ w);
2290 infy_add (EV_A_ w); 3211 infy_add (EV_A_ w);
2291 ev_stat_stat (EV_A_ w); /* avoid race... */ 3212 ev_stat_stat (EV_A_ w); /* avoid race... */
3213 }
2292 #endif 3214 #endif
2293 3215
2294 ev_feed_event (EV_A_ w, EV_STAT); 3216 ev_feed_event (EV_A_ w, EV_STAT);
2295 } 3217 }
2296} 3218}
2299ev_stat_start (EV_P_ ev_stat *w) 3221ev_stat_start (EV_P_ ev_stat *w)
2300{ 3222{
2301 if (expect_false (ev_is_active (w))) 3223 if (expect_false (ev_is_active (w)))
2302 return; 3224 return;
2303 3225
2304 /* since we use memcmp, we need to clear any padding data etc. */
2305 memset (&w->prev, 0, sizeof (ev_statdata));
2306 memset (&w->attr, 0, sizeof (ev_statdata));
2307
2308 ev_stat_stat (EV_A_ w); 3226 ev_stat_stat (EV_A_ w);
2309 3227
3228 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2310 if (w->interval < MIN_STAT_INTERVAL) 3229 w->interval = MIN_STAT_INTERVAL;
2311 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2312 3230
2313 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3231 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2314 ev_set_priority (&w->timer, ev_priority (w)); 3232 ev_set_priority (&w->timer, ev_priority (w));
2315 3233
2316#if EV_USE_INOTIFY 3234#if EV_USE_INOTIFY
2317 infy_init (EV_A); 3235 infy_init (EV_A);
2318 3236
2319 if (fs_fd >= 0) 3237 if (fs_fd >= 0)
2320 infy_add (EV_A_ w); 3238 infy_add (EV_A_ w);
2321 else 3239 else
2322#endif 3240#endif
3241 {
2323 ev_timer_start (EV_A_ &w->timer); 3242 ev_timer_again (EV_A_ &w->timer);
3243 ev_unref (EV_A);
3244 }
2324 3245
2325 ev_start (EV_A_ (W)w, 1); 3246 ev_start (EV_A_ (W)w, 1);
3247
3248 EV_FREQUENT_CHECK;
2326} 3249}
2327 3250
2328void 3251void
2329ev_stat_stop (EV_P_ ev_stat *w) 3252ev_stat_stop (EV_P_ ev_stat *w)
2330{ 3253{
2331 clear_pending (EV_A_ (W)w); 3254 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3255 if (expect_false (!ev_is_active (w)))
2333 return; 3256 return;
2334 3257
3258 EV_FREQUENT_CHECK;
3259
2335#if EV_USE_INOTIFY 3260#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w); 3261 infy_del (EV_A_ w);
2337#endif 3262#endif
3263
3264 if (ev_is_active (&w->timer))
3265 {
3266 ev_ref (EV_A);
2338 ev_timer_stop (EV_A_ &w->timer); 3267 ev_timer_stop (EV_A_ &w->timer);
3268 }
2339 3269
2340 ev_stop (EV_A_ (W)w); 3270 ev_stop (EV_A_ (W)w);
3271
3272 EV_FREQUENT_CHECK;
2341} 3273}
2342#endif 3274#endif
2343 3275
2344#if EV_IDLE_ENABLE 3276#if EV_IDLE_ENABLE
2345void 3277void
2347{ 3279{
2348 if (expect_false (ev_is_active (w))) 3280 if (expect_false (ev_is_active (w)))
2349 return; 3281 return;
2350 3282
2351 pri_adjust (EV_A_ (W)w); 3283 pri_adjust (EV_A_ (W)w);
3284
3285 EV_FREQUENT_CHECK;
2352 3286
2353 { 3287 {
2354 int active = ++idlecnt [ABSPRI (w)]; 3288 int active = ++idlecnt [ABSPRI (w)];
2355 3289
2356 ++idleall; 3290 ++idleall;
2357 ev_start (EV_A_ (W)w, active); 3291 ev_start (EV_A_ (W)w, active);
2358 3292
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3293 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w; 3294 idles [ABSPRI (w)][active - 1] = w;
2361 } 3295 }
3296
3297 EV_FREQUENT_CHECK;
2362} 3298}
2363 3299
2364void 3300void
2365ev_idle_stop (EV_P_ ev_idle *w) 3301ev_idle_stop (EV_P_ ev_idle *w)
2366{ 3302{
2367 clear_pending (EV_A_ (W)w); 3303 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 3304 if (expect_false (!ev_is_active (w)))
2369 return; 3305 return;
2370 3306
3307 EV_FREQUENT_CHECK;
3308
2371 { 3309 {
2372 int active = ((W)w)->active; 3310 int active = ev_active (w);
2373 3311
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3312 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3313 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2376 3314
2377 ev_stop (EV_A_ (W)w); 3315 ev_stop (EV_A_ (W)w);
2378 --idleall; 3316 --idleall;
2379 } 3317 }
3318
3319 EV_FREQUENT_CHECK;
2380} 3320}
2381#endif 3321#endif
2382 3322
2383void 3323void
2384ev_prepare_start (EV_P_ ev_prepare *w) 3324ev_prepare_start (EV_P_ ev_prepare *w)
2385{ 3325{
2386 if (expect_false (ev_is_active (w))) 3326 if (expect_false (ev_is_active (w)))
2387 return; 3327 return;
3328
3329 EV_FREQUENT_CHECK;
2388 3330
2389 ev_start (EV_A_ (W)w, ++preparecnt); 3331 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3332 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w; 3333 prepares [preparecnt - 1] = w;
3334
3335 EV_FREQUENT_CHECK;
2392} 3336}
2393 3337
2394void 3338void
2395ev_prepare_stop (EV_P_ ev_prepare *w) 3339ev_prepare_stop (EV_P_ ev_prepare *w)
2396{ 3340{
2397 clear_pending (EV_A_ (W)w); 3341 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 3342 if (expect_false (!ev_is_active (w)))
2399 return; 3343 return;
2400 3344
3345 EV_FREQUENT_CHECK;
3346
2401 { 3347 {
2402 int active = ((W)w)->active; 3348 int active = ev_active (w);
3349
2403 prepares [active - 1] = prepares [--preparecnt]; 3350 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active; 3351 ev_active (prepares [active - 1]) = active;
2405 } 3352 }
2406 3353
2407 ev_stop (EV_A_ (W)w); 3354 ev_stop (EV_A_ (W)w);
3355
3356 EV_FREQUENT_CHECK;
2408} 3357}
2409 3358
2410void 3359void
2411ev_check_start (EV_P_ ev_check *w) 3360ev_check_start (EV_P_ ev_check *w)
2412{ 3361{
2413 if (expect_false (ev_is_active (w))) 3362 if (expect_false (ev_is_active (w)))
2414 return; 3363 return;
3364
3365 EV_FREQUENT_CHECK;
2415 3366
2416 ev_start (EV_A_ (W)w, ++checkcnt); 3367 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3368 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w; 3369 checks [checkcnt - 1] = w;
3370
3371 EV_FREQUENT_CHECK;
2419} 3372}
2420 3373
2421void 3374void
2422ev_check_stop (EV_P_ ev_check *w) 3375ev_check_stop (EV_P_ ev_check *w)
2423{ 3376{
2424 clear_pending (EV_A_ (W)w); 3377 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w))) 3378 if (expect_false (!ev_is_active (w)))
2426 return; 3379 return;
2427 3380
3381 EV_FREQUENT_CHECK;
3382
2428 { 3383 {
2429 int active = ((W)w)->active; 3384 int active = ev_active (w);
3385
2430 checks [active - 1] = checks [--checkcnt]; 3386 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active; 3387 ev_active (checks [active - 1]) = active;
2432 } 3388 }
2433 3389
2434 ev_stop (EV_A_ (W)w); 3390 ev_stop (EV_A_ (W)w);
3391
3392 EV_FREQUENT_CHECK;
2435} 3393}
2436 3394
2437#if EV_EMBED_ENABLE 3395#if EV_EMBED_ENABLE
2438void noinline 3396void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w) 3397ev_embed_sweep (EV_P_ ev_embed *w)
2456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3414embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2457{ 3415{
2458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3416 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2459 3417
2460 { 3418 {
2461 struct ev_loop *loop = w->other; 3419 EV_P = w->other;
2462 3420
2463 while (fdchangecnt) 3421 while (fdchangecnt)
2464 { 3422 {
2465 fd_reify (EV_A); 3423 fd_reify (EV_A);
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3424 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2467 } 3425 }
2468 } 3426 }
2469} 3427}
2470 3428
3429static void
3430embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3431{
3432 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3433
3434 ev_embed_stop (EV_A_ w);
3435
3436 {
3437 EV_P = w->other;
3438
3439 ev_loop_fork (EV_A);
3440 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3441 }
3442
3443 ev_embed_start (EV_A_ w);
3444}
3445
2471#if 0 3446#if 0
2472static void 3447static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3448embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2474{ 3449{
2475 ev_idle_stop (EV_A_ idle); 3450 ev_idle_stop (EV_A_ idle);
2481{ 3456{
2482 if (expect_false (ev_is_active (w))) 3457 if (expect_false (ev_is_active (w)))
2483 return; 3458 return;
2484 3459
2485 { 3460 {
2486 struct ev_loop *loop = w->other; 3461 EV_P = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3462 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3463 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 } 3464 }
3465
3466 EV_FREQUENT_CHECK;
2490 3467
2491 ev_set_priority (&w->io, ev_priority (w)); 3468 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io); 3469 ev_io_start (EV_A_ &w->io);
2493 3470
2494 ev_prepare_init (&w->prepare, embed_prepare_cb); 3471 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI); 3472 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare); 3473 ev_prepare_start (EV_A_ &w->prepare);
2497 3474
3475 ev_fork_init (&w->fork, embed_fork_cb);
3476 ev_fork_start (EV_A_ &w->fork);
3477
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3478 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499 3479
2500 ev_start (EV_A_ (W)w, 1); 3480 ev_start (EV_A_ (W)w, 1);
3481
3482 EV_FREQUENT_CHECK;
2501} 3483}
2502 3484
2503void 3485void
2504ev_embed_stop (EV_P_ ev_embed *w) 3486ev_embed_stop (EV_P_ ev_embed *w)
2505{ 3487{
2506 clear_pending (EV_A_ (W)w); 3488 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 3489 if (expect_false (!ev_is_active (w)))
2508 return; 3490 return;
2509 3491
3492 EV_FREQUENT_CHECK;
3493
2510 ev_io_stop (EV_A_ &w->io); 3494 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare); 3495 ev_prepare_stop (EV_A_ &w->prepare);
3496 ev_fork_stop (EV_A_ &w->fork);
2512 3497
2513 ev_stop (EV_A_ (W)w); 3498 ev_stop (EV_A_ (W)w);
3499
3500 EV_FREQUENT_CHECK;
2514} 3501}
2515#endif 3502#endif
2516 3503
2517#if EV_FORK_ENABLE 3504#if EV_FORK_ENABLE
2518void 3505void
2519ev_fork_start (EV_P_ ev_fork *w) 3506ev_fork_start (EV_P_ ev_fork *w)
2520{ 3507{
2521 if (expect_false (ev_is_active (w))) 3508 if (expect_false (ev_is_active (w)))
2522 return; 3509 return;
3510
3511 EV_FREQUENT_CHECK;
2523 3512
2524 ev_start (EV_A_ (W)w, ++forkcnt); 3513 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3514 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w; 3515 forks [forkcnt - 1] = w;
3516
3517 EV_FREQUENT_CHECK;
2527} 3518}
2528 3519
2529void 3520void
2530ev_fork_stop (EV_P_ ev_fork *w) 3521ev_fork_stop (EV_P_ ev_fork *w)
2531{ 3522{
2532 clear_pending (EV_A_ (W)w); 3523 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w))) 3524 if (expect_false (!ev_is_active (w)))
2534 return; 3525 return;
2535 3526
3527 EV_FREQUENT_CHECK;
3528
2536 { 3529 {
2537 int active = ((W)w)->active; 3530 int active = ev_active (w);
3531
2538 forks [active - 1] = forks [--forkcnt]; 3532 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active; 3533 ev_active (forks [active - 1]) = active;
2540 } 3534 }
2541 3535
2542 ev_stop (EV_A_ (W)w); 3536 ev_stop (EV_A_ (W)w);
3537
3538 EV_FREQUENT_CHECK;
2543} 3539}
2544#endif 3540#endif
2545 3541
2546#if EV_ASYNC_ENABLE 3542#if EV_ASYNC_ENABLE
2547void 3543void
2549{ 3545{
2550 if (expect_false (ev_is_active (w))) 3546 if (expect_false (ev_is_active (w)))
2551 return; 3547 return;
2552 3548
2553 evpipe_init (EV_A); 3549 evpipe_init (EV_A);
3550
3551 EV_FREQUENT_CHECK;
2554 3552
2555 ev_start (EV_A_ (W)w, ++asynccnt); 3553 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3554 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w; 3555 asyncs [asynccnt - 1] = w;
3556
3557 EV_FREQUENT_CHECK;
2558} 3558}
2559 3559
2560void 3560void
2561ev_async_stop (EV_P_ ev_async *w) 3561ev_async_stop (EV_P_ ev_async *w)
2562{ 3562{
2563 clear_pending (EV_A_ (W)w); 3563 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w))) 3564 if (expect_false (!ev_is_active (w)))
2565 return; 3565 return;
2566 3566
3567 EV_FREQUENT_CHECK;
3568
2567 { 3569 {
2568 int active = ((W)w)->active; 3570 int active = ev_active (w);
3571
2569 asyncs [active - 1] = asyncs [--asynccnt]; 3572 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active; 3573 ev_active (asyncs [active - 1]) = active;
2571 } 3574 }
2572 3575
2573 ev_stop (EV_A_ (W)w); 3576 ev_stop (EV_A_ (W)w);
3577
3578 EV_FREQUENT_CHECK;
2574} 3579}
2575 3580
2576void 3581void
2577ev_async_send (EV_P_ ev_async *w) 3582ev_async_send (EV_P_ ev_async *w)
2578{ 3583{
2579 w->sent = 1; 3584 w->sent = 1;
2580 evpipe_write (EV_A_ &gotasync); 3585 evpipe_write (EV_A_ &async_pending);
2581} 3586}
2582#endif 3587#endif
2583 3588
2584/*****************************************************************************/ 3589/*****************************************************************************/
2585 3590
2595once_cb (EV_P_ struct ev_once *once, int revents) 3600once_cb (EV_P_ struct ev_once *once, int revents)
2596{ 3601{
2597 void (*cb)(int revents, void *arg) = once->cb; 3602 void (*cb)(int revents, void *arg) = once->cb;
2598 void *arg = once->arg; 3603 void *arg = once->arg;
2599 3604
2600 ev_io_stop (EV_A_ &once->io); 3605 ev_io_stop (EV_A_ &once->io);
2601 ev_timer_stop (EV_A_ &once->to); 3606 ev_timer_stop (EV_A_ &once->to);
2602 ev_free (once); 3607 ev_free (once);
2603 3608
2604 cb (revents, arg); 3609 cb (revents, arg);
2605} 3610}
2606 3611
2607static void 3612static void
2608once_cb_io (EV_P_ ev_io *w, int revents) 3613once_cb_io (EV_P_ ev_io *w, int revents)
2609{ 3614{
2610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3615 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3616
3617 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2611} 3618}
2612 3619
2613static void 3620static void
2614once_cb_to (EV_P_ ev_timer *w, int revents) 3621once_cb_to (EV_P_ ev_timer *w, int revents)
2615{ 3622{
2616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3623 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3624
3625 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2617} 3626}
2618 3627
2619void 3628void
2620ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3629ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2621{ 3630{
2643 ev_timer_set (&once->to, timeout, 0.); 3652 ev_timer_set (&once->to, timeout, 0.);
2644 ev_timer_start (EV_A_ &once->to); 3653 ev_timer_start (EV_A_ &once->to);
2645 } 3654 }
2646} 3655}
2647 3656
3657/*****************************************************************************/
3658
3659#if EV_WALK_ENABLE
3660void
3661ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3662{
3663 int i, j;
3664 ev_watcher_list *wl, *wn;
3665
3666 if (types & (EV_IO | EV_EMBED))
3667 for (i = 0; i < anfdmax; ++i)
3668 for (wl = anfds [i].head; wl; )
3669 {
3670 wn = wl->next;
3671
3672#if EV_EMBED_ENABLE
3673 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3674 {
3675 if (types & EV_EMBED)
3676 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3677 }
3678 else
3679#endif
3680#if EV_USE_INOTIFY
3681 if (ev_cb ((ev_io *)wl) == infy_cb)
3682 ;
3683 else
3684#endif
3685 if ((ev_io *)wl != &pipe_w)
3686 if (types & EV_IO)
3687 cb (EV_A_ EV_IO, wl);
3688
3689 wl = wn;
3690 }
3691
3692 if (types & (EV_TIMER | EV_STAT))
3693 for (i = timercnt + HEAP0; i-- > HEAP0; )
3694#if EV_STAT_ENABLE
3695 /*TODO: timer is not always active*/
3696 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3697 {
3698 if (types & EV_STAT)
3699 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3700 }
3701 else
3702#endif
3703 if (types & EV_TIMER)
3704 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3705
3706#if EV_PERIODIC_ENABLE
3707 if (types & EV_PERIODIC)
3708 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3709 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3710#endif
3711
3712#if EV_IDLE_ENABLE
3713 if (types & EV_IDLE)
3714 for (j = NUMPRI; i--; )
3715 for (i = idlecnt [j]; i--; )
3716 cb (EV_A_ EV_IDLE, idles [j][i]);
3717#endif
3718
3719#if EV_FORK_ENABLE
3720 if (types & EV_FORK)
3721 for (i = forkcnt; i--; )
3722 if (ev_cb (forks [i]) != embed_fork_cb)
3723 cb (EV_A_ EV_FORK, forks [i]);
3724#endif
3725
3726#if EV_ASYNC_ENABLE
3727 if (types & EV_ASYNC)
3728 for (i = asynccnt; i--; )
3729 cb (EV_A_ EV_ASYNC, asyncs [i]);
3730#endif
3731
3732 if (types & EV_PREPARE)
3733 for (i = preparecnt; i--; )
3734#if EV_EMBED_ENABLE
3735 if (ev_cb (prepares [i]) != embed_prepare_cb)
3736#endif
3737 cb (EV_A_ EV_PREPARE, prepares [i]);
3738
3739 if (types & EV_CHECK)
3740 for (i = checkcnt; i--; )
3741 cb (EV_A_ EV_CHECK, checks [i]);
3742
3743 if (types & EV_SIGNAL)
3744 for (i = 0; i < EV_NSIG - 1; ++i)
3745 for (wl = signals [i].head; wl; )
3746 {
3747 wn = wl->next;
3748 cb (EV_A_ EV_SIGNAL, wl);
3749 wl = wn;
3750 }
3751
3752 if (types & EV_CHILD)
3753 for (i = EV_PID_HASHSIZE; i--; )
3754 for (wl = childs [i]; wl; )
3755 {
3756 wn = wl->next;
3757 cb (EV_A_ EV_CHILD, wl);
3758 wl = wn;
3759 }
3760/* EV_STAT 0x00001000 /* stat data changed */
3761/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3762}
3763#endif
3764
2648#if EV_MULTIPLICITY 3765#if EV_MULTIPLICITY
2649 #include "ev_wrap.h" 3766 #include "ev_wrap.h"
2650#endif 3767#endif
2651 3768
2652#ifdef __cplusplus 3769#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines