ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC vs.
Revision 1.342 by root, Mon Mar 29 12:40:57 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
65# endif 79# endif
66# endif 80# endif
67 81
68# ifndef EV_USE_NANOSLEEP 82# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP 83# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
71# else 85# else
72# define EV_USE_NANOSLEEP 0 86# define EV_USE_NANOSLEEP 0
73# endif 87# endif
74# endif 88# endif
75 89
76# ifndef EV_USE_SELECT 90# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 91# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1 92# define EV_USE_SELECT EV_FEATURE_BACKENDS
79# else 93# else
80# define EV_USE_SELECT 0 94# define EV_USE_SELECT 0
81# endif 95# endif
82# endif 96# endif
83 97
84# ifndef EV_USE_POLL 98# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H 99# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1 100# define EV_USE_POLL EV_FEATURE_BACKENDS
87# else 101# else
88# define EV_USE_POLL 0 102# define EV_USE_POLL 0
89# endif 103# endif
90# endif 104# endif
91 105
92# ifndef EV_USE_EPOLL 106# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 107# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 108# define EV_USE_EPOLL EV_FEATURE_BACKENDS
95# else 109# else
96# define EV_USE_EPOLL 0 110# define EV_USE_EPOLL 0
97# endif 111# endif
98# endif 112# endif
99 113
100# ifndef EV_USE_KQUEUE 114# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 115# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
102# define EV_USE_KQUEUE 1 116# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
103# else 117# else
104# define EV_USE_KQUEUE 0 118# define EV_USE_KQUEUE 0
105# endif 119# endif
106# endif 120# endif
107 121
108# ifndef EV_USE_PORT 122# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 123# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 124# define EV_USE_PORT EV_FEATURE_BACKENDS
111# else 125# else
112# define EV_USE_PORT 0 126# define EV_USE_PORT 0
113# endif 127# endif
114# endif 128# endif
115 129
116# ifndef EV_USE_INOTIFY 130# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 131# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 132# define EV_USE_INOTIFY EV_FEATURE_OS
119# else 133# else
120# define EV_USE_INOTIFY 0 134# define EV_USE_INOTIFY 0
121# endif 135# endif
122# endif 136# endif
123 137
138# ifndef EV_USE_SIGNALFD
139# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
140# define EV_USE_SIGNALFD EV_FEATURE_OS
141# else
142# define EV_USE_SIGNALFD 0
143# endif
144# endif
145
124# ifndef EV_USE_EVENTFD 146# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD 147# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 148# define EV_USE_EVENTFD EV_FEATURE_OS
127# else 149# else
128# define EV_USE_EVENTFD 0 150# define EV_USE_EVENTFD 0
129# endif 151# endif
130# endif 152# endif
131 153
132#endif 154#endif
133 155
134#include <math.h> 156#include <math.h>
135#include <stdlib.h> 157#include <stdlib.h>
158#include <string.h>
136#include <fcntl.h> 159#include <fcntl.h>
137#include <stddef.h> 160#include <stddef.h>
138 161
139#include <stdio.h> 162#include <stdio.h>
140 163
141#include <assert.h> 164#include <assert.h>
142#include <errno.h> 165#include <errno.h>
143#include <sys/types.h> 166#include <sys/types.h>
144#include <time.h> 167#include <time.h>
168#include <limits.h>
145 169
146#include <signal.h> 170#include <signal.h>
147 171
148#ifdef EV_H 172#ifdef EV_H
149# include EV_H 173# include EV_H
154#ifndef _WIN32 178#ifndef _WIN32
155# include <sys/time.h> 179# include <sys/time.h>
156# include <sys/wait.h> 180# include <sys/wait.h>
157# include <unistd.h> 181# include <unistd.h>
158#else 182#else
183# include <io.h>
159# define WIN32_LEAN_AND_MEAN 184# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 185# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 186# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 187# define EV_SELECT_IS_WINSOCKET 1
163# endif 188# endif
189# undef EV_AVOID_STDIO
164#endif 190#endif
165 191
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 192/* this block tries to deduce configuration from header-defined symbols and defaults */
167 193
194/* try to deduce the maximum number of signals on this platform */
195#if defined (EV_NSIG)
196/* use what's provided */
197#elif defined (NSIG)
198# define EV_NSIG (NSIG)
199#elif defined(_NSIG)
200# define EV_NSIG (_NSIG)
201#elif defined (SIGMAX)
202# define EV_NSIG (SIGMAX+1)
203#elif defined (SIG_MAX)
204# define EV_NSIG (SIG_MAX+1)
205#elif defined (_SIG_MAX)
206# define EV_NSIG (_SIG_MAX+1)
207#elif defined (MAXSIG)
208# define EV_NSIG (MAXSIG+1)
209#elif defined (MAX_SIG)
210# define EV_NSIG (MAX_SIG+1)
211#elif defined (SIGARRAYSIZE)
212# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
213#elif defined (_sys_nsig)
214# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
215#else
216# error "unable to find value for NSIG, please report"
217/* to make it compile regardless, just remove the above line, */
218/* but consider reporting it, too! :) */
219# define EV_NSIG 65
220#endif
221
222#ifndef EV_USE_CLOCK_SYSCALL
223# if __linux && __GLIBC__ >= 2
224# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
225# else
226# define EV_USE_CLOCK_SYSCALL 0
227# endif
228#endif
229
168#ifndef EV_USE_MONOTONIC 230#ifndef EV_USE_MONOTONIC
231# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
232# define EV_USE_MONOTONIC EV_FEATURE_OS
233# else
169# define EV_USE_MONOTONIC 0 234# define EV_USE_MONOTONIC 0
235# endif
170#endif 236#endif
171 237
172#ifndef EV_USE_REALTIME 238#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 239# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 240#endif
175 241
176#ifndef EV_USE_NANOSLEEP 242#ifndef EV_USE_NANOSLEEP
243# if _POSIX_C_SOURCE >= 199309L
244# define EV_USE_NANOSLEEP EV_FEATURE_OS
245# else
177# define EV_USE_NANOSLEEP 0 246# define EV_USE_NANOSLEEP 0
247# endif
178#endif 248#endif
179 249
180#ifndef EV_USE_SELECT 250#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 251# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 252#endif
183 253
184#ifndef EV_USE_POLL 254#ifndef EV_USE_POLL
185# ifdef _WIN32 255# ifdef _WIN32
186# define EV_USE_POLL 0 256# define EV_USE_POLL 0
187# else 257# else
188# define EV_USE_POLL 1 258# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 259# endif
190#endif 260#endif
191 261
192#ifndef EV_USE_EPOLL 262#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 263# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 264# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 265# else
196# define EV_USE_EPOLL 0 266# define EV_USE_EPOLL 0
197# endif 267# endif
198#endif 268#endif
199 269
205# define EV_USE_PORT 0 275# define EV_USE_PORT 0
206#endif 276#endif
207 277
208#ifndef EV_USE_INOTIFY 278#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 279# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 280# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 281# else
212# define EV_USE_INOTIFY 0 282# define EV_USE_INOTIFY 0
213# endif 283# endif
214#endif 284#endif
215 285
216#ifndef EV_PID_HASHSIZE 286#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 287# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 288#endif
223 289
224#ifndef EV_INOTIFY_HASHSIZE 290#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 291# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 292#endif
231 293
232#ifndef EV_USE_EVENTFD 294#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 295# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 296# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 297# else
236# define EV_USE_EVENTFD 0 298# define EV_USE_EVENTFD 0
237# endif 299# endif
238#endif 300#endif
239 301
302#ifndef EV_USE_SIGNALFD
303# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
304# define EV_USE_SIGNALFD EV_FEATURE_OS
305# else
306# define EV_USE_SIGNALFD 0
307# endif
308#endif
309
310#if 0 /* debugging */
311# define EV_VERIFY 3
312# define EV_USE_4HEAP 1
313# define EV_HEAP_CACHE_AT 1
314#endif
315
316#ifndef EV_VERIFY
317# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
318#endif
319
320#ifndef EV_USE_4HEAP
321# define EV_USE_4HEAP EV_FEATURE_DATA
322#endif
323
324#ifndef EV_HEAP_CACHE_AT
325# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
326#endif
327
328/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
329/* which makes programs even slower. might work on other unices, too. */
330#if EV_USE_CLOCK_SYSCALL
331# include <syscall.h>
332# ifdef SYS_clock_gettime
333# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
334# undef EV_USE_MONOTONIC
335# define EV_USE_MONOTONIC 1
336# else
337# undef EV_USE_CLOCK_SYSCALL
338# define EV_USE_CLOCK_SYSCALL 0
339# endif
340#endif
341
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 342/* this block fixes any misconfiguration where we know we run into trouble otherwise */
343
344#ifdef _AIX
345/* AIX has a completely broken poll.h header */
346# undef EV_USE_POLL
347# define EV_USE_POLL 0
348#endif
241 349
242#ifndef CLOCK_MONOTONIC 350#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 351# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 352# define EV_USE_MONOTONIC 0
245#endif 353#endif
259# include <sys/select.h> 367# include <sys/select.h>
260# endif 368# endif
261#endif 369#endif
262 370
263#if EV_USE_INOTIFY 371#if EV_USE_INOTIFY
372# include <sys/utsname.h>
373# include <sys/statfs.h>
264# include <sys/inotify.h> 374# include <sys/inotify.h>
375/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
376# ifndef IN_DONT_FOLLOW
377# undef EV_USE_INOTIFY
378# define EV_USE_INOTIFY 0
379# endif
265#endif 380#endif
266 381
267#if EV_SELECT_IS_WINSOCKET 382#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 383# include <winsock.h>
269#endif 384#endif
270 385
271#if EV_USE_EVENTFD 386#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 387/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 388# include <stdint.h>
389# ifndef EFD_NONBLOCK
390# define EFD_NONBLOCK O_NONBLOCK
391# endif
392# ifndef EFD_CLOEXEC
393# ifdef O_CLOEXEC
394# define EFD_CLOEXEC O_CLOEXEC
395# else
396# define EFD_CLOEXEC 02000000
397# endif
398# endif
274# ifdef __cplusplus 399# ifdef __cplusplus
275extern "C" { 400extern "C" {
276# endif 401# endif
277int eventfd (unsigned int initval, int flags); 402int (eventfd) (unsigned int initval, int flags);
278# ifdef __cplusplus 403# ifdef __cplusplus
279} 404}
280# endif 405# endif
281#endif 406#endif
282 407
408#if EV_USE_SIGNALFD
409/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
410# include <stdint.h>
411# ifndef SFD_NONBLOCK
412# define SFD_NONBLOCK O_NONBLOCK
413# endif
414# ifndef SFD_CLOEXEC
415# ifdef O_CLOEXEC
416# define SFD_CLOEXEC O_CLOEXEC
417# else
418# define SFD_CLOEXEC 02000000
419# endif
420# endif
421# ifdef __cplusplus
422extern "C" {
423# endif
424int signalfd (int fd, const sigset_t *mask, int flags);
425
426struct signalfd_siginfo
427{
428 uint32_t ssi_signo;
429 char pad[128 - sizeof (uint32_t)];
430};
431# ifdef __cplusplus
432}
433# endif
434#endif
435
436
283/**/ 437/**/
438
439#if EV_VERIFY >= 3
440# define EV_FREQUENT_CHECK ev_verify (EV_A)
441#else
442# define EV_FREQUENT_CHECK do { } while (0)
443#endif
284 444
285/* 445/*
286 * This is used to avoid floating point rounding problems. 446 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 447 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 448 * to ensure progress, time-wise, even when rounding
292 */ 452 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 453#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 454
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 455#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 456#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 457
299#if __GNUC__ >= 4 458#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 459# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 460# define noinline __attribute__ ((noinline))
302#else 461#else
309 468
310#define expect_false(expr) expect ((expr) != 0, 0) 469#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 470#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline 471#define inline_size static inline
313 472
314#if EV_MINIMAL 473#if EV_FEATURE_CODE
474# define inline_speed static inline
475#else
315# define inline_speed static noinline 476# define inline_speed static noinline
477#endif
478
479#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
480
481#if EV_MINPRI == EV_MAXPRI
482# define ABSPRI(w) (((W)w), 0)
316#else 483#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 484# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
485#endif
322 486
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 487#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 488#define EMPTY2(a,b) /* used to suppress some warnings */
325 489
326typedef ev_watcher *W; 490typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 491typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 492typedef ev_watcher_time *WT;
329 493
494#define ev_active(w) ((W)(w))->active
330#define ev_at(w) ((WT)(w))->at 495#define ev_at(w) ((WT)(w))->at
331 496
332#if EV_USE_MONOTONIC 497#if EV_USE_REALTIME
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 498/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */ 499/* giving it a reasonably high chance of working on typical architetcures */
500static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
501#endif
502
503#if EV_USE_MONOTONIC
335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 504static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
505#endif
506
507#ifndef EV_FD_TO_WIN32_HANDLE
508# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
509#endif
510#ifndef EV_WIN32_HANDLE_TO_FD
511# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
512#endif
513#ifndef EV_WIN32_CLOSE_FD
514# define EV_WIN32_CLOSE_FD(fd) close (fd)
336#endif 515#endif
337 516
338#ifdef _WIN32 517#ifdef _WIN32
339# include "ev_win32.c" 518# include "ev_win32.c"
340#endif 519#endif
341 520
342/*****************************************************************************/ 521/*****************************************************************************/
343 522
523#if EV_AVOID_STDIO
524static void noinline
525ev_printerr (const char *msg)
526{
527 write (STDERR_FILENO, msg, strlen (msg));
528}
529#endif
530
344static void (*syserr_cb)(const char *msg); 531static void (*syserr_cb)(const char *msg);
345 532
346void 533void
347ev_set_syserr_cb (void (*cb)(const char *msg)) 534ev_set_syserr_cb (void (*cb)(const char *msg))
348{ 535{
349 syserr_cb = cb; 536 syserr_cb = cb;
350} 537}
351 538
352static void noinline 539static void noinline
353syserr (const char *msg) 540ev_syserr (const char *msg)
354{ 541{
355 if (!msg) 542 if (!msg)
356 msg = "(libev) system error"; 543 msg = "(libev) system error";
357 544
358 if (syserr_cb) 545 if (syserr_cb)
359 syserr_cb (msg); 546 syserr_cb (msg);
360 else 547 else
361 { 548 {
549#if EV_AVOID_STDIO
550 const char *err = strerror (errno);
551
552 ev_printerr (msg);
553 ev_printerr (": ");
554 ev_printerr (err);
555 ev_printerr ("\n");
556#else
362 perror (msg); 557 perror (msg);
558#endif
363 abort (); 559 abort ();
364 } 560 }
365} 561}
366 562
367static void * 563static void *
368ev_realloc_emul (void *ptr, long size) 564ev_realloc_emul (void *ptr, long size)
369{ 565{
566#if __GLIBC__
567 return realloc (ptr, size);
568#else
370 /* some systems, notably openbsd and darwin, fail to properly 569 /* some systems, notably openbsd and darwin, fail to properly
371 * implement realloc (x, 0) (as required by both ansi c-98 and 570 * implement realloc (x, 0) (as required by both ansi c-89 and
372 * the single unix specification, so work around them here. 571 * the single unix specification, so work around them here.
373 */ 572 */
374 573
375 if (size) 574 if (size)
376 return realloc (ptr, size); 575 return realloc (ptr, size);
377 576
378 free (ptr); 577 free (ptr);
379 return 0; 578 return 0;
579#endif
380} 580}
381 581
382static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 582static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
383 583
384void 584void
392{ 592{
393 ptr = alloc (ptr, size); 593 ptr = alloc (ptr, size);
394 594
395 if (!ptr && size) 595 if (!ptr && size)
396 { 596 {
597#if EV_AVOID_STDIO
598 ev_printerr ("libev: memory allocation failed, aborting.\n");
599#else
397 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 600 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
601#endif
398 abort (); 602 abort ();
399 } 603 }
400 604
401 return ptr; 605 return ptr;
402} 606}
404#define ev_malloc(size) ev_realloc (0, (size)) 608#define ev_malloc(size) ev_realloc (0, (size))
405#define ev_free(ptr) ev_realloc ((ptr), 0) 609#define ev_free(ptr) ev_realloc ((ptr), 0)
406 610
407/*****************************************************************************/ 611/*****************************************************************************/
408 612
613/* set in reify when reification needed */
614#define EV_ANFD_REIFY 1
615
616/* file descriptor info structure */
409typedef struct 617typedef struct
410{ 618{
411 WL head; 619 WL head;
412 unsigned char events; 620 unsigned char events; /* the events watched for */
621 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
622 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
413 unsigned char reify; 623 unsigned char unused;
624#if EV_USE_EPOLL
625 unsigned int egen; /* generation counter to counter epoll bugs */
626#endif
414#if EV_SELECT_IS_WINSOCKET 627#if EV_SELECT_IS_WINSOCKET
415 SOCKET handle; 628 SOCKET handle;
416#endif 629#endif
417} ANFD; 630} ANFD;
418 631
632/* stores the pending event set for a given watcher */
419typedef struct 633typedef struct
420{ 634{
421 W w; 635 W w;
422 int events; 636 int events; /* the pending event set for the given watcher */
423} ANPENDING; 637} ANPENDING;
424 638
425#if EV_USE_INOTIFY 639#if EV_USE_INOTIFY
640/* hash table entry per inotify-id */
426typedef struct 641typedef struct
427{ 642{
428 WL head; 643 WL head;
429} ANFS; 644} ANFS;
645#endif
646
647/* Heap Entry */
648#if EV_HEAP_CACHE_AT
649 /* a heap element */
650 typedef struct {
651 ev_tstamp at;
652 WT w;
653 } ANHE;
654
655 #define ANHE_w(he) (he).w /* access watcher, read-write */
656 #define ANHE_at(he) (he).at /* access cached at, read-only */
657 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
658#else
659 /* a heap element */
660 typedef WT ANHE;
661
662 #define ANHE_w(he) (he)
663 #define ANHE_at(he) (he)->at
664 #define ANHE_at_cache(he)
430#endif 665#endif
431 666
432#if EV_MULTIPLICITY 667#if EV_MULTIPLICITY
433 668
434 struct ev_loop 669 struct ev_loop
453 688
454 static int ev_default_loop_ptr; 689 static int ev_default_loop_ptr;
455 690
456#endif 691#endif
457 692
693#if EV_FEATURE_API
694# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
695# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
696# define EV_INVOKE_PENDING invoke_cb (EV_A)
697#else
698# define EV_RELEASE_CB (void)0
699# define EV_ACQUIRE_CB (void)0
700# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
701#endif
702
703#define EVUNLOOP_RECURSE 0x80
704
458/*****************************************************************************/ 705/*****************************************************************************/
459 706
707#ifndef EV_HAVE_EV_TIME
460ev_tstamp 708ev_tstamp
461ev_time (void) 709ev_time (void)
462{ 710{
463#if EV_USE_REALTIME 711#if EV_USE_REALTIME
712 if (expect_true (have_realtime))
713 {
464 struct timespec ts; 714 struct timespec ts;
465 clock_gettime (CLOCK_REALTIME, &ts); 715 clock_gettime (CLOCK_REALTIME, &ts);
466 return ts.tv_sec + ts.tv_nsec * 1e-9; 716 return ts.tv_sec + ts.tv_nsec * 1e-9;
467#else 717 }
718#endif
719
468 struct timeval tv; 720 struct timeval tv;
469 gettimeofday (&tv, 0); 721 gettimeofday (&tv, 0);
470 return tv.tv_sec + tv.tv_usec * 1e-6; 722 return tv.tv_sec + tv.tv_usec * 1e-6;
471#endif
472} 723}
724#endif
473 725
474ev_tstamp inline_size 726inline_size ev_tstamp
475get_clock (void) 727get_clock (void)
476{ 728{
477#if EV_USE_MONOTONIC 729#if EV_USE_MONOTONIC
478 if (expect_true (have_monotonic)) 730 if (expect_true (have_monotonic))
479 { 731 {
512 struct timeval tv; 764 struct timeval tv;
513 765
514 tv.tv_sec = (time_t)delay; 766 tv.tv_sec = (time_t)delay;
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 767 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
516 768
769 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
770 /* something not guaranteed by newer posix versions, but guaranteed */
771 /* by older ones */
517 select (0, 0, 0, 0, &tv); 772 select (0, 0, 0, 0, &tv);
518#endif 773#endif
519 } 774 }
520} 775}
521 776
522/*****************************************************************************/ 777/*****************************************************************************/
523 778
524int inline_size 779#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
780
781/* find a suitable new size for the given array, */
782/* hopefully by rounding to a ncie-to-malloc size */
783inline_size int
525array_nextsize (int elem, int cur, int cnt) 784array_nextsize (int elem, int cur, int cnt)
526{ 785{
527 int ncur = cur + 1; 786 int ncur = cur + 1;
528 787
529 do 788 do
530 ncur <<= 1; 789 ncur <<= 1;
531 while (cnt > ncur); 790 while (cnt > ncur);
532 791
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 792 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
534 if (elem * ncur > 4096) 793 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
535 { 794 {
536 ncur *= elem; 795 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 796 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
538 ncur = ncur - sizeof (void *) * 4; 797 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem; 798 ncur /= elem;
540 } 799 }
541 800
542 return ncur; 801 return ncur;
546array_realloc (int elem, void *base, int *cur, int cnt) 805array_realloc (int elem, void *base, int *cur, int cnt)
547{ 806{
548 *cur = array_nextsize (elem, *cur, cnt); 807 *cur = array_nextsize (elem, *cur, cnt);
549 return ev_realloc (base, elem * *cur); 808 return ev_realloc (base, elem * *cur);
550} 809}
810
811#define array_init_zero(base,count) \
812 memset ((void *)(base), 0, sizeof (*(base)) * (count))
551 813
552#define array_needsize(type,base,cur,cnt,init) \ 814#define array_needsize(type,base,cur,cnt,init) \
553 if (expect_false ((cnt) > (cur))) \ 815 if (expect_false ((cnt) > (cur))) \
554 { \ 816 { \
555 int ocur_ = (cur); \ 817 int ocur_ = (cur); \
567 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 829 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
568 } 830 }
569#endif 831#endif
570 832
571#define array_free(stem, idx) \ 833#define array_free(stem, idx) \
572 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 834 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
573 835
574/*****************************************************************************/ 836/*****************************************************************************/
837
838/* dummy callback for pending events */
839static void noinline
840pendingcb (EV_P_ ev_prepare *w, int revents)
841{
842}
575 843
576void noinline 844void noinline
577ev_feed_event (EV_P_ void *w, int revents) 845ev_feed_event (EV_P_ void *w, int revents)
578{ 846{
579 W w_ = (W)w; 847 W w_ = (W)w;
588 pendings [pri][w_->pending - 1].w = w_; 856 pendings [pri][w_->pending - 1].w = w_;
589 pendings [pri][w_->pending - 1].events = revents; 857 pendings [pri][w_->pending - 1].events = revents;
590 } 858 }
591} 859}
592 860
593void inline_speed 861inline_speed void
862feed_reverse (EV_P_ W w)
863{
864 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
865 rfeeds [rfeedcnt++] = w;
866}
867
868inline_size void
869feed_reverse_done (EV_P_ int revents)
870{
871 do
872 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
873 while (rfeedcnt);
874}
875
876inline_speed void
594queue_events (EV_P_ W *events, int eventcnt, int type) 877queue_events (EV_P_ W *events, int eventcnt, int type)
595{ 878{
596 int i; 879 int i;
597 880
598 for (i = 0; i < eventcnt; ++i) 881 for (i = 0; i < eventcnt; ++i)
599 ev_feed_event (EV_A_ events [i], type); 882 ev_feed_event (EV_A_ events [i], type);
600} 883}
601 884
602/*****************************************************************************/ 885/*****************************************************************************/
603 886
604void inline_size 887inline_speed void
605anfds_init (ANFD *base, int count)
606{
607 while (count--)
608 {
609 base->head = 0;
610 base->events = EV_NONE;
611 base->reify = 0;
612
613 ++base;
614 }
615}
616
617void inline_speed
618fd_event (EV_P_ int fd, int revents) 888fd_event_nocheck (EV_P_ int fd, int revents)
619{ 889{
620 ANFD *anfd = anfds + fd; 890 ANFD *anfd = anfds + fd;
621 ev_io *w; 891 ev_io *w;
622 892
623 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 893 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
627 if (ev) 897 if (ev)
628 ev_feed_event (EV_A_ (W)w, ev); 898 ev_feed_event (EV_A_ (W)w, ev);
629 } 899 }
630} 900}
631 901
902/* do not submit kernel events for fds that have reify set */
903/* because that means they changed while we were polling for new events */
904inline_speed void
905fd_event (EV_P_ int fd, int revents)
906{
907 ANFD *anfd = anfds + fd;
908
909 if (expect_true (!anfd->reify))
910 fd_event_nocheck (EV_A_ fd, revents);
911}
912
632void 913void
633ev_feed_fd_event (EV_P_ int fd, int revents) 914ev_feed_fd_event (EV_P_ int fd, int revents)
634{ 915{
635 if (fd >= 0 && fd < anfdmax) 916 if (fd >= 0 && fd < anfdmax)
636 fd_event (EV_A_ fd, revents); 917 fd_event_nocheck (EV_A_ fd, revents);
637} 918}
638 919
639void inline_size 920/* make sure the external fd watch events are in-sync */
921/* with the kernel/libev internal state */
922inline_size void
640fd_reify (EV_P) 923fd_reify (EV_P)
641{ 924{
642 int i; 925 int i;
643 926
644 for (i = 0; i < fdchangecnt; ++i) 927 for (i = 0; i < fdchangecnt; ++i)
653 events |= (unsigned char)w->events; 936 events |= (unsigned char)w->events;
654 937
655#if EV_SELECT_IS_WINSOCKET 938#if EV_SELECT_IS_WINSOCKET
656 if (events) 939 if (events)
657 { 940 {
658 unsigned long argp; 941 unsigned long arg;
659 #ifdef EV_FD_TO_WIN32_HANDLE
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 942 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
661 #else
662 anfd->handle = _get_osfhandle (fd);
663 #endif
664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 943 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
665 } 944 }
666#endif 945#endif
667 946
668 { 947 {
669 unsigned char o_events = anfd->events; 948 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify; 949 unsigned char o_reify = anfd->reify;
671 950
672 anfd->reify = 0; 951 anfd->reify = 0;
673 anfd->events = events; 952 anfd->events = events;
674 953
675 if (o_events != events || o_reify & EV_IOFDSET) 954 if (o_events != events || o_reify & EV__IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events); 955 backend_modify (EV_A_ fd, o_events, events);
677 } 956 }
678 } 957 }
679 958
680 fdchangecnt = 0; 959 fdchangecnt = 0;
681} 960}
682 961
683void inline_size 962/* something about the given fd changed */
963inline_size void
684fd_change (EV_P_ int fd, int flags) 964fd_change (EV_P_ int fd, int flags)
685{ 965{
686 unsigned char reify = anfds [fd].reify; 966 unsigned char reify = anfds [fd].reify;
687 anfds [fd].reify |= flags; 967 anfds [fd].reify |= flags;
688 968
692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 972 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
693 fdchanges [fdchangecnt - 1] = fd; 973 fdchanges [fdchangecnt - 1] = fd;
694 } 974 }
695} 975}
696 976
697void inline_speed 977/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
978inline_speed void
698fd_kill (EV_P_ int fd) 979fd_kill (EV_P_ int fd)
699{ 980{
700 ev_io *w; 981 ev_io *w;
701 982
702 while ((w = (ev_io *)anfds [fd].head)) 983 while ((w = (ev_io *)anfds [fd].head))
704 ev_io_stop (EV_A_ w); 985 ev_io_stop (EV_A_ w);
705 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 986 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
706 } 987 }
707} 988}
708 989
709int inline_size 990/* check whether the given fd is actually valid, for error recovery */
991inline_size int
710fd_valid (int fd) 992fd_valid (int fd)
711{ 993{
712#ifdef _WIN32 994#ifdef _WIN32
713 return _get_osfhandle (fd) != -1; 995 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
714#else 996#else
715 return fcntl (fd, F_GETFD) != -1; 997 return fcntl (fd, F_GETFD) != -1;
716#endif 998#endif
717} 999}
718 1000
722{ 1004{
723 int fd; 1005 int fd;
724 1006
725 for (fd = 0; fd < anfdmax; ++fd) 1007 for (fd = 0; fd < anfdmax; ++fd)
726 if (anfds [fd].events) 1008 if (anfds [fd].events)
727 if (!fd_valid (fd) == -1 && errno == EBADF) 1009 if (!fd_valid (fd) && errno == EBADF)
728 fd_kill (EV_A_ fd); 1010 fd_kill (EV_A_ fd);
729} 1011}
730 1012
731/* called on ENOMEM in select/poll to kill some fds and retry */ 1013/* called on ENOMEM in select/poll to kill some fds and retry */
732static void noinline 1014static void noinline
736 1018
737 for (fd = anfdmax; fd--; ) 1019 for (fd = anfdmax; fd--; )
738 if (anfds [fd].events) 1020 if (anfds [fd].events)
739 { 1021 {
740 fd_kill (EV_A_ fd); 1022 fd_kill (EV_A_ fd);
741 return; 1023 break;
742 } 1024 }
743} 1025}
744 1026
745/* usually called after fork if backend needs to re-arm all fds from scratch */ 1027/* usually called after fork if backend needs to re-arm all fds from scratch */
746static void noinline 1028static void noinline
750 1032
751 for (fd = 0; fd < anfdmax; ++fd) 1033 for (fd = 0; fd < anfdmax; ++fd)
752 if (anfds [fd].events) 1034 if (anfds [fd].events)
753 { 1035 {
754 anfds [fd].events = 0; 1036 anfds [fd].events = 0;
1037 anfds [fd].emask = 0;
755 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1038 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
756 } 1039 }
757} 1040}
758 1041
759/*****************************************************************************/ 1042/* used to prepare libev internal fd's */
760 1043/* this is not fork-safe */
761/* towards the root */ 1044inline_speed void
762void inline_speed
763upheap (WT *heap, int k)
764{
765 WT w = heap [k];
766
767 for (;;)
768 {
769 int p = k >> 1;
770
771 /* maybe we could use a dummy element at heap [0]? */
772 if (!p || heap [p]->at <= w->at)
773 break;
774
775 heap [k] = heap [p];
776 ((W)heap [k])->active = k;
777 k = p;
778 }
779
780 heap [k] = w;
781 ((W)heap [k])->active = k;
782}
783
784/* away from the root */
785void inline_speed
786downheap (WT *heap, int N, int k)
787{
788 WT w = heap [k];
789
790 for (;;)
791 {
792 int c = k << 1;
793
794 if (c > N)
795 break;
796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
803 heap [k] = heap [c];
804 ((W)heap [k])->active = k;
805
806 k = c;
807 }
808
809 heap [k] = w;
810 ((W)heap [k])->active = k;
811}
812
813void inline_size
814adjustheap (WT *heap, int N, int k)
815{
816 upheap (heap, k);
817 downheap (heap, N, k);
818}
819
820/*****************************************************************************/
821
822typedef struct
823{
824 WL head;
825 EV_ATOMIC_T gotsig;
826} ANSIG;
827
828static ANSIG *signals;
829static int signalmax;
830
831static EV_ATOMIC_T gotsig;
832
833void inline_size
834signals_init (ANSIG *base, int count)
835{
836 while (count--)
837 {
838 base->head = 0;
839 base->gotsig = 0;
840
841 ++base;
842 }
843}
844
845/*****************************************************************************/
846
847void inline_speed
848fd_intern (int fd) 1045fd_intern (int fd)
849{ 1046{
850#ifdef _WIN32 1047#ifdef _WIN32
851 int arg = 1; 1048 unsigned long arg = 1;
852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1049 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
853#else 1050#else
854 fcntl (fd, F_SETFD, FD_CLOEXEC); 1051 fcntl (fd, F_SETFD, FD_CLOEXEC);
855 fcntl (fd, F_SETFL, O_NONBLOCK); 1052 fcntl (fd, F_SETFL, O_NONBLOCK);
856#endif 1053#endif
857} 1054}
858 1055
1056/*****************************************************************************/
1057
1058/*
1059 * the heap functions want a real array index. array index 0 uis guaranteed to not
1060 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1061 * the branching factor of the d-tree.
1062 */
1063
1064/*
1065 * at the moment we allow libev the luxury of two heaps,
1066 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1067 * which is more cache-efficient.
1068 * the difference is about 5% with 50000+ watchers.
1069 */
1070#if EV_USE_4HEAP
1071
1072#define DHEAP 4
1073#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1074#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1075#define UPHEAP_DONE(p,k) ((p) == (k))
1076
1077/* away from the root */
1078inline_speed void
1079downheap (ANHE *heap, int N, int k)
1080{
1081 ANHE he = heap [k];
1082 ANHE *E = heap + N + HEAP0;
1083
1084 for (;;)
1085 {
1086 ev_tstamp minat;
1087 ANHE *minpos;
1088 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1089
1090 /* find minimum child */
1091 if (expect_true (pos + DHEAP - 1 < E))
1092 {
1093 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1094 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1095 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1096 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1097 }
1098 else if (pos < E)
1099 {
1100 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1101 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1102 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1103 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1104 }
1105 else
1106 break;
1107
1108 if (ANHE_at (he) <= minat)
1109 break;
1110
1111 heap [k] = *minpos;
1112 ev_active (ANHE_w (*minpos)) = k;
1113
1114 k = minpos - heap;
1115 }
1116
1117 heap [k] = he;
1118 ev_active (ANHE_w (he)) = k;
1119}
1120
1121#else /* 4HEAP */
1122
1123#define HEAP0 1
1124#define HPARENT(k) ((k) >> 1)
1125#define UPHEAP_DONE(p,k) (!(p))
1126
1127/* away from the root */
1128inline_speed void
1129downheap (ANHE *heap, int N, int k)
1130{
1131 ANHE he = heap [k];
1132
1133 for (;;)
1134 {
1135 int c = k << 1;
1136
1137 if (c >= N + HEAP0)
1138 break;
1139
1140 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1141 ? 1 : 0;
1142
1143 if (ANHE_at (he) <= ANHE_at (heap [c]))
1144 break;
1145
1146 heap [k] = heap [c];
1147 ev_active (ANHE_w (heap [k])) = k;
1148
1149 k = c;
1150 }
1151
1152 heap [k] = he;
1153 ev_active (ANHE_w (he)) = k;
1154}
1155#endif
1156
1157/* towards the root */
1158inline_speed void
1159upheap (ANHE *heap, int k)
1160{
1161 ANHE he = heap [k];
1162
1163 for (;;)
1164 {
1165 int p = HPARENT (k);
1166
1167 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1168 break;
1169
1170 heap [k] = heap [p];
1171 ev_active (ANHE_w (heap [k])) = k;
1172 k = p;
1173 }
1174
1175 heap [k] = he;
1176 ev_active (ANHE_w (he)) = k;
1177}
1178
1179/* move an element suitably so it is in a correct place */
1180inline_size void
1181adjustheap (ANHE *heap, int N, int k)
1182{
1183 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1184 upheap (heap, k);
1185 else
1186 downheap (heap, N, k);
1187}
1188
1189/* rebuild the heap: this function is used only once and executed rarely */
1190inline_size void
1191reheap (ANHE *heap, int N)
1192{
1193 int i;
1194
1195 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1196 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1197 for (i = 0; i < N; ++i)
1198 upheap (heap, i + HEAP0);
1199}
1200
1201/*****************************************************************************/
1202
1203/* associate signal watchers to a signal signal */
1204typedef struct
1205{
1206 EV_ATOMIC_T pending;
1207#if EV_MULTIPLICITY
1208 EV_P;
1209#endif
1210 WL head;
1211} ANSIG;
1212
1213static ANSIG signals [EV_NSIG - 1];
1214
1215/*****************************************************************************/
1216
1217#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1218
859static void noinline 1219static void noinline
860evpipe_init (EV_P) 1220evpipe_init (EV_P)
861{ 1221{
862 if (!ev_is_active (&pipeev)) 1222 if (!ev_is_active (&pipe_w))
863 { 1223 {
864#if EV_USE_EVENTFD 1224# if EV_USE_EVENTFD
1225 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1226 if (evfd < 0 && errno == EINVAL)
865 if ((evfd = eventfd (0, 0)) >= 0) 1227 evfd = eventfd (0, 0);
1228
1229 if (evfd >= 0)
866 { 1230 {
867 evpipe [0] = -1; 1231 evpipe [0] = -1;
868 fd_intern (evfd); 1232 fd_intern (evfd); /* doing it twice doesn't hurt */
869 ev_io_set (&pipeev, evfd, EV_READ); 1233 ev_io_set (&pipe_w, evfd, EV_READ);
870 } 1234 }
871 else 1235 else
872#endif 1236# endif
873 { 1237 {
874 while (pipe (evpipe)) 1238 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe"); 1239 ev_syserr ("(libev) error creating signal/async pipe");
876 1240
877 fd_intern (evpipe [0]); 1241 fd_intern (evpipe [0]);
878 fd_intern (evpipe [1]); 1242 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ); 1243 ev_io_set (&pipe_w, evpipe [0], EV_READ);
880 } 1244 }
881 1245
882 ev_io_start (EV_A_ &pipeev); 1246 ev_io_start (EV_A_ &pipe_w);
883 ev_unref (EV_A); /* watcher should not keep loop alive */ 1247 ev_unref (EV_A); /* watcher should not keep loop alive */
884 } 1248 }
885} 1249}
886 1250
887void inline_size 1251inline_size void
888evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1252evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{ 1253{
890 if (!*flag) 1254 if (!*flag)
891 { 1255 {
892 int old_errno = errno; /* save errno because write might clobber it */ 1256 int old_errno = errno; /* save errno because write might clobber it */
1257 char dummy;
893 1258
894 *flag = 1; 1259 *flag = 1;
895 1260
896#if EV_USE_EVENTFD 1261#if EV_USE_EVENTFD
897 if (evfd >= 0) 1262 if (evfd >= 0)
899 uint64_t counter = 1; 1264 uint64_t counter = 1;
900 write (evfd, &counter, sizeof (uint64_t)); 1265 write (evfd, &counter, sizeof (uint64_t));
901 } 1266 }
902 else 1267 else
903#endif 1268#endif
904 write (evpipe [1], &old_errno, 1); 1269 write (evpipe [1], &dummy, 1);
905 1270
906 errno = old_errno; 1271 errno = old_errno;
907 } 1272 }
908} 1273}
909 1274
1275/* called whenever the libev signal pipe */
1276/* got some events (signal, async) */
910static void 1277static void
911pipecb (EV_P_ ev_io *iow, int revents) 1278pipecb (EV_P_ ev_io *iow, int revents)
912{ 1279{
1280 int i;
1281
913#if EV_USE_EVENTFD 1282#if EV_USE_EVENTFD
914 if (evfd >= 0) 1283 if (evfd >= 0)
915 { 1284 {
916 uint64_t counter = 1; 1285 uint64_t counter;
917 read (evfd, &counter, sizeof (uint64_t)); 1286 read (evfd, &counter, sizeof (uint64_t));
918 } 1287 }
919 else 1288 else
920#endif 1289#endif
921 { 1290 {
922 char dummy; 1291 char dummy;
923 read (evpipe [0], &dummy, 1); 1292 read (evpipe [0], &dummy, 1);
924 } 1293 }
925 1294
926 if (gotsig && ev_is_default_loop (EV_A)) 1295 if (sig_pending)
927 { 1296 {
928 int signum; 1297 sig_pending = 0;
929 gotsig = 0;
930 1298
931 for (signum = signalmax; signum--; ) 1299 for (i = EV_NSIG - 1; i--; )
932 if (signals [signum].gotsig) 1300 if (expect_false (signals [i].pending))
933 ev_feed_signal_event (EV_A_ signum + 1); 1301 ev_feed_signal_event (EV_A_ i + 1);
934 } 1302 }
935 1303
936#if EV_ASYNC_ENABLE 1304#if EV_ASYNC_ENABLE
937 if (gotasync) 1305 if (async_pending)
938 { 1306 {
939 int i; 1307 async_pending = 0;
940 gotasync = 0;
941 1308
942 for (i = asynccnt; i--; ) 1309 for (i = asynccnt; i--; )
943 if (asyncs [i]->sent) 1310 if (asyncs [i]->sent)
944 { 1311 {
945 asyncs [i]->sent = 0; 1312 asyncs [i]->sent = 0;
953 1320
954static void 1321static void
955ev_sighandler (int signum) 1322ev_sighandler (int signum)
956{ 1323{
957#if EV_MULTIPLICITY 1324#if EV_MULTIPLICITY
958 struct ev_loop *loop = &default_loop_struct; 1325 EV_P = signals [signum - 1].loop;
959#endif 1326#endif
960 1327
961#if _WIN32 1328#ifdef _WIN32
962 signal (signum, ev_sighandler); 1329 signal (signum, ev_sighandler);
963#endif 1330#endif
964 1331
965 signals [signum - 1].gotsig = 1; 1332 signals [signum - 1].pending = 1;
966 evpipe_write (EV_A_ &gotsig); 1333 evpipe_write (EV_A_ &sig_pending);
967} 1334}
968 1335
969void noinline 1336void noinline
970ev_feed_signal_event (EV_P_ int signum) 1337ev_feed_signal_event (EV_P_ int signum)
971{ 1338{
972 WL w; 1339 WL w;
973 1340
1341 if (expect_false (signum <= 0 || signum > EV_NSIG))
1342 return;
1343
1344 --signum;
1345
974#if EV_MULTIPLICITY 1346#if EV_MULTIPLICITY
975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1347 /* it is permissible to try to feed a signal to the wrong loop */
976#endif 1348 /* or, likely more useful, feeding a signal nobody is waiting for */
977 1349
978 --signum; 1350 if (expect_false (signals [signum].loop != EV_A))
979
980 if (signum < 0 || signum >= signalmax)
981 return; 1351 return;
1352#endif
982 1353
983 signals [signum].gotsig = 0; 1354 signals [signum].pending = 0;
984 1355
985 for (w = signals [signum].head; w; w = w->next) 1356 for (w = signals [signum].head; w; w = w->next)
986 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1357 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
987} 1358}
988 1359
1360#if EV_USE_SIGNALFD
1361static void
1362sigfdcb (EV_P_ ev_io *iow, int revents)
1363{
1364 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1365
1366 for (;;)
1367 {
1368 ssize_t res = read (sigfd, si, sizeof (si));
1369
1370 /* not ISO-C, as res might be -1, but works with SuS */
1371 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1372 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1373
1374 if (res < (ssize_t)sizeof (si))
1375 break;
1376 }
1377}
1378#endif
1379
1380#endif
1381
989/*****************************************************************************/ 1382/*****************************************************************************/
990 1383
1384#if EV_CHILD_ENABLE
991static WL childs [EV_PID_HASHSIZE]; 1385static WL childs [EV_PID_HASHSIZE];
992
993#ifndef _WIN32
994 1386
995static ev_signal childev; 1387static ev_signal childev;
996 1388
997#ifndef WIFCONTINUED 1389#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0 1390# define WIFCONTINUED(status) 0
999#endif 1391#endif
1000 1392
1001void inline_speed 1393/* handle a single child status event */
1394inline_speed void
1002child_reap (EV_P_ int chain, int pid, int status) 1395child_reap (EV_P_ int chain, int pid, int status)
1003{ 1396{
1004 ev_child *w; 1397 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1398 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1006 1399
1007 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1400 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1008 { 1401 {
1009 if ((w->pid == pid || !w->pid) 1402 if ((w->pid == pid || !w->pid)
1010 && (!traced || (w->flags & 1))) 1403 && (!traced || (w->flags & 1)))
1011 { 1404 {
1012 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1405 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1019 1412
1020#ifndef WCONTINUED 1413#ifndef WCONTINUED
1021# define WCONTINUED 0 1414# define WCONTINUED 0
1022#endif 1415#endif
1023 1416
1417/* called on sigchld etc., calls waitpid */
1024static void 1418static void
1025childcb (EV_P_ ev_signal *sw, int revents) 1419childcb (EV_P_ ev_signal *sw, int revents)
1026{ 1420{
1027 int pid, status; 1421 int pid, status;
1028 1422
1036 /* make sure we are called again until all children have been reaped */ 1430 /* make sure we are called again until all children have been reaped */
1037 /* we need to do it this way so that the callback gets called before we continue */ 1431 /* we need to do it this way so that the callback gets called before we continue */
1038 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1432 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1039 1433
1040 child_reap (EV_A_ pid, pid, status); 1434 child_reap (EV_A_ pid, pid, status);
1041 if (EV_PID_HASHSIZE > 1) 1435 if ((EV_PID_HASHSIZE) > 1)
1042 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1436 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1043} 1437}
1044 1438
1045#endif 1439#endif
1046 1440
1109 /* kqueue is borked on everything but netbsd apparently */ 1503 /* kqueue is borked on everything but netbsd apparently */
1110 /* it usually doesn't work correctly on anything but sockets and pipes */ 1504 /* it usually doesn't work correctly on anything but sockets and pipes */
1111 flags &= ~EVBACKEND_KQUEUE; 1505 flags &= ~EVBACKEND_KQUEUE;
1112#endif 1506#endif
1113#ifdef __APPLE__ 1507#ifdef __APPLE__
1114 // flags &= ~EVBACKEND_KQUEUE; for documentation 1508 /* only select works correctly on that "unix-certified" platform */
1115 flags &= ~EVBACKEND_POLL; 1509 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1510 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1511#endif
1512#ifdef __FreeBSD__
1513 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1116#endif 1514#endif
1117 1515
1118 return flags; 1516 return flags;
1119} 1517}
1120 1518
1134ev_backend (EV_P) 1532ev_backend (EV_P)
1135{ 1533{
1136 return backend; 1534 return backend;
1137} 1535}
1138 1536
1537#if EV_FEATURE_API
1139unsigned int 1538unsigned int
1140ev_loop_count (EV_P) 1539ev_iteration (EV_P)
1141{ 1540{
1142 return loop_count; 1541 return loop_count;
1143} 1542}
1144 1543
1544unsigned int
1545ev_depth (EV_P)
1546{
1547 return loop_depth;
1548}
1549
1145void 1550void
1146ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1551ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1147{ 1552{
1148 io_blocktime = interval; 1553 io_blocktime = interval;
1149} 1554}
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1557ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1153{ 1558{
1154 timeout_blocktime = interval; 1559 timeout_blocktime = interval;
1155} 1560}
1156 1561
1562void
1563ev_set_userdata (EV_P_ void *data)
1564{
1565 userdata = data;
1566}
1567
1568void *
1569ev_userdata (EV_P)
1570{
1571 return userdata;
1572}
1573
1574void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1575{
1576 invoke_cb = invoke_pending_cb;
1577}
1578
1579void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1580{
1581 release_cb = release;
1582 acquire_cb = acquire;
1583}
1584#endif
1585
1586/* initialise a loop structure, must be zero-initialised */
1157static void noinline 1587static void noinline
1158loop_init (EV_P_ unsigned int flags) 1588loop_init (EV_P_ unsigned int flags)
1159{ 1589{
1160 if (!backend) 1590 if (!backend)
1161 { 1591 {
1592#if EV_USE_REALTIME
1593 if (!have_realtime)
1594 {
1595 struct timespec ts;
1596
1597 if (!clock_gettime (CLOCK_REALTIME, &ts))
1598 have_realtime = 1;
1599 }
1600#endif
1601
1162#if EV_USE_MONOTONIC 1602#if EV_USE_MONOTONIC
1603 if (!have_monotonic)
1163 { 1604 {
1164 struct timespec ts; 1605 struct timespec ts;
1606
1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1607 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1166 have_monotonic = 1; 1608 have_monotonic = 1;
1167 } 1609 }
1168#endif 1610#endif
1611
1612 /* pid check not overridable via env */
1613#ifndef _WIN32
1614 if (flags & EVFLAG_FORKCHECK)
1615 curpid = getpid ();
1616#endif
1617
1618 if (!(flags & EVFLAG_NOENV)
1619 && !enable_secure ()
1620 && getenv ("LIBEV_FLAGS"))
1621 flags = atoi (getenv ("LIBEV_FLAGS"));
1169 1622
1170 ev_rt_now = ev_time (); 1623 ev_rt_now = ev_time ();
1171 mn_now = get_clock (); 1624 mn_now = get_clock ();
1172 now_floor = mn_now; 1625 now_floor = mn_now;
1173 rtmn_diff = ev_rt_now - mn_now; 1626 rtmn_diff = ev_rt_now - mn_now;
1627#if EV_FEATURE_API
1628 invoke_cb = ev_invoke_pending;
1629#endif
1174 1630
1175 io_blocktime = 0.; 1631 io_blocktime = 0.;
1176 timeout_blocktime = 0.; 1632 timeout_blocktime = 0.;
1177 backend = 0; 1633 backend = 0;
1178 backend_fd = -1; 1634 backend_fd = -1;
1179 gotasync = 0; 1635 sig_pending = 0;
1636#if EV_ASYNC_ENABLE
1637 async_pending = 0;
1638#endif
1180#if EV_USE_INOTIFY 1639#if EV_USE_INOTIFY
1181 fs_fd = -2; 1640 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1182#endif 1641#endif
1183 1642#if EV_USE_SIGNALFD
1184 /* pid check not overridable via env */ 1643 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1185#ifndef _WIN32
1186 if (flags & EVFLAG_FORKCHECK)
1187 curpid = getpid ();
1188#endif 1644#endif
1189
1190 if (!(flags & EVFLAG_NOENV)
1191 && !enable_secure ()
1192 && getenv ("LIBEV_FLAGS"))
1193 flags = atoi (getenv ("LIBEV_FLAGS"));
1194 1645
1195 if (!(flags & 0x0000ffffU)) 1646 if (!(flags & 0x0000ffffU))
1196 flags |= ev_recommended_backends (); 1647 flags |= ev_recommended_backends ();
1197 1648
1198#if EV_USE_PORT 1649#if EV_USE_PORT
1209#endif 1660#endif
1210#if EV_USE_SELECT 1661#if EV_USE_SELECT
1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1662 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1212#endif 1663#endif
1213 1664
1665 ev_prepare_init (&pending_w, pendingcb);
1666
1667#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1214 ev_init (&pipeev, pipecb); 1668 ev_init (&pipe_w, pipecb);
1215 ev_set_priority (&pipeev, EV_MAXPRI); 1669 ev_set_priority (&pipe_w, EV_MAXPRI);
1670#endif
1216 } 1671 }
1217} 1672}
1218 1673
1674/* free up a loop structure */
1219static void noinline 1675static void noinline
1220loop_destroy (EV_P) 1676loop_destroy (EV_P)
1221{ 1677{
1222 int i; 1678 int i;
1223 1679
1224 if (ev_is_active (&pipeev)) 1680 if (ev_is_active (&pipe_w))
1225 { 1681 {
1226 ev_ref (EV_A); /* signal watcher */ 1682 /*ev_ref (EV_A);*/
1227 ev_io_stop (EV_A_ &pipeev); 1683 /*ev_io_stop (EV_A_ &pipe_w);*/
1228 1684
1229#if EV_USE_EVENTFD 1685#if EV_USE_EVENTFD
1230 if (evfd >= 0) 1686 if (evfd >= 0)
1231 close (evfd); 1687 close (evfd);
1232#endif 1688#endif
1233 1689
1234 if (evpipe [0] >= 0) 1690 if (evpipe [0] >= 0)
1235 { 1691 {
1236 close (evpipe [0]); 1692 EV_WIN32_CLOSE_FD (evpipe [0]);
1237 close (evpipe [1]); 1693 EV_WIN32_CLOSE_FD (evpipe [1]);
1238 } 1694 }
1239 } 1695 }
1696
1697#if EV_USE_SIGNALFD
1698 if (ev_is_active (&sigfd_w))
1699 close (sigfd);
1700#endif
1240 1701
1241#if EV_USE_INOTIFY 1702#if EV_USE_INOTIFY
1242 if (fs_fd >= 0) 1703 if (fs_fd >= 0)
1243 close (fs_fd); 1704 close (fs_fd);
1244#endif 1705#endif
1268#if EV_IDLE_ENABLE 1729#if EV_IDLE_ENABLE
1269 array_free (idle, [i]); 1730 array_free (idle, [i]);
1270#endif 1731#endif
1271 } 1732 }
1272 1733
1273 ev_free (anfds); anfdmax = 0; 1734 ev_free (anfds); anfds = 0; anfdmax = 0;
1274 1735
1275 /* have to use the microsoft-never-gets-it-right macro */ 1736 /* have to use the microsoft-never-gets-it-right macro */
1737 array_free (rfeed, EMPTY);
1276 array_free (fdchange, EMPTY); 1738 array_free (fdchange, EMPTY);
1277 array_free (timer, EMPTY); 1739 array_free (timer, EMPTY);
1278#if EV_PERIODIC_ENABLE 1740#if EV_PERIODIC_ENABLE
1279 array_free (periodic, EMPTY); 1741 array_free (periodic, EMPTY);
1280#endif 1742#endif
1289 1751
1290 backend = 0; 1752 backend = 0;
1291} 1753}
1292 1754
1293#if EV_USE_INOTIFY 1755#if EV_USE_INOTIFY
1294void inline_size infy_fork (EV_P); 1756inline_size void infy_fork (EV_P);
1295#endif 1757#endif
1296 1758
1297void inline_size 1759inline_size void
1298loop_fork (EV_P) 1760loop_fork (EV_P)
1299{ 1761{
1300#if EV_USE_PORT 1762#if EV_USE_PORT
1301 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1763 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1302#endif 1764#endif
1308#endif 1770#endif
1309#if EV_USE_INOTIFY 1771#if EV_USE_INOTIFY
1310 infy_fork (EV_A); 1772 infy_fork (EV_A);
1311#endif 1773#endif
1312 1774
1313 if (ev_is_active (&pipeev)) 1775 if (ev_is_active (&pipe_w))
1314 { 1776 {
1315 /* this "locks" the handlers against writing to the pipe */ 1777 /* this "locks" the handlers against writing to the pipe */
1316 /* while we modify the fd vars */ 1778 /* while we modify the fd vars */
1317 gotsig = 1; 1779 sig_pending = 1;
1318#if EV_ASYNC_ENABLE 1780#if EV_ASYNC_ENABLE
1319 gotasync = 1; 1781 async_pending = 1;
1320#endif 1782#endif
1321 1783
1322 ev_ref (EV_A); 1784 ev_ref (EV_A);
1323 ev_io_stop (EV_A_ &pipeev); 1785 ev_io_stop (EV_A_ &pipe_w);
1324 1786
1325#if EV_USE_EVENTFD 1787#if EV_USE_EVENTFD
1326 if (evfd >= 0) 1788 if (evfd >= 0)
1327 close (evfd); 1789 close (evfd);
1328#endif 1790#endif
1329 1791
1330 if (evpipe [0] >= 0) 1792 if (evpipe [0] >= 0)
1331 { 1793 {
1332 close (evpipe [0]); 1794 EV_WIN32_CLOSE_FD (evpipe [0]);
1333 close (evpipe [1]); 1795 EV_WIN32_CLOSE_FD (evpipe [1]);
1334 } 1796 }
1335 1797
1798#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1336 evpipe_init (EV_A); 1799 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */ 1800 /* now iterate over everything, in case we missed something */
1338 pipecb (EV_A_ &pipeev, EV_READ); 1801 pipecb (EV_A_ &pipe_w, EV_READ);
1802#endif
1339 } 1803 }
1340 1804
1341 postfork = 0; 1805 postfork = 0;
1342} 1806}
1343 1807
1344#if EV_MULTIPLICITY 1808#if EV_MULTIPLICITY
1809
1345struct ev_loop * 1810struct ev_loop *
1346ev_loop_new (unsigned int flags) 1811ev_loop_new (unsigned int flags)
1347{ 1812{
1348 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1813 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1349 1814
1350 memset (loop, 0, sizeof (struct ev_loop)); 1815 memset (EV_A, 0, sizeof (struct ev_loop));
1351
1352 loop_init (EV_A_ flags); 1816 loop_init (EV_A_ flags);
1353 1817
1354 if (ev_backend (EV_A)) 1818 if (ev_backend (EV_A))
1355 return loop; 1819 return EV_A;
1356 1820
1357 return 0; 1821 return 0;
1358} 1822}
1359 1823
1360void 1824void
1367void 1831void
1368ev_loop_fork (EV_P) 1832ev_loop_fork (EV_P)
1369{ 1833{
1370 postfork = 1; /* must be in line with ev_default_fork */ 1834 postfork = 1; /* must be in line with ev_default_fork */
1371} 1835}
1836#endif /* multiplicity */
1372 1837
1838#if EV_VERIFY
1839static void noinline
1840verify_watcher (EV_P_ W w)
1841{
1842 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1843
1844 if (w->pending)
1845 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1846}
1847
1848static void noinline
1849verify_heap (EV_P_ ANHE *heap, int N)
1850{
1851 int i;
1852
1853 for (i = HEAP0; i < N + HEAP0; ++i)
1854 {
1855 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1856 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1857 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1858
1859 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1860 }
1861}
1862
1863static void noinline
1864array_verify (EV_P_ W *ws, int cnt)
1865{
1866 while (cnt--)
1867 {
1868 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1869 verify_watcher (EV_A_ ws [cnt]);
1870 }
1871}
1872#endif
1873
1874#if EV_FEATURE_API
1875void
1876ev_verify (EV_P)
1877{
1878#if EV_VERIFY
1879 int i;
1880 WL w;
1881
1882 assert (activecnt >= -1);
1883
1884 assert (fdchangemax >= fdchangecnt);
1885 for (i = 0; i < fdchangecnt; ++i)
1886 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1887
1888 assert (anfdmax >= 0);
1889 for (i = 0; i < anfdmax; ++i)
1890 for (w = anfds [i].head; w; w = w->next)
1891 {
1892 verify_watcher (EV_A_ (W)w);
1893 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1894 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1895 }
1896
1897 assert (timermax >= timercnt);
1898 verify_heap (EV_A_ timers, timercnt);
1899
1900#if EV_PERIODIC_ENABLE
1901 assert (periodicmax >= periodiccnt);
1902 verify_heap (EV_A_ periodics, periodiccnt);
1903#endif
1904
1905 for (i = NUMPRI; i--; )
1906 {
1907 assert (pendingmax [i] >= pendingcnt [i]);
1908#if EV_IDLE_ENABLE
1909 assert (idleall >= 0);
1910 assert (idlemax [i] >= idlecnt [i]);
1911 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1912#endif
1913 }
1914
1915#if EV_FORK_ENABLE
1916 assert (forkmax >= forkcnt);
1917 array_verify (EV_A_ (W *)forks, forkcnt);
1918#endif
1919
1920#if EV_ASYNC_ENABLE
1921 assert (asyncmax >= asynccnt);
1922 array_verify (EV_A_ (W *)asyncs, asynccnt);
1923#endif
1924
1925#if EV_PREPARE_ENABLE
1926 assert (preparemax >= preparecnt);
1927 array_verify (EV_A_ (W *)prepares, preparecnt);
1928#endif
1929
1930#if EV_CHECK_ENABLE
1931 assert (checkmax >= checkcnt);
1932 array_verify (EV_A_ (W *)checks, checkcnt);
1933#endif
1934
1935# if 0
1936#if EV_CHILD_ENABLE
1937 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1938 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1939#endif
1940# endif
1941#endif
1942}
1373#endif 1943#endif
1374 1944
1375#if EV_MULTIPLICITY 1945#if EV_MULTIPLICITY
1376struct ev_loop * 1946struct ev_loop *
1377ev_default_loop_init (unsigned int flags) 1947ev_default_loop_init (unsigned int flags)
1381#endif 1951#endif
1382{ 1952{
1383 if (!ev_default_loop_ptr) 1953 if (!ev_default_loop_ptr)
1384 { 1954 {
1385#if EV_MULTIPLICITY 1955#if EV_MULTIPLICITY
1386 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1956 EV_P = ev_default_loop_ptr = &default_loop_struct;
1387#else 1957#else
1388 ev_default_loop_ptr = 1; 1958 ev_default_loop_ptr = 1;
1389#endif 1959#endif
1390 1960
1391 loop_init (EV_A_ flags); 1961 loop_init (EV_A_ flags);
1392 1962
1393 if (ev_backend (EV_A)) 1963 if (ev_backend (EV_A))
1394 { 1964 {
1395#ifndef _WIN32 1965#if EV_CHILD_ENABLE
1396 ev_signal_init (&childev, childcb, SIGCHLD); 1966 ev_signal_init (&childev, childcb, SIGCHLD);
1397 ev_set_priority (&childev, EV_MAXPRI); 1967 ev_set_priority (&childev, EV_MAXPRI);
1398 ev_signal_start (EV_A_ &childev); 1968 ev_signal_start (EV_A_ &childev);
1399 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1969 ev_unref (EV_A); /* child watcher should not keep loop alive */
1400#endif 1970#endif
1408 1978
1409void 1979void
1410ev_default_destroy (void) 1980ev_default_destroy (void)
1411{ 1981{
1412#if EV_MULTIPLICITY 1982#if EV_MULTIPLICITY
1413 struct ev_loop *loop = ev_default_loop_ptr; 1983 EV_P = ev_default_loop_ptr;
1414#endif 1984#endif
1415 1985
1416#ifndef _WIN32 1986 ev_default_loop_ptr = 0;
1987
1988#if EV_CHILD_ENABLE
1417 ev_ref (EV_A); /* child watcher */ 1989 ev_ref (EV_A); /* child watcher */
1418 ev_signal_stop (EV_A_ &childev); 1990 ev_signal_stop (EV_A_ &childev);
1419#endif 1991#endif
1420 1992
1421 loop_destroy (EV_A); 1993 loop_destroy (EV_A);
1423 1995
1424void 1996void
1425ev_default_fork (void) 1997ev_default_fork (void)
1426{ 1998{
1427#if EV_MULTIPLICITY 1999#if EV_MULTIPLICITY
1428 struct ev_loop *loop = ev_default_loop_ptr; 2000 EV_P = ev_default_loop_ptr;
1429#endif 2001#endif
1430 2002
1431 if (backend)
1432 postfork = 1; /* must be in line with ev_loop_fork */ 2003 postfork = 1; /* must be in line with ev_loop_fork */
1433} 2004}
1434 2005
1435/*****************************************************************************/ 2006/*****************************************************************************/
1436 2007
1437void 2008void
1438ev_invoke (EV_P_ void *w, int revents) 2009ev_invoke (EV_P_ void *w, int revents)
1439{ 2010{
1440 EV_CB_INVOKE ((W)w, revents); 2011 EV_CB_INVOKE ((W)w, revents);
1441} 2012}
1442 2013
1443void inline_speed 2014unsigned int
1444call_pending (EV_P) 2015ev_pending_count (EV_P)
2016{
2017 int pri;
2018 unsigned int count = 0;
2019
2020 for (pri = NUMPRI; pri--; )
2021 count += pendingcnt [pri];
2022
2023 return count;
2024}
2025
2026void noinline
2027ev_invoke_pending (EV_P)
1445{ 2028{
1446 int pri; 2029 int pri;
1447 2030
1448 for (pri = NUMPRI; pri--; ) 2031 for (pri = NUMPRI; pri--; )
1449 while (pendingcnt [pri]) 2032 while (pendingcnt [pri])
1450 { 2033 {
1451 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2034 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1452 2035
1453 if (expect_true (p->w))
1454 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2036 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2037 /* ^ this is no longer true, as pending_w could be here */
1456 2038
1457 p->w->pending = 0; 2039 p->w->pending = 0;
1458 EV_CB_INVOKE (p->w, p->events); 2040 EV_CB_INVOKE (p->w, p->events);
1459 } 2041 EV_FREQUENT_CHECK;
1460 } 2042 }
1461} 2043}
1462 2044
1463void inline_size
1464timers_reify (EV_P)
1465{
1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1467 {
1468 ev_timer *w = (ev_timer *)timers [1];
1469
1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->repeat)
1474 {
1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1476
1477 ev_at (w) += w->repeat;
1478 if (ev_at (w) < mn_now)
1479 ev_at (w) = mn_now;
1480
1481 downheap (timers, timercnt, 1);
1482 }
1483 else
1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1485
1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1487 }
1488}
1489
1490#if EV_PERIODIC_ENABLE
1491void inline_size
1492periodics_reify (EV_P)
1493{
1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1495 {
1496 ev_periodic *w = (ev_periodic *)periodics [1];
1497
1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1499
1500 /* first reschedule or stop timer */
1501 if (w->reschedule_cb)
1502 {
1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1505 downheap (periodics, periodiccnt, 1);
1506 }
1507 else if (w->interval)
1508 {
1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1512 downheap (periodics, periodiccnt, 1);
1513 }
1514 else
1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1516
1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1518 }
1519}
1520
1521static void noinline
1522periodics_reschedule (EV_P)
1523{
1524 int i;
1525
1526 /* adjust periodics after time jump */
1527 for (i = 0; i < periodiccnt; ++i)
1528 {
1529 ev_periodic *w = (ev_periodic *)periodics [i];
1530
1531 if (w->reschedule_cb)
1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1533 else if (w->interval)
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 }
1536
1537 /* now rebuild the heap */
1538 for (i = periodiccnt >> 1; i--; )
1539 downheap (periodics, periodiccnt, i);
1540}
1541#endif
1542
1543#if EV_IDLE_ENABLE 2045#if EV_IDLE_ENABLE
1544void inline_size 2046/* make idle watchers pending. this handles the "call-idle */
2047/* only when higher priorities are idle" logic */
2048inline_size void
1545idle_reify (EV_P) 2049idle_reify (EV_P)
1546{ 2050{
1547 if (expect_false (idleall)) 2051 if (expect_false (idleall))
1548 { 2052 {
1549 int pri; 2053 int pri;
1561 } 2065 }
1562 } 2066 }
1563} 2067}
1564#endif 2068#endif
1565 2069
1566void inline_speed 2070/* make timers pending */
2071inline_size void
2072timers_reify (EV_P)
2073{
2074 EV_FREQUENT_CHECK;
2075
2076 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2077 {
2078 do
2079 {
2080 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2081
2082 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2083
2084 /* first reschedule or stop timer */
2085 if (w->repeat)
2086 {
2087 ev_at (w) += w->repeat;
2088 if (ev_at (w) < mn_now)
2089 ev_at (w) = mn_now;
2090
2091 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2092
2093 ANHE_at_cache (timers [HEAP0]);
2094 downheap (timers, timercnt, HEAP0);
2095 }
2096 else
2097 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2098
2099 EV_FREQUENT_CHECK;
2100 feed_reverse (EV_A_ (W)w);
2101 }
2102 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2103
2104 feed_reverse_done (EV_A_ EV_TIMER);
2105 }
2106}
2107
2108#if EV_PERIODIC_ENABLE
2109/* make periodics pending */
2110inline_size void
2111periodics_reify (EV_P)
2112{
2113 EV_FREQUENT_CHECK;
2114
2115 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2116 {
2117 int feed_count = 0;
2118
2119 do
2120 {
2121 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2122
2123 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2124
2125 /* first reschedule or stop timer */
2126 if (w->reschedule_cb)
2127 {
2128 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2129
2130 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2131
2132 ANHE_at_cache (periodics [HEAP0]);
2133 downheap (periodics, periodiccnt, HEAP0);
2134 }
2135 else if (w->interval)
2136 {
2137 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2138 /* if next trigger time is not sufficiently in the future, put it there */
2139 /* this might happen because of floating point inexactness */
2140 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2141 {
2142 ev_at (w) += w->interval;
2143
2144 /* if interval is unreasonably low we might still have a time in the past */
2145 /* so correct this. this will make the periodic very inexact, but the user */
2146 /* has effectively asked to get triggered more often than possible */
2147 if (ev_at (w) < ev_rt_now)
2148 ev_at (w) = ev_rt_now;
2149 }
2150
2151 ANHE_at_cache (periodics [HEAP0]);
2152 downheap (periodics, periodiccnt, HEAP0);
2153 }
2154 else
2155 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2156
2157 EV_FREQUENT_CHECK;
2158 feed_reverse (EV_A_ (W)w);
2159 }
2160 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2161
2162 feed_reverse_done (EV_A_ EV_PERIODIC);
2163 }
2164}
2165
2166/* simply recalculate all periodics */
2167/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2168static void noinline
2169periodics_reschedule (EV_P)
2170{
2171 int i;
2172
2173 /* adjust periodics after time jump */
2174 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2175 {
2176 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2177
2178 if (w->reschedule_cb)
2179 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2180 else if (w->interval)
2181 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2182
2183 ANHE_at_cache (periodics [i]);
2184 }
2185
2186 reheap (periodics, periodiccnt);
2187}
2188#endif
2189
2190/* adjust all timers by a given offset */
2191static void noinline
2192timers_reschedule (EV_P_ ev_tstamp adjust)
2193{
2194 int i;
2195
2196 for (i = 0; i < timercnt; ++i)
2197 {
2198 ANHE *he = timers + i + HEAP0;
2199 ANHE_w (*he)->at += adjust;
2200 ANHE_at_cache (*he);
2201 }
2202}
2203
2204/* fetch new monotonic and realtime times from the kernel */
2205/* also detect if there was a timejump, and act accordingly */
2206inline_speed void
1567time_update (EV_P_ ev_tstamp max_block) 2207time_update (EV_P_ ev_tstamp max_block)
1568{ 2208{
1569 int i;
1570
1571#if EV_USE_MONOTONIC 2209#if EV_USE_MONOTONIC
1572 if (expect_true (have_monotonic)) 2210 if (expect_true (have_monotonic))
1573 { 2211 {
2212 int i;
1574 ev_tstamp odiff = rtmn_diff; 2213 ev_tstamp odiff = rtmn_diff;
1575 2214
1576 mn_now = get_clock (); 2215 mn_now = get_clock ();
1577 2216
1578 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2217 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1596 */ 2235 */
1597 for (i = 4; --i; ) 2236 for (i = 4; --i; )
1598 { 2237 {
1599 rtmn_diff = ev_rt_now - mn_now; 2238 rtmn_diff = ev_rt_now - mn_now;
1600 2239
1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2240 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1602 return; /* all is well */ 2241 return; /* all is well */
1603 2242
1604 ev_rt_now = ev_time (); 2243 ev_rt_now = ev_time ();
1605 mn_now = get_clock (); 2244 mn_now = get_clock ();
1606 now_floor = mn_now; 2245 now_floor = mn_now;
1607 } 2246 }
1608 2247
2248 /* no timer adjustment, as the monotonic clock doesn't jump */
2249 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609# if EV_PERIODIC_ENABLE 2250# if EV_PERIODIC_ENABLE
1610 periodics_reschedule (EV_A); 2251 periodics_reschedule (EV_A);
1611# endif 2252# endif
1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1614 } 2253 }
1615 else 2254 else
1616#endif 2255#endif
1617 { 2256 {
1618 ev_rt_now = ev_time (); 2257 ev_rt_now = ev_time ();
1619 2258
1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2259 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1621 { 2260 {
2261 /* adjust timers. this is easy, as the offset is the same for all of them */
2262 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1622#if EV_PERIODIC_ENABLE 2263#if EV_PERIODIC_ENABLE
1623 periodics_reschedule (EV_A); 2264 periodics_reschedule (EV_A);
1624#endif 2265#endif
1625 /* adjust timers. this is easy, as the offset is the same for all of them */
1626 for (i = 1; i <= timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now;
1628 } 2266 }
1629 2267
1630 mn_now = ev_rt_now; 2268 mn_now = ev_rt_now;
1631 } 2269 }
1632} 2270}
1633 2271
1634void 2272void
1635ev_ref (EV_P)
1636{
1637 ++activecnt;
1638}
1639
1640void
1641ev_unref (EV_P)
1642{
1643 --activecnt;
1644}
1645
1646static int loop_done;
1647
1648void
1649ev_loop (EV_P_ int flags) 2273ev_loop (EV_P_ int flags)
1650{ 2274{
2275#if EV_FEATURE_API
2276 ++loop_depth;
2277#endif
2278
2279 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2280
1651 loop_done = EVUNLOOP_CANCEL; 2281 loop_done = EVUNLOOP_CANCEL;
1652 2282
1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2283 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1654 2284
1655 do 2285 do
1656 { 2286 {
2287#if EV_VERIFY >= 2
2288 ev_verify (EV_A);
2289#endif
2290
1657#ifndef _WIN32 2291#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */ 2292 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid)) 2293 if (expect_false (getpid () != curpid))
1660 { 2294 {
1661 curpid = getpid (); 2295 curpid = getpid ();
1667 /* we might have forked, so queue fork handlers */ 2301 /* we might have forked, so queue fork handlers */
1668 if (expect_false (postfork)) 2302 if (expect_false (postfork))
1669 if (forkcnt) 2303 if (forkcnt)
1670 { 2304 {
1671 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2305 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1672 call_pending (EV_A); 2306 EV_INVOKE_PENDING;
1673 } 2307 }
1674#endif 2308#endif
1675 2309
2310#if EV_PREPARE_ENABLE
1676 /* queue prepare watchers (and execute them) */ 2311 /* queue prepare watchers (and execute them) */
1677 if (expect_false (preparecnt)) 2312 if (expect_false (preparecnt))
1678 { 2313 {
1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2314 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1680 call_pending (EV_A); 2315 EV_INVOKE_PENDING;
1681 } 2316 }
2317#endif
1682 2318
1683 if (expect_false (!activecnt)) 2319 if (expect_false (loop_done))
1684 break; 2320 break;
1685 2321
1686 /* we might have forked, so reify kernel state if necessary */ 2322 /* we might have forked, so reify kernel state if necessary */
1687 if (expect_false (postfork)) 2323 if (expect_false (postfork))
1688 loop_fork (EV_A); 2324 loop_fork (EV_A);
1695 ev_tstamp waittime = 0.; 2331 ev_tstamp waittime = 0.;
1696 ev_tstamp sleeptime = 0.; 2332 ev_tstamp sleeptime = 0.;
1697 2333
1698 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2334 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1699 { 2335 {
2336 /* remember old timestamp for io_blocktime calculation */
2337 ev_tstamp prev_mn_now = mn_now;
2338
1700 /* update time to cancel out callback processing overhead */ 2339 /* update time to cancel out callback processing overhead */
1701 time_update (EV_A_ 1e100); 2340 time_update (EV_A_ 1e100);
1702 2341
1703 waittime = MAX_BLOCKTIME; 2342 waittime = MAX_BLOCKTIME;
1704 2343
1705 if (timercnt) 2344 if (timercnt)
1706 { 2345 {
1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 2346 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1708 if (waittime > to) waittime = to; 2347 if (waittime > to) waittime = to;
1709 } 2348 }
1710 2349
1711#if EV_PERIODIC_ENABLE 2350#if EV_PERIODIC_ENABLE
1712 if (periodiccnt) 2351 if (periodiccnt)
1713 { 2352 {
1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 2353 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1715 if (waittime > to) waittime = to; 2354 if (waittime > to) waittime = to;
1716 } 2355 }
1717#endif 2356#endif
1718 2357
2358 /* don't let timeouts decrease the waittime below timeout_blocktime */
1719 if (expect_false (waittime < timeout_blocktime)) 2359 if (expect_false (waittime < timeout_blocktime))
1720 waittime = timeout_blocktime; 2360 waittime = timeout_blocktime;
1721 2361
1722 sleeptime = waittime - backend_fudge; 2362 /* extra check because io_blocktime is commonly 0 */
1723
1724 if (expect_true (sleeptime > io_blocktime)) 2363 if (expect_false (io_blocktime))
1725 sleeptime = io_blocktime;
1726
1727 if (sleeptime)
1728 { 2364 {
2365 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2366
2367 if (sleeptime > waittime - backend_fudge)
2368 sleeptime = waittime - backend_fudge;
2369
2370 if (expect_true (sleeptime > 0.))
2371 {
1729 ev_sleep (sleeptime); 2372 ev_sleep (sleeptime);
1730 waittime -= sleeptime; 2373 waittime -= sleeptime;
2374 }
1731 } 2375 }
1732 } 2376 }
1733 2377
2378#if EV_FEATURE_API
1734 ++loop_count; 2379 ++loop_count;
2380#endif
2381 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1735 backend_poll (EV_A_ waittime); 2382 backend_poll (EV_A_ waittime);
2383 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1736 2384
1737 /* update ev_rt_now, do magic */ 2385 /* update ev_rt_now, do magic */
1738 time_update (EV_A_ waittime + sleeptime); 2386 time_update (EV_A_ waittime + sleeptime);
1739 } 2387 }
1740 2388
1747#if EV_IDLE_ENABLE 2395#if EV_IDLE_ENABLE
1748 /* queue idle watchers unless other events are pending */ 2396 /* queue idle watchers unless other events are pending */
1749 idle_reify (EV_A); 2397 idle_reify (EV_A);
1750#endif 2398#endif
1751 2399
2400#if EV_CHECK_ENABLE
1752 /* queue check watchers, to be executed first */ 2401 /* queue check watchers, to be executed first */
1753 if (expect_false (checkcnt)) 2402 if (expect_false (checkcnt))
1754 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2403 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2404#endif
1755 2405
1756 call_pending (EV_A); 2406 EV_INVOKE_PENDING;
1757 } 2407 }
1758 while (expect_true ( 2408 while (expect_true (
1759 activecnt 2409 activecnt
1760 && !loop_done 2410 && !loop_done
1761 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2411 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1762 )); 2412 ));
1763 2413
1764 if (loop_done == EVUNLOOP_ONE) 2414 if (loop_done == EVUNLOOP_ONE)
1765 loop_done = EVUNLOOP_CANCEL; 2415 loop_done = EVUNLOOP_CANCEL;
2416
2417#if EV_FEATURE_API
2418 --loop_depth;
2419#endif
1766} 2420}
1767 2421
1768void 2422void
1769ev_unloop (EV_P_ int how) 2423ev_unloop (EV_P_ int how)
1770{ 2424{
1771 loop_done = how; 2425 loop_done = how;
1772} 2426}
1773 2427
2428void
2429ev_ref (EV_P)
2430{
2431 ++activecnt;
2432}
2433
2434void
2435ev_unref (EV_P)
2436{
2437 --activecnt;
2438}
2439
2440void
2441ev_now_update (EV_P)
2442{
2443 time_update (EV_A_ 1e100);
2444}
2445
2446void
2447ev_suspend (EV_P)
2448{
2449 ev_now_update (EV_A);
2450}
2451
2452void
2453ev_resume (EV_P)
2454{
2455 ev_tstamp mn_prev = mn_now;
2456
2457 ev_now_update (EV_A);
2458 timers_reschedule (EV_A_ mn_now - mn_prev);
2459#if EV_PERIODIC_ENABLE
2460 /* TODO: really do this? */
2461 periodics_reschedule (EV_A);
2462#endif
2463}
2464
1774/*****************************************************************************/ 2465/*****************************************************************************/
2466/* singly-linked list management, used when the expected list length is short */
1775 2467
1776void inline_size 2468inline_size void
1777wlist_add (WL *head, WL elem) 2469wlist_add (WL *head, WL elem)
1778{ 2470{
1779 elem->next = *head; 2471 elem->next = *head;
1780 *head = elem; 2472 *head = elem;
1781} 2473}
1782 2474
1783void inline_size 2475inline_size void
1784wlist_del (WL *head, WL elem) 2476wlist_del (WL *head, WL elem)
1785{ 2477{
1786 while (*head) 2478 while (*head)
1787 { 2479 {
1788 if (*head == elem) 2480 if (expect_true (*head == elem))
1789 { 2481 {
1790 *head = elem->next; 2482 *head = elem->next;
1791 return; 2483 break;
1792 } 2484 }
1793 2485
1794 head = &(*head)->next; 2486 head = &(*head)->next;
1795 } 2487 }
1796} 2488}
1797 2489
1798void inline_speed 2490/* internal, faster, version of ev_clear_pending */
2491inline_speed void
1799clear_pending (EV_P_ W w) 2492clear_pending (EV_P_ W w)
1800{ 2493{
1801 if (w->pending) 2494 if (w->pending)
1802 { 2495 {
1803 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2496 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1804 w->pending = 0; 2497 w->pending = 0;
1805 } 2498 }
1806} 2499}
1807 2500
1808int 2501int
1812 int pending = w_->pending; 2505 int pending = w_->pending;
1813 2506
1814 if (expect_true (pending)) 2507 if (expect_true (pending))
1815 { 2508 {
1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2509 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2510 p->w = (W)&pending_w;
1817 w_->pending = 0; 2511 w_->pending = 0;
1818 p->w = 0;
1819 return p->events; 2512 return p->events;
1820 } 2513 }
1821 else 2514 else
1822 return 0; 2515 return 0;
1823} 2516}
1824 2517
1825void inline_size 2518inline_size void
1826pri_adjust (EV_P_ W w) 2519pri_adjust (EV_P_ W w)
1827{ 2520{
1828 int pri = w->priority; 2521 int pri = ev_priority (w);
1829 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2522 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1830 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2523 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1831 w->priority = pri; 2524 ev_set_priority (w, pri);
1832} 2525}
1833 2526
1834void inline_speed 2527inline_speed void
1835ev_start (EV_P_ W w, int active) 2528ev_start (EV_P_ W w, int active)
1836{ 2529{
1837 pri_adjust (EV_A_ w); 2530 pri_adjust (EV_A_ w);
1838 w->active = active; 2531 w->active = active;
1839 ev_ref (EV_A); 2532 ev_ref (EV_A);
1840} 2533}
1841 2534
1842void inline_size 2535inline_size void
1843ev_stop (EV_P_ W w) 2536ev_stop (EV_P_ W w)
1844{ 2537{
1845 ev_unref (EV_A); 2538 ev_unref (EV_A);
1846 w->active = 0; 2539 w->active = 0;
1847} 2540}
1854 int fd = w->fd; 2547 int fd = w->fd;
1855 2548
1856 if (expect_false (ev_is_active (w))) 2549 if (expect_false (ev_is_active (w)))
1857 return; 2550 return;
1858 2551
1859 assert (("ev_io_start called with negative fd", fd >= 0)); 2552 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2553 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2554
2555 EV_FREQUENT_CHECK;
1860 2556
1861 ev_start (EV_A_ (W)w, 1); 2557 ev_start (EV_A_ (W)w, 1);
1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2558 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1863 wlist_add (&anfds[fd].head, (WL)w); 2559 wlist_add (&anfds[fd].head, (WL)w);
1864 2560
1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2561 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1866 w->events &= ~EV_IOFDSET; 2562 w->events &= ~EV__IOFDSET;
2563
2564 EV_FREQUENT_CHECK;
1867} 2565}
1868 2566
1869void noinline 2567void noinline
1870ev_io_stop (EV_P_ ev_io *w) 2568ev_io_stop (EV_P_ ev_io *w)
1871{ 2569{
1872 clear_pending (EV_A_ (W)w); 2570 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 2571 if (expect_false (!ev_is_active (w)))
1874 return; 2572 return;
1875 2573
1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2574 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2575
2576 EV_FREQUENT_CHECK;
1877 2577
1878 wlist_del (&anfds[w->fd].head, (WL)w); 2578 wlist_del (&anfds[w->fd].head, (WL)w);
1879 ev_stop (EV_A_ (W)w); 2579 ev_stop (EV_A_ (W)w);
1880 2580
1881 fd_change (EV_A_ w->fd, 1); 2581 fd_change (EV_A_ w->fd, 1);
2582
2583 EV_FREQUENT_CHECK;
1882} 2584}
1883 2585
1884void noinline 2586void noinline
1885ev_timer_start (EV_P_ ev_timer *w) 2587ev_timer_start (EV_P_ ev_timer *w)
1886{ 2588{
1887 if (expect_false (ev_is_active (w))) 2589 if (expect_false (ev_is_active (w)))
1888 return; 2590 return;
1889 2591
1890 ev_at (w) += mn_now; 2592 ev_at (w) += mn_now;
1891 2593
1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2594 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1893 2595
2596 EV_FREQUENT_CHECK;
2597
2598 ++timercnt;
1894 ev_start (EV_A_ (W)w, ++timercnt); 2599 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2600 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1896 timers [timercnt] = (WT)w; 2601 ANHE_w (timers [ev_active (w)]) = (WT)w;
2602 ANHE_at_cache (timers [ev_active (w)]);
1897 upheap (timers, timercnt); 2603 upheap (timers, ev_active (w));
1898 2604
2605 EV_FREQUENT_CHECK;
2606
1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 2607 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1900} 2608}
1901 2609
1902void noinline 2610void noinline
1903ev_timer_stop (EV_P_ ev_timer *w) 2611ev_timer_stop (EV_P_ ev_timer *w)
1904{ 2612{
1905 clear_pending (EV_A_ (W)w); 2613 clear_pending (EV_A_ (W)w);
1906 if (expect_false (!ev_is_active (w))) 2614 if (expect_false (!ev_is_active (w)))
1907 return; 2615 return;
1908 2616
1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 2617 EV_FREQUENT_CHECK;
1910 2618
1911 { 2619 {
1912 int active = ((W)w)->active; 2620 int active = ev_active (w);
1913 2621
2622 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2623
2624 --timercnt;
2625
1914 if (expect_true (active < timercnt)) 2626 if (expect_true (active < timercnt + HEAP0))
1915 { 2627 {
1916 timers [active] = timers [timercnt]; 2628 timers [active] = timers [timercnt + HEAP0];
1917 adjustheap (timers, timercnt, active); 2629 adjustheap (timers, timercnt, active);
1918 } 2630 }
1919
1920 --timercnt;
1921 } 2631 }
1922 2632
1923 ev_at (w) -= mn_now; 2633 ev_at (w) -= mn_now;
1924 2634
1925 ev_stop (EV_A_ (W)w); 2635 ev_stop (EV_A_ (W)w);
2636
2637 EV_FREQUENT_CHECK;
1926} 2638}
1927 2639
1928void noinline 2640void noinline
1929ev_timer_again (EV_P_ ev_timer *w) 2641ev_timer_again (EV_P_ ev_timer *w)
1930{ 2642{
2643 EV_FREQUENT_CHECK;
2644
1931 if (ev_is_active (w)) 2645 if (ev_is_active (w))
1932 { 2646 {
1933 if (w->repeat) 2647 if (w->repeat)
1934 { 2648 {
1935 ev_at (w) = mn_now + w->repeat; 2649 ev_at (w) = mn_now + w->repeat;
2650 ANHE_at_cache (timers [ev_active (w)]);
1936 adjustheap (timers, timercnt, ((W)w)->active); 2651 adjustheap (timers, timercnt, ev_active (w));
1937 } 2652 }
1938 else 2653 else
1939 ev_timer_stop (EV_A_ w); 2654 ev_timer_stop (EV_A_ w);
1940 } 2655 }
1941 else if (w->repeat) 2656 else if (w->repeat)
1942 { 2657 {
1943 w->at = w->repeat; 2658 ev_at (w) = w->repeat;
1944 ev_timer_start (EV_A_ w); 2659 ev_timer_start (EV_A_ w);
1945 } 2660 }
2661
2662 EV_FREQUENT_CHECK;
2663}
2664
2665ev_tstamp
2666ev_timer_remaining (EV_P_ ev_timer *w)
2667{
2668 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1946} 2669}
1947 2670
1948#if EV_PERIODIC_ENABLE 2671#if EV_PERIODIC_ENABLE
1949void noinline 2672void noinline
1950ev_periodic_start (EV_P_ ev_periodic *w) 2673ev_periodic_start (EV_P_ ev_periodic *w)
1954 2677
1955 if (w->reschedule_cb) 2678 if (w->reschedule_cb)
1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2679 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1957 else if (w->interval) 2680 else if (w->interval)
1958 { 2681 {
1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2682 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1960 /* this formula differs from the one in periodic_reify because we do not always round up */ 2683 /* this formula differs from the one in periodic_reify because we do not always round up */
1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2684 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1962 } 2685 }
1963 else 2686 else
1964 ev_at (w) = w->offset; 2687 ev_at (w) = w->offset;
1965 2688
2689 EV_FREQUENT_CHECK;
2690
2691 ++periodiccnt;
1966 ev_start (EV_A_ (W)w, ++periodiccnt); 2692 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2693 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1968 periodics [periodiccnt] = (WT)w; 2694 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1969 upheap (periodics, periodiccnt); 2695 ANHE_at_cache (periodics [ev_active (w)]);
2696 upheap (periodics, ev_active (w));
1970 2697
2698 EV_FREQUENT_CHECK;
2699
1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2700 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1972} 2701}
1973 2702
1974void noinline 2703void noinline
1975ev_periodic_stop (EV_P_ ev_periodic *w) 2704ev_periodic_stop (EV_P_ ev_periodic *w)
1976{ 2705{
1977 clear_pending (EV_A_ (W)w); 2706 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 2707 if (expect_false (!ev_is_active (w)))
1979 return; 2708 return;
1980 2709
1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 2710 EV_FREQUENT_CHECK;
1982 2711
1983 { 2712 {
1984 int active = ((W)w)->active; 2713 int active = ev_active (w);
1985 2714
2715 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2716
2717 --periodiccnt;
2718
1986 if (expect_true (active < periodiccnt)) 2719 if (expect_true (active < periodiccnt + HEAP0))
1987 { 2720 {
1988 periodics [active] = periodics [periodiccnt]; 2721 periodics [active] = periodics [periodiccnt + HEAP0];
1989 adjustheap (periodics, periodiccnt, active); 2722 adjustheap (periodics, periodiccnt, active);
1990 } 2723 }
1991
1992 --periodiccnt;
1993 } 2724 }
1994 2725
1995 ev_stop (EV_A_ (W)w); 2726 ev_stop (EV_A_ (W)w);
2727
2728 EV_FREQUENT_CHECK;
1996} 2729}
1997 2730
1998void noinline 2731void noinline
1999ev_periodic_again (EV_P_ ev_periodic *w) 2732ev_periodic_again (EV_P_ ev_periodic *w)
2000{ 2733{
2006 2739
2007#ifndef SA_RESTART 2740#ifndef SA_RESTART
2008# define SA_RESTART 0 2741# define SA_RESTART 0
2009#endif 2742#endif
2010 2743
2744#if EV_SIGNAL_ENABLE
2745
2011void noinline 2746void noinline
2012ev_signal_start (EV_P_ ev_signal *w) 2747ev_signal_start (EV_P_ ev_signal *w)
2013{ 2748{
2014#if EV_MULTIPLICITY
2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2016#endif
2017 if (expect_false (ev_is_active (w))) 2749 if (expect_false (ev_is_active (w)))
2018 return; 2750 return;
2019 2751
2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2752 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2021 2753
2022 evpipe_init (EV_A); 2754#if EV_MULTIPLICITY
2755 assert (("libev: a signal must not be attached to two different loops",
2756 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2023 2757
2758 signals [w->signum - 1].loop = EV_A;
2759#endif
2760
2761 EV_FREQUENT_CHECK;
2762
2763#if EV_USE_SIGNALFD
2764 if (sigfd == -2)
2024 { 2765 {
2025#ifndef _WIN32 2766 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2026 sigset_t full, prev; 2767 if (sigfd < 0 && errno == EINVAL)
2027 sigfillset (&full); 2768 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2028 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif
2030 2769
2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2770 if (sigfd >= 0)
2771 {
2772 fd_intern (sigfd); /* doing it twice will not hurt */
2032 2773
2033#ifndef _WIN32 2774 sigemptyset (&sigfd_set);
2034 sigprocmask (SIG_SETMASK, &prev, 0); 2775
2035#endif 2776 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2777 ev_set_priority (&sigfd_w, EV_MAXPRI);
2778 ev_io_start (EV_A_ &sigfd_w);
2779 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2780 }
2036 } 2781 }
2782
2783 if (sigfd >= 0)
2784 {
2785 /* TODO: check .head */
2786 sigaddset (&sigfd_set, w->signum);
2787 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2788
2789 signalfd (sigfd, &sigfd_set, 0);
2790 }
2791#endif
2037 2792
2038 ev_start (EV_A_ (W)w, 1); 2793 ev_start (EV_A_ (W)w, 1);
2039 wlist_add (&signals [w->signum - 1].head, (WL)w); 2794 wlist_add (&signals [w->signum - 1].head, (WL)w);
2040 2795
2041 if (!((WL)w)->next) 2796 if (!((WL)w)->next)
2797# if EV_USE_SIGNALFD
2798 if (sigfd < 0) /*TODO*/
2799# endif
2042 { 2800 {
2043#if _WIN32 2801# ifdef _WIN32
2802 evpipe_init (EV_A);
2803
2044 signal (w->signum, ev_sighandler); 2804 signal (w->signum, ev_sighandler);
2045#else 2805# else
2046 struct sigaction sa; 2806 struct sigaction sa;
2807
2808 evpipe_init (EV_A);
2809
2047 sa.sa_handler = ev_sighandler; 2810 sa.sa_handler = ev_sighandler;
2048 sigfillset (&sa.sa_mask); 2811 sigfillset (&sa.sa_mask);
2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2812 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2050 sigaction (w->signum, &sa, 0); 2813 sigaction (w->signum, &sa, 0);
2814
2815 sigemptyset (&sa.sa_mask);
2816 sigaddset (&sa.sa_mask, w->signum);
2817 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2051#endif 2818#endif
2052 } 2819 }
2820
2821 EV_FREQUENT_CHECK;
2053} 2822}
2054 2823
2055void noinline 2824void noinline
2056ev_signal_stop (EV_P_ ev_signal *w) 2825ev_signal_stop (EV_P_ ev_signal *w)
2057{ 2826{
2058 clear_pending (EV_A_ (W)w); 2827 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 2828 if (expect_false (!ev_is_active (w)))
2060 return; 2829 return;
2061 2830
2831 EV_FREQUENT_CHECK;
2832
2062 wlist_del (&signals [w->signum - 1].head, (WL)w); 2833 wlist_del (&signals [w->signum - 1].head, (WL)w);
2063 ev_stop (EV_A_ (W)w); 2834 ev_stop (EV_A_ (W)w);
2064 2835
2065 if (!signals [w->signum - 1].head) 2836 if (!signals [w->signum - 1].head)
2837 {
2838#if EV_MULTIPLICITY
2839 signals [w->signum - 1].loop = 0; /* unattach from signal */
2840#endif
2841#if EV_USE_SIGNALFD
2842 if (sigfd >= 0)
2843 {
2844 sigset_t ss;
2845
2846 sigemptyset (&ss);
2847 sigaddset (&ss, w->signum);
2848 sigdelset (&sigfd_set, w->signum);
2849
2850 signalfd (sigfd, &sigfd_set, 0);
2851 sigprocmask (SIG_UNBLOCK, &ss, 0);
2852 }
2853 else
2854#endif
2066 signal (w->signum, SIG_DFL); 2855 signal (w->signum, SIG_DFL);
2856 }
2857
2858 EV_FREQUENT_CHECK;
2067} 2859}
2860
2861#endif
2862
2863#if EV_CHILD_ENABLE
2068 2864
2069void 2865void
2070ev_child_start (EV_P_ ev_child *w) 2866ev_child_start (EV_P_ ev_child *w)
2071{ 2867{
2072#if EV_MULTIPLICITY 2868#if EV_MULTIPLICITY
2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2869 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2074#endif 2870#endif
2075 if (expect_false (ev_is_active (w))) 2871 if (expect_false (ev_is_active (w)))
2076 return; 2872 return;
2077 2873
2874 EV_FREQUENT_CHECK;
2875
2078 ev_start (EV_A_ (W)w, 1); 2876 ev_start (EV_A_ (W)w, 1);
2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2877 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2878
2879 EV_FREQUENT_CHECK;
2080} 2880}
2081 2881
2082void 2882void
2083ev_child_stop (EV_P_ ev_child *w) 2883ev_child_stop (EV_P_ ev_child *w)
2084{ 2884{
2085 clear_pending (EV_A_ (W)w); 2885 clear_pending (EV_A_ (W)w);
2086 if (expect_false (!ev_is_active (w))) 2886 if (expect_false (!ev_is_active (w)))
2087 return; 2887 return;
2088 2888
2889 EV_FREQUENT_CHECK;
2890
2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2891 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2090 ev_stop (EV_A_ (W)w); 2892 ev_stop (EV_A_ (W)w);
2893
2894 EV_FREQUENT_CHECK;
2091} 2895}
2896
2897#endif
2092 2898
2093#if EV_STAT_ENABLE 2899#if EV_STAT_ENABLE
2094 2900
2095# ifdef _WIN32 2901# ifdef _WIN32
2096# undef lstat 2902# undef lstat
2097# define lstat(a,b) _stati64 (a,b) 2903# define lstat(a,b) _stati64 (a,b)
2098# endif 2904# endif
2099 2905
2100#define DEF_STAT_INTERVAL 5.0074891 2906#define DEF_STAT_INTERVAL 5.0074891
2907#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2101#define MIN_STAT_INTERVAL 0.1074891 2908#define MIN_STAT_INTERVAL 0.1074891
2102 2909
2103static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2910static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2104 2911
2105#if EV_USE_INOTIFY 2912#if EV_USE_INOTIFY
2106# define EV_INOTIFY_BUFSIZE 8192 2913
2914/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2915# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2107 2916
2108static void noinline 2917static void noinline
2109infy_add (EV_P_ ev_stat *w) 2918infy_add (EV_P_ ev_stat *w)
2110{ 2919{
2111 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2920 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2112 2921
2113 if (w->wd < 0) 2922 if (w->wd >= 0)
2923 {
2924 struct statfs sfs;
2925
2926 /* now local changes will be tracked by inotify, but remote changes won't */
2927 /* unless the filesystem is known to be local, we therefore still poll */
2928 /* also do poll on <2.6.25, but with normal frequency */
2929
2930 if (!fs_2625)
2931 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2932 else if (!statfs (w->path, &sfs)
2933 && (sfs.f_type == 0x1373 /* devfs */
2934 || sfs.f_type == 0xEF53 /* ext2/3 */
2935 || sfs.f_type == 0x3153464a /* jfs */
2936 || sfs.f_type == 0x52654973 /* reiser3 */
2937 || sfs.f_type == 0x01021994 /* tempfs */
2938 || sfs.f_type == 0x58465342 /* xfs */))
2939 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2940 else
2941 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2114 { 2942 }
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2943 else
2944 {
2945 /* can't use inotify, continue to stat */
2946 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2116 2947
2117 /* monitor some parent directory for speedup hints */ 2948 /* if path is not there, monitor some parent directory for speedup hints */
2949 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2950 /* but an efficiency issue only */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2951 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 { 2952 {
2120 char path [4096]; 2953 char path [4096];
2121 strcpy (path, w->path); 2954 strcpy (path, w->path);
2122 2955
2125 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2958 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2126 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2959 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2127 2960
2128 char *pend = strrchr (path, '/'); 2961 char *pend = strrchr (path, '/');
2129 2962
2130 if (!pend) 2963 if (!pend || pend == path)
2131 break; /* whoops, no '/', complain to your admin */ 2964 break;
2132 2965
2133 *pend = 0; 2966 *pend = 0;
2134 w->wd = inotify_add_watch (fs_fd, path, mask); 2967 w->wd = inotify_add_watch (fs_fd, path, mask);
2135 } 2968 }
2136 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2969 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2137 } 2970 }
2138 } 2971 }
2139 else
2140 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2141 2972
2142 if (w->wd >= 0) 2973 if (w->wd >= 0)
2143 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2974 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2975
2976 /* now re-arm timer, if required */
2977 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2978 ev_timer_again (EV_A_ &w->timer);
2979 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2144} 2980}
2145 2981
2146static void noinline 2982static void noinline
2147infy_del (EV_P_ ev_stat *w) 2983infy_del (EV_P_ ev_stat *w)
2148{ 2984{
2151 2987
2152 if (wd < 0) 2988 if (wd < 0)
2153 return; 2989 return;
2154 2990
2155 w->wd = -2; 2991 w->wd = -2;
2156 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 2992 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2157 wlist_del (&fs_hash [slot].head, (WL)w); 2993 wlist_del (&fs_hash [slot].head, (WL)w);
2158 2994
2159 /* remove this watcher, if others are watching it, they will rearm */ 2995 /* remove this watcher, if others are watching it, they will rearm */
2160 inotify_rm_watch (fs_fd, wd); 2996 inotify_rm_watch (fs_fd, wd);
2161} 2997}
2162 2998
2163static void noinline 2999static void noinline
2164infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3000infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2165{ 3001{
2166 if (slot < 0) 3002 if (slot < 0)
2167 /* overflow, need to check for all hahs slots */ 3003 /* overflow, need to check for all hash slots */
2168 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3004 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2169 infy_wd (EV_A_ slot, wd, ev); 3005 infy_wd (EV_A_ slot, wd, ev);
2170 else 3006 else
2171 { 3007 {
2172 WL w_; 3008 WL w_;
2173 3009
2174 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3010 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2175 { 3011 {
2176 ev_stat *w = (ev_stat *)w_; 3012 ev_stat *w = (ev_stat *)w_;
2177 w_ = w_->next; /* lets us remove this watcher and all before it */ 3013 w_ = w_->next; /* lets us remove this watcher and all before it */
2178 3014
2179 if (w->wd == wd || wd == -1) 3015 if (w->wd == wd || wd == -1)
2180 { 3016 {
2181 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3017 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2182 { 3018 {
3019 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2183 w->wd = -1; 3020 w->wd = -1;
2184 infy_add (EV_A_ w); /* re-add, no matter what */ 3021 infy_add (EV_A_ w); /* re-add, no matter what */
2185 } 3022 }
2186 3023
2187 stat_timer_cb (EV_A_ &w->timer, 0); 3024 stat_timer_cb (EV_A_ &w->timer, 0);
2192 3029
2193static void 3030static void
2194infy_cb (EV_P_ ev_io *w, int revents) 3031infy_cb (EV_P_ ev_io *w, int revents)
2195{ 3032{
2196 char buf [EV_INOTIFY_BUFSIZE]; 3033 char buf [EV_INOTIFY_BUFSIZE];
2197 struct inotify_event *ev = (struct inotify_event *)buf;
2198 int ofs; 3034 int ofs;
2199 int len = read (fs_fd, buf, sizeof (buf)); 3035 int len = read (fs_fd, buf, sizeof (buf));
2200 3036
2201 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3037 for (ofs = 0; ofs < len; )
3038 {
3039 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2202 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3040 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3041 ofs += sizeof (struct inotify_event) + ev->len;
3042 }
2203} 3043}
2204 3044
2205void inline_size 3045inline_size unsigned int
3046ev_linux_version (void)
3047{
3048 struct utsname buf;
3049 unsigned int v;
3050 int i;
3051 char *p = buf.release;
3052
3053 if (uname (&buf))
3054 return 0;
3055
3056 for (i = 3+1; --i; )
3057 {
3058 unsigned int c = 0;
3059
3060 for (;;)
3061 {
3062 if (*p >= '0' && *p <= '9')
3063 c = c * 10 + *p++ - '0';
3064 else
3065 {
3066 p += *p == '.';
3067 break;
3068 }
3069 }
3070
3071 v = (v << 8) | c;
3072 }
3073
3074 return v;
3075}
3076
3077inline_size void
3078ev_check_2625 (EV_P)
3079{
3080 /* kernels < 2.6.25 are borked
3081 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3082 */
3083 if (ev_linux_version () < 0x020619)
3084 return;
3085
3086 fs_2625 = 1;
3087}
3088
3089inline_size int
3090infy_newfd (void)
3091{
3092#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3093 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3094 if (fd >= 0)
3095 return fd;
3096#endif
3097 return inotify_init ();
3098}
3099
3100inline_size void
2206infy_init (EV_P) 3101infy_init (EV_P)
2207{ 3102{
2208 if (fs_fd != -2) 3103 if (fs_fd != -2)
2209 return; 3104 return;
2210 3105
3106 fs_fd = -1;
3107
3108 ev_check_2625 (EV_A);
3109
2211 fs_fd = inotify_init (); 3110 fs_fd = infy_newfd ();
2212 3111
2213 if (fs_fd >= 0) 3112 if (fs_fd >= 0)
2214 { 3113 {
3114 fd_intern (fs_fd);
2215 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3115 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2216 ev_set_priority (&fs_w, EV_MAXPRI); 3116 ev_set_priority (&fs_w, EV_MAXPRI);
2217 ev_io_start (EV_A_ &fs_w); 3117 ev_io_start (EV_A_ &fs_w);
3118 ev_unref (EV_A);
2218 } 3119 }
2219} 3120}
2220 3121
2221void inline_size 3122inline_size void
2222infy_fork (EV_P) 3123infy_fork (EV_P)
2223{ 3124{
2224 int slot; 3125 int slot;
2225 3126
2226 if (fs_fd < 0) 3127 if (fs_fd < 0)
2227 return; 3128 return;
2228 3129
3130 ev_ref (EV_A);
3131 ev_io_stop (EV_A_ &fs_w);
2229 close (fs_fd); 3132 close (fs_fd);
2230 fs_fd = inotify_init (); 3133 fs_fd = infy_newfd ();
2231 3134
3135 if (fs_fd >= 0)
3136 {
3137 fd_intern (fs_fd);
3138 ev_io_set (&fs_w, fs_fd, EV_READ);
3139 ev_io_start (EV_A_ &fs_w);
3140 ev_unref (EV_A);
3141 }
3142
2232 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3143 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2233 { 3144 {
2234 WL w_ = fs_hash [slot].head; 3145 WL w_ = fs_hash [slot].head;
2235 fs_hash [slot].head = 0; 3146 fs_hash [slot].head = 0;
2236 3147
2237 while (w_) 3148 while (w_)
2242 w->wd = -1; 3153 w->wd = -1;
2243 3154
2244 if (fs_fd >= 0) 3155 if (fs_fd >= 0)
2245 infy_add (EV_A_ w); /* re-add, no matter what */ 3156 infy_add (EV_A_ w); /* re-add, no matter what */
2246 else 3157 else
3158 {
3159 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3160 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2247 ev_timer_start (EV_A_ &w->timer); 3161 ev_timer_again (EV_A_ &w->timer);
3162 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3163 }
2248 } 3164 }
2249
2250 } 3165 }
2251} 3166}
2252 3167
3168#endif
3169
3170#ifdef _WIN32
3171# define EV_LSTAT(p,b) _stati64 (p, b)
3172#else
3173# define EV_LSTAT(p,b) lstat (p, b)
2253#endif 3174#endif
2254 3175
2255void 3176void
2256ev_stat_stat (EV_P_ ev_stat *w) 3177ev_stat_stat (EV_P_ ev_stat *w)
2257{ 3178{
2264static void noinline 3185static void noinline
2265stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3186stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2266{ 3187{
2267 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3188 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2268 3189
2269 /* we copy this here each the time so that */ 3190 ev_statdata prev = w->attr;
2270 /* prev has the old value when the callback gets invoked */
2271 w->prev = w->attr;
2272 ev_stat_stat (EV_A_ w); 3191 ev_stat_stat (EV_A_ w);
2273 3192
2274 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3193 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2275 if ( 3194 if (
2276 w->prev.st_dev != w->attr.st_dev 3195 prev.st_dev != w->attr.st_dev
2277 || w->prev.st_ino != w->attr.st_ino 3196 || prev.st_ino != w->attr.st_ino
2278 || w->prev.st_mode != w->attr.st_mode 3197 || prev.st_mode != w->attr.st_mode
2279 || w->prev.st_nlink != w->attr.st_nlink 3198 || prev.st_nlink != w->attr.st_nlink
2280 || w->prev.st_uid != w->attr.st_uid 3199 || prev.st_uid != w->attr.st_uid
2281 || w->prev.st_gid != w->attr.st_gid 3200 || prev.st_gid != w->attr.st_gid
2282 || w->prev.st_rdev != w->attr.st_rdev 3201 || prev.st_rdev != w->attr.st_rdev
2283 || w->prev.st_size != w->attr.st_size 3202 || prev.st_size != w->attr.st_size
2284 || w->prev.st_atime != w->attr.st_atime 3203 || prev.st_atime != w->attr.st_atime
2285 || w->prev.st_mtime != w->attr.st_mtime 3204 || prev.st_mtime != w->attr.st_mtime
2286 || w->prev.st_ctime != w->attr.st_ctime 3205 || prev.st_ctime != w->attr.st_ctime
2287 ) { 3206 ) {
3207 /* we only update w->prev on actual differences */
3208 /* in case we test more often than invoke the callback, */
3209 /* to ensure that prev is always different to attr */
3210 w->prev = prev;
3211
2288 #if EV_USE_INOTIFY 3212 #if EV_USE_INOTIFY
3213 if (fs_fd >= 0)
3214 {
2289 infy_del (EV_A_ w); 3215 infy_del (EV_A_ w);
2290 infy_add (EV_A_ w); 3216 infy_add (EV_A_ w);
2291 ev_stat_stat (EV_A_ w); /* avoid race... */ 3217 ev_stat_stat (EV_A_ w); /* avoid race... */
3218 }
2292 #endif 3219 #endif
2293 3220
2294 ev_feed_event (EV_A_ w, EV_STAT); 3221 ev_feed_event (EV_A_ w, EV_STAT);
2295 } 3222 }
2296} 3223}
2299ev_stat_start (EV_P_ ev_stat *w) 3226ev_stat_start (EV_P_ ev_stat *w)
2300{ 3227{
2301 if (expect_false (ev_is_active (w))) 3228 if (expect_false (ev_is_active (w)))
2302 return; 3229 return;
2303 3230
2304 /* since we use memcmp, we need to clear any padding data etc. */
2305 memset (&w->prev, 0, sizeof (ev_statdata));
2306 memset (&w->attr, 0, sizeof (ev_statdata));
2307
2308 ev_stat_stat (EV_A_ w); 3231 ev_stat_stat (EV_A_ w);
2309 3232
3233 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2310 if (w->interval < MIN_STAT_INTERVAL) 3234 w->interval = MIN_STAT_INTERVAL;
2311 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2312 3235
2313 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3236 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2314 ev_set_priority (&w->timer, ev_priority (w)); 3237 ev_set_priority (&w->timer, ev_priority (w));
2315 3238
2316#if EV_USE_INOTIFY 3239#if EV_USE_INOTIFY
2317 infy_init (EV_A); 3240 infy_init (EV_A);
2318 3241
2319 if (fs_fd >= 0) 3242 if (fs_fd >= 0)
2320 infy_add (EV_A_ w); 3243 infy_add (EV_A_ w);
2321 else 3244 else
2322#endif 3245#endif
3246 {
2323 ev_timer_start (EV_A_ &w->timer); 3247 ev_timer_again (EV_A_ &w->timer);
3248 ev_unref (EV_A);
3249 }
2324 3250
2325 ev_start (EV_A_ (W)w, 1); 3251 ev_start (EV_A_ (W)w, 1);
3252
3253 EV_FREQUENT_CHECK;
2326} 3254}
2327 3255
2328void 3256void
2329ev_stat_stop (EV_P_ ev_stat *w) 3257ev_stat_stop (EV_P_ ev_stat *w)
2330{ 3258{
2331 clear_pending (EV_A_ (W)w); 3259 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3260 if (expect_false (!ev_is_active (w)))
2333 return; 3261 return;
2334 3262
3263 EV_FREQUENT_CHECK;
3264
2335#if EV_USE_INOTIFY 3265#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w); 3266 infy_del (EV_A_ w);
2337#endif 3267#endif
3268
3269 if (ev_is_active (&w->timer))
3270 {
3271 ev_ref (EV_A);
2338 ev_timer_stop (EV_A_ &w->timer); 3272 ev_timer_stop (EV_A_ &w->timer);
3273 }
2339 3274
2340 ev_stop (EV_A_ (W)w); 3275 ev_stop (EV_A_ (W)w);
3276
3277 EV_FREQUENT_CHECK;
2341} 3278}
2342#endif 3279#endif
2343 3280
2344#if EV_IDLE_ENABLE 3281#if EV_IDLE_ENABLE
2345void 3282void
2347{ 3284{
2348 if (expect_false (ev_is_active (w))) 3285 if (expect_false (ev_is_active (w)))
2349 return; 3286 return;
2350 3287
2351 pri_adjust (EV_A_ (W)w); 3288 pri_adjust (EV_A_ (W)w);
3289
3290 EV_FREQUENT_CHECK;
2352 3291
2353 { 3292 {
2354 int active = ++idlecnt [ABSPRI (w)]; 3293 int active = ++idlecnt [ABSPRI (w)];
2355 3294
2356 ++idleall; 3295 ++idleall;
2357 ev_start (EV_A_ (W)w, active); 3296 ev_start (EV_A_ (W)w, active);
2358 3297
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3298 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w; 3299 idles [ABSPRI (w)][active - 1] = w;
2361 } 3300 }
3301
3302 EV_FREQUENT_CHECK;
2362} 3303}
2363 3304
2364void 3305void
2365ev_idle_stop (EV_P_ ev_idle *w) 3306ev_idle_stop (EV_P_ ev_idle *w)
2366{ 3307{
2367 clear_pending (EV_A_ (W)w); 3308 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 3309 if (expect_false (!ev_is_active (w)))
2369 return; 3310 return;
2370 3311
3312 EV_FREQUENT_CHECK;
3313
2371 { 3314 {
2372 int active = ((W)w)->active; 3315 int active = ev_active (w);
2373 3316
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3317 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3318 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2376 3319
2377 ev_stop (EV_A_ (W)w); 3320 ev_stop (EV_A_ (W)w);
2378 --idleall; 3321 --idleall;
2379 } 3322 }
2380}
2381#endif
2382 3323
3324 EV_FREQUENT_CHECK;
3325}
3326#endif
3327
3328#if EV_PREPARE_ENABLE
2383void 3329void
2384ev_prepare_start (EV_P_ ev_prepare *w) 3330ev_prepare_start (EV_P_ ev_prepare *w)
2385{ 3331{
2386 if (expect_false (ev_is_active (w))) 3332 if (expect_false (ev_is_active (w)))
2387 return; 3333 return;
3334
3335 EV_FREQUENT_CHECK;
2388 3336
2389 ev_start (EV_A_ (W)w, ++preparecnt); 3337 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3338 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w; 3339 prepares [preparecnt - 1] = w;
3340
3341 EV_FREQUENT_CHECK;
2392} 3342}
2393 3343
2394void 3344void
2395ev_prepare_stop (EV_P_ ev_prepare *w) 3345ev_prepare_stop (EV_P_ ev_prepare *w)
2396{ 3346{
2397 clear_pending (EV_A_ (W)w); 3347 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 3348 if (expect_false (!ev_is_active (w)))
2399 return; 3349 return;
2400 3350
3351 EV_FREQUENT_CHECK;
3352
2401 { 3353 {
2402 int active = ((W)w)->active; 3354 int active = ev_active (w);
3355
2403 prepares [active - 1] = prepares [--preparecnt]; 3356 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active; 3357 ev_active (prepares [active - 1]) = active;
2405 } 3358 }
2406 3359
2407 ev_stop (EV_A_ (W)w); 3360 ev_stop (EV_A_ (W)w);
2408}
2409 3361
3362 EV_FREQUENT_CHECK;
3363}
3364#endif
3365
3366#if EV_CHECK_ENABLE
2410void 3367void
2411ev_check_start (EV_P_ ev_check *w) 3368ev_check_start (EV_P_ ev_check *w)
2412{ 3369{
2413 if (expect_false (ev_is_active (w))) 3370 if (expect_false (ev_is_active (w)))
2414 return; 3371 return;
3372
3373 EV_FREQUENT_CHECK;
2415 3374
2416 ev_start (EV_A_ (W)w, ++checkcnt); 3375 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3376 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w; 3377 checks [checkcnt - 1] = w;
3378
3379 EV_FREQUENT_CHECK;
2419} 3380}
2420 3381
2421void 3382void
2422ev_check_stop (EV_P_ ev_check *w) 3383ev_check_stop (EV_P_ ev_check *w)
2423{ 3384{
2424 clear_pending (EV_A_ (W)w); 3385 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w))) 3386 if (expect_false (!ev_is_active (w)))
2426 return; 3387 return;
2427 3388
3389 EV_FREQUENT_CHECK;
3390
2428 { 3391 {
2429 int active = ((W)w)->active; 3392 int active = ev_active (w);
3393
2430 checks [active - 1] = checks [--checkcnt]; 3394 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active; 3395 ev_active (checks [active - 1]) = active;
2432 } 3396 }
2433 3397
2434 ev_stop (EV_A_ (W)w); 3398 ev_stop (EV_A_ (W)w);
3399
3400 EV_FREQUENT_CHECK;
2435} 3401}
3402#endif
2436 3403
2437#if EV_EMBED_ENABLE 3404#if EV_EMBED_ENABLE
2438void noinline 3405void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w) 3406ev_embed_sweep (EV_P_ ev_embed *w)
2440{ 3407{
2456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3423embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2457{ 3424{
2458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3425 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2459 3426
2460 { 3427 {
2461 struct ev_loop *loop = w->other; 3428 EV_P = w->other;
2462 3429
2463 while (fdchangecnt) 3430 while (fdchangecnt)
2464 { 3431 {
2465 fd_reify (EV_A); 3432 fd_reify (EV_A);
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3433 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2467 } 3434 }
2468 } 3435 }
2469} 3436}
2470 3437
3438static void
3439embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3440{
3441 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3442
3443 ev_embed_stop (EV_A_ w);
3444
3445 {
3446 EV_P = w->other;
3447
3448 ev_loop_fork (EV_A);
3449 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3450 }
3451
3452 ev_embed_start (EV_A_ w);
3453}
3454
2471#if 0 3455#if 0
2472static void 3456static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3457embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2474{ 3458{
2475 ev_idle_stop (EV_A_ idle); 3459 ev_idle_stop (EV_A_ idle);
2481{ 3465{
2482 if (expect_false (ev_is_active (w))) 3466 if (expect_false (ev_is_active (w)))
2483 return; 3467 return;
2484 3468
2485 { 3469 {
2486 struct ev_loop *loop = w->other; 3470 EV_P = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3471 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3472 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 } 3473 }
3474
3475 EV_FREQUENT_CHECK;
2490 3476
2491 ev_set_priority (&w->io, ev_priority (w)); 3477 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io); 3478 ev_io_start (EV_A_ &w->io);
2493 3479
2494 ev_prepare_init (&w->prepare, embed_prepare_cb); 3480 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI); 3481 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare); 3482 ev_prepare_start (EV_A_ &w->prepare);
2497 3483
3484 ev_fork_init (&w->fork, embed_fork_cb);
3485 ev_fork_start (EV_A_ &w->fork);
3486
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3487 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499 3488
2500 ev_start (EV_A_ (W)w, 1); 3489 ev_start (EV_A_ (W)w, 1);
3490
3491 EV_FREQUENT_CHECK;
2501} 3492}
2502 3493
2503void 3494void
2504ev_embed_stop (EV_P_ ev_embed *w) 3495ev_embed_stop (EV_P_ ev_embed *w)
2505{ 3496{
2506 clear_pending (EV_A_ (W)w); 3497 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 3498 if (expect_false (!ev_is_active (w)))
2508 return; 3499 return;
2509 3500
3501 EV_FREQUENT_CHECK;
3502
2510 ev_io_stop (EV_A_ &w->io); 3503 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare); 3504 ev_prepare_stop (EV_A_ &w->prepare);
3505 ev_fork_stop (EV_A_ &w->fork);
2512 3506
2513 ev_stop (EV_A_ (W)w); 3507 ev_stop (EV_A_ (W)w);
3508
3509 EV_FREQUENT_CHECK;
2514} 3510}
2515#endif 3511#endif
2516 3512
2517#if EV_FORK_ENABLE 3513#if EV_FORK_ENABLE
2518void 3514void
2519ev_fork_start (EV_P_ ev_fork *w) 3515ev_fork_start (EV_P_ ev_fork *w)
2520{ 3516{
2521 if (expect_false (ev_is_active (w))) 3517 if (expect_false (ev_is_active (w)))
2522 return; 3518 return;
3519
3520 EV_FREQUENT_CHECK;
2523 3521
2524 ev_start (EV_A_ (W)w, ++forkcnt); 3522 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3523 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w; 3524 forks [forkcnt - 1] = w;
3525
3526 EV_FREQUENT_CHECK;
2527} 3527}
2528 3528
2529void 3529void
2530ev_fork_stop (EV_P_ ev_fork *w) 3530ev_fork_stop (EV_P_ ev_fork *w)
2531{ 3531{
2532 clear_pending (EV_A_ (W)w); 3532 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w))) 3533 if (expect_false (!ev_is_active (w)))
2534 return; 3534 return;
2535 3535
3536 EV_FREQUENT_CHECK;
3537
2536 { 3538 {
2537 int active = ((W)w)->active; 3539 int active = ev_active (w);
3540
2538 forks [active - 1] = forks [--forkcnt]; 3541 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active; 3542 ev_active (forks [active - 1]) = active;
2540 } 3543 }
2541 3544
2542 ev_stop (EV_A_ (W)w); 3545 ev_stop (EV_A_ (W)w);
3546
3547 EV_FREQUENT_CHECK;
2543} 3548}
2544#endif 3549#endif
2545 3550
2546#if EV_ASYNC_ENABLE 3551#if EV_ASYNC_ENABLE
2547void 3552void
2549{ 3554{
2550 if (expect_false (ev_is_active (w))) 3555 if (expect_false (ev_is_active (w)))
2551 return; 3556 return;
2552 3557
2553 evpipe_init (EV_A); 3558 evpipe_init (EV_A);
3559
3560 EV_FREQUENT_CHECK;
2554 3561
2555 ev_start (EV_A_ (W)w, ++asynccnt); 3562 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3563 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w; 3564 asyncs [asynccnt - 1] = w;
3565
3566 EV_FREQUENT_CHECK;
2558} 3567}
2559 3568
2560void 3569void
2561ev_async_stop (EV_P_ ev_async *w) 3570ev_async_stop (EV_P_ ev_async *w)
2562{ 3571{
2563 clear_pending (EV_A_ (W)w); 3572 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w))) 3573 if (expect_false (!ev_is_active (w)))
2565 return; 3574 return;
2566 3575
3576 EV_FREQUENT_CHECK;
3577
2567 { 3578 {
2568 int active = ((W)w)->active; 3579 int active = ev_active (w);
3580
2569 asyncs [active - 1] = asyncs [--asynccnt]; 3581 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active; 3582 ev_active (asyncs [active - 1]) = active;
2571 } 3583 }
2572 3584
2573 ev_stop (EV_A_ (W)w); 3585 ev_stop (EV_A_ (W)w);
3586
3587 EV_FREQUENT_CHECK;
2574} 3588}
2575 3589
2576void 3590void
2577ev_async_send (EV_P_ ev_async *w) 3591ev_async_send (EV_P_ ev_async *w)
2578{ 3592{
2579 w->sent = 1; 3593 w->sent = 1;
2580 evpipe_write (EV_A_ &gotasync); 3594 evpipe_write (EV_A_ &async_pending);
2581} 3595}
2582#endif 3596#endif
2583 3597
2584/*****************************************************************************/ 3598/*****************************************************************************/
2585 3599
2595once_cb (EV_P_ struct ev_once *once, int revents) 3609once_cb (EV_P_ struct ev_once *once, int revents)
2596{ 3610{
2597 void (*cb)(int revents, void *arg) = once->cb; 3611 void (*cb)(int revents, void *arg) = once->cb;
2598 void *arg = once->arg; 3612 void *arg = once->arg;
2599 3613
2600 ev_io_stop (EV_A_ &once->io); 3614 ev_io_stop (EV_A_ &once->io);
2601 ev_timer_stop (EV_A_ &once->to); 3615 ev_timer_stop (EV_A_ &once->to);
2602 ev_free (once); 3616 ev_free (once);
2603 3617
2604 cb (revents, arg); 3618 cb (revents, arg);
2605} 3619}
2606 3620
2607static void 3621static void
2608once_cb_io (EV_P_ ev_io *w, int revents) 3622once_cb_io (EV_P_ ev_io *w, int revents)
2609{ 3623{
2610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3624 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3625
3626 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2611} 3627}
2612 3628
2613static void 3629static void
2614once_cb_to (EV_P_ ev_timer *w, int revents) 3630once_cb_to (EV_P_ ev_timer *w, int revents)
2615{ 3631{
2616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3632 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3633
3634 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2617} 3635}
2618 3636
2619void 3637void
2620ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3638ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2621{ 3639{
2622 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3640 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2623 3641
2624 if (expect_false (!once)) 3642 if (expect_false (!once))
2625 { 3643 {
2626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3644 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2627 return; 3645 return;
2628 } 3646 }
2629 3647
2630 once->cb = cb; 3648 once->cb = cb;
2631 once->arg = arg; 3649 once->arg = arg;
2643 ev_timer_set (&once->to, timeout, 0.); 3661 ev_timer_set (&once->to, timeout, 0.);
2644 ev_timer_start (EV_A_ &once->to); 3662 ev_timer_start (EV_A_ &once->to);
2645 } 3663 }
2646} 3664}
2647 3665
3666/*****************************************************************************/
3667
3668#if EV_WALK_ENABLE
3669void
3670ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3671{
3672 int i, j;
3673 ev_watcher_list *wl, *wn;
3674
3675 if (types & (EV_IO | EV_EMBED))
3676 for (i = 0; i < anfdmax; ++i)
3677 for (wl = anfds [i].head; wl; )
3678 {
3679 wn = wl->next;
3680
3681#if EV_EMBED_ENABLE
3682 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3683 {
3684 if (types & EV_EMBED)
3685 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3686 }
3687 else
3688#endif
3689#if EV_USE_INOTIFY
3690 if (ev_cb ((ev_io *)wl) == infy_cb)
3691 ;
3692 else
3693#endif
3694 if ((ev_io *)wl != &pipe_w)
3695 if (types & EV_IO)
3696 cb (EV_A_ EV_IO, wl);
3697
3698 wl = wn;
3699 }
3700
3701 if (types & (EV_TIMER | EV_STAT))
3702 for (i = timercnt + HEAP0; i-- > HEAP0; )
3703#if EV_STAT_ENABLE
3704 /*TODO: timer is not always active*/
3705 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3706 {
3707 if (types & EV_STAT)
3708 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3709 }
3710 else
3711#endif
3712 if (types & EV_TIMER)
3713 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3714
3715#if EV_PERIODIC_ENABLE
3716 if (types & EV_PERIODIC)
3717 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3718 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3719#endif
3720
3721#if EV_IDLE_ENABLE
3722 if (types & EV_IDLE)
3723 for (j = NUMPRI; i--; )
3724 for (i = idlecnt [j]; i--; )
3725 cb (EV_A_ EV_IDLE, idles [j][i]);
3726#endif
3727
3728#if EV_FORK_ENABLE
3729 if (types & EV_FORK)
3730 for (i = forkcnt; i--; )
3731 if (ev_cb (forks [i]) != embed_fork_cb)
3732 cb (EV_A_ EV_FORK, forks [i]);
3733#endif
3734
3735#if EV_ASYNC_ENABLE
3736 if (types & EV_ASYNC)
3737 for (i = asynccnt; i--; )
3738 cb (EV_A_ EV_ASYNC, asyncs [i]);
3739#endif
3740
3741#if EV_PREPARE_ENABLE
3742 if (types & EV_PREPARE)
3743 for (i = preparecnt; i--; )
3744# if EV_EMBED_ENABLE
3745 if (ev_cb (prepares [i]) != embed_prepare_cb)
3746# endif
3747 cb (EV_A_ EV_PREPARE, prepares [i]);
3748#endif
3749
3750#if EV_CHECK_ENABLE
3751 if (types & EV_CHECK)
3752 for (i = checkcnt; i--; )
3753 cb (EV_A_ EV_CHECK, checks [i]);
3754#endif
3755
3756#if EV_SIGNAL_ENABLE
3757 if (types & EV_SIGNAL)
3758 for (i = 0; i < EV_NSIG - 1; ++i)
3759 for (wl = signals [i].head; wl; )
3760 {
3761 wn = wl->next;
3762 cb (EV_A_ EV_SIGNAL, wl);
3763 wl = wn;
3764 }
3765#endif
3766
3767#if EV_CHILD_ENABLE
3768 if (types & EV_CHILD)
3769 for (i = (EV_PID_HASHSIZE); i--; )
3770 for (wl = childs [i]; wl; )
3771 {
3772 wn = wl->next;
3773 cb (EV_A_ EV_CHILD, wl);
3774 wl = wn;
3775 }
3776#endif
3777/* EV_STAT 0x00001000 /* stat data changed */
3778/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3779}
3780#endif
3781
2648#if EV_MULTIPLICITY 3782#if EV_MULTIPLICITY
2649 #include "ev_wrap.h" 3783 #include "ev_wrap.h"
2650#endif 3784#endif
2651 3785
2652#ifdef __cplusplus 3786#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines