ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC vs.
Revision 1.337 by root, Wed Mar 10 09:18:24 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE 1
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD 1
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD 1
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
154#ifndef _WIN32 178#ifndef _WIN32
155# include <sys/time.h> 179# include <sys/time.h>
156# include <sys/wait.h> 180# include <sys/wait.h>
157# include <unistd.h> 181# include <unistd.h>
158#else 182#else
183# include <io.h>
159# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 185# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
163# endif 188# endif
189# undef EV_AVOID_STDIO
164#endif 190#endif
165 191
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 192/* this block tries to deduce configuration from header-defined symbols and defaults */
167 193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL 1
225# else
226# define EV_USE_CLOCK_SYSCALL 0
227# endif
228#endif
229
168#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC 1
233# else
169# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
170#endif 236#endif
171 237
172#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 240#endif
175 241
176#ifndef EV_USE_NANOSLEEP 242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP 1
245# else
177# define EV_USE_NANOSLEEP 0 246# define EV_USE_NANOSLEEP 0
247# endif
178#endif 248#endif
179 249
180#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 251# define EV_USE_SELECT 1
182#endif 252#endif
235# else 305# else
236# define EV_USE_EVENTFD 0 306# define EV_USE_EVENTFD 0
237# endif 307# endif
238#endif 308#endif
239 309
310#ifndef EV_USE_SIGNALFD
311# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
312# define EV_USE_SIGNALFD 1
313# else
314# define EV_USE_SIGNALFD 0
315# endif
316#endif
317
318#if 0 /* debugging */
319# define EV_VERIFY 3
320# define EV_USE_4HEAP 1
321# define EV_HEAP_CACHE_AT 1
322#endif
323
324#ifndef EV_VERIFY
325# define EV_VERIFY !EV_MINIMAL
326#endif
327
328#ifndef EV_USE_4HEAP
329# define EV_USE_4HEAP !EV_MINIMAL
330#endif
331
332#ifndef EV_HEAP_CACHE_AT
333# define EV_HEAP_CACHE_AT !EV_MINIMAL
334#endif
335
336/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
337/* which makes programs even slower. might work on other unices, too. */
338#if EV_USE_CLOCK_SYSCALL
339# include <syscall.h>
340# ifdef SYS_clock_gettime
341# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
342# undef EV_USE_MONOTONIC
343# define EV_USE_MONOTONIC 1
344# else
345# undef EV_USE_CLOCK_SYSCALL
346# define EV_USE_CLOCK_SYSCALL 0
347# endif
348#endif
349
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 350/* this block fixes any misconfiguration where we know we run into trouble otherwise */
351
352#ifdef _AIX
353/* AIX has a completely broken poll.h header */
354# undef EV_USE_POLL
355# define EV_USE_POLL 0
356#endif
241 357
242#ifndef CLOCK_MONOTONIC 358#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 359# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 360# define EV_USE_MONOTONIC 0
245#endif 361#endif
259# include <sys/select.h> 375# include <sys/select.h>
260# endif 376# endif
261#endif 377#endif
262 378
263#if EV_USE_INOTIFY 379#if EV_USE_INOTIFY
380# include <sys/utsname.h>
381# include <sys/statfs.h>
264# include <sys/inotify.h> 382# include <sys/inotify.h>
383/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
384# ifndef IN_DONT_FOLLOW
385# undef EV_USE_INOTIFY
386# define EV_USE_INOTIFY 0
387# endif
265#endif 388#endif
266 389
267#if EV_SELECT_IS_WINSOCKET 390#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 391# include <winsock.h>
269#endif 392#endif
270 393
271#if EV_USE_EVENTFD 394#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 395/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 396# include <stdint.h>
397# ifndef EFD_NONBLOCK
398# define EFD_NONBLOCK O_NONBLOCK
399# endif
400# ifndef EFD_CLOEXEC
401# ifdef O_CLOEXEC
402# define EFD_CLOEXEC O_CLOEXEC
403# else
404# define EFD_CLOEXEC 02000000
405# endif
406# endif
274# ifdef __cplusplus 407# ifdef __cplusplus
275extern "C" { 408extern "C" {
276# endif 409# endif
277int eventfd (unsigned int initval, int flags); 410int (eventfd) (unsigned int initval, int flags);
278# ifdef __cplusplus 411# ifdef __cplusplus
279} 412}
280# endif 413# endif
281#endif 414#endif
282 415
416#if EV_USE_SIGNALFD
417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
418# include <stdint.h>
419# ifndef SFD_NONBLOCK
420# define SFD_NONBLOCK O_NONBLOCK
421# endif
422# ifndef SFD_CLOEXEC
423# ifdef O_CLOEXEC
424# define SFD_CLOEXEC O_CLOEXEC
425# else
426# define SFD_CLOEXEC 02000000
427# endif
428# endif
429# ifdef __cplusplus
430extern "C" {
431# endif
432int signalfd (int fd, const sigset_t *mask, int flags);
433
434struct signalfd_siginfo
435{
436 uint32_t ssi_signo;
437 char pad[128 - sizeof (uint32_t)];
438};
439# ifdef __cplusplus
440}
441# endif
442#endif
443
444
283/**/ 445/**/
446
447#if EV_VERIFY >= 3
448# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
449#else
450# define EV_FREQUENT_CHECK do { } while (0)
451#endif
284 452
285/* 453/*
286 * This is used to avoid floating point rounding problems. 454 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 455 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 456 * to ensure progress, time-wise, even when rounding
292 */ 460 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 461#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 462
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 463#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 464#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 465
299#if __GNUC__ >= 4 466#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 467# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 468# define noinline __attribute__ ((noinline))
302#else 469#else
315# define inline_speed static noinline 482# define inline_speed static noinline
316#else 483#else
317# define inline_speed static inline 484# define inline_speed static inline
318#endif 485#endif
319 486
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 487#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
488
489#if EV_MINPRI == EV_MAXPRI
490# define ABSPRI(w) (((W)w), 0)
491#else
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 492# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
493#endif
322 494
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 495#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 496#define EMPTY2(a,b) /* used to suppress some warnings */
325 497
326typedef ev_watcher *W; 498typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 499typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 500typedef ev_watcher_time *WT;
329 501
502#define ev_active(w) ((W)(w))->active
330#define ev_at(w) ((WT)(w))->at 503#define ev_at(w) ((WT)(w))->at
331 504
332#if EV_USE_MONOTONIC 505#if EV_USE_REALTIME
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 506/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */ 507/* giving it a reasonably high chance of working on typical architetcures */
508static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
509#endif
510
511#if EV_USE_MONOTONIC
335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 512static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
513#endif
514
515#ifndef EV_FD_TO_WIN32_HANDLE
516# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
517#endif
518#ifndef EV_WIN32_HANDLE_TO_FD
519# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
520#endif
521#ifndef EV_WIN32_CLOSE_FD
522# define EV_WIN32_CLOSE_FD(fd) close (fd)
336#endif 523#endif
337 524
338#ifdef _WIN32 525#ifdef _WIN32
339# include "ev_win32.c" 526# include "ev_win32.c"
340#endif 527#endif
341 528
342/*****************************************************************************/ 529/*****************************************************************************/
343 530
531#if EV_AVOID_STDIO
532static void noinline
533ev_printerr (const char *msg)
534{
535 write (STDERR_FILENO, msg, strlen (msg));
536}
537#endif
538
344static void (*syserr_cb)(const char *msg); 539static void (*syserr_cb)(const char *msg);
345 540
346void 541void
347ev_set_syserr_cb (void (*cb)(const char *msg)) 542ev_set_syserr_cb (void (*cb)(const char *msg))
348{ 543{
349 syserr_cb = cb; 544 syserr_cb = cb;
350} 545}
351 546
352static void noinline 547static void noinline
353syserr (const char *msg) 548ev_syserr (const char *msg)
354{ 549{
355 if (!msg) 550 if (!msg)
356 msg = "(libev) system error"; 551 msg = "(libev) system error";
357 552
358 if (syserr_cb) 553 if (syserr_cb)
359 syserr_cb (msg); 554 syserr_cb (msg);
360 else 555 else
361 { 556 {
557#if EV_AVOID_STDIO
558 const char *err = strerror (errno);
559
560 ev_printerr (msg);
561 ev_printerr (": ");
562 ev_printerr (err);
563 ev_printerr ("\n");
564#else
362 perror (msg); 565 perror (msg);
566#endif
363 abort (); 567 abort ();
364 } 568 }
365} 569}
366 570
367static void * 571static void *
368ev_realloc_emul (void *ptr, long size) 572ev_realloc_emul (void *ptr, long size)
369{ 573{
574#if __GLIBC__
575 return realloc (ptr, size);
576#else
370 /* some systems, notably openbsd and darwin, fail to properly 577 /* some systems, notably openbsd and darwin, fail to properly
371 * implement realloc (x, 0) (as required by both ansi c-98 and 578 * implement realloc (x, 0) (as required by both ansi c-89 and
372 * the single unix specification, so work around them here. 579 * the single unix specification, so work around them here.
373 */ 580 */
374 581
375 if (size) 582 if (size)
376 return realloc (ptr, size); 583 return realloc (ptr, size);
377 584
378 free (ptr); 585 free (ptr);
379 return 0; 586 return 0;
587#endif
380} 588}
381 589
382static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 590static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
383 591
384void 592void
392{ 600{
393 ptr = alloc (ptr, size); 601 ptr = alloc (ptr, size);
394 602
395 if (!ptr && size) 603 if (!ptr && size)
396 { 604 {
605#if EV_AVOID_STDIO
606 ev_printerr ("libev: memory allocation failed, aborting.\n");
607#else
397 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 608 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
609#endif
398 abort (); 610 abort ();
399 } 611 }
400 612
401 return ptr; 613 return ptr;
402} 614}
404#define ev_malloc(size) ev_realloc (0, (size)) 616#define ev_malloc(size) ev_realloc (0, (size))
405#define ev_free(ptr) ev_realloc ((ptr), 0) 617#define ev_free(ptr) ev_realloc ((ptr), 0)
406 618
407/*****************************************************************************/ 619/*****************************************************************************/
408 620
621/* set in reify when reification needed */
622#define EV_ANFD_REIFY 1
623
624/* file descriptor info structure */
409typedef struct 625typedef struct
410{ 626{
411 WL head; 627 WL head;
412 unsigned char events; 628 unsigned char events; /* the events watched for */
629 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
630 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
413 unsigned char reify; 631 unsigned char unused;
632#if EV_USE_EPOLL
633 unsigned int egen; /* generation counter to counter epoll bugs */
634#endif
414#if EV_SELECT_IS_WINSOCKET 635#if EV_SELECT_IS_WINSOCKET
415 SOCKET handle; 636 SOCKET handle;
416#endif 637#endif
417} ANFD; 638} ANFD;
418 639
640/* stores the pending event set for a given watcher */
419typedef struct 641typedef struct
420{ 642{
421 W w; 643 W w;
422 int events; 644 int events; /* the pending event set for the given watcher */
423} ANPENDING; 645} ANPENDING;
424 646
425#if EV_USE_INOTIFY 647#if EV_USE_INOTIFY
648/* hash table entry per inotify-id */
426typedef struct 649typedef struct
427{ 650{
428 WL head; 651 WL head;
429} ANFS; 652} ANFS;
653#endif
654
655/* Heap Entry */
656#if EV_HEAP_CACHE_AT
657 /* a heap element */
658 typedef struct {
659 ev_tstamp at;
660 WT w;
661 } ANHE;
662
663 #define ANHE_w(he) (he).w /* access watcher, read-write */
664 #define ANHE_at(he) (he).at /* access cached at, read-only */
665 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
666#else
667 /* a heap element */
668 typedef WT ANHE;
669
670 #define ANHE_w(he) (he)
671 #define ANHE_at(he) (he)->at
672 #define ANHE_at_cache(he)
430#endif 673#endif
431 674
432#if EV_MULTIPLICITY 675#if EV_MULTIPLICITY
433 676
434 struct ev_loop 677 struct ev_loop
453 696
454 static int ev_default_loop_ptr; 697 static int ev_default_loop_ptr;
455 698
456#endif 699#endif
457 700
701#if EV_MINIMAL < 2
702# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
703# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
704# define EV_INVOKE_PENDING invoke_cb (EV_A)
705#else
706# define EV_RELEASE_CB (void)0
707# define EV_ACQUIRE_CB (void)0
708# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
709#endif
710
711#define EVUNLOOP_RECURSE 0x80
712
458/*****************************************************************************/ 713/*****************************************************************************/
459 714
715#ifndef EV_HAVE_EV_TIME
460ev_tstamp 716ev_tstamp
461ev_time (void) 717ev_time (void)
462{ 718{
463#if EV_USE_REALTIME 719#if EV_USE_REALTIME
720 if (expect_true (have_realtime))
721 {
464 struct timespec ts; 722 struct timespec ts;
465 clock_gettime (CLOCK_REALTIME, &ts); 723 clock_gettime (CLOCK_REALTIME, &ts);
466 return ts.tv_sec + ts.tv_nsec * 1e-9; 724 return ts.tv_sec + ts.tv_nsec * 1e-9;
467#else 725 }
726#endif
727
468 struct timeval tv; 728 struct timeval tv;
469 gettimeofday (&tv, 0); 729 gettimeofday (&tv, 0);
470 return tv.tv_sec + tv.tv_usec * 1e-6; 730 return tv.tv_sec + tv.tv_usec * 1e-6;
471#endif
472} 731}
732#endif
473 733
474ev_tstamp inline_size 734inline_size ev_tstamp
475get_clock (void) 735get_clock (void)
476{ 736{
477#if EV_USE_MONOTONIC 737#if EV_USE_MONOTONIC
478 if (expect_true (have_monotonic)) 738 if (expect_true (have_monotonic))
479 { 739 {
512 struct timeval tv; 772 struct timeval tv;
513 773
514 tv.tv_sec = (time_t)delay; 774 tv.tv_sec = (time_t)delay;
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 775 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
516 776
777 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
778 /* something not guaranteed by newer posix versions, but guaranteed */
779 /* by older ones */
517 select (0, 0, 0, 0, &tv); 780 select (0, 0, 0, 0, &tv);
518#endif 781#endif
519 } 782 }
520} 783}
521 784
522/*****************************************************************************/ 785/*****************************************************************************/
523 786
524int inline_size 787#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
788
789/* find a suitable new size for the given array, */
790/* hopefully by rounding to a ncie-to-malloc size */
791inline_size int
525array_nextsize (int elem, int cur, int cnt) 792array_nextsize (int elem, int cur, int cnt)
526{ 793{
527 int ncur = cur + 1; 794 int ncur = cur + 1;
528 795
529 do 796 do
530 ncur <<= 1; 797 ncur <<= 1;
531 while (cnt > ncur); 798 while (cnt > ncur);
532 799
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 800 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
534 if (elem * ncur > 4096) 801 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
535 { 802 {
536 ncur *= elem; 803 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 804 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
538 ncur = ncur - sizeof (void *) * 4; 805 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem; 806 ncur /= elem;
540 } 807 }
541 808
542 return ncur; 809 return ncur;
546array_realloc (int elem, void *base, int *cur, int cnt) 813array_realloc (int elem, void *base, int *cur, int cnt)
547{ 814{
548 *cur = array_nextsize (elem, *cur, cnt); 815 *cur = array_nextsize (elem, *cur, cnt);
549 return ev_realloc (base, elem * *cur); 816 return ev_realloc (base, elem * *cur);
550} 817}
818
819#define array_init_zero(base,count) \
820 memset ((void *)(base), 0, sizeof (*(base)) * (count))
551 821
552#define array_needsize(type,base,cur,cnt,init) \ 822#define array_needsize(type,base,cur,cnt,init) \
553 if (expect_false ((cnt) > (cur))) \ 823 if (expect_false ((cnt) > (cur))) \
554 { \ 824 { \
555 int ocur_ = (cur); \ 825 int ocur_ = (cur); \
567 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 837 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
568 } 838 }
569#endif 839#endif
570 840
571#define array_free(stem, idx) \ 841#define array_free(stem, idx) \
572 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 842 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
573 843
574/*****************************************************************************/ 844/*****************************************************************************/
845
846/* dummy callback for pending events */
847static void noinline
848pendingcb (EV_P_ ev_prepare *w, int revents)
849{
850}
575 851
576void noinline 852void noinline
577ev_feed_event (EV_P_ void *w, int revents) 853ev_feed_event (EV_P_ void *w, int revents)
578{ 854{
579 W w_ = (W)w; 855 W w_ = (W)w;
588 pendings [pri][w_->pending - 1].w = w_; 864 pendings [pri][w_->pending - 1].w = w_;
589 pendings [pri][w_->pending - 1].events = revents; 865 pendings [pri][w_->pending - 1].events = revents;
590 } 866 }
591} 867}
592 868
593void inline_speed 869inline_speed void
870feed_reverse (EV_P_ W w)
871{
872 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
873 rfeeds [rfeedcnt++] = w;
874}
875
876inline_size void
877feed_reverse_done (EV_P_ int revents)
878{
879 do
880 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
881 while (rfeedcnt);
882}
883
884inline_speed void
594queue_events (EV_P_ W *events, int eventcnt, int type) 885queue_events (EV_P_ W *events, int eventcnt, int type)
595{ 886{
596 int i; 887 int i;
597 888
598 for (i = 0; i < eventcnt; ++i) 889 for (i = 0; i < eventcnt; ++i)
599 ev_feed_event (EV_A_ events [i], type); 890 ev_feed_event (EV_A_ events [i], type);
600} 891}
601 892
602/*****************************************************************************/ 893/*****************************************************************************/
603 894
604void inline_size 895inline_speed void
605anfds_init (ANFD *base, int count)
606{
607 while (count--)
608 {
609 base->head = 0;
610 base->events = EV_NONE;
611 base->reify = 0;
612
613 ++base;
614 }
615}
616
617void inline_speed
618fd_event (EV_P_ int fd, int revents) 896fd_event_nocheck (EV_P_ int fd, int revents)
619{ 897{
620 ANFD *anfd = anfds + fd; 898 ANFD *anfd = anfds + fd;
621 ev_io *w; 899 ev_io *w;
622 900
623 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 901 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
627 if (ev) 905 if (ev)
628 ev_feed_event (EV_A_ (W)w, ev); 906 ev_feed_event (EV_A_ (W)w, ev);
629 } 907 }
630} 908}
631 909
910/* do not submit kernel events for fds that have reify set */
911/* because that means they changed while we were polling for new events */
912inline_speed void
913fd_event (EV_P_ int fd, int revents)
914{
915 ANFD *anfd = anfds + fd;
916
917 if (expect_true (!anfd->reify))
918 fd_event_nocheck (EV_A_ fd, revents);
919}
920
632void 921void
633ev_feed_fd_event (EV_P_ int fd, int revents) 922ev_feed_fd_event (EV_P_ int fd, int revents)
634{ 923{
635 if (fd >= 0 && fd < anfdmax) 924 if (fd >= 0 && fd < anfdmax)
636 fd_event (EV_A_ fd, revents); 925 fd_event_nocheck (EV_A_ fd, revents);
637} 926}
638 927
639void inline_size 928/* make sure the external fd watch events are in-sync */
929/* with the kernel/libev internal state */
930inline_size void
640fd_reify (EV_P) 931fd_reify (EV_P)
641{ 932{
642 int i; 933 int i;
643 934
644 for (i = 0; i < fdchangecnt; ++i) 935 for (i = 0; i < fdchangecnt; ++i)
653 events |= (unsigned char)w->events; 944 events |= (unsigned char)w->events;
654 945
655#if EV_SELECT_IS_WINSOCKET 946#if EV_SELECT_IS_WINSOCKET
656 if (events) 947 if (events)
657 { 948 {
658 unsigned long argp; 949 unsigned long arg;
659 #ifdef EV_FD_TO_WIN32_HANDLE
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 950 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
661 #else
662 anfd->handle = _get_osfhandle (fd);
663 #endif
664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 951 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
665 } 952 }
666#endif 953#endif
667 954
668 { 955 {
669 unsigned char o_events = anfd->events; 956 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify; 957 unsigned char o_reify = anfd->reify;
671 958
672 anfd->reify = 0; 959 anfd->reify = 0;
673 anfd->events = events; 960 anfd->events = events;
674 961
675 if (o_events != events || o_reify & EV_IOFDSET) 962 if (o_events != events || o_reify & EV__IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events); 963 backend_modify (EV_A_ fd, o_events, events);
677 } 964 }
678 } 965 }
679 966
680 fdchangecnt = 0; 967 fdchangecnt = 0;
681} 968}
682 969
683void inline_size 970/* something about the given fd changed */
971inline_size void
684fd_change (EV_P_ int fd, int flags) 972fd_change (EV_P_ int fd, int flags)
685{ 973{
686 unsigned char reify = anfds [fd].reify; 974 unsigned char reify = anfds [fd].reify;
687 anfds [fd].reify |= flags; 975 anfds [fd].reify |= flags;
688 976
692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 980 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
693 fdchanges [fdchangecnt - 1] = fd; 981 fdchanges [fdchangecnt - 1] = fd;
694 } 982 }
695} 983}
696 984
697void inline_speed 985/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
986inline_speed void
698fd_kill (EV_P_ int fd) 987fd_kill (EV_P_ int fd)
699{ 988{
700 ev_io *w; 989 ev_io *w;
701 990
702 while ((w = (ev_io *)anfds [fd].head)) 991 while ((w = (ev_io *)anfds [fd].head))
704 ev_io_stop (EV_A_ w); 993 ev_io_stop (EV_A_ w);
705 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 994 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
706 } 995 }
707} 996}
708 997
709int inline_size 998/* check whether the given fd is actually valid, for error recovery */
999inline_size int
710fd_valid (int fd) 1000fd_valid (int fd)
711{ 1001{
712#ifdef _WIN32 1002#ifdef _WIN32
713 return _get_osfhandle (fd) != -1; 1003 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
714#else 1004#else
715 return fcntl (fd, F_GETFD) != -1; 1005 return fcntl (fd, F_GETFD) != -1;
716#endif 1006#endif
717} 1007}
718 1008
722{ 1012{
723 int fd; 1013 int fd;
724 1014
725 for (fd = 0; fd < anfdmax; ++fd) 1015 for (fd = 0; fd < anfdmax; ++fd)
726 if (anfds [fd].events) 1016 if (anfds [fd].events)
727 if (!fd_valid (fd) == -1 && errno == EBADF) 1017 if (!fd_valid (fd) && errno == EBADF)
728 fd_kill (EV_A_ fd); 1018 fd_kill (EV_A_ fd);
729} 1019}
730 1020
731/* called on ENOMEM in select/poll to kill some fds and retry */ 1021/* called on ENOMEM in select/poll to kill some fds and retry */
732static void noinline 1022static void noinline
736 1026
737 for (fd = anfdmax; fd--; ) 1027 for (fd = anfdmax; fd--; )
738 if (anfds [fd].events) 1028 if (anfds [fd].events)
739 { 1029 {
740 fd_kill (EV_A_ fd); 1030 fd_kill (EV_A_ fd);
741 return; 1031 break;
742 } 1032 }
743} 1033}
744 1034
745/* usually called after fork if backend needs to re-arm all fds from scratch */ 1035/* usually called after fork if backend needs to re-arm all fds from scratch */
746static void noinline 1036static void noinline
750 1040
751 for (fd = 0; fd < anfdmax; ++fd) 1041 for (fd = 0; fd < anfdmax; ++fd)
752 if (anfds [fd].events) 1042 if (anfds [fd].events)
753 { 1043 {
754 anfds [fd].events = 0; 1044 anfds [fd].events = 0;
1045 anfds [fd].emask = 0;
755 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1046 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
756 } 1047 }
757} 1048}
758 1049
759/*****************************************************************************/ 1050/* used to prepare libev internal fd's */
760 1051/* this is not fork-safe */
761/* towards the root */ 1052inline_speed void
762void inline_speed
763upheap (WT *heap, int k)
764{
765 WT w = heap [k];
766
767 for (;;)
768 {
769 int p = k >> 1;
770
771 /* maybe we could use a dummy element at heap [0]? */
772 if (!p || heap [p]->at <= w->at)
773 break;
774
775 heap [k] = heap [p];
776 ((W)heap [k])->active = k;
777 k = p;
778 }
779
780 heap [k] = w;
781 ((W)heap [k])->active = k;
782}
783
784/* away from the root */
785void inline_speed
786downheap (WT *heap, int N, int k)
787{
788 WT w = heap [k];
789
790 for (;;)
791 {
792 int c = k << 1;
793
794 if (c > N)
795 break;
796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
803 heap [k] = heap [c];
804 ((W)heap [k])->active = k;
805
806 k = c;
807 }
808
809 heap [k] = w;
810 ((W)heap [k])->active = k;
811}
812
813void inline_size
814adjustheap (WT *heap, int N, int k)
815{
816 upheap (heap, k);
817 downheap (heap, N, k);
818}
819
820/*****************************************************************************/
821
822typedef struct
823{
824 WL head;
825 EV_ATOMIC_T gotsig;
826} ANSIG;
827
828static ANSIG *signals;
829static int signalmax;
830
831static EV_ATOMIC_T gotsig;
832
833void inline_size
834signals_init (ANSIG *base, int count)
835{
836 while (count--)
837 {
838 base->head = 0;
839 base->gotsig = 0;
840
841 ++base;
842 }
843}
844
845/*****************************************************************************/
846
847void inline_speed
848fd_intern (int fd) 1053fd_intern (int fd)
849{ 1054{
850#ifdef _WIN32 1055#ifdef _WIN32
851 int arg = 1; 1056 unsigned long arg = 1;
852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1057 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
853#else 1058#else
854 fcntl (fd, F_SETFD, FD_CLOEXEC); 1059 fcntl (fd, F_SETFD, FD_CLOEXEC);
855 fcntl (fd, F_SETFL, O_NONBLOCK); 1060 fcntl (fd, F_SETFL, O_NONBLOCK);
856#endif 1061#endif
857} 1062}
858 1063
1064/*****************************************************************************/
1065
1066/*
1067 * the heap functions want a real array index. array index 0 uis guaranteed to not
1068 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1069 * the branching factor of the d-tree.
1070 */
1071
1072/*
1073 * at the moment we allow libev the luxury of two heaps,
1074 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1075 * which is more cache-efficient.
1076 * the difference is about 5% with 50000+ watchers.
1077 */
1078#if EV_USE_4HEAP
1079
1080#define DHEAP 4
1081#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1082#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1083#define UPHEAP_DONE(p,k) ((p) == (k))
1084
1085/* away from the root */
1086inline_speed void
1087downheap (ANHE *heap, int N, int k)
1088{
1089 ANHE he = heap [k];
1090 ANHE *E = heap + N + HEAP0;
1091
1092 for (;;)
1093 {
1094 ev_tstamp minat;
1095 ANHE *minpos;
1096 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1097
1098 /* find minimum child */
1099 if (expect_true (pos + DHEAP - 1 < E))
1100 {
1101 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1102 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1103 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1104 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1105 }
1106 else if (pos < E)
1107 {
1108 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1109 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1110 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1111 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1112 }
1113 else
1114 break;
1115
1116 if (ANHE_at (he) <= minat)
1117 break;
1118
1119 heap [k] = *minpos;
1120 ev_active (ANHE_w (*minpos)) = k;
1121
1122 k = minpos - heap;
1123 }
1124
1125 heap [k] = he;
1126 ev_active (ANHE_w (he)) = k;
1127}
1128
1129#else /* 4HEAP */
1130
1131#define HEAP0 1
1132#define HPARENT(k) ((k) >> 1)
1133#define UPHEAP_DONE(p,k) (!(p))
1134
1135/* away from the root */
1136inline_speed void
1137downheap (ANHE *heap, int N, int k)
1138{
1139 ANHE he = heap [k];
1140
1141 for (;;)
1142 {
1143 int c = k << 1;
1144
1145 if (c >= N + HEAP0)
1146 break;
1147
1148 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1149 ? 1 : 0;
1150
1151 if (ANHE_at (he) <= ANHE_at (heap [c]))
1152 break;
1153
1154 heap [k] = heap [c];
1155 ev_active (ANHE_w (heap [k])) = k;
1156
1157 k = c;
1158 }
1159
1160 heap [k] = he;
1161 ev_active (ANHE_w (he)) = k;
1162}
1163#endif
1164
1165/* towards the root */
1166inline_speed void
1167upheap (ANHE *heap, int k)
1168{
1169 ANHE he = heap [k];
1170
1171 for (;;)
1172 {
1173 int p = HPARENT (k);
1174
1175 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1176 break;
1177
1178 heap [k] = heap [p];
1179 ev_active (ANHE_w (heap [k])) = k;
1180 k = p;
1181 }
1182
1183 heap [k] = he;
1184 ev_active (ANHE_w (he)) = k;
1185}
1186
1187/* move an element suitably so it is in a correct place */
1188inline_size void
1189adjustheap (ANHE *heap, int N, int k)
1190{
1191 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1192 upheap (heap, k);
1193 else
1194 downheap (heap, N, k);
1195}
1196
1197/* rebuild the heap: this function is used only once and executed rarely */
1198inline_size void
1199reheap (ANHE *heap, int N)
1200{
1201 int i;
1202
1203 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1204 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1205 for (i = 0; i < N; ++i)
1206 upheap (heap, i + HEAP0);
1207}
1208
1209/*****************************************************************************/
1210
1211/* associate signal watchers to a signal signal */
1212typedef struct
1213{
1214 EV_ATOMIC_T pending;
1215#if EV_MULTIPLICITY
1216 EV_P;
1217#endif
1218 WL head;
1219} ANSIG;
1220
1221static ANSIG signals [EV_NSIG - 1];
1222
1223/*****************************************************************************/
1224
1225#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1226
859static void noinline 1227static void noinline
860evpipe_init (EV_P) 1228evpipe_init (EV_P)
861{ 1229{
862 if (!ev_is_active (&pipeev)) 1230 if (!ev_is_active (&pipe_w))
863 { 1231 {
864#if EV_USE_EVENTFD 1232# if EV_USE_EVENTFD
1233 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1234 if (evfd < 0 && errno == EINVAL)
865 if ((evfd = eventfd (0, 0)) >= 0) 1235 evfd = eventfd (0, 0);
1236
1237 if (evfd >= 0)
866 { 1238 {
867 evpipe [0] = -1; 1239 evpipe [0] = -1;
868 fd_intern (evfd); 1240 fd_intern (evfd); /* doing it twice doesn't hurt */
869 ev_io_set (&pipeev, evfd, EV_READ); 1241 ev_io_set (&pipe_w, evfd, EV_READ);
870 } 1242 }
871 else 1243 else
872#endif 1244# endif
873 { 1245 {
874 while (pipe (evpipe)) 1246 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe"); 1247 ev_syserr ("(libev) error creating signal/async pipe");
876 1248
877 fd_intern (evpipe [0]); 1249 fd_intern (evpipe [0]);
878 fd_intern (evpipe [1]); 1250 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ); 1251 ev_io_set (&pipe_w, evpipe [0], EV_READ);
880 } 1252 }
881 1253
882 ev_io_start (EV_A_ &pipeev); 1254 ev_io_start (EV_A_ &pipe_w);
883 ev_unref (EV_A); /* watcher should not keep loop alive */ 1255 ev_unref (EV_A); /* watcher should not keep loop alive */
884 } 1256 }
885} 1257}
886 1258
887void inline_size 1259inline_size void
888evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1260evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{ 1261{
890 if (!*flag) 1262 if (!*flag)
891 { 1263 {
892 int old_errno = errno; /* save errno because write might clobber it */ 1264 int old_errno = errno; /* save errno because write might clobber it */
1265 char dummy;
893 1266
894 *flag = 1; 1267 *flag = 1;
895 1268
896#if EV_USE_EVENTFD 1269#if EV_USE_EVENTFD
897 if (evfd >= 0) 1270 if (evfd >= 0)
899 uint64_t counter = 1; 1272 uint64_t counter = 1;
900 write (evfd, &counter, sizeof (uint64_t)); 1273 write (evfd, &counter, sizeof (uint64_t));
901 } 1274 }
902 else 1275 else
903#endif 1276#endif
904 write (evpipe [1], &old_errno, 1); 1277 write (evpipe [1], &dummy, 1);
905 1278
906 errno = old_errno; 1279 errno = old_errno;
907 } 1280 }
908} 1281}
909 1282
1283/* called whenever the libev signal pipe */
1284/* got some events (signal, async) */
910static void 1285static void
911pipecb (EV_P_ ev_io *iow, int revents) 1286pipecb (EV_P_ ev_io *iow, int revents)
912{ 1287{
1288 int i;
1289
913#if EV_USE_EVENTFD 1290#if EV_USE_EVENTFD
914 if (evfd >= 0) 1291 if (evfd >= 0)
915 { 1292 {
916 uint64_t counter = 1; 1293 uint64_t counter;
917 read (evfd, &counter, sizeof (uint64_t)); 1294 read (evfd, &counter, sizeof (uint64_t));
918 } 1295 }
919 else 1296 else
920#endif 1297#endif
921 { 1298 {
922 char dummy; 1299 char dummy;
923 read (evpipe [0], &dummy, 1); 1300 read (evpipe [0], &dummy, 1);
924 } 1301 }
925 1302
926 if (gotsig && ev_is_default_loop (EV_A)) 1303 if (sig_pending)
927 { 1304 {
928 int signum; 1305 sig_pending = 0;
929 gotsig = 0;
930 1306
931 for (signum = signalmax; signum--; ) 1307 for (i = EV_NSIG - 1; i--; )
932 if (signals [signum].gotsig) 1308 if (expect_false (signals [i].pending))
933 ev_feed_signal_event (EV_A_ signum + 1); 1309 ev_feed_signal_event (EV_A_ i + 1);
934 } 1310 }
935 1311
936#if EV_ASYNC_ENABLE 1312#if EV_ASYNC_ENABLE
937 if (gotasync) 1313 if (async_pending)
938 { 1314 {
939 int i; 1315 async_pending = 0;
940 gotasync = 0;
941 1316
942 for (i = asynccnt; i--; ) 1317 for (i = asynccnt; i--; )
943 if (asyncs [i]->sent) 1318 if (asyncs [i]->sent)
944 { 1319 {
945 asyncs [i]->sent = 0; 1320 asyncs [i]->sent = 0;
953 1328
954static void 1329static void
955ev_sighandler (int signum) 1330ev_sighandler (int signum)
956{ 1331{
957#if EV_MULTIPLICITY 1332#if EV_MULTIPLICITY
958 struct ev_loop *loop = &default_loop_struct; 1333 EV_P = signals [signum - 1].loop;
959#endif 1334#endif
960 1335
961#if _WIN32 1336#ifdef _WIN32
962 signal (signum, ev_sighandler); 1337 signal (signum, ev_sighandler);
963#endif 1338#endif
964 1339
965 signals [signum - 1].gotsig = 1; 1340 signals [signum - 1].pending = 1;
966 evpipe_write (EV_A_ &gotsig); 1341 evpipe_write (EV_A_ &sig_pending);
967} 1342}
968 1343
969void noinline 1344void noinline
970ev_feed_signal_event (EV_P_ int signum) 1345ev_feed_signal_event (EV_P_ int signum)
971{ 1346{
972 WL w; 1347 WL w;
973 1348
1349 if (expect_false (signum <= 0 || signum > EV_NSIG))
1350 return;
1351
1352 --signum;
1353
974#if EV_MULTIPLICITY 1354#if EV_MULTIPLICITY
975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1355 /* it is permissible to try to feed a signal to the wrong loop */
976#endif 1356 /* or, likely more useful, feeding a signal nobody is waiting for */
977 1357
978 --signum; 1358 if (expect_false (signals [signum].loop != EV_A))
979
980 if (signum < 0 || signum >= signalmax)
981 return; 1359 return;
1360#endif
982 1361
983 signals [signum].gotsig = 0; 1362 signals [signum].pending = 0;
984 1363
985 for (w = signals [signum].head; w; w = w->next) 1364 for (w = signals [signum].head; w; w = w->next)
986 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1365 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
987} 1366}
988 1367
1368#if EV_USE_SIGNALFD
1369static void
1370sigfdcb (EV_P_ ev_io *iow, int revents)
1371{
1372 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1373
1374 for (;;)
1375 {
1376 ssize_t res = read (sigfd, si, sizeof (si));
1377
1378 /* not ISO-C, as res might be -1, but works with SuS */
1379 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1380 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1381
1382 if (res < (ssize_t)sizeof (si))
1383 break;
1384 }
1385}
1386#endif
1387
1388#endif
1389
989/*****************************************************************************/ 1390/*****************************************************************************/
990 1391
1392#if EV_CHILD_ENABLE
991static WL childs [EV_PID_HASHSIZE]; 1393static WL childs [EV_PID_HASHSIZE];
992
993#ifndef _WIN32
994 1394
995static ev_signal childev; 1395static ev_signal childev;
996 1396
997#ifndef WIFCONTINUED 1397#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0 1398# define WIFCONTINUED(status) 0
999#endif 1399#endif
1000 1400
1001void inline_speed 1401/* handle a single child status event */
1402inline_speed void
1002child_reap (EV_P_ int chain, int pid, int status) 1403child_reap (EV_P_ int chain, int pid, int status)
1003{ 1404{
1004 ev_child *w; 1405 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1406 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1006 1407
1019 1420
1020#ifndef WCONTINUED 1421#ifndef WCONTINUED
1021# define WCONTINUED 0 1422# define WCONTINUED 0
1022#endif 1423#endif
1023 1424
1425/* called on sigchld etc., calls waitpid */
1024static void 1426static void
1025childcb (EV_P_ ev_signal *sw, int revents) 1427childcb (EV_P_ ev_signal *sw, int revents)
1026{ 1428{
1027 int pid, status; 1429 int pid, status;
1028 1430
1109 /* kqueue is borked on everything but netbsd apparently */ 1511 /* kqueue is borked on everything but netbsd apparently */
1110 /* it usually doesn't work correctly on anything but sockets and pipes */ 1512 /* it usually doesn't work correctly on anything but sockets and pipes */
1111 flags &= ~EVBACKEND_KQUEUE; 1513 flags &= ~EVBACKEND_KQUEUE;
1112#endif 1514#endif
1113#ifdef __APPLE__ 1515#ifdef __APPLE__
1114 // flags &= ~EVBACKEND_KQUEUE; for documentation 1516 /* only select works correctly on that "unix-certified" platform */
1115 flags &= ~EVBACKEND_POLL; 1517 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1518 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1116#endif 1519#endif
1117 1520
1118 return flags; 1521 return flags;
1119} 1522}
1120 1523
1134ev_backend (EV_P) 1537ev_backend (EV_P)
1135{ 1538{
1136 return backend; 1539 return backend;
1137} 1540}
1138 1541
1542#if EV_MINIMAL < 2
1139unsigned int 1543unsigned int
1140ev_loop_count (EV_P) 1544ev_loop_count (EV_P)
1141{ 1545{
1142 return loop_count; 1546 return loop_count;
1143} 1547}
1144 1548
1549unsigned int
1550ev_loop_depth (EV_P)
1551{
1552 return loop_depth;
1553}
1554
1145void 1555void
1146ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1556ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1147{ 1557{
1148 io_blocktime = interval; 1558 io_blocktime = interval;
1149} 1559}
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1562ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1153{ 1563{
1154 timeout_blocktime = interval; 1564 timeout_blocktime = interval;
1155} 1565}
1156 1566
1567void
1568ev_set_userdata (EV_P_ void *data)
1569{
1570 userdata = data;
1571}
1572
1573void *
1574ev_userdata (EV_P)
1575{
1576 return userdata;
1577}
1578
1579void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1580{
1581 invoke_cb = invoke_pending_cb;
1582}
1583
1584void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1585{
1586 release_cb = release;
1587 acquire_cb = acquire;
1588}
1589#endif
1590
1591/* initialise a loop structure, must be zero-initialised */
1157static void noinline 1592static void noinline
1158loop_init (EV_P_ unsigned int flags) 1593loop_init (EV_P_ unsigned int flags)
1159{ 1594{
1160 if (!backend) 1595 if (!backend)
1161 { 1596 {
1597#if EV_USE_REALTIME
1598 if (!have_realtime)
1599 {
1600 struct timespec ts;
1601
1602 if (!clock_gettime (CLOCK_REALTIME, &ts))
1603 have_realtime = 1;
1604 }
1605#endif
1606
1162#if EV_USE_MONOTONIC 1607#if EV_USE_MONOTONIC
1608 if (!have_monotonic)
1163 { 1609 {
1164 struct timespec ts; 1610 struct timespec ts;
1611
1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1612 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1166 have_monotonic = 1; 1613 have_monotonic = 1;
1167 } 1614 }
1168#endif 1615#endif
1616
1617 /* pid check not overridable via env */
1618#ifndef _WIN32
1619 if (flags & EVFLAG_FORKCHECK)
1620 curpid = getpid ();
1621#endif
1622
1623 if (!(flags & EVFLAG_NOENV)
1624 && !enable_secure ()
1625 && getenv ("LIBEV_FLAGS"))
1626 flags = atoi (getenv ("LIBEV_FLAGS"));
1169 1627
1170 ev_rt_now = ev_time (); 1628 ev_rt_now = ev_time ();
1171 mn_now = get_clock (); 1629 mn_now = get_clock ();
1172 now_floor = mn_now; 1630 now_floor = mn_now;
1173 rtmn_diff = ev_rt_now - mn_now; 1631 rtmn_diff = ev_rt_now - mn_now;
1632#if EV_MINIMAL < 2
1633 invoke_cb = ev_invoke_pending;
1634#endif
1174 1635
1175 io_blocktime = 0.; 1636 io_blocktime = 0.;
1176 timeout_blocktime = 0.; 1637 timeout_blocktime = 0.;
1177 backend = 0; 1638 backend = 0;
1178 backend_fd = -1; 1639 backend_fd = -1;
1179 gotasync = 0; 1640 sig_pending = 0;
1641#if EV_ASYNC_ENABLE
1642 async_pending = 0;
1643#endif
1180#if EV_USE_INOTIFY 1644#if EV_USE_INOTIFY
1181 fs_fd = -2; 1645 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1182#endif 1646#endif
1183 1647#if EV_USE_SIGNALFD
1184 /* pid check not overridable via env */ 1648 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1185#ifndef _WIN32
1186 if (flags & EVFLAG_FORKCHECK)
1187 curpid = getpid ();
1188#endif 1649#endif
1189
1190 if (!(flags & EVFLAG_NOENV)
1191 && !enable_secure ()
1192 && getenv ("LIBEV_FLAGS"))
1193 flags = atoi (getenv ("LIBEV_FLAGS"));
1194 1650
1195 if (!(flags & 0x0000ffffU)) 1651 if (!(flags & 0x0000ffffU))
1196 flags |= ev_recommended_backends (); 1652 flags |= ev_recommended_backends ();
1197 1653
1198#if EV_USE_PORT 1654#if EV_USE_PORT
1209#endif 1665#endif
1210#if EV_USE_SELECT 1666#if EV_USE_SELECT
1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1667 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1212#endif 1668#endif
1213 1669
1670 ev_prepare_init (&pending_w, pendingcb);
1671
1672#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1214 ev_init (&pipeev, pipecb); 1673 ev_init (&pipe_w, pipecb);
1215 ev_set_priority (&pipeev, EV_MAXPRI); 1674 ev_set_priority (&pipe_w, EV_MAXPRI);
1675#endif
1216 } 1676 }
1217} 1677}
1218 1678
1679/* free up a loop structure */
1219static void noinline 1680static void noinline
1220loop_destroy (EV_P) 1681loop_destroy (EV_P)
1221{ 1682{
1222 int i; 1683 int i;
1223 1684
1224 if (ev_is_active (&pipeev)) 1685 if (ev_is_active (&pipe_w))
1225 { 1686 {
1226 ev_ref (EV_A); /* signal watcher */ 1687 /*ev_ref (EV_A);*/
1227 ev_io_stop (EV_A_ &pipeev); 1688 /*ev_io_stop (EV_A_ &pipe_w);*/
1228 1689
1229#if EV_USE_EVENTFD 1690#if EV_USE_EVENTFD
1230 if (evfd >= 0) 1691 if (evfd >= 0)
1231 close (evfd); 1692 close (evfd);
1232#endif 1693#endif
1233 1694
1234 if (evpipe [0] >= 0) 1695 if (evpipe [0] >= 0)
1235 { 1696 {
1236 close (evpipe [0]); 1697 EV_WIN32_CLOSE_FD (evpipe [0]);
1237 close (evpipe [1]); 1698 EV_WIN32_CLOSE_FD (evpipe [1]);
1238 } 1699 }
1239 } 1700 }
1701
1702#if EV_USE_SIGNALFD
1703 if (ev_is_active (&sigfd_w))
1704 close (sigfd);
1705#endif
1240 1706
1241#if EV_USE_INOTIFY 1707#if EV_USE_INOTIFY
1242 if (fs_fd >= 0) 1708 if (fs_fd >= 0)
1243 close (fs_fd); 1709 close (fs_fd);
1244#endif 1710#endif
1268#if EV_IDLE_ENABLE 1734#if EV_IDLE_ENABLE
1269 array_free (idle, [i]); 1735 array_free (idle, [i]);
1270#endif 1736#endif
1271 } 1737 }
1272 1738
1273 ev_free (anfds); anfdmax = 0; 1739 ev_free (anfds); anfds = 0; anfdmax = 0;
1274 1740
1275 /* have to use the microsoft-never-gets-it-right macro */ 1741 /* have to use the microsoft-never-gets-it-right macro */
1742 array_free (rfeed, EMPTY);
1276 array_free (fdchange, EMPTY); 1743 array_free (fdchange, EMPTY);
1277 array_free (timer, EMPTY); 1744 array_free (timer, EMPTY);
1278#if EV_PERIODIC_ENABLE 1745#if EV_PERIODIC_ENABLE
1279 array_free (periodic, EMPTY); 1746 array_free (periodic, EMPTY);
1280#endif 1747#endif
1289 1756
1290 backend = 0; 1757 backend = 0;
1291} 1758}
1292 1759
1293#if EV_USE_INOTIFY 1760#if EV_USE_INOTIFY
1294void inline_size infy_fork (EV_P); 1761inline_size void infy_fork (EV_P);
1295#endif 1762#endif
1296 1763
1297void inline_size 1764inline_size void
1298loop_fork (EV_P) 1765loop_fork (EV_P)
1299{ 1766{
1300#if EV_USE_PORT 1767#if EV_USE_PORT
1301 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1768 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1302#endif 1769#endif
1308#endif 1775#endif
1309#if EV_USE_INOTIFY 1776#if EV_USE_INOTIFY
1310 infy_fork (EV_A); 1777 infy_fork (EV_A);
1311#endif 1778#endif
1312 1779
1313 if (ev_is_active (&pipeev)) 1780 if (ev_is_active (&pipe_w))
1314 { 1781 {
1315 /* this "locks" the handlers against writing to the pipe */ 1782 /* this "locks" the handlers against writing to the pipe */
1316 /* while we modify the fd vars */ 1783 /* while we modify the fd vars */
1317 gotsig = 1; 1784 sig_pending = 1;
1318#if EV_ASYNC_ENABLE 1785#if EV_ASYNC_ENABLE
1319 gotasync = 1; 1786 async_pending = 1;
1320#endif 1787#endif
1321 1788
1322 ev_ref (EV_A); 1789 ev_ref (EV_A);
1323 ev_io_stop (EV_A_ &pipeev); 1790 ev_io_stop (EV_A_ &pipe_w);
1324 1791
1325#if EV_USE_EVENTFD 1792#if EV_USE_EVENTFD
1326 if (evfd >= 0) 1793 if (evfd >= 0)
1327 close (evfd); 1794 close (evfd);
1328#endif 1795#endif
1329 1796
1330 if (evpipe [0] >= 0) 1797 if (evpipe [0] >= 0)
1331 { 1798 {
1332 close (evpipe [0]); 1799 EV_WIN32_CLOSE_FD (evpipe [0]);
1333 close (evpipe [1]); 1800 EV_WIN32_CLOSE_FD (evpipe [1]);
1334 } 1801 }
1335 1802
1803#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1336 evpipe_init (EV_A); 1804 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */ 1805 /* now iterate over everything, in case we missed something */
1338 pipecb (EV_A_ &pipeev, EV_READ); 1806 pipecb (EV_A_ &pipe_w, EV_READ);
1807#endif
1339 } 1808 }
1340 1809
1341 postfork = 0; 1810 postfork = 0;
1342} 1811}
1343 1812
1344#if EV_MULTIPLICITY 1813#if EV_MULTIPLICITY
1814
1345struct ev_loop * 1815struct ev_loop *
1346ev_loop_new (unsigned int flags) 1816ev_loop_new (unsigned int flags)
1347{ 1817{
1348 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1818 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1349 1819
1350 memset (loop, 0, sizeof (struct ev_loop)); 1820 memset (EV_A, 0, sizeof (struct ev_loop));
1351
1352 loop_init (EV_A_ flags); 1821 loop_init (EV_A_ flags);
1353 1822
1354 if (ev_backend (EV_A)) 1823 if (ev_backend (EV_A))
1355 return loop; 1824 return EV_A;
1356 1825
1357 return 0; 1826 return 0;
1358} 1827}
1359 1828
1360void 1829void
1367void 1836void
1368ev_loop_fork (EV_P) 1837ev_loop_fork (EV_P)
1369{ 1838{
1370 postfork = 1; /* must be in line with ev_default_fork */ 1839 postfork = 1; /* must be in line with ev_default_fork */
1371} 1840}
1841#endif /* multiplicity */
1372 1842
1843#if EV_VERIFY
1844static void noinline
1845verify_watcher (EV_P_ W w)
1846{
1847 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1848
1849 if (w->pending)
1850 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1851}
1852
1853static void noinline
1854verify_heap (EV_P_ ANHE *heap, int N)
1855{
1856 int i;
1857
1858 for (i = HEAP0; i < N + HEAP0; ++i)
1859 {
1860 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1861 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1862 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1863
1864 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1865 }
1866}
1867
1868static void noinline
1869array_verify (EV_P_ W *ws, int cnt)
1870{
1871 while (cnt--)
1872 {
1873 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1874 verify_watcher (EV_A_ ws [cnt]);
1875 }
1876}
1877#endif
1878
1879#if EV_MINIMAL < 2
1880void
1881ev_loop_verify (EV_P)
1882{
1883#if EV_VERIFY
1884 int i;
1885 WL w;
1886
1887 assert (activecnt >= -1);
1888
1889 assert (fdchangemax >= fdchangecnt);
1890 for (i = 0; i < fdchangecnt; ++i)
1891 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1892
1893 assert (anfdmax >= 0);
1894 for (i = 0; i < anfdmax; ++i)
1895 for (w = anfds [i].head; w; w = w->next)
1896 {
1897 verify_watcher (EV_A_ (W)w);
1898 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1899 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1900 }
1901
1902 assert (timermax >= timercnt);
1903 verify_heap (EV_A_ timers, timercnt);
1904
1905#if EV_PERIODIC_ENABLE
1906 assert (periodicmax >= periodiccnt);
1907 verify_heap (EV_A_ periodics, periodiccnt);
1908#endif
1909
1910 for (i = NUMPRI; i--; )
1911 {
1912 assert (pendingmax [i] >= pendingcnt [i]);
1913#if EV_IDLE_ENABLE
1914 assert (idleall >= 0);
1915 assert (idlemax [i] >= idlecnt [i]);
1916 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1917#endif
1918 }
1919
1920#if EV_FORK_ENABLE
1921 assert (forkmax >= forkcnt);
1922 array_verify (EV_A_ (W *)forks, forkcnt);
1923#endif
1924
1925#if EV_ASYNC_ENABLE
1926 assert (asyncmax >= asynccnt);
1927 array_verify (EV_A_ (W *)asyncs, asynccnt);
1928#endif
1929
1930#if EV_PREPARE_ENABLE
1931 assert (preparemax >= preparecnt);
1932 array_verify (EV_A_ (W *)prepares, preparecnt);
1933#endif
1934
1935#if EV_CHECK_ENABLE
1936 assert (checkmax >= checkcnt);
1937 array_verify (EV_A_ (W *)checks, checkcnt);
1938#endif
1939
1940# if 0
1941#if EV_CHILD_ENABLE
1942 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1943 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1944#endif
1945# endif
1946#endif
1947}
1373#endif 1948#endif
1374 1949
1375#if EV_MULTIPLICITY 1950#if EV_MULTIPLICITY
1376struct ev_loop * 1951struct ev_loop *
1377ev_default_loop_init (unsigned int flags) 1952ev_default_loop_init (unsigned int flags)
1381#endif 1956#endif
1382{ 1957{
1383 if (!ev_default_loop_ptr) 1958 if (!ev_default_loop_ptr)
1384 { 1959 {
1385#if EV_MULTIPLICITY 1960#if EV_MULTIPLICITY
1386 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1961 EV_P = ev_default_loop_ptr = &default_loop_struct;
1387#else 1962#else
1388 ev_default_loop_ptr = 1; 1963 ev_default_loop_ptr = 1;
1389#endif 1964#endif
1390 1965
1391 loop_init (EV_A_ flags); 1966 loop_init (EV_A_ flags);
1392 1967
1393 if (ev_backend (EV_A)) 1968 if (ev_backend (EV_A))
1394 { 1969 {
1395#ifndef _WIN32 1970#if EV_CHILD_ENABLE
1396 ev_signal_init (&childev, childcb, SIGCHLD); 1971 ev_signal_init (&childev, childcb, SIGCHLD);
1397 ev_set_priority (&childev, EV_MAXPRI); 1972 ev_set_priority (&childev, EV_MAXPRI);
1398 ev_signal_start (EV_A_ &childev); 1973 ev_signal_start (EV_A_ &childev);
1399 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1974 ev_unref (EV_A); /* child watcher should not keep loop alive */
1400#endif 1975#endif
1408 1983
1409void 1984void
1410ev_default_destroy (void) 1985ev_default_destroy (void)
1411{ 1986{
1412#if EV_MULTIPLICITY 1987#if EV_MULTIPLICITY
1413 struct ev_loop *loop = ev_default_loop_ptr; 1988 EV_P = ev_default_loop_ptr;
1414#endif 1989#endif
1415 1990
1416#ifndef _WIN32 1991 ev_default_loop_ptr = 0;
1992
1993#if EV_CHILD_ENABLE
1417 ev_ref (EV_A); /* child watcher */ 1994 ev_ref (EV_A); /* child watcher */
1418 ev_signal_stop (EV_A_ &childev); 1995 ev_signal_stop (EV_A_ &childev);
1419#endif 1996#endif
1420 1997
1421 loop_destroy (EV_A); 1998 loop_destroy (EV_A);
1423 2000
1424void 2001void
1425ev_default_fork (void) 2002ev_default_fork (void)
1426{ 2003{
1427#if EV_MULTIPLICITY 2004#if EV_MULTIPLICITY
1428 struct ev_loop *loop = ev_default_loop_ptr; 2005 EV_P = ev_default_loop_ptr;
1429#endif 2006#endif
1430 2007
1431 if (backend)
1432 postfork = 1; /* must be in line with ev_loop_fork */ 2008 postfork = 1; /* must be in line with ev_loop_fork */
1433} 2009}
1434 2010
1435/*****************************************************************************/ 2011/*****************************************************************************/
1436 2012
1437void 2013void
1438ev_invoke (EV_P_ void *w, int revents) 2014ev_invoke (EV_P_ void *w, int revents)
1439{ 2015{
1440 EV_CB_INVOKE ((W)w, revents); 2016 EV_CB_INVOKE ((W)w, revents);
1441} 2017}
1442 2018
1443void inline_speed 2019unsigned int
1444call_pending (EV_P) 2020ev_pending_count (EV_P)
2021{
2022 int pri;
2023 unsigned int count = 0;
2024
2025 for (pri = NUMPRI; pri--; )
2026 count += pendingcnt [pri];
2027
2028 return count;
2029}
2030
2031void noinline
2032ev_invoke_pending (EV_P)
1445{ 2033{
1446 int pri; 2034 int pri;
1447 2035
1448 for (pri = NUMPRI; pri--; ) 2036 for (pri = NUMPRI; pri--; )
1449 while (pendingcnt [pri]) 2037 while (pendingcnt [pri])
1450 { 2038 {
1451 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2039 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1452 2040
1453 if (expect_true (p->w))
1454 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2041 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2042 /* ^ this is no longer true, as pending_w could be here */
1456 2043
1457 p->w->pending = 0; 2044 p->w->pending = 0;
1458 EV_CB_INVOKE (p->w, p->events); 2045 EV_CB_INVOKE (p->w, p->events);
1459 } 2046 EV_FREQUENT_CHECK;
1460 } 2047 }
1461} 2048}
1462 2049
1463void inline_size
1464timers_reify (EV_P)
1465{
1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1467 {
1468 ev_timer *w = (ev_timer *)timers [1];
1469
1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->repeat)
1474 {
1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1476
1477 ev_at (w) += w->repeat;
1478 if (ev_at (w) < mn_now)
1479 ev_at (w) = mn_now;
1480
1481 downheap (timers, timercnt, 1);
1482 }
1483 else
1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1485
1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1487 }
1488}
1489
1490#if EV_PERIODIC_ENABLE
1491void inline_size
1492periodics_reify (EV_P)
1493{
1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1495 {
1496 ev_periodic *w = (ev_periodic *)periodics [1];
1497
1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1499
1500 /* first reschedule or stop timer */
1501 if (w->reschedule_cb)
1502 {
1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1505 downheap (periodics, periodiccnt, 1);
1506 }
1507 else if (w->interval)
1508 {
1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1512 downheap (periodics, periodiccnt, 1);
1513 }
1514 else
1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1516
1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1518 }
1519}
1520
1521static void noinline
1522periodics_reschedule (EV_P)
1523{
1524 int i;
1525
1526 /* adjust periodics after time jump */
1527 for (i = 0; i < periodiccnt; ++i)
1528 {
1529 ev_periodic *w = (ev_periodic *)periodics [i];
1530
1531 if (w->reschedule_cb)
1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1533 else if (w->interval)
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 }
1536
1537 /* now rebuild the heap */
1538 for (i = periodiccnt >> 1; i--; )
1539 downheap (periodics, periodiccnt, i);
1540}
1541#endif
1542
1543#if EV_IDLE_ENABLE 2050#if EV_IDLE_ENABLE
1544void inline_size 2051/* make idle watchers pending. this handles the "call-idle */
2052/* only when higher priorities are idle" logic */
2053inline_size void
1545idle_reify (EV_P) 2054idle_reify (EV_P)
1546{ 2055{
1547 if (expect_false (idleall)) 2056 if (expect_false (idleall))
1548 { 2057 {
1549 int pri; 2058 int pri;
1561 } 2070 }
1562 } 2071 }
1563} 2072}
1564#endif 2073#endif
1565 2074
1566void inline_speed 2075/* make timers pending */
2076inline_size void
2077timers_reify (EV_P)
2078{
2079 EV_FREQUENT_CHECK;
2080
2081 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2082 {
2083 do
2084 {
2085 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2086
2087 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2088
2089 /* first reschedule or stop timer */
2090 if (w->repeat)
2091 {
2092 ev_at (w) += w->repeat;
2093 if (ev_at (w) < mn_now)
2094 ev_at (w) = mn_now;
2095
2096 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2097
2098 ANHE_at_cache (timers [HEAP0]);
2099 downheap (timers, timercnt, HEAP0);
2100 }
2101 else
2102 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2103
2104 EV_FREQUENT_CHECK;
2105 feed_reverse (EV_A_ (W)w);
2106 }
2107 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2108
2109 feed_reverse_done (EV_A_ EV_TIMEOUT);
2110 }
2111}
2112
2113#if EV_PERIODIC_ENABLE
2114/* make periodics pending */
2115inline_size void
2116periodics_reify (EV_P)
2117{
2118 EV_FREQUENT_CHECK;
2119
2120 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2121 {
2122 int feed_count = 0;
2123
2124 do
2125 {
2126 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2127
2128 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2129
2130 /* first reschedule or stop timer */
2131 if (w->reschedule_cb)
2132 {
2133 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2134
2135 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2136
2137 ANHE_at_cache (periodics [HEAP0]);
2138 downheap (periodics, periodiccnt, HEAP0);
2139 }
2140 else if (w->interval)
2141 {
2142 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2143 /* if next trigger time is not sufficiently in the future, put it there */
2144 /* this might happen because of floating point inexactness */
2145 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2146 {
2147 ev_at (w) += w->interval;
2148
2149 /* if interval is unreasonably low we might still have a time in the past */
2150 /* so correct this. this will make the periodic very inexact, but the user */
2151 /* has effectively asked to get triggered more often than possible */
2152 if (ev_at (w) < ev_rt_now)
2153 ev_at (w) = ev_rt_now;
2154 }
2155
2156 ANHE_at_cache (periodics [HEAP0]);
2157 downheap (periodics, periodiccnt, HEAP0);
2158 }
2159 else
2160 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2161
2162 EV_FREQUENT_CHECK;
2163 feed_reverse (EV_A_ (W)w);
2164 }
2165 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2166
2167 feed_reverse_done (EV_A_ EV_PERIODIC);
2168 }
2169}
2170
2171/* simply recalculate all periodics */
2172/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2173static void noinline
2174periodics_reschedule (EV_P)
2175{
2176 int i;
2177
2178 /* adjust periodics after time jump */
2179 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2180 {
2181 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2182
2183 if (w->reschedule_cb)
2184 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2185 else if (w->interval)
2186 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2187
2188 ANHE_at_cache (periodics [i]);
2189 }
2190
2191 reheap (periodics, periodiccnt);
2192}
2193#endif
2194
2195/* adjust all timers by a given offset */
2196static void noinline
2197timers_reschedule (EV_P_ ev_tstamp adjust)
2198{
2199 int i;
2200
2201 for (i = 0; i < timercnt; ++i)
2202 {
2203 ANHE *he = timers + i + HEAP0;
2204 ANHE_w (*he)->at += adjust;
2205 ANHE_at_cache (*he);
2206 }
2207}
2208
2209/* fetch new monotonic and realtime times from the kernel */
2210/* also detect if there was a timejump, and act accordingly */
2211inline_speed void
1567time_update (EV_P_ ev_tstamp max_block) 2212time_update (EV_P_ ev_tstamp max_block)
1568{ 2213{
1569 int i;
1570
1571#if EV_USE_MONOTONIC 2214#if EV_USE_MONOTONIC
1572 if (expect_true (have_monotonic)) 2215 if (expect_true (have_monotonic))
1573 { 2216 {
2217 int i;
1574 ev_tstamp odiff = rtmn_diff; 2218 ev_tstamp odiff = rtmn_diff;
1575 2219
1576 mn_now = get_clock (); 2220 mn_now = get_clock ();
1577 2221
1578 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2222 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1596 */ 2240 */
1597 for (i = 4; --i; ) 2241 for (i = 4; --i; )
1598 { 2242 {
1599 rtmn_diff = ev_rt_now - mn_now; 2243 rtmn_diff = ev_rt_now - mn_now;
1600 2244
1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2245 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1602 return; /* all is well */ 2246 return; /* all is well */
1603 2247
1604 ev_rt_now = ev_time (); 2248 ev_rt_now = ev_time ();
1605 mn_now = get_clock (); 2249 mn_now = get_clock ();
1606 now_floor = mn_now; 2250 now_floor = mn_now;
1607 } 2251 }
1608 2252
2253 /* no timer adjustment, as the monotonic clock doesn't jump */
2254 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609# if EV_PERIODIC_ENABLE 2255# if EV_PERIODIC_ENABLE
1610 periodics_reschedule (EV_A); 2256 periodics_reschedule (EV_A);
1611# endif 2257# endif
1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1614 } 2258 }
1615 else 2259 else
1616#endif 2260#endif
1617 { 2261 {
1618 ev_rt_now = ev_time (); 2262 ev_rt_now = ev_time ();
1619 2263
1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2264 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1621 { 2265 {
2266 /* adjust timers. this is easy, as the offset is the same for all of them */
2267 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1622#if EV_PERIODIC_ENABLE 2268#if EV_PERIODIC_ENABLE
1623 periodics_reschedule (EV_A); 2269 periodics_reschedule (EV_A);
1624#endif 2270#endif
1625 /* adjust timers. this is easy, as the offset is the same for all of them */
1626 for (i = 1; i <= timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now;
1628 } 2271 }
1629 2272
1630 mn_now = ev_rt_now; 2273 mn_now = ev_rt_now;
1631 } 2274 }
1632} 2275}
1633 2276
1634void 2277void
1635ev_ref (EV_P)
1636{
1637 ++activecnt;
1638}
1639
1640void
1641ev_unref (EV_P)
1642{
1643 --activecnt;
1644}
1645
1646static int loop_done;
1647
1648void
1649ev_loop (EV_P_ int flags) 2278ev_loop (EV_P_ int flags)
1650{ 2279{
2280#if EV_MINIMAL < 2
2281 ++loop_depth;
2282#endif
2283
2284 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2285
1651 loop_done = EVUNLOOP_CANCEL; 2286 loop_done = EVUNLOOP_CANCEL;
1652 2287
1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2288 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1654 2289
1655 do 2290 do
1656 { 2291 {
2292#if EV_VERIFY >= 2
2293 ev_loop_verify (EV_A);
2294#endif
2295
1657#ifndef _WIN32 2296#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */ 2297 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid)) 2298 if (expect_false (getpid () != curpid))
1660 { 2299 {
1661 curpid = getpid (); 2300 curpid = getpid ();
1667 /* we might have forked, so queue fork handlers */ 2306 /* we might have forked, so queue fork handlers */
1668 if (expect_false (postfork)) 2307 if (expect_false (postfork))
1669 if (forkcnt) 2308 if (forkcnt)
1670 { 2309 {
1671 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2310 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1672 call_pending (EV_A); 2311 EV_INVOKE_PENDING;
1673 } 2312 }
1674#endif 2313#endif
1675 2314
2315#if EV_PREPARE_ENABLE
1676 /* queue prepare watchers (and execute them) */ 2316 /* queue prepare watchers (and execute them) */
1677 if (expect_false (preparecnt)) 2317 if (expect_false (preparecnt))
1678 { 2318 {
1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2319 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1680 call_pending (EV_A); 2320 EV_INVOKE_PENDING;
1681 } 2321 }
2322#endif
1682 2323
1683 if (expect_false (!activecnt)) 2324 if (expect_false (loop_done))
1684 break; 2325 break;
1685 2326
1686 /* we might have forked, so reify kernel state if necessary */ 2327 /* we might have forked, so reify kernel state if necessary */
1687 if (expect_false (postfork)) 2328 if (expect_false (postfork))
1688 loop_fork (EV_A); 2329 loop_fork (EV_A);
1695 ev_tstamp waittime = 0.; 2336 ev_tstamp waittime = 0.;
1696 ev_tstamp sleeptime = 0.; 2337 ev_tstamp sleeptime = 0.;
1697 2338
1698 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2339 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1699 { 2340 {
2341 /* remember old timestamp for io_blocktime calculation */
2342 ev_tstamp prev_mn_now = mn_now;
2343
1700 /* update time to cancel out callback processing overhead */ 2344 /* update time to cancel out callback processing overhead */
1701 time_update (EV_A_ 1e100); 2345 time_update (EV_A_ 1e100);
1702 2346
1703 waittime = MAX_BLOCKTIME; 2347 waittime = MAX_BLOCKTIME;
1704 2348
1705 if (timercnt) 2349 if (timercnt)
1706 { 2350 {
1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 2351 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1708 if (waittime > to) waittime = to; 2352 if (waittime > to) waittime = to;
1709 } 2353 }
1710 2354
1711#if EV_PERIODIC_ENABLE 2355#if EV_PERIODIC_ENABLE
1712 if (periodiccnt) 2356 if (periodiccnt)
1713 { 2357 {
1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 2358 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1715 if (waittime > to) waittime = to; 2359 if (waittime > to) waittime = to;
1716 } 2360 }
1717#endif 2361#endif
1718 2362
2363 /* don't let timeouts decrease the waittime below timeout_blocktime */
1719 if (expect_false (waittime < timeout_blocktime)) 2364 if (expect_false (waittime < timeout_blocktime))
1720 waittime = timeout_blocktime; 2365 waittime = timeout_blocktime;
1721 2366
1722 sleeptime = waittime - backend_fudge; 2367 /* extra check because io_blocktime is commonly 0 */
1723
1724 if (expect_true (sleeptime > io_blocktime)) 2368 if (expect_false (io_blocktime))
1725 sleeptime = io_blocktime;
1726
1727 if (sleeptime)
1728 { 2369 {
2370 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2371
2372 if (sleeptime > waittime - backend_fudge)
2373 sleeptime = waittime - backend_fudge;
2374
2375 if (expect_true (sleeptime > 0.))
2376 {
1729 ev_sleep (sleeptime); 2377 ev_sleep (sleeptime);
1730 waittime -= sleeptime; 2378 waittime -= sleeptime;
2379 }
1731 } 2380 }
1732 } 2381 }
1733 2382
2383#if EV_MINIMAL < 2
1734 ++loop_count; 2384 ++loop_count;
2385#endif
2386 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1735 backend_poll (EV_A_ waittime); 2387 backend_poll (EV_A_ waittime);
2388 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1736 2389
1737 /* update ev_rt_now, do magic */ 2390 /* update ev_rt_now, do magic */
1738 time_update (EV_A_ waittime + sleeptime); 2391 time_update (EV_A_ waittime + sleeptime);
1739 } 2392 }
1740 2393
1747#if EV_IDLE_ENABLE 2400#if EV_IDLE_ENABLE
1748 /* queue idle watchers unless other events are pending */ 2401 /* queue idle watchers unless other events are pending */
1749 idle_reify (EV_A); 2402 idle_reify (EV_A);
1750#endif 2403#endif
1751 2404
2405#if EV_CHECK_ENABLE
1752 /* queue check watchers, to be executed first */ 2406 /* queue check watchers, to be executed first */
1753 if (expect_false (checkcnt)) 2407 if (expect_false (checkcnt))
1754 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2408 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2409#endif
1755 2410
1756 call_pending (EV_A); 2411 EV_INVOKE_PENDING;
1757 } 2412 }
1758 while (expect_true ( 2413 while (expect_true (
1759 activecnt 2414 activecnt
1760 && !loop_done 2415 && !loop_done
1761 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2416 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1762 )); 2417 ));
1763 2418
1764 if (loop_done == EVUNLOOP_ONE) 2419 if (loop_done == EVUNLOOP_ONE)
1765 loop_done = EVUNLOOP_CANCEL; 2420 loop_done = EVUNLOOP_CANCEL;
2421
2422#if EV_MINIMAL < 2
2423 --loop_depth;
2424#endif
1766} 2425}
1767 2426
1768void 2427void
1769ev_unloop (EV_P_ int how) 2428ev_unloop (EV_P_ int how)
1770{ 2429{
1771 loop_done = how; 2430 loop_done = how;
1772} 2431}
1773 2432
2433void
2434ev_ref (EV_P)
2435{
2436 ++activecnt;
2437}
2438
2439void
2440ev_unref (EV_P)
2441{
2442 --activecnt;
2443}
2444
2445void
2446ev_now_update (EV_P)
2447{
2448 time_update (EV_A_ 1e100);
2449}
2450
2451void
2452ev_suspend (EV_P)
2453{
2454 ev_now_update (EV_A);
2455}
2456
2457void
2458ev_resume (EV_P)
2459{
2460 ev_tstamp mn_prev = mn_now;
2461
2462 ev_now_update (EV_A);
2463 timers_reschedule (EV_A_ mn_now - mn_prev);
2464#if EV_PERIODIC_ENABLE
2465 /* TODO: really do this? */
2466 periodics_reschedule (EV_A);
2467#endif
2468}
2469
1774/*****************************************************************************/ 2470/*****************************************************************************/
2471/* singly-linked list management, used when the expected list length is short */
1775 2472
1776void inline_size 2473inline_size void
1777wlist_add (WL *head, WL elem) 2474wlist_add (WL *head, WL elem)
1778{ 2475{
1779 elem->next = *head; 2476 elem->next = *head;
1780 *head = elem; 2477 *head = elem;
1781} 2478}
1782 2479
1783void inline_size 2480inline_size void
1784wlist_del (WL *head, WL elem) 2481wlist_del (WL *head, WL elem)
1785{ 2482{
1786 while (*head) 2483 while (*head)
1787 { 2484 {
1788 if (*head == elem) 2485 if (expect_true (*head == elem))
1789 { 2486 {
1790 *head = elem->next; 2487 *head = elem->next;
1791 return; 2488 break;
1792 } 2489 }
1793 2490
1794 head = &(*head)->next; 2491 head = &(*head)->next;
1795 } 2492 }
1796} 2493}
1797 2494
1798void inline_speed 2495/* internal, faster, version of ev_clear_pending */
2496inline_speed void
1799clear_pending (EV_P_ W w) 2497clear_pending (EV_P_ W w)
1800{ 2498{
1801 if (w->pending) 2499 if (w->pending)
1802 { 2500 {
1803 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2501 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1804 w->pending = 0; 2502 w->pending = 0;
1805 } 2503 }
1806} 2504}
1807 2505
1808int 2506int
1812 int pending = w_->pending; 2510 int pending = w_->pending;
1813 2511
1814 if (expect_true (pending)) 2512 if (expect_true (pending))
1815 { 2513 {
1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2514 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2515 p->w = (W)&pending_w;
1817 w_->pending = 0; 2516 w_->pending = 0;
1818 p->w = 0;
1819 return p->events; 2517 return p->events;
1820 } 2518 }
1821 else 2519 else
1822 return 0; 2520 return 0;
1823} 2521}
1824 2522
1825void inline_size 2523inline_size void
1826pri_adjust (EV_P_ W w) 2524pri_adjust (EV_P_ W w)
1827{ 2525{
1828 int pri = w->priority; 2526 int pri = ev_priority (w);
1829 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2527 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1830 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2528 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1831 w->priority = pri; 2529 ev_set_priority (w, pri);
1832} 2530}
1833 2531
1834void inline_speed 2532inline_speed void
1835ev_start (EV_P_ W w, int active) 2533ev_start (EV_P_ W w, int active)
1836{ 2534{
1837 pri_adjust (EV_A_ w); 2535 pri_adjust (EV_A_ w);
1838 w->active = active; 2536 w->active = active;
1839 ev_ref (EV_A); 2537 ev_ref (EV_A);
1840} 2538}
1841 2539
1842void inline_size 2540inline_size void
1843ev_stop (EV_P_ W w) 2541ev_stop (EV_P_ W w)
1844{ 2542{
1845 ev_unref (EV_A); 2543 ev_unref (EV_A);
1846 w->active = 0; 2544 w->active = 0;
1847} 2545}
1854 int fd = w->fd; 2552 int fd = w->fd;
1855 2553
1856 if (expect_false (ev_is_active (w))) 2554 if (expect_false (ev_is_active (w)))
1857 return; 2555 return;
1858 2556
1859 assert (("ev_io_start called with negative fd", fd >= 0)); 2557 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2558 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2559
2560 EV_FREQUENT_CHECK;
1860 2561
1861 ev_start (EV_A_ (W)w, 1); 2562 ev_start (EV_A_ (W)w, 1);
1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2563 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1863 wlist_add (&anfds[fd].head, (WL)w); 2564 wlist_add (&anfds[fd].head, (WL)w);
1864 2565
1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2566 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1866 w->events &= ~EV_IOFDSET; 2567 w->events &= ~EV__IOFDSET;
2568
2569 EV_FREQUENT_CHECK;
1867} 2570}
1868 2571
1869void noinline 2572void noinline
1870ev_io_stop (EV_P_ ev_io *w) 2573ev_io_stop (EV_P_ ev_io *w)
1871{ 2574{
1872 clear_pending (EV_A_ (W)w); 2575 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 2576 if (expect_false (!ev_is_active (w)))
1874 return; 2577 return;
1875 2578
1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2579 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2580
2581 EV_FREQUENT_CHECK;
1877 2582
1878 wlist_del (&anfds[w->fd].head, (WL)w); 2583 wlist_del (&anfds[w->fd].head, (WL)w);
1879 ev_stop (EV_A_ (W)w); 2584 ev_stop (EV_A_ (W)w);
1880 2585
1881 fd_change (EV_A_ w->fd, 1); 2586 fd_change (EV_A_ w->fd, 1);
2587
2588 EV_FREQUENT_CHECK;
1882} 2589}
1883 2590
1884void noinline 2591void noinline
1885ev_timer_start (EV_P_ ev_timer *w) 2592ev_timer_start (EV_P_ ev_timer *w)
1886{ 2593{
1887 if (expect_false (ev_is_active (w))) 2594 if (expect_false (ev_is_active (w)))
1888 return; 2595 return;
1889 2596
1890 ev_at (w) += mn_now; 2597 ev_at (w) += mn_now;
1891 2598
1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2599 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1893 2600
2601 EV_FREQUENT_CHECK;
2602
2603 ++timercnt;
1894 ev_start (EV_A_ (W)w, ++timercnt); 2604 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2605 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1896 timers [timercnt] = (WT)w; 2606 ANHE_w (timers [ev_active (w)]) = (WT)w;
2607 ANHE_at_cache (timers [ev_active (w)]);
1897 upheap (timers, timercnt); 2608 upheap (timers, ev_active (w));
1898 2609
2610 EV_FREQUENT_CHECK;
2611
1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 2612 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1900} 2613}
1901 2614
1902void noinline 2615void noinline
1903ev_timer_stop (EV_P_ ev_timer *w) 2616ev_timer_stop (EV_P_ ev_timer *w)
1904{ 2617{
1905 clear_pending (EV_A_ (W)w); 2618 clear_pending (EV_A_ (W)w);
1906 if (expect_false (!ev_is_active (w))) 2619 if (expect_false (!ev_is_active (w)))
1907 return; 2620 return;
1908 2621
1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 2622 EV_FREQUENT_CHECK;
1910 2623
1911 { 2624 {
1912 int active = ((W)w)->active; 2625 int active = ev_active (w);
1913 2626
2627 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2628
2629 --timercnt;
2630
1914 if (expect_true (active < timercnt)) 2631 if (expect_true (active < timercnt + HEAP0))
1915 { 2632 {
1916 timers [active] = timers [timercnt]; 2633 timers [active] = timers [timercnt + HEAP0];
1917 adjustheap (timers, timercnt, active); 2634 adjustheap (timers, timercnt, active);
1918 } 2635 }
1919
1920 --timercnt;
1921 } 2636 }
1922 2637
1923 ev_at (w) -= mn_now; 2638 ev_at (w) -= mn_now;
1924 2639
1925 ev_stop (EV_A_ (W)w); 2640 ev_stop (EV_A_ (W)w);
2641
2642 EV_FREQUENT_CHECK;
1926} 2643}
1927 2644
1928void noinline 2645void noinline
1929ev_timer_again (EV_P_ ev_timer *w) 2646ev_timer_again (EV_P_ ev_timer *w)
1930{ 2647{
2648 EV_FREQUENT_CHECK;
2649
1931 if (ev_is_active (w)) 2650 if (ev_is_active (w))
1932 { 2651 {
1933 if (w->repeat) 2652 if (w->repeat)
1934 { 2653 {
1935 ev_at (w) = mn_now + w->repeat; 2654 ev_at (w) = mn_now + w->repeat;
2655 ANHE_at_cache (timers [ev_active (w)]);
1936 adjustheap (timers, timercnt, ((W)w)->active); 2656 adjustheap (timers, timercnt, ev_active (w));
1937 } 2657 }
1938 else 2658 else
1939 ev_timer_stop (EV_A_ w); 2659 ev_timer_stop (EV_A_ w);
1940 } 2660 }
1941 else if (w->repeat) 2661 else if (w->repeat)
1942 { 2662 {
1943 w->at = w->repeat; 2663 ev_at (w) = w->repeat;
1944 ev_timer_start (EV_A_ w); 2664 ev_timer_start (EV_A_ w);
1945 } 2665 }
2666
2667 EV_FREQUENT_CHECK;
2668}
2669
2670ev_tstamp
2671ev_timer_remaining (EV_P_ ev_timer *w)
2672{
2673 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1946} 2674}
1947 2675
1948#if EV_PERIODIC_ENABLE 2676#if EV_PERIODIC_ENABLE
1949void noinline 2677void noinline
1950ev_periodic_start (EV_P_ ev_periodic *w) 2678ev_periodic_start (EV_P_ ev_periodic *w)
1954 2682
1955 if (w->reschedule_cb) 2683 if (w->reschedule_cb)
1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2684 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1957 else if (w->interval) 2685 else if (w->interval)
1958 { 2686 {
1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2687 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1960 /* this formula differs from the one in periodic_reify because we do not always round up */ 2688 /* this formula differs from the one in periodic_reify because we do not always round up */
1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2689 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1962 } 2690 }
1963 else 2691 else
1964 ev_at (w) = w->offset; 2692 ev_at (w) = w->offset;
1965 2693
2694 EV_FREQUENT_CHECK;
2695
2696 ++periodiccnt;
1966 ev_start (EV_A_ (W)w, ++periodiccnt); 2697 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2698 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1968 periodics [periodiccnt] = (WT)w; 2699 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1969 upheap (periodics, periodiccnt); 2700 ANHE_at_cache (periodics [ev_active (w)]);
2701 upheap (periodics, ev_active (w));
1970 2702
2703 EV_FREQUENT_CHECK;
2704
1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2705 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1972} 2706}
1973 2707
1974void noinline 2708void noinline
1975ev_periodic_stop (EV_P_ ev_periodic *w) 2709ev_periodic_stop (EV_P_ ev_periodic *w)
1976{ 2710{
1977 clear_pending (EV_A_ (W)w); 2711 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2712 if (expect_false (!ev_is_active (w)))
1979 return; 2713 return;
1980 2714
1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 2715 EV_FREQUENT_CHECK;
1982 2716
1983 { 2717 {
1984 int active = ((W)w)->active; 2718 int active = ev_active (w);
1985 2719
2720 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2721
2722 --periodiccnt;
2723
1986 if (expect_true (active < periodiccnt)) 2724 if (expect_true (active < periodiccnt + HEAP0))
1987 { 2725 {
1988 periodics [active] = periodics [periodiccnt]; 2726 periodics [active] = periodics [periodiccnt + HEAP0];
1989 adjustheap (periodics, periodiccnt, active); 2727 adjustheap (periodics, periodiccnt, active);
1990 } 2728 }
1991
1992 --periodiccnt;
1993 } 2729 }
1994 2730
1995 ev_stop (EV_A_ (W)w); 2731 ev_stop (EV_A_ (W)w);
2732
2733 EV_FREQUENT_CHECK;
1996} 2734}
1997 2735
1998void noinline 2736void noinline
1999ev_periodic_again (EV_P_ ev_periodic *w) 2737ev_periodic_again (EV_P_ ev_periodic *w)
2000{ 2738{
2006 2744
2007#ifndef SA_RESTART 2745#ifndef SA_RESTART
2008# define SA_RESTART 0 2746# define SA_RESTART 0
2009#endif 2747#endif
2010 2748
2749#if EV_SIGNAL_ENABLE
2750
2011void noinline 2751void noinline
2012ev_signal_start (EV_P_ ev_signal *w) 2752ev_signal_start (EV_P_ ev_signal *w)
2013{ 2753{
2014#if EV_MULTIPLICITY
2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2016#endif
2017 if (expect_false (ev_is_active (w))) 2754 if (expect_false (ev_is_active (w)))
2018 return; 2755 return;
2019 2756
2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2757 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2021 2758
2022 evpipe_init (EV_A); 2759#if EV_MULTIPLICITY
2760 assert (("libev: a signal must not be attached to two different loops",
2761 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2023 2762
2763 signals [w->signum - 1].loop = EV_A;
2764#endif
2765
2766 EV_FREQUENT_CHECK;
2767
2768#if EV_USE_SIGNALFD
2769 if (sigfd == -2)
2024 { 2770 {
2025#ifndef _WIN32 2771 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2026 sigset_t full, prev; 2772 if (sigfd < 0 && errno == EINVAL)
2027 sigfillset (&full); 2773 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2028 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif
2030 2774
2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2775 if (sigfd >= 0)
2776 {
2777 fd_intern (sigfd); /* doing it twice will not hurt */
2032 2778
2033#ifndef _WIN32 2779 sigemptyset (&sigfd_set);
2034 sigprocmask (SIG_SETMASK, &prev, 0); 2780
2035#endif 2781 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2782 ev_set_priority (&sigfd_w, EV_MAXPRI);
2783 ev_io_start (EV_A_ &sigfd_w);
2784 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2785 }
2036 } 2786 }
2787
2788 if (sigfd >= 0)
2789 {
2790 /* TODO: check .head */
2791 sigaddset (&sigfd_set, w->signum);
2792 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2793
2794 signalfd (sigfd, &sigfd_set, 0);
2795 }
2796#endif
2037 2797
2038 ev_start (EV_A_ (W)w, 1); 2798 ev_start (EV_A_ (W)w, 1);
2039 wlist_add (&signals [w->signum - 1].head, (WL)w); 2799 wlist_add (&signals [w->signum - 1].head, (WL)w);
2040 2800
2041 if (!((WL)w)->next) 2801 if (!((WL)w)->next)
2802# if EV_USE_SIGNALFD
2803 if (sigfd < 0) /*TODO*/
2804# endif
2042 { 2805 {
2043#if _WIN32 2806# ifdef _WIN32
2807 evpipe_init (EV_A);
2808
2044 signal (w->signum, ev_sighandler); 2809 signal (w->signum, ev_sighandler);
2045#else 2810# else
2046 struct sigaction sa; 2811 struct sigaction sa;
2812
2813 evpipe_init (EV_A);
2814
2047 sa.sa_handler = ev_sighandler; 2815 sa.sa_handler = ev_sighandler;
2048 sigfillset (&sa.sa_mask); 2816 sigfillset (&sa.sa_mask);
2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2817 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2050 sigaction (w->signum, &sa, 0); 2818 sigaction (w->signum, &sa, 0);
2819
2820 sigemptyset (&sa.sa_mask);
2821 sigaddset (&sa.sa_mask, w->signum);
2822 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2051#endif 2823#endif
2052 } 2824 }
2825
2826 EV_FREQUENT_CHECK;
2053} 2827}
2054 2828
2055void noinline 2829void noinline
2056ev_signal_stop (EV_P_ ev_signal *w) 2830ev_signal_stop (EV_P_ ev_signal *w)
2057{ 2831{
2058 clear_pending (EV_A_ (W)w); 2832 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 2833 if (expect_false (!ev_is_active (w)))
2060 return; 2834 return;
2061 2835
2836 EV_FREQUENT_CHECK;
2837
2062 wlist_del (&signals [w->signum - 1].head, (WL)w); 2838 wlist_del (&signals [w->signum - 1].head, (WL)w);
2063 ev_stop (EV_A_ (W)w); 2839 ev_stop (EV_A_ (W)w);
2064 2840
2065 if (!signals [w->signum - 1].head) 2841 if (!signals [w->signum - 1].head)
2842 {
2843#if EV_MULTIPLICITY
2844 signals [w->signum - 1].loop = 0; /* unattach from signal */
2845#endif
2846#if EV_USE_SIGNALFD
2847 if (sigfd >= 0)
2848 {
2849 sigset_t ss;
2850
2851 sigemptyset (&ss);
2852 sigaddset (&ss, w->signum);
2853 sigdelset (&sigfd_set, w->signum);
2854
2855 signalfd (sigfd, &sigfd_set, 0);
2856 sigprocmask (SIG_UNBLOCK, &ss, 0);
2857 }
2858 else
2859#endif
2066 signal (w->signum, SIG_DFL); 2860 signal (w->signum, SIG_DFL);
2861 }
2862
2863 EV_FREQUENT_CHECK;
2067} 2864}
2865
2866#endif
2867
2868#if EV_CHILD_ENABLE
2068 2869
2069void 2870void
2070ev_child_start (EV_P_ ev_child *w) 2871ev_child_start (EV_P_ ev_child *w)
2071{ 2872{
2072#if EV_MULTIPLICITY 2873#if EV_MULTIPLICITY
2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2874 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2074#endif 2875#endif
2075 if (expect_false (ev_is_active (w))) 2876 if (expect_false (ev_is_active (w)))
2076 return; 2877 return;
2077 2878
2879 EV_FREQUENT_CHECK;
2880
2078 ev_start (EV_A_ (W)w, 1); 2881 ev_start (EV_A_ (W)w, 1);
2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2882 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2883
2884 EV_FREQUENT_CHECK;
2080} 2885}
2081 2886
2082void 2887void
2083ev_child_stop (EV_P_ ev_child *w) 2888ev_child_stop (EV_P_ ev_child *w)
2084{ 2889{
2085 clear_pending (EV_A_ (W)w); 2890 clear_pending (EV_A_ (W)w);
2086 if (expect_false (!ev_is_active (w))) 2891 if (expect_false (!ev_is_active (w)))
2087 return; 2892 return;
2088 2893
2894 EV_FREQUENT_CHECK;
2895
2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2896 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2090 ev_stop (EV_A_ (W)w); 2897 ev_stop (EV_A_ (W)w);
2898
2899 EV_FREQUENT_CHECK;
2091} 2900}
2901
2902#endif
2092 2903
2093#if EV_STAT_ENABLE 2904#if EV_STAT_ENABLE
2094 2905
2095# ifdef _WIN32 2906# ifdef _WIN32
2096# undef lstat 2907# undef lstat
2097# define lstat(a,b) _stati64 (a,b) 2908# define lstat(a,b) _stati64 (a,b)
2098# endif 2909# endif
2099 2910
2100#define DEF_STAT_INTERVAL 5.0074891 2911#define DEF_STAT_INTERVAL 5.0074891
2912#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2101#define MIN_STAT_INTERVAL 0.1074891 2913#define MIN_STAT_INTERVAL 0.1074891
2102 2914
2103static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2915static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2104 2916
2105#if EV_USE_INOTIFY 2917#if EV_USE_INOTIFY
2106# define EV_INOTIFY_BUFSIZE 8192 2918
2919/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2920# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2107 2921
2108static void noinline 2922static void noinline
2109infy_add (EV_P_ ev_stat *w) 2923infy_add (EV_P_ ev_stat *w)
2110{ 2924{
2111 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2925 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2112 2926
2113 if (w->wd < 0) 2927 if (w->wd >= 0)
2928 {
2929 struct statfs sfs;
2930
2931 /* now local changes will be tracked by inotify, but remote changes won't */
2932 /* unless the filesystem is known to be local, we therefore still poll */
2933 /* also do poll on <2.6.25, but with normal frequency */
2934
2935 if (!fs_2625)
2936 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2937 else if (!statfs (w->path, &sfs)
2938 && (sfs.f_type == 0x1373 /* devfs */
2939 || sfs.f_type == 0xEF53 /* ext2/3 */
2940 || sfs.f_type == 0x3153464a /* jfs */
2941 || sfs.f_type == 0x52654973 /* reiser3 */
2942 || sfs.f_type == 0x01021994 /* tempfs */
2943 || sfs.f_type == 0x58465342 /* xfs */))
2944 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2945 else
2946 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2114 { 2947 }
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2948 else
2949 {
2950 /* can't use inotify, continue to stat */
2951 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2116 2952
2117 /* monitor some parent directory for speedup hints */ 2953 /* if path is not there, monitor some parent directory for speedup hints */
2954 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2955 /* but an efficiency issue only */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2956 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 { 2957 {
2120 char path [4096]; 2958 char path [4096];
2121 strcpy (path, w->path); 2959 strcpy (path, w->path);
2122 2960
2125 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2963 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2126 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2964 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2127 2965
2128 char *pend = strrchr (path, '/'); 2966 char *pend = strrchr (path, '/');
2129 2967
2130 if (!pend) 2968 if (!pend || pend == path)
2131 break; /* whoops, no '/', complain to your admin */ 2969 break;
2132 2970
2133 *pend = 0; 2971 *pend = 0;
2134 w->wd = inotify_add_watch (fs_fd, path, mask); 2972 w->wd = inotify_add_watch (fs_fd, path, mask);
2135 } 2973 }
2136 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2974 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2137 } 2975 }
2138 } 2976 }
2139 else
2140 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2141 2977
2142 if (w->wd >= 0) 2978 if (w->wd >= 0)
2143 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2979 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2980
2981 /* now re-arm timer, if required */
2982 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2983 ev_timer_again (EV_A_ &w->timer);
2984 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2144} 2985}
2145 2986
2146static void noinline 2987static void noinline
2147infy_del (EV_P_ ev_stat *w) 2988infy_del (EV_P_ ev_stat *w)
2148{ 2989{
2162 3003
2163static void noinline 3004static void noinline
2164infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3005infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2165{ 3006{
2166 if (slot < 0) 3007 if (slot < 0)
2167 /* overflow, need to check for all hahs slots */ 3008 /* overflow, need to check for all hash slots */
2168 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3009 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2169 infy_wd (EV_A_ slot, wd, ev); 3010 infy_wd (EV_A_ slot, wd, ev);
2170 else 3011 else
2171 { 3012 {
2172 WL w_; 3013 WL w_;
2178 3019
2179 if (w->wd == wd || wd == -1) 3020 if (w->wd == wd || wd == -1)
2180 { 3021 {
2181 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3022 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2182 { 3023 {
3024 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2183 w->wd = -1; 3025 w->wd = -1;
2184 infy_add (EV_A_ w); /* re-add, no matter what */ 3026 infy_add (EV_A_ w); /* re-add, no matter what */
2185 } 3027 }
2186 3028
2187 stat_timer_cb (EV_A_ &w->timer, 0); 3029 stat_timer_cb (EV_A_ &w->timer, 0);
2192 3034
2193static void 3035static void
2194infy_cb (EV_P_ ev_io *w, int revents) 3036infy_cb (EV_P_ ev_io *w, int revents)
2195{ 3037{
2196 char buf [EV_INOTIFY_BUFSIZE]; 3038 char buf [EV_INOTIFY_BUFSIZE];
2197 struct inotify_event *ev = (struct inotify_event *)buf;
2198 int ofs; 3039 int ofs;
2199 int len = read (fs_fd, buf, sizeof (buf)); 3040 int len = read (fs_fd, buf, sizeof (buf));
2200 3041
2201 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3042 for (ofs = 0; ofs < len; )
3043 {
3044 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2202 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3045 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3046 ofs += sizeof (struct inotify_event) + ev->len;
3047 }
2203} 3048}
2204 3049
2205void inline_size 3050inline_size unsigned int
3051ev_linux_version (void)
3052{
3053 struct utsname buf;
3054 unsigned int v;
3055 int i;
3056 char *p = buf.release;
3057
3058 if (uname (&buf))
3059 return 0;
3060
3061 for (i = 3+1; --i; )
3062 {
3063 unsigned int c = 0;
3064
3065 for (;;)
3066 {
3067 if (*p >= '0' && *p <= '9')
3068 c = c * 10 + *p++ - '0';
3069 else
3070 {
3071 p += *p == '.';
3072 break;
3073 }
3074 }
3075
3076 v = (v << 8) | c;
3077 }
3078
3079 return v;
3080}
3081
3082inline_size void
3083ev_check_2625 (EV_P)
3084{
3085 /* kernels < 2.6.25 are borked
3086 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3087 */
3088 if (ev_linux_version () < 0x020619)
3089 return;
3090
3091 fs_2625 = 1;
3092}
3093
3094inline_size int
3095infy_newfd (void)
3096{
3097#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3098 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3099 if (fd >= 0)
3100 return fd;
3101#endif
3102 return inotify_init ();
3103}
3104
3105inline_size void
2206infy_init (EV_P) 3106infy_init (EV_P)
2207{ 3107{
2208 if (fs_fd != -2) 3108 if (fs_fd != -2)
2209 return; 3109 return;
2210 3110
3111 fs_fd = -1;
3112
3113 ev_check_2625 (EV_A);
3114
2211 fs_fd = inotify_init (); 3115 fs_fd = infy_newfd ();
2212 3116
2213 if (fs_fd >= 0) 3117 if (fs_fd >= 0)
2214 { 3118 {
3119 fd_intern (fs_fd);
2215 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3120 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2216 ev_set_priority (&fs_w, EV_MAXPRI); 3121 ev_set_priority (&fs_w, EV_MAXPRI);
2217 ev_io_start (EV_A_ &fs_w); 3122 ev_io_start (EV_A_ &fs_w);
3123 ev_unref (EV_A);
2218 } 3124 }
2219} 3125}
2220 3126
2221void inline_size 3127inline_size void
2222infy_fork (EV_P) 3128infy_fork (EV_P)
2223{ 3129{
2224 int slot; 3130 int slot;
2225 3131
2226 if (fs_fd < 0) 3132 if (fs_fd < 0)
2227 return; 3133 return;
2228 3134
3135 ev_ref (EV_A);
3136 ev_io_stop (EV_A_ &fs_w);
2229 close (fs_fd); 3137 close (fs_fd);
2230 fs_fd = inotify_init (); 3138 fs_fd = infy_newfd ();
3139
3140 if (fs_fd >= 0)
3141 {
3142 fd_intern (fs_fd);
3143 ev_io_set (&fs_w, fs_fd, EV_READ);
3144 ev_io_start (EV_A_ &fs_w);
3145 ev_unref (EV_A);
3146 }
2231 3147
2232 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3148 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2233 { 3149 {
2234 WL w_ = fs_hash [slot].head; 3150 WL w_ = fs_hash [slot].head;
2235 fs_hash [slot].head = 0; 3151 fs_hash [slot].head = 0;
2242 w->wd = -1; 3158 w->wd = -1;
2243 3159
2244 if (fs_fd >= 0) 3160 if (fs_fd >= 0)
2245 infy_add (EV_A_ w); /* re-add, no matter what */ 3161 infy_add (EV_A_ w); /* re-add, no matter what */
2246 else 3162 else
3163 {
3164 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3165 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2247 ev_timer_start (EV_A_ &w->timer); 3166 ev_timer_again (EV_A_ &w->timer);
3167 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3168 }
2248 } 3169 }
2249
2250 } 3170 }
2251} 3171}
2252 3172
3173#endif
3174
3175#ifdef _WIN32
3176# define EV_LSTAT(p,b) _stati64 (p, b)
3177#else
3178# define EV_LSTAT(p,b) lstat (p, b)
2253#endif 3179#endif
2254 3180
2255void 3181void
2256ev_stat_stat (EV_P_ ev_stat *w) 3182ev_stat_stat (EV_P_ ev_stat *w)
2257{ 3183{
2264static void noinline 3190static void noinline
2265stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3191stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2266{ 3192{
2267 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3193 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2268 3194
2269 /* we copy this here each the time so that */ 3195 ev_statdata prev = w->attr;
2270 /* prev has the old value when the callback gets invoked */
2271 w->prev = w->attr;
2272 ev_stat_stat (EV_A_ w); 3196 ev_stat_stat (EV_A_ w);
2273 3197
2274 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3198 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2275 if ( 3199 if (
2276 w->prev.st_dev != w->attr.st_dev 3200 prev.st_dev != w->attr.st_dev
2277 || w->prev.st_ino != w->attr.st_ino 3201 || prev.st_ino != w->attr.st_ino
2278 || w->prev.st_mode != w->attr.st_mode 3202 || prev.st_mode != w->attr.st_mode
2279 || w->prev.st_nlink != w->attr.st_nlink 3203 || prev.st_nlink != w->attr.st_nlink
2280 || w->prev.st_uid != w->attr.st_uid 3204 || prev.st_uid != w->attr.st_uid
2281 || w->prev.st_gid != w->attr.st_gid 3205 || prev.st_gid != w->attr.st_gid
2282 || w->prev.st_rdev != w->attr.st_rdev 3206 || prev.st_rdev != w->attr.st_rdev
2283 || w->prev.st_size != w->attr.st_size 3207 || prev.st_size != w->attr.st_size
2284 || w->prev.st_atime != w->attr.st_atime 3208 || prev.st_atime != w->attr.st_atime
2285 || w->prev.st_mtime != w->attr.st_mtime 3209 || prev.st_mtime != w->attr.st_mtime
2286 || w->prev.st_ctime != w->attr.st_ctime 3210 || prev.st_ctime != w->attr.st_ctime
2287 ) { 3211 ) {
3212 /* we only update w->prev on actual differences */
3213 /* in case we test more often than invoke the callback, */
3214 /* to ensure that prev is always different to attr */
3215 w->prev = prev;
3216
2288 #if EV_USE_INOTIFY 3217 #if EV_USE_INOTIFY
3218 if (fs_fd >= 0)
3219 {
2289 infy_del (EV_A_ w); 3220 infy_del (EV_A_ w);
2290 infy_add (EV_A_ w); 3221 infy_add (EV_A_ w);
2291 ev_stat_stat (EV_A_ w); /* avoid race... */ 3222 ev_stat_stat (EV_A_ w); /* avoid race... */
3223 }
2292 #endif 3224 #endif
2293 3225
2294 ev_feed_event (EV_A_ w, EV_STAT); 3226 ev_feed_event (EV_A_ w, EV_STAT);
2295 } 3227 }
2296} 3228}
2299ev_stat_start (EV_P_ ev_stat *w) 3231ev_stat_start (EV_P_ ev_stat *w)
2300{ 3232{
2301 if (expect_false (ev_is_active (w))) 3233 if (expect_false (ev_is_active (w)))
2302 return; 3234 return;
2303 3235
2304 /* since we use memcmp, we need to clear any padding data etc. */
2305 memset (&w->prev, 0, sizeof (ev_statdata));
2306 memset (&w->attr, 0, sizeof (ev_statdata));
2307
2308 ev_stat_stat (EV_A_ w); 3236 ev_stat_stat (EV_A_ w);
2309 3237
3238 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2310 if (w->interval < MIN_STAT_INTERVAL) 3239 w->interval = MIN_STAT_INTERVAL;
2311 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2312 3240
2313 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3241 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2314 ev_set_priority (&w->timer, ev_priority (w)); 3242 ev_set_priority (&w->timer, ev_priority (w));
2315 3243
2316#if EV_USE_INOTIFY 3244#if EV_USE_INOTIFY
2317 infy_init (EV_A); 3245 infy_init (EV_A);
2318 3246
2319 if (fs_fd >= 0) 3247 if (fs_fd >= 0)
2320 infy_add (EV_A_ w); 3248 infy_add (EV_A_ w);
2321 else 3249 else
2322#endif 3250#endif
3251 {
2323 ev_timer_start (EV_A_ &w->timer); 3252 ev_timer_again (EV_A_ &w->timer);
3253 ev_unref (EV_A);
3254 }
2324 3255
2325 ev_start (EV_A_ (W)w, 1); 3256 ev_start (EV_A_ (W)w, 1);
3257
3258 EV_FREQUENT_CHECK;
2326} 3259}
2327 3260
2328void 3261void
2329ev_stat_stop (EV_P_ ev_stat *w) 3262ev_stat_stop (EV_P_ ev_stat *w)
2330{ 3263{
2331 clear_pending (EV_A_ (W)w); 3264 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3265 if (expect_false (!ev_is_active (w)))
2333 return; 3266 return;
2334 3267
3268 EV_FREQUENT_CHECK;
3269
2335#if EV_USE_INOTIFY 3270#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w); 3271 infy_del (EV_A_ w);
2337#endif 3272#endif
3273
3274 if (ev_is_active (&w->timer))
3275 {
3276 ev_ref (EV_A);
2338 ev_timer_stop (EV_A_ &w->timer); 3277 ev_timer_stop (EV_A_ &w->timer);
3278 }
2339 3279
2340 ev_stop (EV_A_ (W)w); 3280 ev_stop (EV_A_ (W)w);
3281
3282 EV_FREQUENT_CHECK;
2341} 3283}
2342#endif 3284#endif
2343 3285
2344#if EV_IDLE_ENABLE 3286#if EV_IDLE_ENABLE
2345void 3287void
2347{ 3289{
2348 if (expect_false (ev_is_active (w))) 3290 if (expect_false (ev_is_active (w)))
2349 return; 3291 return;
2350 3292
2351 pri_adjust (EV_A_ (W)w); 3293 pri_adjust (EV_A_ (W)w);
3294
3295 EV_FREQUENT_CHECK;
2352 3296
2353 { 3297 {
2354 int active = ++idlecnt [ABSPRI (w)]; 3298 int active = ++idlecnt [ABSPRI (w)];
2355 3299
2356 ++idleall; 3300 ++idleall;
2357 ev_start (EV_A_ (W)w, active); 3301 ev_start (EV_A_ (W)w, active);
2358 3302
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3303 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w; 3304 idles [ABSPRI (w)][active - 1] = w;
2361 } 3305 }
3306
3307 EV_FREQUENT_CHECK;
2362} 3308}
2363 3309
2364void 3310void
2365ev_idle_stop (EV_P_ ev_idle *w) 3311ev_idle_stop (EV_P_ ev_idle *w)
2366{ 3312{
2367 clear_pending (EV_A_ (W)w); 3313 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 3314 if (expect_false (!ev_is_active (w)))
2369 return; 3315 return;
2370 3316
3317 EV_FREQUENT_CHECK;
3318
2371 { 3319 {
2372 int active = ((W)w)->active; 3320 int active = ev_active (w);
2373 3321
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3322 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3323 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2376 3324
2377 ev_stop (EV_A_ (W)w); 3325 ev_stop (EV_A_ (W)w);
2378 --idleall; 3326 --idleall;
2379 } 3327 }
2380}
2381#endif
2382 3328
3329 EV_FREQUENT_CHECK;
3330}
3331#endif
3332
3333#if EV_PREPARE_ENABLE
2383void 3334void
2384ev_prepare_start (EV_P_ ev_prepare *w) 3335ev_prepare_start (EV_P_ ev_prepare *w)
2385{ 3336{
2386 if (expect_false (ev_is_active (w))) 3337 if (expect_false (ev_is_active (w)))
2387 return; 3338 return;
3339
3340 EV_FREQUENT_CHECK;
2388 3341
2389 ev_start (EV_A_ (W)w, ++preparecnt); 3342 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3343 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w; 3344 prepares [preparecnt - 1] = w;
3345
3346 EV_FREQUENT_CHECK;
2392} 3347}
2393 3348
2394void 3349void
2395ev_prepare_stop (EV_P_ ev_prepare *w) 3350ev_prepare_stop (EV_P_ ev_prepare *w)
2396{ 3351{
2397 clear_pending (EV_A_ (W)w); 3352 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 3353 if (expect_false (!ev_is_active (w)))
2399 return; 3354 return;
2400 3355
3356 EV_FREQUENT_CHECK;
3357
2401 { 3358 {
2402 int active = ((W)w)->active; 3359 int active = ev_active (w);
3360
2403 prepares [active - 1] = prepares [--preparecnt]; 3361 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active; 3362 ev_active (prepares [active - 1]) = active;
2405 } 3363 }
2406 3364
2407 ev_stop (EV_A_ (W)w); 3365 ev_stop (EV_A_ (W)w);
2408}
2409 3366
3367 EV_FREQUENT_CHECK;
3368}
3369#endif
3370
3371#if EV_CHECK_ENABLE
2410void 3372void
2411ev_check_start (EV_P_ ev_check *w) 3373ev_check_start (EV_P_ ev_check *w)
2412{ 3374{
2413 if (expect_false (ev_is_active (w))) 3375 if (expect_false (ev_is_active (w)))
2414 return; 3376 return;
3377
3378 EV_FREQUENT_CHECK;
2415 3379
2416 ev_start (EV_A_ (W)w, ++checkcnt); 3380 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3381 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w; 3382 checks [checkcnt - 1] = w;
3383
3384 EV_FREQUENT_CHECK;
2419} 3385}
2420 3386
2421void 3387void
2422ev_check_stop (EV_P_ ev_check *w) 3388ev_check_stop (EV_P_ ev_check *w)
2423{ 3389{
2424 clear_pending (EV_A_ (W)w); 3390 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w))) 3391 if (expect_false (!ev_is_active (w)))
2426 return; 3392 return;
2427 3393
3394 EV_FREQUENT_CHECK;
3395
2428 { 3396 {
2429 int active = ((W)w)->active; 3397 int active = ev_active (w);
3398
2430 checks [active - 1] = checks [--checkcnt]; 3399 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active; 3400 ev_active (checks [active - 1]) = active;
2432 } 3401 }
2433 3402
2434 ev_stop (EV_A_ (W)w); 3403 ev_stop (EV_A_ (W)w);
3404
3405 EV_FREQUENT_CHECK;
2435} 3406}
3407#endif
2436 3408
2437#if EV_EMBED_ENABLE 3409#if EV_EMBED_ENABLE
2438void noinline 3410void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w) 3411ev_embed_sweep (EV_P_ ev_embed *w)
2440{ 3412{
2456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3428embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2457{ 3429{
2458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3430 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2459 3431
2460 { 3432 {
2461 struct ev_loop *loop = w->other; 3433 EV_P = w->other;
2462 3434
2463 while (fdchangecnt) 3435 while (fdchangecnt)
2464 { 3436 {
2465 fd_reify (EV_A); 3437 fd_reify (EV_A);
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3438 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2467 } 3439 }
2468 } 3440 }
2469} 3441}
2470 3442
3443static void
3444embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3445{
3446 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3447
3448 ev_embed_stop (EV_A_ w);
3449
3450 {
3451 EV_P = w->other;
3452
3453 ev_loop_fork (EV_A);
3454 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3455 }
3456
3457 ev_embed_start (EV_A_ w);
3458}
3459
2471#if 0 3460#if 0
2472static void 3461static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3462embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2474{ 3463{
2475 ev_idle_stop (EV_A_ idle); 3464 ev_idle_stop (EV_A_ idle);
2481{ 3470{
2482 if (expect_false (ev_is_active (w))) 3471 if (expect_false (ev_is_active (w)))
2483 return; 3472 return;
2484 3473
2485 { 3474 {
2486 struct ev_loop *loop = w->other; 3475 EV_P = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3476 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3477 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 } 3478 }
3479
3480 EV_FREQUENT_CHECK;
2490 3481
2491 ev_set_priority (&w->io, ev_priority (w)); 3482 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io); 3483 ev_io_start (EV_A_ &w->io);
2493 3484
2494 ev_prepare_init (&w->prepare, embed_prepare_cb); 3485 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI); 3486 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare); 3487 ev_prepare_start (EV_A_ &w->prepare);
2497 3488
3489 ev_fork_init (&w->fork, embed_fork_cb);
3490 ev_fork_start (EV_A_ &w->fork);
3491
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3492 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499 3493
2500 ev_start (EV_A_ (W)w, 1); 3494 ev_start (EV_A_ (W)w, 1);
3495
3496 EV_FREQUENT_CHECK;
2501} 3497}
2502 3498
2503void 3499void
2504ev_embed_stop (EV_P_ ev_embed *w) 3500ev_embed_stop (EV_P_ ev_embed *w)
2505{ 3501{
2506 clear_pending (EV_A_ (W)w); 3502 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 3503 if (expect_false (!ev_is_active (w)))
2508 return; 3504 return;
2509 3505
3506 EV_FREQUENT_CHECK;
3507
2510 ev_io_stop (EV_A_ &w->io); 3508 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare); 3509 ev_prepare_stop (EV_A_ &w->prepare);
3510 ev_fork_stop (EV_A_ &w->fork);
2512 3511
2513 ev_stop (EV_A_ (W)w); 3512 ev_stop (EV_A_ (W)w);
3513
3514 EV_FREQUENT_CHECK;
2514} 3515}
2515#endif 3516#endif
2516 3517
2517#if EV_FORK_ENABLE 3518#if EV_FORK_ENABLE
2518void 3519void
2519ev_fork_start (EV_P_ ev_fork *w) 3520ev_fork_start (EV_P_ ev_fork *w)
2520{ 3521{
2521 if (expect_false (ev_is_active (w))) 3522 if (expect_false (ev_is_active (w)))
2522 return; 3523 return;
3524
3525 EV_FREQUENT_CHECK;
2523 3526
2524 ev_start (EV_A_ (W)w, ++forkcnt); 3527 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3528 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w; 3529 forks [forkcnt - 1] = w;
3530
3531 EV_FREQUENT_CHECK;
2527} 3532}
2528 3533
2529void 3534void
2530ev_fork_stop (EV_P_ ev_fork *w) 3535ev_fork_stop (EV_P_ ev_fork *w)
2531{ 3536{
2532 clear_pending (EV_A_ (W)w); 3537 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w))) 3538 if (expect_false (!ev_is_active (w)))
2534 return; 3539 return;
2535 3540
3541 EV_FREQUENT_CHECK;
3542
2536 { 3543 {
2537 int active = ((W)w)->active; 3544 int active = ev_active (w);
3545
2538 forks [active - 1] = forks [--forkcnt]; 3546 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active; 3547 ev_active (forks [active - 1]) = active;
2540 } 3548 }
2541 3549
2542 ev_stop (EV_A_ (W)w); 3550 ev_stop (EV_A_ (W)w);
3551
3552 EV_FREQUENT_CHECK;
2543} 3553}
2544#endif 3554#endif
2545 3555
2546#if EV_ASYNC_ENABLE 3556#if EV_ASYNC_ENABLE
2547void 3557void
2549{ 3559{
2550 if (expect_false (ev_is_active (w))) 3560 if (expect_false (ev_is_active (w)))
2551 return; 3561 return;
2552 3562
2553 evpipe_init (EV_A); 3563 evpipe_init (EV_A);
3564
3565 EV_FREQUENT_CHECK;
2554 3566
2555 ev_start (EV_A_ (W)w, ++asynccnt); 3567 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3568 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w; 3569 asyncs [asynccnt - 1] = w;
3570
3571 EV_FREQUENT_CHECK;
2558} 3572}
2559 3573
2560void 3574void
2561ev_async_stop (EV_P_ ev_async *w) 3575ev_async_stop (EV_P_ ev_async *w)
2562{ 3576{
2563 clear_pending (EV_A_ (W)w); 3577 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w))) 3578 if (expect_false (!ev_is_active (w)))
2565 return; 3579 return;
2566 3580
3581 EV_FREQUENT_CHECK;
3582
2567 { 3583 {
2568 int active = ((W)w)->active; 3584 int active = ev_active (w);
3585
2569 asyncs [active - 1] = asyncs [--asynccnt]; 3586 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active; 3587 ev_active (asyncs [active - 1]) = active;
2571 } 3588 }
2572 3589
2573 ev_stop (EV_A_ (W)w); 3590 ev_stop (EV_A_ (W)w);
3591
3592 EV_FREQUENT_CHECK;
2574} 3593}
2575 3594
2576void 3595void
2577ev_async_send (EV_P_ ev_async *w) 3596ev_async_send (EV_P_ ev_async *w)
2578{ 3597{
2579 w->sent = 1; 3598 w->sent = 1;
2580 evpipe_write (EV_A_ &gotasync); 3599 evpipe_write (EV_A_ &async_pending);
2581} 3600}
2582#endif 3601#endif
2583 3602
2584/*****************************************************************************/ 3603/*****************************************************************************/
2585 3604
2595once_cb (EV_P_ struct ev_once *once, int revents) 3614once_cb (EV_P_ struct ev_once *once, int revents)
2596{ 3615{
2597 void (*cb)(int revents, void *arg) = once->cb; 3616 void (*cb)(int revents, void *arg) = once->cb;
2598 void *arg = once->arg; 3617 void *arg = once->arg;
2599 3618
2600 ev_io_stop (EV_A_ &once->io); 3619 ev_io_stop (EV_A_ &once->io);
2601 ev_timer_stop (EV_A_ &once->to); 3620 ev_timer_stop (EV_A_ &once->to);
2602 ev_free (once); 3621 ev_free (once);
2603 3622
2604 cb (revents, arg); 3623 cb (revents, arg);
2605} 3624}
2606 3625
2607static void 3626static void
2608once_cb_io (EV_P_ ev_io *w, int revents) 3627once_cb_io (EV_P_ ev_io *w, int revents)
2609{ 3628{
2610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3629 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3630
3631 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2611} 3632}
2612 3633
2613static void 3634static void
2614once_cb_to (EV_P_ ev_timer *w, int revents) 3635once_cb_to (EV_P_ ev_timer *w, int revents)
2615{ 3636{
2616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3637 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3638
3639 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2617} 3640}
2618 3641
2619void 3642void
2620ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3643ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2621{ 3644{
2643 ev_timer_set (&once->to, timeout, 0.); 3666 ev_timer_set (&once->to, timeout, 0.);
2644 ev_timer_start (EV_A_ &once->to); 3667 ev_timer_start (EV_A_ &once->to);
2645 } 3668 }
2646} 3669}
2647 3670
3671/*****************************************************************************/
3672
3673#if EV_WALK_ENABLE
3674void
3675ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3676{
3677 int i, j;
3678 ev_watcher_list *wl, *wn;
3679
3680 if (types & (EV_IO | EV_EMBED))
3681 for (i = 0; i < anfdmax; ++i)
3682 for (wl = anfds [i].head; wl; )
3683 {
3684 wn = wl->next;
3685
3686#if EV_EMBED_ENABLE
3687 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3688 {
3689 if (types & EV_EMBED)
3690 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3691 }
3692 else
3693#endif
3694#if EV_USE_INOTIFY
3695 if (ev_cb ((ev_io *)wl) == infy_cb)
3696 ;
3697 else
3698#endif
3699 if ((ev_io *)wl != &pipe_w)
3700 if (types & EV_IO)
3701 cb (EV_A_ EV_IO, wl);
3702
3703 wl = wn;
3704 }
3705
3706 if (types & (EV_TIMER | EV_STAT))
3707 for (i = timercnt + HEAP0; i-- > HEAP0; )
3708#if EV_STAT_ENABLE
3709 /*TODO: timer is not always active*/
3710 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3711 {
3712 if (types & EV_STAT)
3713 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3714 }
3715 else
3716#endif
3717 if (types & EV_TIMER)
3718 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3719
3720#if EV_PERIODIC_ENABLE
3721 if (types & EV_PERIODIC)
3722 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3723 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3724#endif
3725
3726#if EV_IDLE_ENABLE
3727 if (types & EV_IDLE)
3728 for (j = NUMPRI; i--; )
3729 for (i = idlecnt [j]; i--; )
3730 cb (EV_A_ EV_IDLE, idles [j][i]);
3731#endif
3732
3733#if EV_FORK_ENABLE
3734 if (types & EV_FORK)
3735 for (i = forkcnt; i--; )
3736 if (ev_cb (forks [i]) != embed_fork_cb)
3737 cb (EV_A_ EV_FORK, forks [i]);
3738#endif
3739
3740#if EV_ASYNC_ENABLE
3741 if (types & EV_ASYNC)
3742 for (i = asynccnt; i--; )
3743 cb (EV_A_ EV_ASYNC, asyncs [i]);
3744#endif
3745
3746#if EV_PREPARE_ENABLE
3747 if (types & EV_PREPARE)
3748 for (i = preparecnt; i--; )
3749# if EV_EMBED_ENABLE
3750 if (ev_cb (prepares [i]) != embed_prepare_cb)
3751# endif
3752 cb (EV_A_ EV_PREPARE, prepares [i]);
3753#endif
3754
3755#if EV_CHECK_ENABLE
3756 if (types & EV_CHECK)
3757 for (i = checkcnt; i--; )
3758 cb (EV_A_ EV_CHECK, checks [i]);
3759#endif
3760
3761#if EV_SIGNAL_ENABLE
3762 if (types & EV_SIGNAL)
3763 for (i = 0; i < EV_NSIG - 1; ++i)
3764 for (wl = signals [i].head; wl; )
3765 {
3766 wn = wl->next;
3767 cb (EV_A_ EV_SIGNAL, wl);
3768 wl = wn;
3769 }
3770#endif
3771
3772#if EV_CHILD_ENABLE
3773 if (types & EV_CHILD)
3774 for (i = EV_PID_HASHSIZE; i--; )
3775 for (wl = childs [i]; wl; )
3776 {
3777 wn = wl->next;
3778 cb (EV_A_ EV_CHILD, wl);
3779 wl = wn;
3780 }
3781#endif
3782/* EV_STAT 0x00001000 /* stat data changed */
3783/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3784}
3785#endif
3786
2648#if EV_MULTIPLICITY 3787#if EV_MULTIPLICITY
2649 #include "ev_wrap.h" 3788 #include "ev_wrap.h"
2650#endif 3789#endif
2651 3790
2652#ifdef __cplusplus 3791#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines