ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC vs.
Revision 1.410 by root, Sat Feb 4 17:57:55 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined(EV_USE_CLOCK_SYSCALL)
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 206# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 207# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 208# define EV_SELECT_IS_WINSOCKET 1
163# endif 209# endif
210# undef EV_AVOID_STDIO
164#endif 211#endif
212
213/* OS X, in its infinite idiocy, actually HARDCODES
214 * a limit of 1024 into their select. Where people have brains,
215 * OS X engineers apparently have a vacuum. Or maybe they were
216 * ordered to have a vacuum, or they do anything for money.
217 * This might help. Or not.
218 */
219#define _DARWIN_UNLIMITED_SELECT 1
165 220
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 221/* this block tries to deduce configuration from header-defined symbols and defaults */
167 222
223/* try to deduce the maximum number of signals on this platform */
224#if defined (EV_NSIG)
225/* use what's provided */
226#elif defined (NSIG)
227# define EV_NSIG (NSIG)
228#elif defined(_NSIG)
229# define EV_NSIG (_NSIG)
230#elif defined (SIGMAX)
231# define EV_NSIG (SIGMAX+1)
232#elif defined (SIG_MAX)
233# define EV_NSIG (SIG_MAX+1)
234#elif defined (_SIG_MAX)
235# define EV_NSIG (_SIG_MAX+1)
236#elif defined (MAXSIG)
237# define EV_NSIG (MAXSIG+1)
238#elif defined (MAX_SIG)
239# define EV_NSIG (MAX_SIG+1)
240#elif defined (SIGARRAYSIZE)
241# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
242#elif defined (_sys_nsig)
243# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
244#else
245# error "unable to find value for NSIG, please report"
246/* to make it compile regardless, just remove the above line, */
247/* but consider reporting it, too! :) */
248# define EV_NSIG 65
249#endif
250
251#ifndef EV_USE_FLOOR
252# define EV_USE_FLOOR 0
253#endif
254
255#ifndef EV_USE_CLOCK_SYSCALL
256# if __linux && __GLIBC__ >= 2
257# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
258# else
259# define EV_USE_CLOCK_SYSCALL 0
260# endif
261#endif
262
168#ifndef EV_USE_MONOTONIC 263#ifndef EV_USE_MONOTONIC
264# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
265# define EV_USE_MONOTONIC EV_FEATURE_OS
266# else
169# define EV_USE_MONOTONIC 0 267# define EV_USE_MONOTONIC 0
268# endif
170#endif 269#endif
171 270
172#ifndef EV_USE_REALTIME 271#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 272# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 273#endif
175 274
176#ifndef EV_USE_NANOSLEEP 275#ifndef EV_USE_NANOSLEEP
276# if _POSIX_C_SOURCE >= 199309L
277# define EV_USE_NANOSLEEP EV_FEATURE_OS
278# else
177# define EV_USE_NANOSLEEP 0 279# define EV_USE_NANOSLEEP 0
280# endif
178#endif 281#endif
179 282
180#ifndef EV_USE_SELECT 283#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 284# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 285#endif
183 286
184#ifndef EV_USE_POLL 287#ifndef EV_USE_POLL
185# ifdef _WIN32 288# ifdef _WIN32
186# define EV_USE_POLL 0 289# define EV_USE_POLL 0
187# else 290# else
188# define EV_USE_POLL 1 291# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 292# endif
190#endif 293#endif
191 294
192#ifndef EV_USE_EPOLL 295#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 296# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 297# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 298# else
196# define EV_USE_EPOLL 0 299# define EV_USE_EPOLL 0
197# endif 300# endif
198#endif 301#endif
199 302
205# define EV_USE_PORT 0 308# define EV_USE_PORT 0
206#endif 309#endif
207 310
208#ifndef EV_USE_INOTIFY 311#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 313# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 314# else
212# define EV_USE_INOTIFY 0 315# define EV_USE_INOTIFY 0
213# endif 316# endif
214#endif 317#endif
215 318
216#ifndef EV_PID_HASHSIZE 319#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 320# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 321#endif
223 322
224#ifndef EV_INOTIFY_HASHSIZE 323#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 324# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 325#endif
231 326
232#ifndef EV_USE_EVENTFD 327#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 328# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 329# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 330# else
236# define EV_USE_EVENTFD 0 331# define EV_USE_EVENTFD 0
237# endif 332# endif
238#endif 333#endif
239 334
335#ifndef EV_USE_SIGNALFD
336# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
337# define EV_USE_SIGNALFD EV_FEATURE_OS
338# else
339# define EV_USE_SIGNALFD 0
340# endif
341#endif
342
343#if 0 /* debugging */
344# define EV_VERIFY 3
345# define EV_USE_4HEAP 1
346# define EV_HEAP_CACHE_AT 1
347#endif
348
349#ifndef EV_VERIFY
350# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
351#endif
352
353#ifndef EV_USE_4HEAP
354# define EV_USE_4HEAP EV_FEATURE_DATA
355#endif
356
357#ifndef EV_HEAP_CACHE_AT
358# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
359#endif
360
361/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
362/* which makes programs even slower. might work on other unices, too. */
363#if EV_USE_CLOCK_SYSCALL
364# include <syscall.h>
365# ifdef SYS_clock_gettime
366# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
367# undef EV_USE_MONOTONIC
368# define EV_USE_MONOTONIC 1
369# else
370# undef EV_USE_CLOCK_SYSCALL
371# define EV_USE_CLOCK_SYSCALL 0
372# endif
373#endif
374
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 375/* this block fixes any misconfiguration where we know we run into trouble otherwise */
376
377#ifdef _AIX
378/* AIX has a completely broken poll.h header */
379# undef EV_USE_POLL
380# define EV_USE_POLL 0
381#endif
241 382
242#ifndef CLOCK_MONOTONIC 383#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 384# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 385# define EV_USE_MONOTONIC 0
245#endif 386#endif
253# undef EV_USE_INOTIFY 394# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 395# define EV_USE_INOTIFY 0
255#endif 396#endif
256 397
257#if !EV_USE_NANOSLEEP 398#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 399/* hp-ux has it in sys/time.h, which we unconditionally include above */
400# if !defined(_WIN32) && !defined(__hpux)
259# include <sys/select.h> 401# include <sys/select.h>
260# endif 402# endif
261#endif 403#endif
262 404
263#if EV_USE_INOTIFY 405#if EV_USE_INOTIFY
406# include <sys/statfs.h>
264# include <sys/inotify.h> 407# include <sys/inotify.h>
408/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
409# ifndef IN_DONT_FOLLOW
410# undef EV_USE_INOTIFY
411# define EV_USE_INOTIFY 0
412# endif
265#endif 413#endif
266 414
267#if EV_SELECT_IS_WINSOCKET 415#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 416# include <winsock.h>
269#endif 417#endif
270 418
271#if EV_USE_EVENTFD 419#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 420/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 421# include <stdint.h>
274# ifdef __cplusplus 422# ifndef EFD_NONBLOCK
275extern "C" { 423# define EFD_NONBLOCK O_NONBLOCK
276# endif 424# endif
277int eventfd (unsigned int initval, int flags); 425# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 426# ifdef O_CLOEXEC
279} 427# define EFD_CLOEXEC O_CLOEXEC
428# else
429# define EFD_CLOEXEC 02000000
430# endif
280# endif 431# endif
432EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
433#endif
434
435#if EV_USE_SIGNALFD
436/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
437# include <stdint.h>
438# ifndef SFD_NONBLOCK
439# define SFD_NONBLOCK O_NONBLOCK
440# endif
441# ifndef SFD_CLOEXEC
442# ifdef O_CLOEXEC
443# define SFD_CLOEXEC O_CLOEXEC
444# else
445# define SFD_CLOEXEC 02000000
446# endif
447# endif
448EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
449
450struct signalfd_siginfo
451{
452 uint32_t ssi_signo;
453 char pad[128 - sizeof (uint32_t)];
454};
281#endif 455#endif
282 456
283/**/ 457/**/
284 458
459#if EV_VERIFY >= 3
460# define EV_FREQUENT_CHECK ev_verify (EV_A)
461#else
462# define EV_FREQUENT_CHECK do { } while (0)
463#endif
464
285/* 465/*
286 * This is used to avoid floating point rounding problems. 466 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 467 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 468 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 469#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
470/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 471
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 472#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 473#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 474
475#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
476#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
477
478/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
479/* ECB.H BEGIN */
480/*
481 * libecb - http://software.schmorp.de/pkg/libecb
482 *
483 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
484 * Copyright (©) 2011 Emanuele Giaquinta
485 * All rights reserved.
486 *
487 * Redistribution and use in source and binary forms, with or without modifica-
488 * tion, are permitted provided that the following conditions are met:
489 *
490 * 1. Redistributions of source code must retain the above copyright notice,
491 * this list of conditions and the following disclaimer.
492 *
493 * 2. Redistributions in binary form must reproduce the above copyright
494 * notice, this list of conditions and the following disclaimer in the
495 * documentation and/or other materials provided with the distribution.
496 *
497 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
498 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
499 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
500 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
501 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
502 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
503 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
504 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
505 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
506 * OF THE POSSIBILITY OF SUCH DAMAGE.
507 */
508
509#ifndef ECB_H
510#define ECB_H
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 519 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
302#else 526#else
303# define expect(expr,value) (expr) 527 #include <inttypes.h>
304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif 528#endif
529
530/* many compilers define _GNUC_ to some versions but then only implement
531 * what their idiot authors think are the "more important" extensions,
532 * causing enormous grief in return for some better fake benchmark numbers.
533 * or so.
534 * we try to detect these and simply assume they are not gcc - if they have
535 * an issue with that they should have done it right in the first place.
536 */
537#ifndef ECB_GCC_VERSION
538 #if !defined(__GNUC_MINOR__) || defined(__INTEL_COMPILER) || defined(__SUNPRO_C) || defined(__SUNPRO_CC) || defined(__llvm__) || defined(__clang__)
539 #define ECB_GCC_VERSION(major,minor) 0
540 #else
541 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
308#endif 542 #endif
543#endif
309 544
545/*****************************************************************************/
546
547/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
548/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
549
550#if ECB_NO_THREADS
551# define ECB_NO_SMP 1
552#endif
553
554#if ECB_NO_THREADS || ECB_NO_SMP
555 #define ECB_MEMORY_FENCE do { } while (0)
556#endif
557
558#ifndef ECB_MEMORY_FENCE
559 #if ECB_GCC_VERSION(2,5) || defined(__INTEL_COMPILER) || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
560 #if __i386 || __i386__
561 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
562 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE /* non-lock xchg might be enough */
563 #define ECB_MEMORY_FENCE_RELEASE do { } while (0) /* unlikely to change in future cpus */
564 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
565 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
566 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("lfence" : : : "memory")
567 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("sfence") /* play safe - not needed in any current cpu */
568 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
569 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
570 #elif defined(__ARM_ARCH_6__ ) || defined(__ARM_ARCH_6J__ ) \
571 || defined(__ARM_ARCH_6K__) || defined(__ARM_ARCH_6ZK__)
572 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
573 #elif defined(__ARM_ARCH_7__ ) || defined(__ARM_ARCH_7A__ ) \
574 || defined(__ARM_ARCH_7M__) || defined(__ARM_ARCH_7R__ )
575 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
576 #elif __sparc || __sparc__
577 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad | " : : : "memory")
578 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
579 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
580 #elif defined(__s390__) || defined(__s390x__)
581 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
582 #endif
583 #endif
584#endif
585
586#ifndef ECB_MEMORY_FENCE
587 #if ECB_GCC_VERSION(4,4) || defined(__INTEL_COMPILER) || defined(__clang__)
588 #define ECB_MEMORY_FENCE __sync_synchronize ()
589 /*#define ECB_MEMORY_FENCE_ACQUIRE ({ char dummy = 0; __sync_lock_test_and_set (&dummy, 1); }) */
590 /*#define ECB_MEMORY_FENCE_RELEASE ({ char dummy = 1; __sync_lock_release (&dummy ); }) */
591 #elif _MSC_VER >= 1400 /* VC++ 2005 */
592 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
593 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
594 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
595 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
596 #elif defined(_WIN32)
597 #include <WinNT.h>
598 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
599 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
600 #include <mbarrier.h>
601 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
602 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
603 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
604 #endif
605#endif
606
607#ifndef ECB_MEMORY_FENCE
608 #if !ECB_AVOID_PTHREADS
609 /*
610 * if you get undefined symbol references to pthread_mutex_lock,
611 * or failure to find pthread.h, then you should implement
612 * the ECB_MEMORY_FENCE operations for your cpu/compiler
613 * OR provide pthread.h and link against the posix thread library
614 * of your system.
615 */
616 #include <pthread.h>
617 #define ECB_NEEDS_PTHREADS 1
618 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
619
620 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
621 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
622 #endif
623#endif
624
625#if !defined(ECB_MEMORY_FENCE_ACQUIRE) && defined(ECB_MEMORY_FENCE)
626 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
627#endif
628
629#if !defined(ECB_MEMORY_FENCE_RELEASE) && defined(ECB_MEMORY_FENCE)
630 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
631#endif
632
633/*****************************************************************************/
634
635#define ECB_C99 (__STDC_VERSION__ >= 199901L)
636
637#if __cplusplus
638 #define ecb_inline static inline
639#elif ECB_GCC_VERSION(2,5)
640 #define ecb_inline static __inline__
641#elif ECB_C99
642 #define ecb_inline static inline
643#else
644 #define ecb_inline static
645#endif
646
647#if ECB_GCC_VERSION(3,3)
648 #define ecb_restrict __restrict__
649#elif ECB_C99
650 #define ecb_restrict restrict
651#else
652 #define ecb_restrict
653#endif
654
655typedef int ecb_bool;
656
657#define ECB_CONCAT_(a, b) a ## b
658#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
659#define ECB_STRINGIFY_(a) # a
660#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
661
662#define ecb_function_ ecb_inline
663
664#if ECB_GCC_VERSION(3,1)
665 #define ecb_attribute(attrlist) __attribute__(attrlist)
666 #define ecb_is_constant(expr) __builtin_constant_p (expr)
667 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
668 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
669#else
670 #define ecb_attribute(attrlist)
671 #define ecb_is_constant(expr) 0
672 #define ecb_expect(expr,value) (expr)
673 #define ecb_prefetch(addr,rw,locality)
674#endif
675
676/* no emulation for ecb_decltype */
677#if ECB_GCC_VERSION(4,5)
678 #define ecb_decltype(x) __decltype(x)
679#elif ECB_GCC_VERSION(3,0)
680 #define ecb_decltype(x) __typeof(x)
681#endif
682
683#define ecb_noinline ecb_attribute ((__noinline__))
684#define ecb_noreturn ecb_attribute ((__noreturn__))
685#define ecb_unused ecb_attribute ((__unused__))
686#define ecb_const ecb_attribute ((__const__))
687#define ecb_pure ecb_attribute ((__pure__))
688
689#if ECB_GCC_VERSION(4,3)
690 #define ecb_artificial ecb_attribute ((__artificial__))
691 #define ecb_hot ecb_attribute ((__hot__))
692 #define ecb_cold ecb_attribute ((__cold__))
693#else
694 #define ecb_artificial
695 #define ecb_hot
696 #define ecb_cold
697#endif
698
699/* put around conditional expressions if you are very sure that the */
700/* expression is mostly true or mostly false. note that these return */
701/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 702#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 703#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
704/* for compatibility to the rest of the world */
705#define ecb_likely(expr) ecb_expect_true (expr)
706#define ecb_unlikely(expr) ecb_expect_false (expr)
707
708/* count trailing zero bits and count # of one bits */
709#if ECB_GCC_VERSION(3,4)
710 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
711 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
712 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
713 #define ecb_ctz32(x) __builtin_ctz (x)
714 #define ecb_ctz64(x) __builtin_ctzll (x)
715 #define ecb_popcount32(x) __builtin_popcount (x)
716 /* no popcountll */
717#else
718 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
719 ecb_function_ int
720 ecb_ctz32 (uint32_t x)
721 {
722 int r = 0;
723
724 x &= ~x + 1; /* this isolates the lowest bit */
725
726#if ECB_branchless_on_i386
727 r += !!(x & 0xaaaaaaaa) << 0;
728 r += !!(x & 0xcccccccc) << 1;
729 r += !!(x & 0xf0f0f0f0) << 2;
730 r += !!(x & 0xff00ff00) << 3;
731 r += !!(x & 0xffff0000) << 4;
732#else
733 if (x & 0xaaaaaaaa) r += 1;
734 if (x & 0xcccccccc) r += 2;
735 if (x & 0xf0f0f0f0) r += 4;
736 if (x & 0xff00ff00) r += 8;
737 if (x & 0xffff0000) r += 16;
738#endif
739
740 return r;
741 }
742
743 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
744 ecb_function_ int
745 ecb_ctz64 (uint64_t x)
746 {
747 int shift = x & 0xffffffffU ? 0 : 32;
748 return ecb_ctz32 (x >> shift) + shift;
749 }
750
751 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
752 ecb_function_ int
753 ecb_popcount32 (uint32_t x)
754 {
755 x -= (x >> 1) & 0x55555555;
756 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
757 x = ((x >> 4) + x) & 0x0f0f0f0f;
758 x *= 0x01010101;
759
760 return x >> 24;
761 }
762
763 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
764 ecb_function_ int ecb_ld32 (uint32_t x)
765 {
766 int r = 0;
767
768 if (x >> 16) { x >>= 16; r += 16; }
769 if (x >> 8) { x >>= 8; r += 8; }
770 if (x >> 4) { x >>= 4; r += 4; }
771 if (x >> 2) { x >>= 2; r += 2; }
772 if (x >> 1) { r += 1; }
773
774 return r;
775 }
776
777 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
778 ecb_function_ int ecb_ld64 (uint64_t x)
779 {
780 int r = 0;
781
782 if (x >> 32) { x >>= 32; r += 32; }
783
784 return r + ecb_ld32 (x);
785 }
786#endif
787
788ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
789ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
790{
791 return ( (x * 0x0802U & 0x22110U)
792 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
793}
794
795ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
796ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
797{
798 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
799 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
800 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
801 x = ( x >> 8 ) | ( x << 8);
802
803 return x;
804}
805
806ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
807ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
808{
809 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
810 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
811 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
812 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
813 x = ( x >> 16 ) | ( x << 16);
814
815 return x;
816}
817
818/* popcount64 is only available on 64 bit cpus as gcc builtin */
819/* so for this version we are lazy */
820ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
821ecb_function_ int
822ecb_popcount64 (uint64_t x)
823{
824 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
825}
826
827ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
828ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
829ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
830ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
831ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
832ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
833ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
834ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
835
836ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
837ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
838ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
839ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
840ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
841ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
842ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
843ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
844
845#if ECB_GCC_VERSION(4,3)
846 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
847 #define ecb_bswap32(x) __builtin_bswap32 (x)
848 #define ecb_bswap64(x) __builtin_bswap64 (x)
849#else
850 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
851 ecb_function_ uint16_t
852 ecb_bswap16 (uint16_t x)
853 {
854 return ecb_rotl16 (x, 8);
855 }
856
857 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
858 ecb_function_ uint32_t
859 ecb_bswap32 (uint32_t x)
860 {
861 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
862 }
863
864 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
865 ecb_function_ uint64_t
866 ecb_bswap64 (uint64_t x)
867 {
868 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
869 }
870#endif
871
872#if ECB_GCC_VERSION(4,5)
873 #define ecb_unreachable() __builtin_unreachable ()
874#else
875 /* this seems to work fine, but gcc always emits a warning for it :/ */
876 ecb_inline void ecb_unreachable (void) ecb_noreturn;
877 ecb_inline void ecb_unreachable (void) { }
878#endif
879
880/* try to tell the compiler that some condition is definitely true */
881#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
882
883ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
884ecb_inline unsigned char
885ecb_byteorder_helper (void)
886{
887 const uint32_t u = 0x11223344;
888 return *(unsigned char *)&u;
889}
890
891ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
892ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
893ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
894ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
895
896#if ECB_GCC_VERSION(3,0) || ECB_C99
897 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
898#else
899 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
900#endif
901
902#if __cplusplus
903 template<typename T>
904 static inline T ecb_div_rd (T val, T div)
905 {
906 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
907 }
908 template<typename T>
909 static inline T ecb_div_ru (T val, T div)
910 {
911 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
912 }
913#else
914 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
915 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
916#endif
917
918#if ecb_cplusplus_does_not_suck
919 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
920 template<typename T, int N>
921 static inline int ecb_array_length (const T (&arr)[N])
922 {
923 return N;
924 }
925#else
926 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
927#endif
928
929#endif
930
931/* ECB.H END */
932
933#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
934/* if your architecture doesn't need memory fences, e.g. because it is
935 * single-cpu/core, or if you use libev in a project that doesn't use libev
936 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
937 * libev, in which cases the memory fences become nops.
938 * alternatively, you can remove this #error and link against libpthread,
939 * which will then provide the memory fences.
940 */
941# error "memory fences not defined for your architecture, please report"
942#endif
943
944#ifndef ECB_MEMORY_FENCE
945# define ECB_MEMORY_FENCE do { } while (0)
946# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
947# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
948#endif
949
950#define expect_false(cond) ecb_expect_false (cond)
951#define expect_true(cond) ecb_expect_true (cond)
952#define noinline ecb_noinline
953
312#define inline_size static inline 954#define inline_size ecb_inline
313 955
314#if EV_MINIMAL 956#if EV_FEATURE_CODE
957# define inline_speed ecb_inline
958#else
315# define inline_speed static noinline 959# define inline_speed static noinline
960#endif
961
962#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
963
964#if EV_MINPRI == EV_MAXPRI
965# define ABSPRI(w) (((W)w), 0)
316#else 966#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 967# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
968#endif
322 969
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 970#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 971#define EMPTY2(a,b) /* used to suppress some warnings */
325 972
326typedef ev_watcher *W; 973typedef ev_watcher *W;
327typedef ev_watcher_list *WL; 974typedef ev_watcher_list *WL;
328typedef ev_watcher_time *WT; 975typedef ev_watcher_time *WT;
329 976
977#define ev_active(w) ((W)(w))->active
330#define ev_at(w) ((WT)(w))->at 978#define ev_at(w) ((WT)(w))->at
331 979
980#if EV_USE_REALTIME
981/* sig_atomic_t is used to avoid per-thread variables or locking but still */
982/* giving it a reasonably high chance of working on typical architectures */
983static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
984#endif
985
332#if EV_USE_MONOTONIC 986#if EV_USE_MONOTONIC
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */
335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 987static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
988#endif
989
990#ifndef EV_FD_TO_WIN32_HANDLE
991# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
992#endif
993#ifndef EV_WIN32_HANDLE_TO_FD
994# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
995#endif
996#ifndef EV_WIN32_CLOSE_FD
997# define EV_WIN32_CLOSE_FD(fd) close (fd)
336#endif 998#endif
337 999
338#ifdef _WIN32 1000#ifdef _WIN32
339# include "ev_win32.c" 1001# include "ev_win32.c"
340#endif 1002#endif
341 1003
342/*****************************************************************************/ 1004/*****************************************************************************/
343 1005
1006/* define a suitable floor function (only used by periodics atm) */
1007
1008#if EV_USE_FLOOR
1009# include <math.h>
1010# define ev_floor(v) floor (v)
1011#else
1012
1013#include <float.h>
1014
1015/* a floor() replacement function, should be independent of ev_tstamp type */
1016static ev_tstamp noinline
1017ev_floor (ev_tstamp v)
1018{
1019 /* the choice of shift factor is not terribly important */
1020#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1021 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1022#else
1023 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1024#endif
1025
1026 /* argument too large for an unsigned long? */
1027 if (expect_false (v >= shift))
1028 {
1029 ev_tstamp f;
1030
1031 if (v == v - 1.)
1032 return v; /* very large number */
1033
1034 f = shift * ev_floor (v * (1. / shift));
1035 return f + ev_floor (v - f);
1036 }
1037
1038 /* special treatment for negative args? */
1039 if (expect_false (v < 0.))
1040 {
1041 ev_tstamp f = -ev_floor (-v);
1042
1043 return f - (f == v ? 0 : 1);
1044 }
1045
1046 /* fits into an unsigned long */
1047 return (unsigned long)v;
1048}
1049
1050#endif
1051
1052/*****************************************************************************/
1053
1054#ifdef __linux
1055# include <sys/utsname.h>
1056#endif
1057
1058static unsigned int noinline ecb_cold
1059ev_linux_version (void)
1060{
1061#ifdef __linux
1062 unsigned int v = 0;
1063 struct utsname buf;
1064 int i;
1065 char *p = buf.release;
1066
1067 if (uname (&buf))
1068 return 0;
1069
1070 for (i = 3+1; --i; )
1071 {
1072 unsigned int c = 0;
1073
1074 for (;;)
1075 {
1076 if (*p >= '0' && *p <= '9')
1077 c = c * 10 + *p++ - '0';
1078 else
1079 {
1080 p += *p == '.';
1081 break;
1082 }
1083 }
1084
1085 v = (v << 8) | c;
1086 }
1087
1088 return v;
1089#else
1090 return 0;
1091#endif
1092}
1093
1094/*****************************************************************************/
1095
1096#if EV_AVOID_STDIO
1097static void noinline ecb_cold
1098ev_printerr (const char *msg)
1099{
1100 write (STDERR_FILENO, msg, strlen (msg));
1101}
1102#endif
1103
344static void (*syserr_cb)(const char *msg); 1104static void (*syserr_cb)(const char *msg);
345 1105
346void 1106void ecb_cold
347ev_set_syserr_cb (void (*cb)(const char *msg)) 1107ev_set_syserr_cb (void (*cb)(const char *msg))
348{ 1108{
349 syserr_cb = cb; 1109 syserr_cb = cb;
350} 1110}
351 1111
352static void noinline 1112static void noinline ecb_cold
353syserr (const char *msg) 1113ev_syserr (const char *msg)
354{ 1114{
355 if (!msg) 1115 if (!msg)
356 msg = "(libev) system error"; 1116 msg = "(libev) system error";
357 1117
358 if (syserr_cb) 1118 if (syserr_cb)
359 syserr_cb (msg); 1119 syserr_cb (msg);
360 else 1120 else
361 { 1121 {
1122#if EV_AVOID_STDIO
1123 ev_printerr (msg);
1124 ev_printerr (": ");
1125 ev_printerr (strerror (errno));
1126 ev_printerr ("\n");
1127#else
362 perror (msg); 1128 perror (msg);
1129#endif
363 abort (); 1130 abort ();
364 } 1131 }
365} 1132}
366 1133
367static void * 1134static void *
368ev_realloc_emul (void *ptr, long size) 1135ev_realloc_emul (void *ptr, long size)
369{ 1136{
1137#if __GLIBC__
1138 return realloc (ptr, size);
1139#else
370 /* some systems, notably openbsd and darwin, fail to properly 1140 /* some systems, notably openbsd and darwin, fail to properly
371 * implement realloc (x, 0) (as required by both ansi c-98 and 1141 * implement realloc (x, 0) (as required by both ansi c-89 and
372 * the single unix specification, so work around them here. 1142 * the single unix specification, so work around them here.
373 */ 1143 */
374 1144
375 if (size) 1145 if (size)
376 return realloc (ptr, size); 1146 return realloc (ptr, size);
377 1147
378 free (ptr); 1148 free (ptr);
379 return 0; 1149 return 0;
1150#endif
380} 1151}
381 1152
382static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1153static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
383 1154
384void 1155void ecb_cold
385ev_set_allocator (void *(*cb)(void *ptr, long size)) 1156ev_set_allocator (void *(*cb)(void *ptr, long size))
386{ 1157{
387 alloc = cb; 1158 alloc = cb;
388} 1159}
389 1160
392{ 1163{
393 ptr = alloc (ptr, size); 1164 ptr = alloc (ptr, size);
394 1165
395 if (!ptr && size) 1166 if (!ptr && size)
396 { 1167 {
1168#if EV_AVOID_STDIO
1169 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1170#else
397 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1171 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1172#endif
398 abort (); 1173 abort ();
399 } 1174 }
400 1175
401 return ptr; 1176 return ptr;
402} 1177}
404#define ev_malloc(size) ev_realloc (0, (size)) 1179#define ev_malloc(size) ev_realloc (0, (size))
405#define ev_free(ptr) ev_realloc ((ptr), 0) 1180#define ev_free(ptr) ev_realloc ((ptr), 0)
406 1181
407/*****************************************************************************/ 1182/*****************************************************************************/
408 1183
1184/* set in reify when reification needed */
1185#define EV_ANFD_REIFY 1
1186
1187/* file descriptor info structure */
409typedef struct 1188typedef struct
410{ 1189{
411 WL head; 1190 WL head;
412 unsigned char events; 1191 unsigned char events; /* the events watched for */
1192 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1193 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
413 unsigned char reify; 1194 unsigned char unused;
1195#if EV_USE_EPOLL
1196 unsigned int egen; /* generation counter to counter epoll bugs */
1197#endif
414#if EV_SELECT_IS_WINSOCKET 1198#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
415 SOCKET handle; 1199 SOCKET handle;
416#endif 1200#endif
1201#if EV_USE_IOCP
1202 OVERLAPPED or, ow;
1203#endif
417} ANFD; 1204} ANFD;
418 1205
1206/* stores the pending event set for a given watcher */
419typedef struct 1207typedef struct
420{ 1208{
421 W w; 1209 W w;
422 int events; 1210 int events; /* the pending event set for the given watcher */
423} ANPENDING; 1211} ANPENDING;
424 1212
425#if EV_USE_INOTIFY 1213#if EV_USE_INOTIFY
1214/* hash table entry per inotify-id */
426typedef struct 1215typedef struct
427{ 1216{
428 WL head; 1217 WL head;
429} ANFS; 1218} ANFS;
1219#endif
1220
1221/* Heap Entry */
1222#if EV_HEAP_CACHE_AT
1223 /* a heap element */
1224 typedef struct {
1225 ev_tstamp at;
1226 WT w;
1227 } ANHE;
1228
1229 #define ANHE_w(he) (he).w /* access watcher, read-write */
1230 #define ANHE_at(he) (he).at /* access cached at, read-only */
1231 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1232#else
1233 /* a heap element */
1234 typedef WT ANHE;
1235
1236 #define ANHE_w(he) (he)
1237 #define ANHE_at(he) (he)->at
1238 #define ANHE_at_cache(he)
430#endif 1239#endif
431 1240
432#if EV_MULTIPLICITY 1241#if EV_MULTIPLICITY
433 1242
434 struct ev_loop 1243 struct ev_loop
440 #undef VAR 1249 #undef VAR
441 }; 1250 };
442 #include "ev_wrap.h" 1251 #include "ev_wrap.h"
443 1252
444 static struct ev_loop default_loop_struct; 1253 static struct ev_loop default_loop_struct;
445 struct ev_loop *ev_default_loop_ptr; 1254 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
446 1255
447#else 1256#else
448 1257
449 ev_tstamp ev_rt_now; 1258 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
450 #define VAR(name,decl) static decl; 1259 #define VAR(name,decl) static decl;
451 #include "ev_vars.h" 1260 #include "ev_vars.h"
452 #undef VAR 1261 #undef VAR
453 1262
454 static int ev_default_loop_ptr; 1263 static int ev_default_loop_ptr;
455 1264
456#endif 1265#endif
457 1266
1267#if EV_FEATURE_API
1268# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1269# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1270# define EV_INVOKE_PENDING invoke_cb (EV_A)
1271#else
1272# define EV_RELEASE_CB (void)0
1273# define EV_ACQUIRE_CB (void)0
1274# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1275#endif
1276
1277#define EVBREAK_RECURSE 0x80
1278
458/*****************************************************************************/ 1279/*****************************************************************************/
459 1280
1281#ifndef EV_HAVE_EV_TIME
460ev_tstamp 1282ev_tstamp
461ev_time (void) 1283ev_time (void)
462{ 1284{
463#if EV_USE_REALTIME 1285#if EV_USE_REALTIME
1286 if (expect_true (have_realtime))
1287 {
464 struct timespec ts; 1288 struct timespec ts;
465 clock_gettime (CLOCK_REALTIME, &ts); 1289 clock_gettime (CLOCK_REALTIME, &ts);
466 return ts.tv_sec + ts.tv_nsec * 1e-9; 1290 return ts.tv_sec + ts.tv_nsec * 1e-9;
467#else 1291 }
1292#endif
1293
468 struct timeval tv; 1294 struct timeval tv;
469 gettimeofday (&tv, 0); 1295 gettimeofday (&tv, 0);
470 return tv.tv_sec + tv.tv_usec * 1e-6; 1296 return tv.tv_sec + tv.tv_usec * 1e-6;
471#endif
472} 1297}
1298#endif
473 1299
474ev_tstamp inline_size 1300inline_size ev_tstamp
475get_clock (void) 1301get_clock (void)
476{ 1302{
477#if EV_USE_MONOTONIC 1303#if EV_USE_MONOTONIC
478 if (expect_true (have_monotonic)) 1304 if (expect_true (have_monotonic))
479 { 1305 {
500 if (delay > 0.) 1326 if (delay > 0.)
501 { 1327 {
502#if EV_USE_NANOSLEEP 1328#if EV_USE_NANOSLEEP
503 struct timespec ts; 1329 struct timespec ts;
504 1330
505 ts.tv_sec = (time_t)delay; 1331 EV_TS_SET (ts, delay);
506 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
507
508 nanosleep (&ts, 0); 1332 nanosleep (&ts, 0);
509#elif defined(_WIN32) 1333#elif defined(_WIN32)
510 Sleep ((unsigned long)(delay * 1e3)); 1334 Sleep ((unsigned long)(delay * 1e3));
511#else 1335#else
512 struct timeval tv; 1336 struct timeval tv;
513 1337
514 tv.tv_sec = (time_t)delay; 1338 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1339 /* something not guaranteed by newer posix versions, but guaranteed */
516 1340 /* by older ones */
1341 EV_TV_SET (tv, delay);
517 select (0, 0, 0, 0, &tv); 1342 select (0, 0, 0, 0, &tv);
518#endif 1343#endif
519 } 1344 }
520} 1345}
521 1346
522/*****************************************************************************/ 1347/*****************************************************************************/
523 1348
524int inline_size 1349#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1350
1351/* find a suitable new size for the given array, */
1352/* hopefully by rounding to a nice-to-malloc size */
1353inline_size int
525array_nextsize (int elem, int cur, int cnt) 1354array_nextsize (int elem, int cur, int cnt)
526{ 1355{
527 int ncur = cur + 1; 1356 int ncur = cur + 1;
528 1357
529 do 1358 do
530 ncur <<= 1; 1359 ncur <<= 1;
531 while (cnt > ncur); 1360 while (cnt > ncur);
532 1361
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1362 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
534 if (elem * ncur > 4096) 1363 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
535 { 1364 {
536 ncur *= elem; 1365 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1366 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
538 ncur = ncur - sizeof (void *) * 4; 1367 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem; 1368 ncur /= elem;
540 } 1369 }
541 1370
542 return ncur; 1371 return ncur;
543} 1372}
544 1373
545static noinline void * 1374static void * noinline ecb_cold
546array_realloc (int elem, void *base, int *cur, int cnt) 1375array_realloc (int elem, void *base, int *cur, int cnt)
547{ 1376{
548 *cur = array_nextsize (elem, *cur, cnt); 1377 *cur = array_nextsize (elem, *cur, cnt);
549 return ev_realloc (base, elem * *cur); 1378 return ev_realloc (base, elem * *cur);
550} 1379}
1380
1381#define array_init_zero(base,count) \
1382 memset ((void *)(base), 0, sizeof (*(base)) * (count))
551 1383
552#define array_needsize(type,base,cur,cnt,init) \ 1384#define array_needsize(type,base,cur,cnt,init) \
553 if (expect_false ((cnt) > (cur))) \ 1385 if (expect_false ((cnt) > (cur))) \
554 { \ 1386 { \
555 int ocur_ = (cur); \ 1387 int ecb_unused ocur_ = (cur); \
556 (base) = (type *)array_realloc \ 1388 (base) = (type *)array_realloc \
557 (sizeof (type), (base), &(cur), (cnt)); \ 1389 (sizeof (type), (base), &(cur), (cnt)); \
558 init ((base) + (ocur_), (cur) - ocur_); \ 1390 init ((base) + (ocur_), (cur) - ocur_); \
559 } 1391 }
560 1392
567 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1399 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
568 } 1400 }
569#endif 1401#endif
570 1402
571#define array_free(stem, idx) \ 1403#define array_free(stem, idx) \
572 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1404 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
573 1405
574/*****************************************************************************/ 1406/*****************************************************************************/
1407
1408/* dummy callback for pending events */
1409static void noinline
1410pendingcb (EV_P_ ev_prepare *w, int revents)
1411{
1412}
575 1413
576void noinline 1414void noinline
577ev_feed_event (EV_P_ void *w, int revents) 1415ev_feed_event (EV_P_ void *w, int revents)
578{ 1416{
579 W w_ = (W)w; 1417 W w_ = (W)w;
588 pendings [pri][w_->pending - 1].w = w_; 1426 pendings [pri][w_->pending - 1].w = w_;
589 pendings [pri][w_->pending - 1].events = revents; 1427 pendings [pri][w_->pending - 1].events = revents;
590 } 1428 }
591} 1429}
592 1430
593void inline_speed 1431inline_speed void
1432feed_reverse (EV_P_ W w)
1433{
1434 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1435 rfeeds [rfeedcnt++] = w;
1436}
1437
1438inline_size void
1439feed_reverse_done (EV_P_ int revents)
1440{
1441 do
1442 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1443 while (rfeedcnt);
1444}
1445
1446inline_speed void
594queue_events (EV_P_ W *events, int eventcnt, int type) 1447queue_events (EV_P_ W *events, int eventcnt, int type)
595{ 1448{
596 int i; 1449 int i;
597 1450
598 for (i = 0; i < eventcnt; ++i) 1451 for (i = 0; i < eventcnt; ++i)
599 ev_feed_event (EV_A_ events [i], type); 1452 ev_feed_event (EV_A_ events [i], type);
600} 1453}
601 1454
602/*****************************************************************************/ 1455/*****************************************************************************/
603 1456
604void inline_size 1457inline_speed void
605anfds_init (ANFD *base, int count)
606{
607 while (count--)
608 {
609 base->head = 0;
610 base->events = EV_NONE;
611 base->reify = 0;
612
613 ++base;
614 }
615}
616
617void inline_speed
618fd_event (EV_P_ int fd, int revents) 1458fd_event_nocheck (EV_P_ int fd, int revents)
619{ 1459{
620 ANFD *anfd = anfds + fd; 1460 ANFD *anfd = anfds + fd;
621 ev_io *w; 1461 ev_io *w;
622 1462
623 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1463 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
627 if (ev) 1467 if (ev)
628 ev_feed_event (EV_A_ (W)w, ev); 1468 ev_feed_event (EV_A_ (W)w, ev);
629 } 1469 }
630} 1470}
631 1471
1472/* do not submit kernel events for fds that have reify set */
1473/* because that means they changed while we were polling for new events */
1474inline_speed void
1475fd_event (EV_P_ int fd, int revents)
1476{
1477 ANFD *anfd = anfds + fd;
1478
1479 if (expect_true (!anfd->reify))
1480 fd_event_nocheck (EV_A_ fd, revents);
1481}
1482
632void 1483void
633ev_feed_fd_event (EV_P_ int fd, int revents) 1484ev_feed_fd_event (EV_P_ int fd, int revents)
634{ 1485{
635 if (fd >= 0 && fd < anfdmax) 1486 if (fd >= 0 && fd < anfdmax)
636 fd_event (EV_A_ fd, revents); 1487 fd_event_nocheck (EV_A_ fd, revents);
637} 1488}
638 1489
639void inline_size 1490/* make sure the external fd watch events are in-sync */
1491/* with the kernel/libev internal state */
1492inline_size void
640fd_reify (EV_P) 1493fd_reify (EV_P)
641{ 1494{
642 int i; 1495 int i;
1496
1497#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1498 for (i = 0; i < fdchangecnt; ++i)
1499 {
1500 int fd = fdchanges [i];
1501 ANFD *anfd = anfds + fd;
1502
1503 if (anfd->reify & EV__IOFDSET && anfd->head)
1504 {
1505 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1506
1507 if (handle != anfd->handle)
1508 {
1509 unsigned long arg;
1510
1511 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1512
1513 /* handle changed, but fd didn't - we need to do it in two steps */
1514 backend_modify (EV_A_ fd, anfd->events, 0);
1515 anfd->events = 0;
1516 anfd->handle = handle;
1517 }
1518 }
1519 }
1520#endif
643 1521
644 for (i = 0; i < fdchangecnt; ++i) 1522 for (i = 0; i < fdchangecnt; ++i)
645 { 1523 {
646 int fd = fdchanges [i]; 1524 int fd = fdchanges [i];
647 ANFD *anfd = anfds + fd; 1525 ANFD *anfd = anfds + fd;
648 ev_io *w; 1526 ev_io *w;
649 1527
650 unsigned char events = 0; 1528 unsigned char o_events = anfd->events;
1529 unsigned char o_reify = anfd->reify;
651 1530
652 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1531 anfd->reify = 0;
653 events |= (unsigned char)w->events;
654 1532
655#if EV_SELECT_IS_WINSOCKET 1533 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
656 if (events)
657 { 1534 {
658 unsigned long argp; 1535 anfd->events = 0;
659 #ifdef EV_FD_TO_WIN32_HANDLE 1536
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1537 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
661 #else 1538 anfd->events |= (unsigned char)w->events;
662 anfd->handle = _get_osfhandle (fd); 1539
663 #endif 1540 if (o_events != anfd->events)
664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1541 o_reify = EV__IOFDSET; /* actually |= */
665 } 1542 }
666#endif
667 1543
668 { 1544 if (o_reify & EV__IOFDSET)
669 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify;
671
672 anfd->reify = 0;
673 anfd->events = events;
674
675 if (o_events != events || o_reify & EV_IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events); 1545 backend_modify (EV_A_ fd, o_events, anfd->events);
677 }
678 } 1546 }
679 1547
680 fdchangecnt = 0; 1548 fdchangecnt = 0;
681} 1549}
682 1550
683void inline_size 1551/* something about the given fd changed */
1552inline_size void
684fd_change (EV_P_ int fd, int flags) 1553fd_change (EV_P_ int fd, int flags)
685{ 1554{
686 unsigned char reify = anfds [fd].reify; 1555 unsigned char reify = anfds [fd].reify;
687 anfds [fd].reify |= flags; 1556 anfds [fd].reify |= flags;
688 1557
692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1561 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
693 fdchanges [fdchangecnt - 1] = fd; 1562 fdchanges [fdchangecnt - 1] = fd;
694 } 1563 }
695} 1564}
696 1565
697void inline_speed 1566/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1567inline_speed void ecb_cold
698fd_kill (EV_P_ int fd) 1568fd_kill (EV_P_ int fd)
699{ 1569{
700 ev_io *w; 1570 ev_io *w;
701 1571
702 while ((w = (ev_io *)anfds [fd].head)) 1572 while ((w = (ev_io *)anfds [fd].head))
704 ev_io_stop (EV_A_ w); 1574 ev_io_stop (EV_A_ w);
705 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1575 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
706 } 1576 }
707} 1577}
708 1578
709int inline_size 1579/* check whether the given fd is actually valid, for error recovery */
1580inline_size int ecb_cold
710fd_valid (int fd) 1581fd_valid (int fd)
711{ 1582{
712#ifdef _WIN32 1583#ifdef _WIN32
713 return _get_osfhandle (fd) != -1; 1584 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
714#else 1585#else
715 return fcntl (fd, F_GETFD) != -1; 1586 return fcntl (fd, F_GETFD) != -1;
716#endif 1587#endif
717} 1588}
718 1589
719/* called on EBADF to verify fds */ 1590/* called on EBADF to verify fds */
720static void noinline 1591static void noinline ecb_cold
721fd_ebadf (EV_P) 1592fd_ebadf (EV_P)
722{ 1593{
723 int fd; 1594 int fd;
724 1595
725 for (fd = 0; fd < anfdmax; ++fd) 1596 for (fd = 0; fd < anfdmax; ++fd)
726 if (anfds [fd].events) 1597 if (anfds [fd].events)
727 if (!fd_valid (fd) == -1 && errno == EBADF) 1598 if (!fd_valid (fd) && errno == EBADF)
728 fd_kill (EV_A_ fd); 1599 fd_kill (EV_A_ fd);
729} 1600}
730 1601
731/* called on ENOMEM in select/poll to kill some fds and retry */ 1602/* called on ENOMEM in select/poll to kill some fds and retry */
732static void noinline 1603static void noinline ecb_cold
733fd_enomem (EV_P) 1604fd_enomem (EV_P)
734{ 1605{
735 int fd; 1606 int fd;
736 1607
737 for (fd = anfdmax; fd--; ) 1608 for (fd = anfdmax; fd--; )
738 if (anfds [fd].events) 1609 if (anfds [fd].events)
739 { 1610 {
740 fd_kill (EV_A_ fd); 1611 fd_kill (EV_A_ fd);
741 return; 1612 break;
742 } 1613 }
743} 1614}
744 1615
745/* usually called after fork if backend needs to re-arm all fds from scratch */ 1616/* usually called after fork if backend needs to re-arm all fds from scratch */
746static void noinline 1617static void noinline
750 1621
751 for (fd = 0; fd < anfdmax; ++fd) 1622 for (fd = 0; fd < anfdmax; ++fd)
752 if (anfds [fd].events) 1623 if (anfds [fd].events)
753 { 1624 {
754 anfds [fd].events = 0; 1625 anfds [fd].events = 0;
1626 anfds [fd].emask = 0;
755 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1627 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
756 } 1628 }
757} 1629}
758 1630
759/*****************************************************************************/ 1631/* used to prepare libev internal fd's */
760 1632/* this is not fork-safe */
761/* towards the root */ 1633inline_speed void
762void inline_speed
763upheap (WT *heap, int k)
764{
765 WT w = heap [k];
766
767 for (;;)
768 {
769 int p = k >> 1;
770
771 /* maybe we could use a dummy element at heap [0]? */
772 if (!p || heap [p]->at <= w->at)
773 break;
774
775 heap [k] = heap [p];
776 ((W)heap [k])->active = k;
777 k = p;
778 }
779
780 heap [k] = w;
781 ((W)heap [k])->active = k;
782}
783
784/* away from the root */
785void inline_speed
786downheap (WT *heap, int N, int k)
787{
788 WT w = heap [k];
789
790 for (;;)
791 {
792 int c = k << 1;
793
794 if (c > N)
795 break;
796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
803 heap [k] = heap [c];
804 ((W)heap [k])->active = k;
805
806 k = c;
807 }
808
809 heap [k] = w;
810 ((W)heap [k])->active = k;
811}
812
813void inline_size
814adjustheap (WT *heap, int N, int k)
815{
816 upheap (heap, k);
817 downheap (heap, N, k);
818}
819
820/*****************************************************************************/
821
822typedef struct
823{
824 WL head;
825 EV_ATOMIC_T gotsig;
826} ANSIG;
827
828static ANSIG *signals;
829static int signalmax;
830
831static EV_ATOMIC_T gotsig;
832
833void inline_size
834signals_init (ANSIG *base, int count)
835{
836 while (count--)
837 {
838 base->head = 0;
839 base->gotsig = 0;
840
841 ++base;
842 }
843}
844
845/*****************************************************************************/
846
847void inline_speed
848fd_intern (int fd) 1634fd_intern (int fd)
849{ 1635{
850#ifdef _WIN32 1636#ifdef _WIN32
851 int arg = 1; 1637 unsigned long arg = 1;
852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1638 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
853#else 1639#else
854 fcntl (fd, F_SETFD, FD_CLOEXEC); 1640 fcntl (fd, F_SETFD, FD_CLOEXEC);
855 fcntl (fd, F_SETFL, O_NONBLOCK); 1641 fcntl (fd, F_SETFL, O_NONBLOCK);
856#endif 1642#endif
857} 1643}
858 1644
1645/*****************************************************************************/
1646
1647/*
1648 * the heap functions want a real array index. array index 0 is guaranteed to not
1649 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1650 * the branching factor of the d-tree.
1651 */
1652
1653/*
1654 * at the moment we allow libev the luxury of two heaps,
1655 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1656 * which is more cache-efficient.
1657 * the difference is about 5% with 50000+ watchers.
1658 */
1659#if EV_USE_4HEAP
1660
1661#define DHEAP 4
1662#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1663#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1664#define UPHEAP_DONE(p,k) ((p) == (k))
1665
1666/* away from the root */
1667inline_speed void
1668downheap (ANHE *heap, int N, int k)
1669{
1670 ANHE he = heap [k];
1671 ANHE *E = heap + N + HEAP0;
1672
1673 for (;;)
1674 {
1675 ev_tstamp minat;
1676 ANHE *minpos;
1677 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1678
1679 /* find minimum child */
1680 if (expect_true (pos + DHEAP - 1 < E))
1681 {
1682 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1683 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1684 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1685 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1686 }
1687 else if (pos < E)
1688 {
1689 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1690 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1691 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1692 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1693 }
1694 else
1695 break;
1696
1697 if (ANHE_at (he) <= minat)
1698 break;
1699
1700 heap [k] = *minpos;
1701 ev_active (ANHE_w (*minpos)) = k;
1702
1703 k = minpos - heap;
1704 }
1705
1706 heap [k] = he;
1707 ev_active (ANHE_w (he)) = k;
1708}
1709
1710#else /* 4HEAP */
1711
1712#define HEAP0 1
1713#define HPARENT(k) ((k) >> 1)
1714#define UPHEAP_DONE(p,k) (!(p))
1715
1716/* away from the root */
1717inline_speed void
1718downheap (ANHE *heap, int N, int k)
1719{
1720 ANHE he = heap [k];
1721
1722 for (;;)
1723 {
1724 int c = k << 1;
1725
1726 if (c >= N + HEAP0)
1727 break;
1728
1729 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1730 ? 1 : 0;
1731
1732 if (ANHE_at (he) <= ANHE_at (heap [c]))
1733 break;
1734
1735 heap [k] = heap [c];
1736 ev_active (ANHE_w (heap [k])) = k;
1737
1738 k = c;
1739 }
1740
1741 heap [k] = he;
1742 ev_active (ANHE_w (he)) = k;
1743}
1744#endif
1745
1746/* towards the root */
1747inline_speed void
1748upheap (ANHE *heap, int k)
1749{
1750 ANHE he = heap [k];
1751
1752 for (;;)
1753 {
1754 int p = HPARENT (k);
1755
1756 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1757 break;
1758
1759 heap [k] = heap [p];
1760 ev_active (ANHE_w (heap [k])) = k;
1761 k = p;
1762 }
1763
1764 heap [k] = he;
1765 ev_active (ANHE_w (he)) = k;
1766}
1767
1768/* move an element suitably so it is in a correct place */
1769inline_size void
1770adjustheap (ANHE *heap, int N, int k)
1771{
1772 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1773 upheap (heap, k);
1774 else
1775 downheap (heap, N, k);
1776}
1777
1778/* rebuild the heap: this function is used only once and executed rarely */
1779inline_size void
1780reheap (ANHE *heap, int N)
1781{
1782 int i;
1783
1784 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1785 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1786 for (i = 0; i < N; ++i)
1787 upheap (heap, i + HEAP0);
1788}
1789
1790/*****************************************************************************/
1791
1792/* associate signal watchers to a signal signal */
1793typedef struct
1794{
1795 EV_ATOMIC_T pending;
1796#if EV_MULTIPLICITY
1797 EV_P;
1798#endif
1799 WL head;
1800} ANSIG;
1801
1802static ANSIG signals [EV_NSIG - 1];
1803
1804/*****************************************************************************/
1805
1806#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1807
859static void noinline 1808static void noinline ecb_cold
860evpipe_init (EV_P) 1809evpipe_init (EV_P)
861{ 1810{
862 if (!ev_is_active (&pipeev)) 1811 if (!ev_is_active (&pipe_w))
863 { 1812 {
864#if EV_USE_EVENTFD 1813# if EV_USE_EVENTFD
1814 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1815 if (evfd < 0 && errno == EINVAL)
865 if ((evfd = eventfd (0, 0)) >= 0) 1816 evfd = eventfd (0, 0);
1817
1818 if (evfd >= 0)
866 { 1819 {
867 evpipe [0] = -1; 1820 evpipe [0] = -1;
868 fd_intern (evfd); 1821 fd_intern (evfd); /* doing it twice doesn't hurt */
869 ev_io_set (&pipeev, evfd, EV_READ); 1822 ev_io_set (&pipe_w, evfd, EV_READ);
870 } 1823 }
871 else 1824 else
872#endif 1825# endif
873 { 1826 {
874 while (pipe (evpipe)) 1827 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe"); 1828 ev_syserr ("(libev) error creating signal/async pipe");
876 1829
877 fd_intern (evpipe [0]); 1830 fd_intern (evpipe [0]);
878 fd_intern (evpipe [1]); 1831 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ); 1832 ev_io_set (&pipe_w, evpipe [0], EV_READ);
880 } 1833 }
881 1834
882 ev_io_start (EV_A_ &pipeev); 1835 ev_io_start (EV_A_ &pipe_w);
883 ev_unref (EV_A); /* watcher should not keep loop alive */ 1836 ev_unref (EV_A); /* watcher should not keep loop alive */
884 } 1837 }
885} 1838}
886 1839
887void inline_size 1840inline_speed void
888evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1841evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{ 1842{
890 if (!*flag) 1843 if (expect_true (*flag))
1844 return;
1845
1846 *flag = 1;
1847
1848 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1849
1850 pipe_write_skipped = 1;
1851
1852 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1853
1854 if (pipe_write_wanted)
891 { 1855 {
1856 int old_errno;
1857
1858 pipe_write_skipped = 0; /* just an optimisation, no fence needed */
1859
892 int old_errno = errno; /* save errno because write might clobber it */ 1860 old_errno = errno; /* save errno because write will clobber it */
893
894 *flag = 1;
895 1861
896#if EV_USE_EVENTFD 1862#if EV_USE_EVENTFD
897 if (evfd >= 0) 1863 if (evfd >= 0)
898 { 1864 {
899 uint64_t counter = 1; 1865 uint64_t counter = 1;
900 write (evfd, &counter, sizeof (uint64_t)); 1866 write (evfd, &counter, sizeof (uint64_t));
901 } 1867 }
902 else 1868 else
903#endif 1869#endif
1870 {
1871 /* win32 people keep sending patches that change this write() to send() */
1872 /* and then run away. but send() is wrong, it wants a socket handle on win32 */
1873 /* so when you think this write should be a send instead, please find out */
1874 /* where your send() is from - it's definitely not the microsoft send, and */
1875 /* tell me. thank you. */
904 write (evpipe [1], &old_errno, 1); 1876 write (evpipe [1], &(evpipe [1]), 1);
1877 }
905 1878
906 errno = old_errno; 1879 errno = old_errno;
907 } 1880 }
908} 1881}
909 1882
1883/* called whenever the libev signal pipe */
1884/* got some events (signal, async) */
910static void 1885static void
911pipecb (EV_P_ ev_io *iow, int revents) 1886pipecb (EV_P_ ev_io *iow, int revents)
912{ 1887{
1888 int i;
1889
1890 if (revents & EV_READ)
1891 {
913#if EV_USE_EVENTFD 1892#if EV_USE_EVENTFD
914 if (evfd >= 0) 1893 if (evfd >= 0)
915 { 1894 {
916 uint64_t counter = 1; 1895 uint64_t counter;
917 read (evfd, &counter, sizeof (uint64_t)); 1896 read (evfd, &counter, sizeof (uint64_t));
918 } 1897 }
919 else 1898 else
920#endif 1899#endif
921 { 1900 {
922 char dummy; 1901 char dummy;
1902 /* see discussion in evpipe_write when you think this read should be recv in win32 */
923 read (evpipe [0], &dummy, 1); 1903 read (evpipe [0], &dummy, 1);
1904 }
1905 }
1906
1907 pipe_write_skipped = 0;
1908
1909#if EV_SIGNAL_ENABLE
1910 if (sig_pending)
924 } 1911 {
1912 sig_pending = 0;
925 1913
926 if (gotsig && ev_is_default_loop (EV_A)) 1914 for (i = EV_NSIG - 1; i--; )
927 { 1915 if (expect_false (signals [i].pending))
928 int signum;
929 gotsig = 0;
930
931 for (signum = signalmax; signum--; )
932 if (signals [signum].gotsig)
933 ev_feed_signal_event (EV_A_ signum + 1); 1916 ev_feed_signal_event (EV_A_ i + 1);
934 } 1917 }
1918#endif
935 1919
936#if EV_ASYNC_ENABLE 1920#if EV_ASYNC_ENABLE
937 if (gotasync) 1921 if (async_pending)
938 { 1922 {
939 int i; 1923 async_pending = 0;
940 gotasync = 0;
941 1924
942 for (i = asynccnt; i--; ) 1925 for (i = asynccnt; i--; )
943 if (asyncs [i]->sent) 1926 if (asyncs [i]->sent)
944 { 1927 {
945 asyncs [i]->sent = 0; 1928 asyncs [i]->sent = 0;
949#endif 1932#endif
950} 1933}
951 1934
952/*****************************************************************************/ 1935/*****************************************************************************/
953 1936
1937void
1938ev_feed_signal (int signum)
1939{
1940#if EV_MULTIPLICITY
1941 EV_P = signals [signum - 1].loop;
1942
1943 if (!EV_A)
1944 return;
1945#endif
1946
1947 if (!ev_active (&pipe_w))
1948 return;
1949
1950 signals [signum - 1].pending = 1;
1951 evpipe_write (EV_A_ &sig_pending);
1952}
1953
954static void 1954static void
955ev_sighandler (int signum) 1955ev_sighandler (int signum)
956{ 1956{
957#if EV_MULTIPLICITY
958 struct ev_loop *loop = &default_loop_struct;
959#endif
960
961#if _WIN32 1957#ifdef _WIN32
962 signal (signum, ev_sighandler); 1958 signal (signum, ev_sighandler);
963#endif 1959#endif
964 1960
965 signals [signum - 1].gotsig = 1; 1961 ev_feed_signal (signum);
966 evpipe_write (EV_A_ &gotsig);
967} 1962}
968 1963
969void noinline 1964void noinline
970ev_feed_signal_event (EV_P_ int signum) 1965ev_feed_signal_event (EV_P_ int signum)
971{ 1966{
972 WL w; 1967 WL w;
973 1968
1969 if (expect_false (signum <= 0 || signum > EV_NSIG))
1970 return;
1971
1972 --signum;
1973
974#if EV_MULTIPLICITY 1974#if EV_MULTIPLICITY
975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1975 /* it is permissible to try to feed a signal to the wrong loop */
976#endif 1976 /* or, likely more useful, feeding a signal nobody is waiting for */
977 1977
978 --signum; 1978 if (expect_false (signals [signum].loop != EV_A))
979
980 if (signum < 0 || signum >= signalmax)
981 return; 1979 return;
1980#endif
982 1981
983 signals [signum].gotsig = 0; 1982 signals [signum].pending = 0;
984 1983
985 for (w = signals [signum].head; w; w = w->next) 1984 for (w = signals [signum].head; w; w = w->next)
986 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1985 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
987} 1986}
988 1987
1988#if EV_USE_SIGNALFD
1989static void
1990sigfdcb (EV_P_ ev_io *iow, int revents)
1991{
1992 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1993
1994 for (;;)
1995 {
1996 ssize_t res = read (sigfd, si, sizeof (si));
1997
1998 /* not ISO-C, as res might be -1, but works with SuS */
1999 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2000 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2001
2002 if (res < (ssize_t)sizeof (si))
2003 break;
2004 }
2005}
2006#endif
2007
2008#endif
2009
989/*****************************************************************************/ 2010/*****************************************************************************/
990 2011
2012#if EV_CHILD_ENABLE
991static WL childs [EV_PID_HASHSIZE]; 2013static WL childs [EV_PID_HASHSIZE];
992
993#ifndef _WIN32
994 2014
995static ev_signal childev; 2015static ev_signal childev;
996 2016
997#ifndef WIFCONTINUED 2017#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0 2018# define WIFCONTINUED(status) 0
999#endif 2019#endif
1000 2020
1001void inline_speed 2021/* handle a single child status event */
2022inline_speed void
1002child_reap (EV_P_ int chain, int pid, int status) 2023child_reap (EV_P_ int chain, int pid, int status)
1003{ 2024{
1004 ev_child *w; 2025 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2026 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1006 2027
1007 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2028 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1008 { 2029 {
1009 if ((w->pid == pid || !w->pid) 2030 if ((w->pid == pid || !w->pid)
1010 && (!traced || (w->flags & 1))) 2031 && (!traced || (w->flags & 1)))
1011 { 2032 {
1012 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2033 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1019 2040
1020#ifndef WCONTINUED 2041#ifndef WCONTINUED
1021# define WCONTINUED 0 2042# define WCONTINUED 0
1022#endif 2043#endif
1023 2044
2045/* called on sigchld etc., calls waitpid */
1024static void 2046static void
1025childcb (EV_P_ ev_signal *sw, int revents) 2047childcb (EV_P_ ev_signal *sw, int revents)
1026{ 2048{
1027 int pid, status; 2049 int pid, status;
1028 2050
1036 /* make sure we are called again until all children have been reaped */ 2058 /* make sure we are called again until all children have been reaped */
1037 /* we need to do it this way so that the callback gets called before we continue */ 2059 /* we need to do it this way so that the callback gets called before we continue */
1038 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2060 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1039 2061
1040 child_reap (EV_A_ pid, pid, status); 2062 child_reap (EV_A_ pid, pid, status);
1041 if (EV_PID_HASHSIZE > 1) 2063 if ((EV_PID_HASHSIZE) > 1)
1042 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2064 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1043} 2065}
1044 2066
1045#endif 2067#endif
1046 2068
1047/*****************************************************************************/ 2069/*****************************************************************************/
1048 2070
2071#if EV_USE_IOCP
2072# include "ev_iocp.c"
2073#endif
1049#if EV_USE_PORT 2074#if EV_USE_PORT
1050# include "ev_port.c" 2075# include "ev_port.c"
1051#endif 2076#endif
1052#if EV_USE_KQUEUE 2077#if EV_USE_KQUEUE
1053# include "ev_kqueue.c" 2078# include "ev_kqueue.c"
1060#endif 2085#endif
1061#if EV_USE_SELECT 2086#if EV_USE_SELECT
1062# include "ev_select.c" 2087# include "ev_select.c"
1063#endif 2088#endif
1064 2089
1065int 2090int ecb_cold
1066ev_version_major (void) 2091ev_version_major (void)
1067{ 2092{
1068 return EV_VERSION_MAJOR; 2093 return EV_VERSION_MAJOR;
1069} 2094}
1070 2095
1071int 2096int ecb_cold
1072ev_version_minor (void) 2097ev_version_minor (void)
1073{ 2098{
1074 return EV_VERSION_MINOR; 2099 return EV_VERSION_MINOR;
1075} 2100}
1076 2101
1077/* return true if we are running with elevated privileges and should ignore env variables */ 2102/* return true if we are running with elevated privileges and should ignore env variables */
1078int inline_size 2103int inline_size ecb_cold
1079enable_secure (void) 2104enable_secure (void)
1080{ 2105{
1081#ifdef _WIN32 2106#ifdef _WIN32
1082 return 0; 2107 return 0;
1083#else 2108#else
1084 return getuid () != geteuid () 2109 return getuid () != geteuid ()
1085 || getgid () != getegid (); 2110 || getgid () != getegid ();
1086#endif 2111#endif
1087} 2112}
1088 2113
1089unsigned int 2114unsigned int ecb_cold
1090ev_supported_backends (void) 2115ev_supported_backends (void)
1091{ 2116{
1092 unsigned int flags = 0; 2117 unsigned int flags = 0;
1093 2118
1094 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2119 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1098 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2123 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1099 2124
1100 return flags; 2125 return flags;
1101} 2126}
1102 2127
1103unsigned int 2128unsigned int ecb_cold
1104ev_recommended_backends (void) 2129ev_recommended_backends (void)
1105{ 2130{
1106 unsigned int flags = ev_supported_backends (); 2131 unsigned int flags = ev_supported_backends ();
1107 2132
1108#ifndef __NetBSD__ 2133#ifndef __NetBSD__
1109 /* kqueue is borked on everything but netbsd apparently */ 2134 /* kqueue is borked on everything but netbsd apparently */
1110 /* it usually doesn't work correctly on anything but sockets and pipes */ 2135 /* it usually doesn't work correctly on anything but sockets and pipes */
1111 flags &= ~EVBACKEND_KQUEUE; 2136 flags &= ~EVBACKEND_KQUEUE;
1112#endif 2137#endif
1113#ifdef __APPLE__ 2138#ifdef __APPLE__
1114 // flags &= ~EVBACKEND_KQUEUE; for documentation 2139 /* only select works correctly on that "unix-certified" platform */
1115 flags &= ~EVBACKEND_POLL; 2140 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2141 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2142#endif
2143#ifdef __FreeBSD__
2144 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1116#endif 2145#endif
1117 2146
1118 return flags; 2147 return flags;
1119} 2148}
1120 2149
1121unsigned int 2150unsigned int ecb_cold
1122ev_embeddable_backends (void) 2151ev_embeddable_backends (void)
1123{ 2152{
1124 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2153 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1125 2154
1126 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */ 2155 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1127 /* please fix it and tell me how to detect the fix */ 2156 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
1128 flags &= ~EVBACKEND_EPOLL; 2157 flags &= ~EVBACKEND_EPOLL;
1129 2158
1130 return flags; 2159 return flags;
1131} 2160}
1132 2161
1133unsigned int 2162unsigned int
1134ev_backend (EV_P) 2163ev_backend (EV_P)
1135{ 2164{
1136 return backend; 2165 return backend;
1137} 2166}
1138 2167
2168#if EV_FEATURE_API
1139unsigned int 2169unsigned int
1140ev_loop_count (EV_P) 2170ev_iteration (EV_P)
1141{ 2171{
1142 return loop_count; 2172 return loop_count;
2173}
2174
2175unsigned int
2176ev_depth (EV_P)
2177{
2178 return loop_depth;
1143} 2179}
1144 2180
1145void 2181void
1146ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2182ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1147{ 2183{
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2188ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1153{ 2189{
1154 timeout_blocktime = interval; 2190 timeout_blocktime = interval;
1155} 2191}
1156 2192
2193void
2194ev_set_userdata (EV_P_ void *data)
2195{
2196 userdata = data;
2197}
2198
2199void *
2200ev_userdata (EV_P)
2201{
2202 return userdata;
2203}
2204
2205void
2206ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
2207{
2208 invoke_cb = invoke_pending_cb;
2209}
2210
2211void
2212ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
2213{
2214 release_cb = release;
2215 acquire_cb = acquire;
2216}
2217#endif
2218
2219/* initialise a loop structure, must be zero-initialised */
1157static void noinline 2220static void noinline ecb_cold
1158loop_init (EV_P_ unsigned int flags) 2221loop_init (EV_P_ unsigned int flags)
1159{ 2222{
1160 if (!backend) 2223 if (!backend)
1161 { 2224 {
2225 origflags = flags;
2226
2227#if EV_USE_REALTIME
2228 if (!have_realtime)
2229 {
2230 struct timespec ts;
2231
2232 if (!clock_gettime (CLOCK_REALTIME, &ts))
2233 have_realtime = 1;
2234 }
2235#endif
2236
1162#if EV_USE_MONOTONIC 2237#if EV_USE_MONOTONIC
2238 if (!have_monotonic)
1163 { 2239 {
1164 struct timespec ts; 2240 struct timespec ts;
2241
1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2242 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1166 have_monotonic = 1; 2243 have_monotonic = 1;
1167 } 2244 }
1168#endif
1169
1170 ev_rt_now = ev_time ();
1171 mn_now = get_clock ();
1172 now_floor = mn_now;
1173 rtmn_diff = ev_rt_now - mn_now;
1174
1175 io_blocktime = 0.;
1176 timeout_blocktime = 0.;
1177 backend = 0;
1178 backend_fd = -1;
1179 gotasync = 0;
1180#if EV_USE_INOTIFY
1181 fs_fd = -2;
1182#endif 2245#endif
1183 2246
1184 /* pid check not overridable via env */ 2247 /* pid check not overridable via env */
1185#ifndef _WIN32 2248#ifndef _WIN32
1186 if (flags & EVFLAG_FORKCHECK) 2249 if (flags & EVFLAG_FORKCHECK)
1190 if (!(flags & EVFLAG_NOENV) 2253 if (!(flags & EVFLAG_NOENV)
1191 && !enable_secure () 2254 && !enable_secure ()
1192 && getenv ("LIBEV_FLAGS")) 2255 && getenv ("LIBEV_FLAGS"))
1193 flags = atoi (getenv ("LIBEV_FLAGS")); 2256 flags = atoi (getenv ("LIBEV_FLAGS"));
1194 2257
1195 if (!(flags & 0x0000ffffU)) 2258 ev_rt_now = ev_time ();
2259 mn_now = get_clock ();
2260 now_floor = mn_now;
2261 rtmn_diff = ev_rt_now - mn_now;
2262#if EV_FEATURE_API
2263 invoke_cb = ev_invoke_pending;
2264#endif
2265
2266 io_blocktime = 0.;
2267 timeout_blocktime = 0.;
2268 backend = 0;
2269 backend_fd = -1;
2270 sig_pending = 0;
2271#if EV_ASYNC_ENABLE
2272 async_pending = 0;
2273#endif
2274 pipe_write_skipped = 0;
2275 pipe_write_wanted = 0;
2276#if EV_USE_INOTIFY
2277 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2278#endif
2279#if EV_USE_SIGNALFD
2280 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2281#endif
2282
2283 if (!(flags & EVBACKEND_MASK))
1196 flags |= ev_recommended_backends (); 2284 flags |= ev_recommended_backends ();
1197 2285
2286#if EV_USE_IOCP
2287 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2288#endif
1198#if EV_USE_PORT 2289#if EV_USE_PORT
1199 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2290 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1200#endif 2291#endif
1201#if EV_USE_KQUEUE 2292#if EV_USE_KQUEUE
1202 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2293 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1209#endif 2300#endif
1210#if EV_USE_SELECT 2301#if EV_USE_SELECT
1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2302 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1212#endif 2303#endif
1213 2304
2305 ev_prepare_init (&pending_w, pendingcb);
2306
2307#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1214 ev_init (&pipeev, pipecb); 2308 ev_init (&pipe_w, pipecb);
1215 ev_set_priority (&pipeev, EV_MAXPRI); 2309 ev_set_priority (&pipe_w, EV_MAXPRI);
2310#endif
1216 } 2311 }
1217} 2312}
1218 2313
1219static void noinline 2314/* free up a loop structure */
2315void ecb_cold
1220loop_destroy (EV_P) 2316ev_loop_destroy (EV_P)
1221{ 2317{
1222 int i; 2318 int i;
1223 2319
2320#if EV_MULTIPLICITY
2321 /* mimic free (0) */
2322 if (!EV_A)
2323 return;
2324#endif
2325
2326#if EV_CLEANUP_ENABLE
2327 /* queue cleanup watchers (and execute them) */
2328 if (expect_false (cleanupcnt))
2329 {
2330 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2331 EV_INVOKE_PENDING;
2332 }
2333#endif
2334
2335#if EV_CHILD_ENABLE
2336 if (ev_is_active (&childev))
2337 {
2338 ev_ref (EV_A); /* child watcher */
2339 ev_signal_stop (EV_A_ &childev);
2340 }
2341#endif
2342
1224 if (ev_is_active (&pipeev)) 2343 if (ev_is_active (&pipe_w))
1225 { 2344 {
1226 ev_ref (EV_A); /* signal watcher */ 2345 /*ev_ref (EV_A);*/
1227 ev_io_stop (EV_A_ &pipeev); 2346 /*ev_io_stop (EV_A_ &pipe_w);*/
1228 2347
1229#if EV_USE_EVENTFD 2348#if EV_USE_EVENTFD
1230 if (evfd >= 0) 2349 if (evfd >= 0)
1231 close (evfd); 2350 close (evfd);
1232#endif 2351#endif
1233 2352
1234 if (evpipe [0] >= 0) 2353 if (evpipe [0] >= 0)
1235 { 2354 {
1236 close (evpipe [0]); 2355 EV_WIN32_CLOSE_FD (evpipe [0]);
1237 close (evpipe [1]); 2356 EV_WIN32_CLOSE_FD (evpipe [1]);
1238 } 2357 }
1239 } 2358 }
2359
2360#if EV_USE_SIGNALFD
2361 if (ev_is_active (&sigfd_w))
2362 close (sigfd);
2363#endif
1240 2364
1241#if EV_USE_INOTIFY 2365#if EV_USE_INOTIFY
1242 if (fs_fd >= 0) 2366 if (fs_fd >= 0)
1243 close (fs_fd); 2367 close (fs_fd);
1244#endif 2368#endif
1245 2369
1246 if (backend_fd >= 0) 2370 if (backend_fd >= 0)
1247 close (backend_fd); 2371 close (backend_fd);
1248 2372
2373#if EV_USE_IOCP
2374 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2375#endif
1249#if EV_USE_PORT 2376#if EV_USE_PORT
1250 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2377 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1251#endif 2378#endif
1252#if EV_USE_KQUEUE 2379#if EV_USE_KQUEUE
1253 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2380 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1268#if EV_IDLE_ENABLE 2395#if EV_IDLE_ENABLE
1269 array_free (idle, [i]); 2396 array_free (idle, [i]);
1270#endif 2397#endif
1271 } 2398 }
1272 2399
1273 ev_free (anfds); anfdmax = 0; 2400 ev_free (anfds); anfds = 0; anfdmax = 0;
1274 2401
1275 /* have to use the microsoft-never-gets-it-right macro */ 2402 /* have to use the microsoft-never-gets-it-right macro */
2403 array_free (rfeed, EMPTY);
1276 array_free (fdchange, EMPTY); 2404 array_free (fdchange, EMPTY);
1277 array_free (timer, EMPTY); 2405 array_free (timer, EMPTY);
1278#if EV_PERIODIC_ENABLE 2406#if EV_PERIODIC_ENABLE
1279 array_free (periodic, EMPTY); 2407 array_free (periodic, EMPTY);
1280#endif 2408#endif
1281#if EV_FORK_ENABLE 2409#if EV_FORK_ENABLE
1282 array_free (fork, EMPTY); 2410 array_free (fork, EMPTY);
1283#endif 2411#endif
2412#if EV_CLEANUP_ENABLE
2413 array_free (cleanup, EMPTY);
2414#endif
1284 array_free (prepare, EMPTY); 2415 array_free (prepare, EMPTY);
1285 array_free (check, EMPTY); 2416 array_free (check, EMPTY);
1286#if EV_ASYNC_ENABLE 2417#if EV_ASYNC_ENABLE
1287 array_free (async, EMPTY); 2418 array_free (async, EMPTY);
1288#endif 2419#endif
1289 2420
1290 backend = 0; 2421 backend = 0;
2422
2423#if EV_MULTIPLICITY
2424 if (ev_is_default_loop (EV_A))
2425#endif
2426 ev_default_loop_ptr = 0;
2427#if EV_MULTIPLICITY
2428 else
2429 ev_free (EV_A);
2430#endif
1291} 2431}
1292 2432
1293#if EV_USE_INOTIFY 2433#if EV_USE_INOTIFY
1294void inline_size infy_fork (EV_P); 2434inline_size void infy_fork (EV_P);
1295#endif 2435#endif
1296 2436
1297void inline_size 2437inline_size void
1298loop_fork (EV_P) 2438loop_fork (EV_P)
1299{ 2439{
1300#if EV_USE_PORT 2440#if EV_USE_PORT
1301 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2441 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1302#endif 2442#endif
1308#endif 2448#endif
1309#if EV_USE_INOTIFY 2449#if EV_USE_INOTIFY
1310 infy_fork (EV_A); 2450 infy_fork (EV_A);
1311#endif 2451#endif
1312 2452
1313 if (ev_is_active (&pipeev)) 2453 if (ev_is_active (&pipe_w))
1314 { 2454 {
1315 /* this "locks" the handlers against writing to the pipe */ 2455 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1316 /* while we modify the fd vars */
1317 gotsig = 1;
1318#if EV_ASYNC_ENABLE
1319 gotasync = 1;
1320#endif
1321 2456
1322 ev_ref (EV_A); 2457 ev_ref (EV_A);
1323 ev_io_stop (EV_A_ &pipeev); 2458 ev_io_stop (EV_A_ &pipe_w);
1324 2459
1325#if EV_USE_EVENTFD 2460#if EV_USE_EVENTFD
1326 if (evfd >= 0) 2461 if (evfd >= 0)
1327 close (evfd); 2462 close (evfd);
1328#endif 2463#endif
1329 2464
1330 if (evpipe [0] >= 0) 2465 if (evpipe [0] >= 0)
1331 { 2466 {
1332 close (evpipe [0]); 2467 EV_WIN32_CLOSE_FD (evpipe [0]);
1333 close (evpipe [1]); 2468 EV_WIN32_CLOSE_FD (evpipe [1]);
1334 } 2469 }
1335 2470
2471#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1336 evpipe_init (EV_A); 2472 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */ 2473 /* now iterate over everything, in case we missed something */
1338 pipecb (EV_A_ &pipeev, EV_READ); 2474 pipecb (EV_A_ &pipe_w, EV_READ);
2475#endif
1339 } 2476 }
1340 2477
1341 postfork = 0; 2478 postfork = 0;
1342} 2479}
1343 2480
1344#if EV_MULTIPLICITY 2481#if EV_MULTIPLICITY
2482
1345struct ev_loop * 2483struct ev_loop * ecb_cold
1346ev_loop_new (unsigned int flags) 2484ev_loop_new (unsigned int flags)
1347{ 2485{
1348 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2486 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1349 2487
1350 memset (loop, 0, sizeof (struct ev_loop)); 2488 memset (EV_A, 0, sizeof (struct ev_loop));
1351
1352 loop_init (EV_A_ flags); 2489 loop_init (EV_A_ flags);
1353 2490
1354 if (ev_backend (EV_A)) 2491 if (ev_backend (EV_A))
1355 return loop; 2492 return EV_A;
1356 2493
2494 ev_free (EV_A);
1357 return 0; 2495 return 0;
1358} 2496}
1359 2497
1360void 2498#endif /* multiplicity */
1361ev_loop_destroy (EV_P)
1362{
1363 loop_destroy (EV_A);
1364 ev_free (loop);
1365}
1366 2499
1367void 2500#if EV_VERIFY
1368ev_loop_fork (EV_P) 2501static void noinline ecb_cold
2502verify_watcher (EV_P_ W w)
1369{ 2503{
1370 postfork = 1; /* must be in line with ev_default_fork */ 2504 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1371}
1372 2505
2506 if (w->pending)
2507 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2508}
2509
2510static void noinline ecb_cold
2511verify_heap (EV_P_ ANHE *heap, int N)
2512{
2513 int i;
2514
2515 for (i = HEAP0; i < N + HEAP0; ++i)
2516 {
2517 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2518 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2519 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2520
2521 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2522 }
2523}
2524
2525static void noinline ecb_cold
2526array_verify (EV_P_ W *ws, int cnt)
2527{
2528 while (cnt--)
2529 {
2530 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2531 verify_watcher (EV_A_ ws [cnt]);
2532 }
2533}
2534#endif
2535
2536#if EV_FEATURE_API
2537void ecb_cold
2538ev_verify (EV_P)
2539{
2540#if EV_VERIFY
2541 int i;
2542 WL w;
2543
2544 assert (activecnt >= -1);
2545
2546 assert (fdchangemax >= fdchangecnt);
2547 for (i = 0; i < fdchangecnt; ++i)
2548 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2549
2550 assert (anfdmax >= 0);
2551 for (i = 0; i < anfdmax; ++i)
2552 for (w = anfds [i].head; w; w = w->next)
2553 {
2554 verify_watcher (EV_A_ (W)w);
2555 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2556 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2557 }
2558
2559 assert (timermax >= timercnt);
2560 verify_heap (EV_A_ timers, timercnt);
2561
2562#if EV_PERIODIC_ENABLE
2563 assert (periodicmax >= periodiccnt);
2564 verify_heap (EV_A_ periodics, periodiccnt);
2565#endif
2566
2567 for (i = NUMPRI; i--; )
2568 {
2569 assert (pendingmax [i] >= pendingcnt [i]);
2570#if EV_IDLE_ENABLE
2571 assert (idleall >= 0);
2572 assert (idlemax [i] >= idlecnt [i]);
2573 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2574#endif
2575 }
2576
2577#if EV_FORK_ENABLE
2578 assert (forkmax >= forkcnt);
2579 array_verify (EV_A_ (W *)forks, forkcnt);
2580#endif
2581
2582#if EV_CLEANUP_ENABLE
2583 assert (cleanupmax >= cleanupcnt);
2584 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2585#endif
2586
2587#if EV_ASYNC_ENABLE
2588 assert (asyncmax >= asynccnt);
2589 array_verify (EV_A_ (W *)asyncs, asynccnt);
2590#endif
2591
2592#if EV_PREPARE_ENABLE
2593 assert (preparemax >= preparecnt);
2594 array_verify (EV_A_ (W *)prepares, preparecnt);
2595#endif
2596
2597#if EV_CHECK_ENABLE
2598 assert (checkmax >= checkcnt);
2599 array_verify (EV_A_ (W *)checks, checkcnt);
2600#endif
2601
2602# if 0
2603#if EV_CHILD_ENABLE
2604 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2605 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2606#endif
2607# endif
2608#endif
2609}
1373#endif 2610#endif
1374 2611
1375#if EV_MULTIPLICITY 2612#if EV_MULTIPLICITY
1376struct ev_loop * 2613struct ev_loop * ecb_cold
1377ev_default_loop_init (unsigned int flags)
1378#else 2614#else
1379int 2615int
2616#endif
1380ev_default_loop (unsigned int flags) 2617ev_default_loop (unsigned int flags)
1381#endif
1382{ 2618{
1383 if (!ev_default_loop_ptr) 2619 if (!ev_default_loop_ptr)
1384 { 2620 {
1385#if EV_MULTIPLICITY 2621#if EV_MULTIPLICITY
1386 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2622 EV_P = ev_default_loop_ptr = &default_loop_struct;
1387#else 2623#else
1388 ev_default_loop_ptr = 1; 2624 ev_default_loop_ptr = 1;
1389#endif 2625#endif
1390 2626
1391 loop_init (EV_A_ flags); 2627 loop_init (EV_A_ flags);
1392 2628
1393 if (ev_backend (EV_A)) 2629 if (ev_backend (EV_A))
1394 { 2630 {
1395#ifndef _WIN32 2631#if EV_CHILD_ENABLE
1396 ev_signal_init (&childev, childcb, SIGCHLD); 2632 ev_signal_init (&childev, childcb, SIGCHLD);
1397 ev_set_priority (&childev, EV_MAXPRI); 2633 ev_set_priority (&childev, EV_MAXPRI);
1398 ev_signal_start (EV_A_ &childev); 2634 ev_signal_start (EV_A_ &childev);
1399 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2635 ev_unref (EV_A); /* child watcher should not keep loop alive */
1400#endif 2636#endif
1405 2641
1406 return ev_default_loop_ptr; 2642 return ev_default_loop_ptr;
1407} 2643}
1408 2644
1409void 2645void
1410ev_default_destroy (void) 2646ev_loop_fork (EV_P)
1411{ 2647{
1412#if EV_MULTIPLICITY
1413 struct ev_loop *loop = ev_default_loop_ptr;
1414#endif
1415
1416#ifndef _WIN32
1417 ev_ref (EV_A); /* child watcher */
1418 ev_signal_stop (EV_A_ &childev);
1419#endif
1420
1421 loop_destroy (EV_A);
1422}
1423
1424void
1425ev_default_fork (void)
1426{
1427#if EV_MULTIPLICITY
1428 struct ev_loop *loop = ev_default_loop_ptr;
1429#endif
1430
1431 if (backend)
1432 postfork = 1; /* must be in line with ev_loop_fork */ 2648 postfork = 1; /* must be in line with ev_default_fork */
1433} 2649}
1434 2650
1435/*****************************************************************************/ 2651/*****************************************************************************/
1436 2652
1437void 2653void
1438ev_invoke (EV_P_ void *w, int revents) 2654ev_invoke (EV_P_ void *w, int revents)
1439{ 2655{
1440 EV_CB_INVOKE ((W)w, revents); 2656 EV_CB_INVOKE ((W)w, revents);
1441} 2657}
1442 2658
1443void inline_speed 2659unsigned int
1444call_pending (EV_P) 2660ev_pending_count (EV_P)
2661{
2662 int pri;
2663 unsigned int count = 0;
2664
2665 for (pri = NUMPRI; pri--; )
2666 count += pendingcnt [pri];
2667
2668 return count;
2669}
2670
2671void noinline
2672ev_invoke_pending (EV_P)
1445{ 2673{
1446 int pri; 2674 int pri;
1447 2675
1448 for (pri = NUMPRI; pri--; ) 2676 for (pri = NUMPRI; pri--; )
1449 while (pendingcnt [pri]) 2677 while (pendingcnt [pri])
1450 { 2678 {
1451 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2679 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1452 2680
1453 if (expect_true (p->w))
1454 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1456
1457 p->w->pending = 0; 2681 p->w->pending = 0;
1458 EV_CB_INVOKE (p->w, p->events); 2682 EV_CB_INVOKE (p->w, p->events);
1459 } 2683 EV_FREQUENT_CHECK;
1460 } 2684 }
1461} 2685}
1462 2686
1463void inline_size
1464timers_reify (EV_P)
1465{
1466 while (timercnt && ev_at (timers [1]) <= mn_now)
1467 {
1468 ev_timer *w = (ev_timer *)timers [1];
1469
1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1471
1472 /* first reschedule or stop timer */
1473 if (w->repeat)
1474 {
1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1476
1477 ev_at (w) += w->repeat;
1478 if (ev_at (w) < mn_now)
1479 ev_at (w) = mn_now;
1480
1481 downheap (timers, timercnt, 1);
1482 }
1483 else
1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1485
1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1487 }
1488}
1489
1490#if EV_PERIODIC_ENABLE
1491void inline_size
1492periodics_reify (EV_P)
1493{
1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1495 {
1496 ev_periodic *w = (ev_periodic *)periodics [1];
1497
1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1499
1500 /* first reschedule or stop timer */
1501 if (w->reschedule_cb)
1502 {
1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1505 downheap (periodics, periodiccnt, 1);
1506 }
1507 else if (w->interval)
1508 {
1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1512 downheap (periodics, periodiccnt, 1);
1513 }
1514 else
1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1516
1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1518 }
1519}
1520
1521static void noinline
1522periodics_reschedule (EV_P)
1523{
1524 int i;
1525
1526 /* adjust periodics after time jump */
1527 for (i = 0; i < periodiccnt; ++i)
1528 {
1529 ev_periodic *w = (ev_periodic *)periodics [i];
1530
1531 if (w->reschedule_cb)
1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1533 else if (w->interval)
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 }
1536
1537 /* now rebuild the heap */
1538 for (i = periodiccnt >> 1; i--; )
1539 downheap (periodics, periodiccnt, i);
1540}
1541#endif
1542
1543#if EV_IDLE_ENABLE 2687#if EV_IDLE_ENABLE
1544void inline_size 2688/* make idle watchers pending. this handles the "call-idle */
2689/* only when higher priorities are idle" logic */
2690inline_size void
1545idle_reify (EV_P) 2691idle_reify (EV_P)
1546{ 2692{
1547 if (expect_false (idleall)) 2693 if (expect_false (idleall))
1548 { 2694 {
1549 int pri; 2695 int pri;
1561 } 2707 }
1562 } 2708 }
1563} 2709}
1564#endif 2710#endif
1565 2711
1566void inline_speed 2712/* make timers pending */
2713inline_size void
2714timers_reify (EV_P)
2715{
2716 EV_FREQUENT_CHECK;
2717
2718 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2719 {
2720 do
2721 {
2722 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2723
2724 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2725
2726 /* first reschedule or stop timer */
2727 if (w->repeat)
2728 {
2729 ev_at (w) += w->repeat;
2730 if (ev_at (w) < mn_now)
2731 ev_at (w) = mn_now;
2732
2733 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2734
2735 ANHE_at_cache (timers [HEAP0]);
2736 downheap (timers, timercnt, HEAP0);
2737 }
2738 else
2739 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2740
2741 EV_FREQUENT_CHECK;
2742 feed_reverse (EV_A_ (W)w);
2743 }
2744 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2745
2746 feed_reverse_done (EV_A_ EV_TIMER);
2747 }
2748}
2749
2750#if EV_PERIODIC_ENABLE
2751
2752static void noinline
2753periodic_recalc (EV_P_ ev_periodic *w)
2754{
2755 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2756 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2757
2758 /* the above almost always errs on the low side */
2759 while (at <= ev_rt_now)
2760 {
2761 ev_tstamp nat = at + w->interval;
2762
2763 /* when resolution fails us, we use ev_rt_now */
2764 if (expect_false (nat == at))
2765 {
2766 at = ev_rt_now;
2767 break;
2768 }
2769
2770 at = nat;
2771 }
2772
2773 ev_at (w) = at;
2774}
2775
2776/* make periodics pending */
2777inline_size void
2778periodics_reify (EV_P)
2779{
2780 EV_FREQUENT_CHECK;
2781
2782 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2783 {
2784 int feed_count = 0;
2785
2786 do
2787 {
2788 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2789
2790 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2791
2792 /* first reschedule or stop timer */
2793 if (w->reschedule_cb)
2794 {
2795 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2796
2797 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2798
2799 ANHE_at_cache (periodics [HEAP0]);
2800 downheap (periodics, periodiccnt, HEAP0);
2801 }
2802 else if (w->interval)
2803 {
2804 periodic_recalc (EV_A_ w);
2805 ANHE_at_cache (periodics [HEAP0]);
2806 downheap (periodics, periodiccnt, HEAP0);
2807 }
2808 else
2809 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2810
2811 EV_FREQUENT_CHECK;
2812 feed_reverse (EV_A_ (W)w);
2813 }
2814 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2815
2816 feed_reverse_done (EV_A_ EV_PERIODIC);
2817 }
2818}
2819
2820/* simply recalculate all periodics */
2821/* TODO: maybe ensure that at least one event happens when jumping forward? */
2822static void noinline ecb_cold
2823periodics_reschedule (EV_P)
2824{
2825 int i;
2826
2827 /* adjust periodics after time jump */
2828 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2829 {
2830 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2831
2832 if (w->reschedule_cb)
2833 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2834 else if (w->interval)
2835 periodic_recalc (EV_A_ w);
2836
2837 ANHE_at_cache (periodics [i]);
2838 }
2839
2840 reheap (periodics, periodiccnt);
2841}
2842#endif
2843
2844/* adjust all timers by a given offset */
2845static void noinline ecb_cold
2846timers_reschedule (EV_P_ ev_tstamp adjust)
2847{
2848 int i;
2849
2850 for (i = 0; i < timercnt; ++i)
2851 {
2852 ANHE *he = timers + i + HEAP0;
2853 ANHE_w (*he)->at += adjust;
2854 ANHE_at_cache (*he);
2855 }
2856}
2857
2858/* fetch new monotonic and realtime times from the kernel */
2859/* also detect if there was a timejump, and act accordingly */
2860inline_speed void
1567time_update (EV_P_ ev_tstamp max_block) 2861time_update (EV_P_ ev_tstamp max_block)
1568{ 2862{
1569 int i;
1570
1571#if EV_USE_MONOTONIC 2863#if EV_USE_MONOTONIC
1572 if (expect_true (have_monotonic)) 2864 if (expect_true (have_monotonic))
1573 { 2865 {
2866 int i;
1574 ev_tstamp odiff = rtmn_diff; 2867 ev_tstamp odiff = rtmn_diff;
1575 2868
1576 mn_now = get_clock (); 2869 mn_now = get_clock ();
1577 2870
1578 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2871 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1594 * doesn't hurt either as we only do this on time-jumps or 2887 * doesn't hurt either as we only do this on time-jumps or
1595 * in the unlikely event of having been preempted here. 2888 * in the unlikely event of having been preempted here.
1596 */ 2889 */
1597 for (i = 4; --i; ) 2890 for (i = 4; --i; )
1598 { 2891 {
2892 ev_tstamp diff;
1599 rtmn_diff = ev_rt_now - mn_now; 2893 rtmn_diff = ev_rt_now - mn_now;
1600 2894
1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2895 diff = odiff - rtmn_diff;
2896
2897 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1602 return; /* all is well */ 2898 return; /* all is well */
1603 2899
1604 ev_rt_now = ev_time (); 2900 ev_rt_now = ev_time ();
1605 mn_now = get_clock (); 2901 mn_now = get_clock ();
1606 now_floor = mn_now; 2902 now_floor = mn_now;
1607 } 2903 }
1608 2904
2905 /* no timer adjustment, as the monotonic clock doesn't jump */
2906 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1609# if EV_PERIODIC_ENABLE 2907# if EV_PERIODIC_ENABLE
1610 periodics_reschedule (EV_A); 2908 periodics_reschedule (EV_A);
1611# endif 2909# endif
1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1614 } 2910 }
1615 else 2911 else
1616#endif 2912#endif
1617 { 2913 {
1618 ev_rt_now = ev_time (); 2914 ev_rt_now = ev_time ();
1619 2915
1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2916 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1621 { 2917 {
2918 /* adjust timers. this is easy, as the offset is the same for all of them */
2919 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1622#if EV_PERIODIC_ENABLE 2920#if EV_PERIODIC_ENABLE
1623 periodics_reschedule (EV_A); 2921 periodics_reschedule (EV_A);
1624#endif 2922#endif
1625 /* adjust timers. this is easy, as the offset is the same for all of them */
1626 for (i = 1; i <= timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now;
1628 } 2923 }
1629 2924
1630 mn_now = ev_rt_now; 2925 mn_now = ev_rt_now;
1631 } 2926 }
1632} 2927}
1633 2928
1634void 2929void
1635ev_ref (EV_P)
1636{
1637 ++activecnt;
1638}
1639
1640void
1641ev_unref (EV_P)
1642{
1643 --activecnt;
1644}
1645
1646static int loop_done;
1647
1648void
1649ev_loop (EV_P_ int flags) 2930ev_run (EV_P_ int flags)
1650{ 2931{
2932#if EV_FEATURE_API
2933 ++loop_depth;
2934#endif
2935
2936 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
2937
1651 loop_done = EVUNLOOP_CANCEL; 2938 loop_done = EVBREAK_CANCEL;
1652 2939
1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2940 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1654 2941
1655 do 2942 do
1656 { 2943 {
2944#if EV_VERIFY >= 2
2945 ev_verify (EV_A);
2946#endif
2947
1657#ifndef _WIN32 2948#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */ 2949 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid)) 2950 if (expect_false (getpid () != curpid))
1660 { 2951 {
1661 curpid = getpid (); 2952 curpid = getpid ();
1667 /* we might have forked, so queue fork handlers */ 2958 /* we might have forked, so queue fork handlers */
1668 if (expect_false (postfork)) 2959 if (expect_false (postfork))
1669 if (forkcnt) 2960 if (forkcnt)
1670 { 2961 {
1671 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2962 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1672 call_pending (EV_A); 2963 EV_INVOKE_PENDING;
1673 } 2964 }
1674#endif 2965#endif
1675 2966
2967#if EV_PREPARE_ENABLE
1676 /* queue prepare watchers (and execute them) */ 2968 /* queue prepare watchers (and execute them) */
1677 if (expect_false (preparecnt)) 2969 if (expect_false (preparecnt))
1678 { 2970 {
1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2971 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1680 call_pending (EV_A); 2972 EV_INVOKE_PENDING;
1681 } 2973 }
2974#endif
1682 2975
1683 if (expect_false (!activecnt)) 2976 if (expect_false (loop_done))
1684 break; 2977 break;
1685 2978
1686 /* we might have forked, so reify kernel state if necessary */ 2979 /* we might have forked, so reify kernel state if necessary */
1687 if (expect_false (postfork)) 2980 if (expect_false (postfork))
1688 loop_fork (EV_A); 2981 loop_fork (EV_A);
1693 /* calculate blocking time */ 2986 /* calculate blocking time */
1694 { 2987 {
1695 ev_tstamp waittime = 0.; 2988 ev_tstamp waittime = 0.;
1696 ev_tstamp sleeptime = 0.; 2989 ev_tstamp sleeptime = 0.;
1697 2990
2991 /* remember old timestamp for io_blocktime calculation */
2992 ev_tstamp prev_mn_now = mn_now;
2993
2994 /* update time to cancel out callback processing overhead */
2995 time_update (EV_A_ 1e100);
2996
2997 /* from now on, we want a pipe-wake-up */
2998 pipe_write_wanted = 1;
2999
3000 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3001
1698 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3002 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1699 { 3003 {
1700 /* update time to cancel out callback processing overhead */
1701 time_update (EV_A_ 1e100);
1702
1703 waittime = MAX_BLOCKTIME; 3004 waittime = MAX_BLOCKTIME;
1704 3005
1705 if (timercnt) 3006 if (timercnt)
1706 { 3007 {
1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 3008 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1708 if (waittime > to) waittime = to; 3009 if (waittime > to) waittime = to;
1709 } 3010 }
1710 3011
1711#if EV_PERIODIC_ENABLE 3012#if EV_PERIODIC_ENABLE
1712 if (periodiccnt) 3013 if (periodiccnt)
1713 { 3014 {
1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 3015 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1715 if (waittime > to) waittime = to; 3016 if (waittime > to) waittime = to;
1716 } 3017 }
1717#endif 3018#endif
1718 3019
3020 /* don't let timeouts decrease the waittime below timeout_blocktime */
1719 if (expect_false (waittime < timeout_blocktime)) 3021 if (expect_false (waittime < timeout_blocktime))
1720 waittime = timeout_blocktime; 3022 waittime = timeout_blocktime;
1721 3023
1722 sleeptime = waittime - backend_fudge; 3024 /* at this point, we NEED to wait, so we have to ensure */
3025 /* to pass a minimum nonzero value to the backend */
3026 if (expect_false (waittime < backend_mintime))
3027 waittime = backend_mintime;
1723 3028
3029 /* extra check because io_blocktime is commonly 0 */
1724 if (expect_true (sleeptime > io_blocktime)) 3030 if (expect_false (io_blocktime))
1725 sleeptime = io_blocktime;
1726
1727 if (sleeptime)
1728 { 3031 {
3032 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3033
3034 if (sleeptime > waittime - backend_mintime)
3035 sleeptime = waittime - backend_mintime;
3036
3037 if (expect_true (sleeptime > 0.))
3038 {
1729 ev_sleep (sleeptime); 3039 ev_sleep (sleeptime);
1730 waittime -= sleeptime; 3040 waittime -= sleeptime;
3041 }
1731 } 3042 }
1732 } 3043 }
1733 3044
3045#if EV_FEATURE_API
1734 ++loop_count; 3046 ++loop_count;
3047#endif
3048 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1735 backend_poll (EV_A_ waittime); 3049 backend_poll (EV_A_ waittime);
3050 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3051
3052 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3053
3054 if (pipe_write_skipped)
3055 {
3056 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3057 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3058 }
3059
1736 3060
1737 /* update ev_rt_now, do magic */ 3061 /* update ev_rt_now, do magic */
1738 time_update (EV_A_ waittime + sleeptime); 3062 time_update (EV_A_ waittime + sleeptime);
1739 } 3063 }
1740 3064
1747#if EV_IDLE_ENABLE 3071#if EV_IDLE_ENABLE
1748 /* queue idle watchers unless other events are pending */ 3072 /* queue idle watchers unless other events are pending */
1749 idle_reify (EV_A); 3073 idle_reify (EV_A);
1750#endif 3074#endif
1751 3075
3076#if EV_CHECK_ENABLE
1752 /* queue check watchers, to be executed first */ 3077 /* queue check watchers, to be executed first */
1753 if (expect_false (checkcnt)) 3078 if (expect_false (checkcnt))
1754 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3079 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3080#endif
1755 3081
1756 call_pending (EV_A); 3082 EV_INVOKE_PENDING;
1757 } 3083 }
1758 while (expect_true ( 3084 while (expect_true (
1759 activecnt 3085 activecnt
1760 && !loop_done 3086 && !loop_done
1761 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3087 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1762 )); 3088 ));
1763 3089
1764 if (loop_done == EVUNLOOP_ONE) 3090 if (loop_done == EVBREAK_ONE)
1765 loop_done = EVUNLOOP_CANCEL; 3091 loop_done = EVBREAK_CANCEL;
3092
3093#if EV_FEATURE_API
3094 --loop_depth;
3095#endif
1766} 3096}
1767 3097
1768void 3098void
1769ev_unloop (EV_P_ int how) 3099ev_break (EV_P_ int how)
1770{ 3100{
1771 loop_done = how; 3101 loop_done = how;
1772} 3102}
1773 3103
3104void
3105ev_ref (EV_P)
3106{
3107 ++activecnt;
3108}
3109
3110void
3111ev_unref (EV_P)
3112{
3113 --activecnt;
3114}
3115
3116void
3117ev_now_update (EV_P)
3118{
3119 time_update (EV_A_ 1e100);
3120}
3121
3122void
3123ev_suspend (EV_P)
3124{
3125 ev_now_update (EV_A);
3126}
3127
3128void
3129ev_resume (EV_P)
3130{
3131 ev_tstamp mn_prev = mn_now;
3132
3133 ev_now_update (EV_A);
3134 timers_reschedule (EV_A_ mn_now - mn_prev);
3135#if EV_PERIODIC_ENABLE
3136 /* TODO: really do this? */
3137 periodics_reschedule (EV_A);
3138#endif
3139}
3140
1774/*****************************************************************************/ 3141/*****************************************************************************/
3142/* singly-linked list management, used when the expected list length is short */
1775 3143
1776void inline_size 3144inline_size void
1777wlist_add (WL *head, WL elem) 3145wlist_add (WL *head, WL elem)
1778{ 3146{
1779 elem->next = *head; 3147 elem->next = *head;
1780 *head = elem; 3148 *head = elem;
1781} 3149}
1782 3150
1783void inline_size 3151inline_size void
1784wlist_del (WL *head, WL elem) 3152wlist_del (WL *head, WL elem)
1785{ 3153{
1786 while (*head) 3154 while (*head)
1787 { 3155 {
1788 if (*head == elem) 3156 if (expect_true (*head == elem))
1789 { 3157 {
1790 *head = elem->next; 3158 *head = elem->next;
1791 return; 3159 break;
1792 } 3160 }
1793 3161
1794 head = &(*head)->next; 3162 head = &(*head)->next;
1795 } 3163 }
1796} 3164}
1797 3165
1798void inline_speed 3166/* internal, faster, version of ev_clear_pending */
3167inline_speed void
1799clear_pending (EV_P_ W w) 3168clear_pending (EV_P_ W w)
1800{ 3169{
1801 if (w->pending) 3170 if (w->pending)
1802 { 3171 {
1803 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3172 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1804 w->pending = 0; 3173 w->pending = 0;
1805 } 3174 }
1806} 3175}
1807 3176
1808int 3177int
1812 int pending = w_->pending; 3181 int pending = w_->pending;
1813 3182
1814 if (expect_true (pending)) 3183 if (expect_true (pending))
1815 { 3184 {
1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3185 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3186 p->w = (W)&pending_w;
1817 w_->pending = 0; 3187 w_->pending = 0;
1818 p->w = 0;
1819 return p->events; 3188 return p->events;
1820 } 3189 }
1821 else 3190 else
1822 return 0; 3191 return 0;
1823} 3192}
1824 3193
1825void inline_size 3194inline_size void
1826pri_adjust (EV_P_ W w) 3195pri_adjust (EV_P_ W w)
1827{ 3196{
1828 int pri = w->priority; 3197 int pri = ev_priority (w);
1829 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3198 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1830 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3199 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1831 w->priority = pri; 3200 ev_set_priority (w, pri);
1832} 3201}
1833 3202
1834void inline_speed 3203inline_speed void
1835ev_start (EV_P_ W w, int active) 3204ev_start (EV_P_ W w, int active)
1836{ 3205{
1837 pri_adjust (EV_A_ w); 3206 pri_adjust (EV_A_ w);
1838 w->active = active; 3207 w->active = active;
1839 ev_ref (EV_A); 3208 ev_ref (EV_A);
1840} 3209}
1841 3210
1842void inline_size 3211inline_size void
1843ev_stop (EV_P_ W w) 3212ev_stop (EV_P_ W w)
1844{ 3213{
1845 ev_unref (EV_A); 3214 ev_unref (EV_A);
1846 w->active = 0; 3215 w->active = 0;
1847} 3216}
1854 int fd = w->fd; 3223 int fd = w->fd;
1855 3224
1856 if (expect_false (ev_is_active (w))) 3225 if (expect_false (ev_is_active (w)))
1857 return; 3226 return;
1858 3227
1859 assert (("ev_io_start called with negative fd", fd >= 0)); 3228 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3229 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3230
3231 EV_FREQUENT_CHECK;
1860 3232
1861 ev_start (EV_A_ (W)w, 1); 3233 ev_start (EV_A_ (W)w, 1);
1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3234 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1863 wlist_add (&anfds[fd].head, (WL)w); 3235 wlist_add (&anfds[fd].head, (WL)w);
1864 3236
1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3237 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1866 w->events &= ~EV_IOFDSET; 3238 w->events &= ~EV__IOFDSET;
3239
3240 EV_FREQUENT_CHECK;
1867} 3241}
1868 3242
1869void noinline 3243void noinline
1870ev_io_stop (EV_P_ ev_io *w) 3244ev_io_stop (EV_P_ ev_io *w)
1871{ 3245{
1872 clear_pending (EV_A_ (W)w); 3246 clear_pending (EV_A_ (W)w);
1873 if (expect_false (!ev_is_active (w))) 3247 if (expect_false (!ev_is_active (w)))
1874 return; 3248 return;
1875 3249
1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3250 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3251
3252 EV_FREQUENT_CHECK;
1877 3253
1878 wlist_del (&anfds[w->fd].head, (WL)w); 3254 wlist_del (&anfds[w->fd].head, (WL)w);
1879 ev_stop (EV_A_ (W)w); 3255 ev_stop (EV_A_ (W)w);
1880 3256
1881 fd_change (EV_A_ w->fd, 1); 3257 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3258
3259 EV_FREQUENT_CHECK;
1882} 3260}
1883 3261
1884void noinline 3262void noinline
1885ev_timer_start (EV_P_ ev_timer *w) 3263ev_timer_start (EV_P_ ev_timer *w)
1886{ 3264{
1887 if (expect_false (ev_is_active (w))) 3265 if (expect_false (ev_is_active (w)))
1888 return; 3266 return;
1889 3267
1890 ev_at (w) += mn_now; 3268 ev_at (w) += mn_now;
1891 3269
1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3270 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1893 3271
3272 EV_FREQUENT_CHECK;
3273
3274 ++timercnt;
1894 ev_start (EV_A_ (W)w, ++timercnt); 3275 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 3276 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1896 timers [timercnt] = (WT)w; 3277 ANHE_w (timers [ev_active (w)]) = (WT)w;
3278 ANHE_at_cache (timers [ev_active (w)]);
1897 upheap (timers, timercnt); 3279 upheap (timers, ev_active (w));
1898 3280
3281 EV_FREQUENT_CHECK;
3282
1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 3283 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1900} 3284}
1901 3285
1902void noinline 3286void noinline
1903ev_timer_stop (EV_P_ ev_timer *w) 3287ev_timer_stop (EV_P_ ev_timer *w)
1904{ 3288{
1905 clear_pending (EV_A_ (W)w); 3289 clear_pending (EV_A_ (W)w);
1906 if (expect_false (!ev_is_active (w))) 3290 if (expect_false (!ev_is_active (w)))
1907 return; 3291 return;
1908 3292
1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 3293 EV_FREQUENT_CHECK;
1910 3294
1911 { 3295 {
1912 int active = ((W)w)->active; 3296 int active = ev_active (w);
1913 3297
3298 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3299
3300 --timercnt;
3301
1914 if (expect_true (active < timercnt)) 3302 if (expect_true (active < timercnt + HEAP0))
1915 { 3303 {
1916 timers [active] = timers [timercnt]; 3304 timers [active] = timers [timercnt + HEAP0];
1917 adjustheap (timers, timercnt, active); 3305 adjustheap (timers, timercnt, active);
1918 } 3306 }
1919
1920 --timercnt;
1921 } 3307 }
1922 3308
1923 ev_at (w) -= mn_now; 3309 ev_at (w) -= mn_now;
1924 3310
1925 ev_stop (EV_A_ (W)w); 3311 ev_stop (EV_A_ (W)w);
3312
3313 EV_FREQUENT_CHECK;
1926} 3314}
1927 3315
1928void noinline 3316void noinline
1929ev_timer_again (EV_P_ ev_timer *w) 3317ev_timer_again (EV_P_ ev_timer *w)
1930{ 3318{
3319 EV_FREQUENT_CHECK;
3320
3321 clear_pending (EV_A_ (W)w);
3322
1931 if (ev_is_active (w)) 3323 if (ev_is_active (w))
1932 { 3324 {
1933 if (w->repeat) 3325 if (w->repeat)
1934 { 3326 {
1935 ev_at (w) = mn_now + w->repeat; 3327 ev_at (w) = mn_now + w->repeat;
3328 ANHE_at_cache (timers [ev_active (w)]);
1936 adjustheap (timers, timercnt, ((W)w)->active); 3329 adjustheap (timers, timercnt, ev_active (w));
1937 } 3330 }
1938 else 3331 else
1939 ev_timer_stop (EV_A_ w); 3332 ev_timer_stop (EV_A_ w);
1940 } 3333 }
1941 else if (w->repeat) 3334 else if (w->repeat)
1942 { 3335 {
1943 w->at = w->repeat; 3336 ev_at (w) = w->repeat;
1944 ev_timer_start (EV_A_ w); 3337 ev_timer_start (EV_A_ w);
1945 } 3338 }
3339
3340 EV_FREQUENT_CHECK;
3341}
3342
3343ev_tstamp
3344ev_timer_remaining (EV_P_ ev_timer *w)
3345{
3346 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1946} 3347}
1947 3348
1948#if EV_PERIODIC_ENABLE 3349#if EV_PERIODIC_ENABLE
1949void noinline 3350void noinline
1950ev_periodic_start (EV_P_ ev_periodic *w) 3351ev_periodic_start (EV_P_ ev_periodic *w)
1954 3355
1955 if (w->reschedule_cb) 3356 if (w->reschedule_cb)
1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3357 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1957 else if (w->interval) 3358 else if (w->interval)
1958 { 3359 {
1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3360 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1960 /* this formula differs from the one in periodic_reify because we do not always round up */ 3361 periodic_recalc (EV_A_ w);
1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1962 } 3362 }
1963 else 3363 else
1964 ev_at (w) = w->offset; 3364 ev_at (w) = w->offset;
1965 3365
3366 EV_FREQUENT_CHECK;
3367
3368 ++periodiccnt;
1966 ev_start (EV_A_ (W)w, ++periodiccnt); 3369 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 3370 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1968 periodics [periodiccnt] = (WT)w; 3371 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1969 upheap (periodics, periodiccnt); 3372 ANHE_at_cache (periodics [ev_active (w)]);
3373 upheap (periodics, ev_active (w));
1970 3374
3375 EV_FREQUENT_CHECK;
3376
1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3377 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1972} 3378}
1973 3379
1974void noinline 3380void noinline
1975ev_periodic_stop (EV_P_ ev_periodic *w) 3381ev_periodic_stop (EV_P_ ev_periodic *w)
1976{ 3382{
1977 clear_pending (EV_A_ (W)w); 3383 clear_pending (EV_A_ (W)w);
1978 if (expect_false (!ev_is_active (w))) 3384 if (expect_false (!ev_is_active (w)))
1979 return; 3385 return;
1980 3386
1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 3387 EV_FREQUENT_CHECK;
1982 3388
1983 { 3389 {
1984 int active = ((W)w)->active; 3390 int active = ev_active (w);
1985 3391
3392 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3393
3394 --periodiccnt;
3395
1986 if (expect_true (active < periodiccnt)) 3396 if (expect_true (active < periodiccnt + HEAP0))
1987 { 3397 {
1988 periodics [active] = periodics [periodiccnt]; 3398 periodics [active] = periodics [periodiccnt + HEAP0];
1989 adjustheap (periodics, periodiccnt, active); 3399 adjustheap (periodics, periodiccnt, active);
1990 } 3400 }
1991
1992 --periodiccnt;
1993 } 3401 }
1994 3402
1995 ev_stop (EV_A_ (W)w); 3403 ev_stop (EV_A_ (W)w);
3404
3405 EV_FREQUENT_CHECK;
1996} 3406}
1997 3407
1998void noinline 3408void noinline
1999ev_periodic_again (EV_P_ ev_periodic *w) 3409ev_periodic_again (EV_P_ ev_periodic *w)
2000{ 3410{
2006 3416
2007#ifndef SA_RESTART 3417#ifndef SA_RESTART
2008# define SA_RESTART 0 3418# define SA_RESTART 0
2009#endif 3419#endif
2010 3420
3421#if EV_SIGNAL_ENABLE
3422
2011void noinline 3423void noinline
2012ev_signal_start (EV_P_ ev_signal *w) 3424ev_signal_start (EV_P_ ev_signal *w)
2013{ 3425{
2014#if EV_MULTIPLICITY
2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2016#endif
2017 if (expect_false (ev_is_active (w))) 3426 if (expect_false (ev_is_active (w)))
2018 return; 3427 return;
2019 3428
2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3429 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2021 3430
2022 evpipe_init (EV_A); 3431#if EV_MULTIPLICITY
3432 assert (("libev: a signal must not be attached to two different loops",
3433 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2023 3434
3435 signals [w->signum - 1].loop = EV_A;
3436#endif
3437
3438 EV_FREQUENT_CHECK;
3439
3440#if EV_USE_SIGNALFD
3441 if (sigfd == -2)
2024 { 3442 {
2025#ifndef _WIN32 3443 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2026 sigset_t full, prev; 3444 if (sigfd < 0 && errno == EINVAL)
2027 sigfillset (&full); 3445 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2028 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif
2030 3446
2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3447 if (sigfd >= 0)
3448 {
3449 fd_intern (sigfd); /* doing it twice will not hurt */
2032 3450
2033#ifndef _WIN32 3451 sigemptyset (&sigfd_set);
2034 sigprocmask (SIG_SETMASK, &prev, 0); 3452
2035#endif 3453 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3454 ev_set_priority (&sigfd_w, EV_MAXPRI);
3455 ev_io_start (EV_A_ &sigfd_w);
3456 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3457 }
2036 } 3458 }
3459
3460 if (sigfd >= 0)
3461 {
3462 /* TODO: check .head */
3463 sigaddset (&sigfd_set, w->signum);
3464 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3465
3466 signalfd (sigfd, &sigfd_set, 0);
3467 }
3468#endif
2037 3469
2038 ev_start (EV_A_ (W)w, 1); 3470 ev_start (EV_A_ (W)w, 1);
2039 wlist_add (&signals [w->signum - 1].head, (WL)w); 3471 wlist_add (&signals [w->signum - 1].head, (WL)w);
2040 3472
2041 if (!((WL)w)->next) 3473 if (!((WL)w)->next)
3474# if EV_USE_SIGNALFD
3475 if (sigfd < 0) /*TODO*/
3476# endif
2042 { 3477 {
2043#if _WIN32 3478# ifdef _WIN32
3479 evpipe_init (EV_A);
3480
2044 signal (w->signum, ev_sighandler); 3481 signal (w->signum, ev_sighandler);
2045#else 3482# else
2046 struct sigaction sa; 3483 struct sigaction sa;
3484
3485 evpipe_init (EV_A);
3486
2047 sa.sa_handler = ev_sighandler; 3487 sa.sa_handler = ev_sighandler;
2048 sigfillset (&sa.sa_mask); 3488 sigfillset (&sa.sa_mask);
2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3489 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2050 sigaction (w->signum, &sa, 0); 3490 sigaction (w->signum, &sa, 0);
3491
3492 if (origflags & EVFLAG_NOSIGMASK)
3493 {
3494 sigemptyset (&sa.sa_mask);
3495 sigaddset (&sa.sa_mask, w->signum);
3496 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3497 }
2051#endif 3498#endif
2052 } 3499 }
3500
3501 EV_FREQUENT_CHECK;
2053} 3502}
2054 3503
2055void noinline 3504void noinline
2056ev_signal_stop (EV_P_ ev_signal *w) 3505ev_signal_stop (EV_P_ ev_signal *w)
2057{ 3506{
2058 clear_pending (EV_A_ (W)w); 3507 clear_pending (EV_A_ (W)w);
2059 if (expect_false (!ev_is_active (w))) 3508 if (expect_false (!ev_is_active (w)))
2060 return; 3509 return;
2061 3510
3511 EV_FREQUENT_CHECK;
3512
2062 wlist_del (&signals [w->signum - 1].head, (WL)w); 3513 wlist_del (&signals [w->signum - 1].head, (WL)w);
2063 ev_stop (EV_A_ (W)w); 3514 ev_stop (EV_A_ (W)w);
2064 3515
2065 if (!signals [w->signum - 1].head) 3516 if (!signals [w->signum - 1].head)
3517 {
3518#if EV_MULTIPLICITY
3519 signals [w->signum - 1].loop = 0; /* unattach from signal */
3520#endif
3521#if EV_USE_SIGNALFD
3522 if (sigfd >= 0)
3523 {
3524 sigset_t ss;
3525
3526 sigemptyset (&ss);
3527 sigaddset (&ss, w->signum);
3528 sigdelset (&sigfd_set, w->signum);
3529
3530 signalfd (sigfd, &sigfd_set, 0);
3531 sigprocmask (SIG_UNBLOCK, &ss, 0);
3532 }
3533 else
3534#endif
2066 signal (w->signum, SIG_DFL); 3535 signal (w->signum, SIG_DFL);
3536 }
3537
3538 EV_FREQUENT_CHECK;
2067} 3539}
3540
3541#endif
3542
3543#if EV_CHILD_ENABLE
2068 3544
2069void 3545void
2070ev_child_start (EV_P_ ev_child *w) 3546ev_child_start (EV_P_ ev_child *w)
2071{ 3547{
2072#if EV_MULTIPLICITY 3548#if EV_MULTIPLICITY
2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3549 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2074#endif 3550#endif
2075 if (expect_false (ev_is_active (w))) 3551 if (expect_false (ev_is_active (w)))
2076 return; 3552 return;
2077 3553
3554 EV_FREQUENT_CHECK;
3555
2078 ev_start (EV_A_ (W)w, 1); 3556 ev_start (EV_A_ (W)w, 1);
2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3557 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3558
3559 EV_FREQUENT_CHECK;
2080} 3560}
2081 3561
2082void 3562void
2083ev_child_stop (EV_P_ ev_child *w) 3563ev_child_stop (EV_P_ ev_child *w)
2084{ 3564{
2085 clear_pending (EV_A_ (W)w); 3565 clear_pending (EV_A_ (W)w);
2086 if (expect_false (!ev_is_active (w))) 3566 if (expect_false (!ev_is_active (w)))
2087 return; 3567 return;
2088 3568
3569 EV_FREQUENT_CHECK;
3570
2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3571 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2090 ev_stop (EV_A_ (W)w); 3572 ev_stop (EV_A_ (W)w);
3573
3574 EV_FREQUENT_CHECK;
2091} 3575}
3576
3577#endif
2092 3578
2093#if EV_STAT_ENABLE 3579#if EV_STAT_ENABLE
2094 3580
2095# ifdef _WIN32 3581# ifdef _WIN32
2096# undef lstat 3582# undef lstat
2097# define lstat(a,b) _stati64 (a,b) 3583# define lstat(a,b) _stati64 (a,b)
2098# endif 3584# endif
2099 3585
2100#define DEF_STAT_INTERVAL 5.0074891 3586#define DEF_STAT_INTERVAL 5.0074891
3587#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2101#define MIN_STAT_INTERVAL 0.1074891 3588#define MIN_STAT_INTERVAL 0.1074891
2102 3589
2103static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3590static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2104 3591
2105#if EV_USE_INOTIFY 3592#if EV_USE_INOTIFY
2106# define EV_INOTIFY_BUFSIZE 8192 3593
3594/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3595# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2107 3596
2108static void noinline 3597static void noinline
2109infy_add (EV_P_ ev_stat *w) 3598infy_add (EV_P_ ev_stat *w)
2110{ 3599{
2111 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3600 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2112 3601
2113 if (w->wd < 0) 3602 if (w->wd >= 0)
3603 {
3604 struct statfs sfs;
3605
3606 /* now local changes will be tracked by inotify, but remote changes won't */
3607 /* unless the filesystem is known to be local, we therefore still poll */
3608 /* also do poll on <2.6.25, but with normal frequency */
3609
3610 if (!fs_2625)
3611 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3612 else if (!statfs (w->path, &sfs)
3613 && (sfs.f_type == 0x1373 /* devfs */
3614 || sfs.f_type == 0xEF53 /* ext2/3 */
3615 || sfs.f_type == 0x3153464a /* jfs */
3616 || sfs.f_type == 0x52654973 /* reiser3 */
3617 || sfs.f_type == 0x01021994 /* tempfs */
3618 || sfs.f_type == 0x58465342 /* xfs */))
3619 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3620 else
3621 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2114 { 3622 }
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3623 else
3624 {
3625 /* can't use inotify, continue to stat */
3626 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2116 3627
2117 /* monitor some parent directory for speedup hints */ 3628 /* if path is not there, monitor some parent directory for speedup hints */
3629 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3630 /* but an efficiency issue only */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3631 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 { 3632 {
2120 char path [4096]; 3633 char path [4096];
2121 strcpy (path, w->path); 3634 strcpy (path, w->path);
2122 3635
2125 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3638 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2126 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3639 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2127 3640
2128 char *pend = strrchr (path, '/'); 3641 char *pend = strrchr (path, '/');
2129 3642
2130 if (!pend) 3643 if (!pend || pend == path)
2131 break; /* whoops, no '/', complain to your admin */ 3644 break;
2132 3645
2133 *pend = 0; 3646 *pend = 0;
2134 w->wd = inotify_add_watch (fs_fd, path, mask); 3647 w->wd = inotify_add_watch (fs_fd, path, mask);
2135 } 3648 }
2136 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3649 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2137 } 3650 }
2138 } 3651 }
2139 else
2140 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2141 3652
2142 if (w->wd >= 0) 3653 if (w->wd >= 0)
2143 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3654 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3655
3656 /* now re-arm timer, if required */
3657 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3658 ev_timer_again (EV_A_ &w->timer);
3659 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2144} 3660}
2145 3661
2146static void noinline 3662static void noinline
2147infy_del (EV_P_ ev_stat *w) 3663infy_del (EV_P_ ev_stat *w)
2148{ 3664{
2151 3667
2152 if (wd < 0) 3668 if (wd < 0)
2153 return; 3669 return;
2154 3670
2155 w->wd = -2; 3671 w->wd = -2;
2156 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3672 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2157 wlist_del (&fs_hash [slot].head, (WL)w); 3673 wlist_del (&fs_hash [slot].head, (WL)w);
2158 3674
2159 /* remove this watcher, if others are watching it, they will rearm */ 3675 /* remove this watcher, if others are watching it, they will rearm */
2160 inotify_rm_watch (fs_fd, wd); 3676 inotify_rm_watch (fs_fd, wd);
2161} 3677}
2162 3678
2163static void noinline 3679static void noinline
2164infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3680infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2165{ 3681{
2166 if (slot < 0) 3682 if (slot < 0)
2167 /* overflow, need to check for all hahs slots */ 3683 /* overflow, need to check for all hash slots */
2168 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3684 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2169 infy_wd (EV_A_ slot, wd, ev); 3685 infy_wd (EV_A_ slot, wd, ev);
2170 else 3686 else
2171 { 3687 {
2172 WL w_; 3688 WL w_;
2173 3689
2174 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3690 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2175 { 3691 {
2176 ev_stat *w = (ev_stat *)w_; 3692 ev_stat *w = (ev_stat *)w_;
2177 w_ = w_->next; /* lets us remove this watcher and all before it */ 3693 w_ = w_->next; /* lets us remove this watcher and all before it */
2178 3694
2179 if (w->wd == wd || wd == -1) 3695 if (w->wd == wd || wd == -1)
2180 { 3696 {
2181 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3697 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2182 { 3698 {
3699 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2183 w->wd = -1; 3700 w->wd = -1;
2184 infy_add (EV_A_ w); /* re-add, no matter what */ 3701 infy_add (EV_A_ w); /* re-add, no matter what */
2185 } 3702 }
2186 3703
2187 stat_timer_cb (EV_A_ &w->timer, 0); 3704 stat_timer_cb (EV_A_ &w->timer, 0);
2192 3709
2193static void 3710static void
2194infy_cb (EV_P_ ev_io *w, int revents) 3711infy_cb (EV_P_ ev_io *w, int revents)
2195{ 3712{
2196 char buf [EV_INOTIFY_BUFSIZE]; 3713 char buf [EV_INOTIFY_BUFSIZE];
2197 struct inotify_event *ev = (struct inotify_event *)buf;
2198 int ofs; 3714 int ofs;
2199 int len = read (fs_fd, buf, sizeof (buf)); 3715 int len = read (fs_fd, buf, sizeof (buf));
2200 3716
2201 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3717 for (ofs = 0; ofs < len; )
3718 {
3719 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2202 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3720 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3721 ofs += sizeof (struct inotify_event) + ev->len;
3722 }
2203} 3723}
2204 3724
2205void inline_size 3725inline_size void ecb_cold
3726ev_check_2625 (EV_P)
3727{
3728 /* kernels < 2.6.25 are borked
3729 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3730 */
3731 if (ev_linux_version () < 0x020619)
3732 return;
3733
3734 fs_2625 = 1;
3735}
3736
3737inline_size int
3738infy_newfd (void)
3739{
3740#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3741 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3742 if (fd >= 0)
3743 return fd;
3744#endif
3745 return inotify_init ();
3746}
3747
3748inline_size void
2206infy_init (EV_P) 3749infy_init (EV_P)
2207{ 3750{
2208 if (fs_fd != -2) 3751 if (fs_fd != -2)
2209 return; 3752 return;
2210 3753
3754 fs_fd = -1;
3755
3756 ev_check_2625 (EV_A);
3757
2211 fs_fd = inotify_init (); 3758 fs_fd = infy_newfd ();
2212 3759
2213 if (fs_fd >= 0) 3760 if (fs_fd >= 0)
2214 { 3761 {
3762 fd_intern (fs_fd);
2215 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3763 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2216 ev_set_priority (&fs_w, EV_MAXPRI); 3764 ev_set_priority (&fs_w, EV_MAXPRI);
2217 ev_io_start (EV_A_ &fs_w); 3765 ev_io_start (EV_A_ &fs_w);
3766 ev_unref (EV_A);
2218 } 3767 }
2219} 3768}
2220 3769
2221void inline_size 3770inline_size void
2222infy_fork (EV_P) 3771infy_fork (EV_P)
2223{ 3772{
2224 int slot; 3773 int slot;
2225 3774
2226 if (fs_fd < 0) 3775 if (fs_fd < 0)
2227 return; 3776 return;
2228 3777
3778 ev_ref (EV_A);
3779 ev_io_stop (EV_A_ &fs_w);
2229 close (fs_fd); 3780 close (fs_fd);
2230 fs_fd = inotify_init (); 3781 fs_fd = infy_newfd ();
2231 3782
3783 if (fs_fd >= 0)
3784 {
3785 fd_intern (fs_fd);
3786 ev_io_set (&fs_w, fs_fd, EV_READ);
3787 ev_io_start (EV_A_ &fs_w);
3788 ev_unref (EV_A);
3789 }
3790
2232 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3791 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2233 { 3792 {
2234 WL w_ = fs_hash [slot].head; 3793 WL w_ = fs_hash [slot].head;
2235 fs_hash [slot].head = 0; 3794 fs_hash [slot].head = 0;
2236 3795
2237 while (w_) 3796 while (w_)
2242 w->wd = -1; 3801 w->wd = -1;
2243 3802
2244 if (fs_fd >= 0) 3803 if (fs_fd >= 0)
2245 infy_add (EV_A_ w); /* re-add, no matter what */ 3804 infy_add (EV_A_ w); /* re-add, no matter what */
2246 else 3805 else
3806 {
3807 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3808 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2247 ev_timer_start (EV_A_ &w->timer); 3809 ev_timer_again (EV_A_ &w->timer);
3810 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3811 }
2248 } 3812 }
2249
2250 } 3813 }
2251} 3814}
2252 3815
3816#endif
3817
3818#ifdef _WIN32
3819# define EV_LSTAT(p,b) _stati64 (p, b)
3820#else
3821# define EV_LSTAT(p,b) lstat (p, b)
2253#endif 3822#endif
2254 3823
2255void 3824void
2256ev_stat_stat (EV_P_ ev_stat *w) 3825ev_stat_stat (EV_P_ ev_stat *w)
2257{ 3826{
2264static void noinline 3833static void noinline
2265stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3834stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2266{ 3835{
2267 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3836 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2268 3837
2269 /* we copy this here each the time so that */ 3838 ev_statdata prev = w->attr;
2270 /* prev has the old value when the callback gets invoked */
2271 w->prev = w->attr;
2272 ev_stat_stat (EV_A_ w); 3839 ev_stat_stat (EV_A_ w);
2273 3840
2274 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3841 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2275 if ( 3842 if (
2276 w->prev.st_dev != w->attr.st_dev 3843 prev.st_dev != w->attr.st_dev
2277 || w->prev.st_ino != w->attr.st_ino 3844 || prev.st_ino != w->attr.st_ino
2278 || w->prev.st_mode != w->attr.st_mode 3845 || prev.st_mode != w->attr.st_mode
2279 || w->prev.st_nlink != w->attr.st_nlink 3846 || prev.st_nlink != w->attr.st_nlink
2280 || w->prev.st_uid != w->attr.st_uid 3847 || prev.st_uid != w->attr.st_uid
2281 || w->prev.st_gid != w->attr.st_gid 3848 || prev.st_gid != w->attr.st_gid
2282 || w->prev.st_rdev != w->attr.st_rdev 3849 || prev.st_rdev != w->attr.st_rdev
2283 || w->prev.st_size != w->attr.st_size 3850 || prev.st_size != w->attr.st_size
2284 || w->prev.st_atime != w->attr.st_atime 3851 || prev.st_atime != w->attr.st_atime
2285 || w->prev.st_mtime != w->attr.st_mtime 3852 || prev.st_mtime != w->attr.st_mtime
2286 || w->prev.st_ctime != w->attr.st_ctime 3853 || prev.st_ctime != w->attr.st_ctime
2287 ) { 3854 ) {
3855 /* we only update w->prev on actual differences */
3856 /* in case we test more often than invoke the callback, */
3857 /* to ensure that prev is always different to attr */
3858 w->prev = prev;
3859
2288 #if EV_USE_INOTIFY 3860 #if EV_USE_INOTIFY
3861 if (fs_fd >= 0)
3862 {
2289 infy_del (EV_A_ w); 3863 infy_del (EV_A_ w);
2290 infy_add (EV_A_ w); 3864 infy_add (EV_A_ w);
2291 ev_stat_stat (EV_A_ w); /* avoid race... */ 3865 ev_stat_stat (EV_A_ w); /* avoid race... */
3866 }
2292 #endif 3867 #endif
2293 3868
2294 ev_feed_event (EV_A_ w, EV_STAT); 3869 ev_feed_event (EV_A_ w, EV_STAT);
2295 } 3870 }
2296} 3871}
2299ev_stat_start (EV_P_ ev_stat *w) 3874ev_stat_start (EV_P_ ev_stat *w)
2300{ 3875{
2301 if (expect_false (ev_is_active (w))) 3876 if (expect_false (ev_is_active (w)))
2302 return; 3877 return;
2303 3878
2304 /* since we use memcmp, we need to clear any padding data etc. */
2305 memset (&w->prev, 0, sizeof (ev_statdata));
2306 memset (&w->attr, 0, sizeof (ev_statdata));
2307
2308 ev_stat_stat (EV_A_ w); 3879 ev_stat_stat (EV_A_ w);
2309 3880
3881 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2310 if (w->interval < MIN_STAT_INTERVAL) 3882 w->interval = MIN_STAT_INTERVAL;
2311 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2312 3883
2313 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3884 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2314 ev_set_priority (&w->timer, ev_priority (w)); 3885 ev_set_priority (&w->timer, ev_priority (w));
2315 3886
2316#if EV_USE_INOTIFY 3887#if EV_USE_INOTIFY
2317 infy_init (EV_A); 3888 infy_init (EV_A);
2318 3889
2319 if (fs_fd >= 0) 3890 if (fs_fd >= 0)
2320 infy_add (EV_A_ w); 3891 infy_add (EV_A_ w);
2321 else 3892 else
2322#endif 3893#endif
3894 {
2323 ev_timer_start (EV_A_ &w->timer); 3895 ev_timer_again (EV_A_ &w->timer);
3896 ev_unref (EV_A);
3897 }
2324 3898
2325 ev_start (EV_A_ (W)w, 1); 3899 ev_start (EV_A_ (W)w, 1);
3900
3901 EV_FREQUENT_CHECK;
2326} 3902}
2327 3903
2328void 3904void
2329ev_stat_stop (EV_P_ ev_stat *w) 3905ev_stat_stop (EV_P_ ev_stat *w)
2330{ 3906{
2331 clear_pending (EV_A_ (W)w); 3907 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w))) 3908 if (expect_false (!ev_is_active (w)))
2333 return; 3909 return;
2334 3910
3911 EV_FREQUENT_CHECK;
3912
2335#if EV_USE_INOTIFY 3913#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w); 3914 infy_del (EV_A_ w);
2337#endif 3915#endif
3916
3917 if (ev_is_active (&w->timer))
3918 {
3919 ev_ref (EV_A);
2338 ev_timer_stop (EV_A_ &w->timer); 3920 ev_timer_stop (EV_A_ &w->timer);
3921 }
2339 3922
2340 ev_stop (EV_A_ (W)w); 3923 ev_stop (EV_A_ (W)w);
3924
3925 EV_FREQUENT_CHECK;
2341} 3926}
2342#endif 3927#endif
2343 3928
2344#if EV_IDLE_ENABLE 3929#if EV_IDLE_ENABLE
2345void 3930void
2348 if (expect_false (ev_is_active (w))) 3933 if (expect_false (ev_is_active (w)))
2349 return; 3934 return;
2350 3935
2351 pri_adjust (EV_A_ (W)w); 3936 pri_adjust (EV_A_ (W)w);
2352 3937
3938 EV_FREQUENT_CHECK;
3939
2353 { 3940 {
2354 int active = ++idlecnt [ABSPRI (w)]; 3941 int active = ++idlecnt [ABSPRI (w)];
2355 3942
2356 ++idleall; 3943 ++idleall;
2357 ev_start (EV_A_ (W)w, active); 3944 ev_start (EV_A_ (W)w, active);
2358 3945
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3946 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w; 3947 idles [ABSPRI (w)][active - 1] = w;
2361 } 3948 }
3949
3950 EV_FREQUENT_CHECK;
2362} 3951}
2363 3952
2364void 3953void
2365ev_idle_stop (EV_P_ ev_idle *w) 3954ev_idle_stop (EV_P_ ev_idle *w)
2366{ 3955{
2367 clear_pending (EV_A_ (W)w); 3956 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w))) 3957 if (expect_false (!ev_is_active (w)))
2369 return; 3958 return;
2370 3959
3960 EV_FREQUENT_CHECK;
3961
2371 { 3962 {
2372 int active = ((W)w)->active; 3963 int active = ev_active (w);
2373 3964
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3965 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3966 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2376 3967
2377 ev_stop (EV_A_ (W)w); 3968 ev_stop (EV_A_ (W)w);
2378 --idleall; 3969 --idleall;
2379 } 3970 }
2380}
2381#endif
2382 3971
3972 EV_FREQUENT_CHECK;
3973}
3974#endif
3975
3976#if EV_PREPARE_ENABLE
2383void 3977void
2384ev_prepare_start (EV_P_ ev_prepare *w) 3978ev_prepare_start (EV_P_ ev_prepare *w)
2385{ 3979{
2386 if (expect_false (ev_is_active (w))) 3980 if (expect_false (ev_is_active (w)))
2387 return; 3981 return;
3982
3983 EV_FREQUENT_CHECK;
2388 3984
2389 ev_start (EV_A_ (W)w, ++preparecnt); 3985 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3986 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w; 3987 prepares [preparecnt - 1] = w;
3988
3989 EV_FREQUENT_CHECK;
2392} 3990}
2393 3991
2394void 3992void
2395ev_prepare_stop (EV_P_ ev_prepare *w) 3993ev_prepare_stop (EV_P_ ev_prepare *w)
2396{ 3994{
2397 clear_pending (EV_A_ (W)w); 3995 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w))) 3996 if (expect_false (!ev_is_active (w)))
2399 return; 3997 return;
2400 3998
3999 EV_FREQUENT_CHECK;
4000
2401 { 4001 {
2402 int active = ((W)w)->active; 4002 int active = ev_active (w);
4003
2403 prepares [active - 1] = prepares [--preparecnt]; 4004 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active; 4005 ev_active (prepares [active - 1]) = active;
2405 } 4006 }
2406 4007
2407 ev_stop (EV_A_ (W)w); 4008 ev_stop (EV_A_ (W)w);
2408}
2409 4009
4010 EV_FREQUENT_CHECK;
4011}
4012#endif
4013
4014#if EV_CHECK_ENABLE
2410void 4015void
2411ev_check_start (EV_P_ ev_check *w) 4016ev_check_start (EV_P_ ev_check *w)
2412{ 4017{
2413 if (expect_false (ev_is_active (w))) 4018 if (expect_false (ev_is_active (w)))
2414 return; 4019 return;
4020
4021 EV_FREQUENT_CHECK;
2415 4022
2416 ev_start (EV_A_ (W)w, ++checkcnt); 4023 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4024 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w; 4025 checks [checkcnt - 1] = w;
4026
4027 EV_FREQUENT_CHECK;
2419} 4028}
2420 4029
2421void 4030void
2422ev_check_stop (EV_P_ ev_check *w) 4031ev_check_stop (EV_P_ ev_check *w)
2423{ 4032{
2424 clear_pending (EV_A_ (W)w); 4033 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w))) 4034 if (expect_false (!ev_is_active (w)))
2426 return; 4035 return;
2427 4036
4037 EV_FREQUENT_CHECK;
4038
2428 { 4039 {
2429 int active = ((W)w)->active; 4040 int active = ev_active (w);
4041
2430 checks [active - 1] = checks [--checkcnt]; 4042 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active; 4043 ev_active (checks [active - 1]) = active;
2432 } 4044 }
2433 4045
2434 ev_stop (EV_A_ (W)w); 4046 ev_stop (EV_A_ (W)w);
4047
4048 EV_FREQUENT_CHECK;
2435} 4049}
4050#endif
2436 4051
2437#if EV_EMBED_ENABLE 4052#if EV_EMBED_ENABLE
2438void noinline 4053void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w) 4054ev_embed_sweep (EV_P_ ev_embed *w)
2440{ 4055{
2441 ev_loop (w->other, EVLOOP_NONBLOCK); 4056 ev_run (w->other, EVRUN_NOWAIT);
2442} 4057}
2443 4058
2444static void 4059static void
2445embed_io_cb (EV_P_ ev_io *io, int revents) 4060embed_io_cb (EV_P_ ev_io *io, int revents)
2446{ 4061{
2447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4062 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2448 4063
2449 if (ev_cb (w)) 4064 if (ev_cb (w))
2450 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4065 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2451 else 4066 else
2452 ev_loop (w->other, EVLOOP_NONBLOCK); 4067 ev_run (w->other, EVRUN_NOWAIT);
2453} 4068}
2454 4069
2455static void 4070static void
2456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4071embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2457{ 4072{
2458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4073 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2459 4074
2460 { 4075 {
2461 struct ev_loop *loop = w->other; 4076 EV_P = w->other;
2462 4077
2463 while (fdchangecnt) 4078 while (fdchangecnt)
2464 { 4079 {
2465 fd_reify (EV_A); 4080 fd_reify (EV_A);
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4081 ev_run (EV_A_ EVRUN_NOWAIT);
2467 } 4082 }
2468 } 4083 }
4084}
4085
4086static void
4087embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4088{
4089 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4090
4091 ev_embed_stop (EV_A_ w);
4092
4093 {
4094 EV_P = w->other;
4095
4096 ev_loop_fork (EV_A);
4097 ev_run (EV_A_ EVRUN_NOWAIT);
4098 }
4099
4100 ev_embed_start (EV_A_ w);
2469} 4101}
2470 4102
2471#if 0 4103#if 0
2472static void 4104static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4105embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2481{ 4113{
2482 if (expect_false (ev_is_active (w))) 4114 if (expect_false (ev_is_active (w)))
2483 return; 4115 return;
2484 4116
2485 { 4117 {
2486 struct ev_loop *loop = w->other; 4118 EV_P = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4119 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4120 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 } 4121 }
4122
4123 EV_FREQUENT_CHECK;
2490 4124
2491 ev_set_priority (&w->io, ev_priority (w)); 4125 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io); 4126 ev_io_start (EV_A_ &w->io);
2493 4127
2494 ev_prepare_init (&w->prepare, embed_prepare_cb); 4128 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI); 4129 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare); 4130 ev_prepare_start (EV_A_ &w->prepare);
2497 4131
4132 ev_fork_init (&w->fork, embed_fork_cb);
4133 ev_fork_start (EV_A_ &w->fork);
4134
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4135 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499 4136
2500 ev_start (EV_A_ (W)w, 1); 4137 ev_start (EV_A_ (W)w, 1);
4138
4139 EV_FREQUENT_CHECK;
2501} 4140}
2502 4141
2503void 4142void
2504ev_embed_stop (EV_P_ ev_embed *w) 4143ev_embed_stop (EV_P_ ev_embed *w)
2505{ 4144{
2506 clear_pending (EV_A_ (W)w); 4145 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w))) 4146 if (expect_false (!ev_is_active (w)))
2508 return; 4147 return;
2509 4148
4149 EV_FREQUENT_CHECK;
4150
2510 ev_io_stop (EV_A_ &w->io); 4151 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare); 4152 ev_prepare_stop (EV_A_ &w->prepare);
4153 ev_fork_stop (EV_A_ &w->fork);
2512 4154
2513 ev_stop (EV_A_ (W)w); 4155 ev_stop (EV_A_ (W)w);
4156
4157 EV_FREQUENT_CHECK;
2514} 4158}
2515#endif 4159#endif
2516 4160
2517#if EV_FORK_ENABLE 4161#if EV_FORK_ENABLE
2518void 4162void
2519ev_fork_start (EV_P_ ev_fork *w) 4163ev_fork_start (EV_P_ ev_fork *w)
2520{ 4164{
2521 if (expect_false (ev_is_active (w))) 4165 if (expect_false (ev_is_active (w)))
2522 return; 4166 return;
2523 4167
4168 EV_FREQUENT_CHECK;
4169
2524 ev_start (EV_A_ (W)w, ++forkcnt); 4170 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4171 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w; 4172 forks [forkcnt - 1] = w;
4173
4174 EV_FREQUENT_CHECK;
2527} 4175}
2528 4176
2529void 4177void
2530ev_fork_stop (EV_P_ ev_fork *w) 4178ev_fork_stop (EV_P_ ev_fork *w)
2531{ 4179{
2532 clear_pending (EV_A_ (W)w); 4180 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w))) 4181 if (expect_false (!ev_is_active (w)))
2534 return; 4182 return;
2535 4183
4184 EV_FREQUENT_CHECK;
4185
2536 { 4186 {
2537 int active = ((W)w)->active; 4187 int active = ev_active (w);
4188
2538 forks [active - 1] = forks [--forkcnt]; 4189 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active; 4190 ev_active (forks [active - 1]) = active;
2540 } 4191 }
2541 4192
2542 ev_stop (EV_A_ (W)w); 4193 ev_stop (EV_A_ (W)w);
4194
4195 EV_FREQUENT_CHECK;
4196}
4197#endif
4198
4199#if EV_CLEANUP_ENABLE
4200void
4201ev_cleanup_start (EV_P_ ev_cleanup *w)
4202{
4203 if (expect_false (ev_is_active (w)))
4204 return;
4205
4206 EV_FREQUENT_CHECK;
4207
4208 ev_start (EV_A_ (W)w, ++cleanupcnt);
4209 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4210 cleanups [cleanupcnt - 1] = w;
4211
4212 /* cleanup watchers should never keep a refcount on the loop */
4213 ev_unref (EV_A);
4214 EV_FREQUENT_CHECK;
4215}
4216
4217void
4218ev_cleanup_stop (EV_P_ ev_cleanup *w)
4219{
4220 clear_pending (EV_A_ (W)w);
4221 if (expect_false (!ev_is_active (w)))
4222 return;
4223
4224 EV_FREQUENT_CHECK;
4225 ev_ref (EV_A);
4226
4227 {
4228 int active = ev_active (w);
4229
4230 cleanups [active - 1] = cleanups [--cleanupcnt];
4231 ev_active (cleanups [active - 1]) = active;
4232 }
4233
4234 ev_stop (EV_A_ (W)w);
4235
4236 EV_FREQUENT_CHECK;
2543} 4237}
2544#endif 4238#endif
2545 4239
2546#if EV_ASYNC_ENABLE 4240#if EV_ASYNC_ENABLE
2547void 4241void
2548ev_async_start (EV_P_ ev_async *w) 4242ev_async_start (EV_P_ ev_async *w)
2549{ 4243{
2550 if (expect_false (ev_is_active (w))) 4244 if (expect_false (ev_is_active (w)))
2551 return; 4245 return;
2552 4246
4247 w->sent = 0;
4248
2553 evpipe_init (EV_A); 4249 evpipe_init (EV_A);
4250
4251 EV_FREQUENT_CHECK;
2554 4252
2555 ev_start (EV_A_ (W)w, ++asynccnt); 4253 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4254 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w; 4255 asyncs [asynccnt - 1] = w;
4256
4257 EV_FREQUENT_CHECK;
2558} 4258}
2559 4259
2560void 4260void
2561ev_async_stop (EV_P_ ev_async *w) 4261ev_async_stop (EV_P_ ev_async *w)
2562{ 4262{
2563 clear_pending (EV_A_ (W)w); 4263 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w))) 4264 if (expect_false (!ev_is_active (w)))
2565 return; 4265 return;
2566 4266
4267 EV_FREQUENT_CHECK;
4268
2567 { 4269 {
2568 int active = ((W)w)->active; 4270 int active = ev_active (w);
4271
2569 asyncs [active - 1] = asyncs [--asynccnt]; 4272 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active; 4273 ev_active (asyncs [active - 1]) = active;
2571 } 4274 }
2572 4275
2573 ev_stop (EV_A_ (W)w); 4276 ev_stop (EV_A_ (W)w);
4277
4278 EV_FREQUENT_CHECK;
2574} 4279}
2575 4280
2576void 4281void
2577ev_async_send (EV_P_ ev_async *w) 4282ev_async_send (EV_P_ ev_async *w)
2578{ 4283{
2579 w->sent = 1; 4284 w->sent = 1;
2580 evpipe_write (EV_A_ &gotasync); 4285 evpipe_write (EV_A_ &async_pending);
2581} 4286}
2582#endif 4287#endif
2583 4288
2584/*****************************************************************************/ 4289/*****************************************************************************/
2585 4290
2595once_cb (EV_P_ struct ev_once *once, int revents) 4300once_cb (EV_P_ struct ev_once *once, int revents)
2596{ 4301{
2597 void (*cb)(int revents, void *arg) = once->cb; 4302 void (*cb)(int revents, void *arg) = once->cb;
2598 void *arg = once->arg; 4303 void *arg = once->arg;
2599 4304
2600 ev_io_stop (EV_A_ &once->io); 4305 ev_io_stop (EV_A_ &once->io);
2601 ev_timer_stop (EV_A_ &once->to); 4306 ev_timer_stop (EV_A_ &once->to);
2602 ev_free (once); 4307 ev_free (once);
2603 4308
2604 cb (revents, arg); 4309 cb (revents, arg);
2605} 4310}
2606 4311
2607static void 4312static void
2608once_cb_io (EV_P_ ev_io *w, int revents) 4313once_cb_io (EV_P_ ev_io *w, int revents)
2609{ 4314{
2610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4315 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4316
4317 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2611} 4318}
2612 4319
2613static void 4320static void
2614once_cb_to (EV_P_ ev_timer *w, int revents) 4321once_cb_to (EV_P_ ev_timer *w, int revents)
2615{ 4322{
2616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4323 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4324
4325 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2617} 4326}
2618 4327
2619void 4328void
2620ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4329ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2621{ 4330{
2622 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4331 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2623 4332
2624 if (expect_false (!once)) 4333 if (expect_false (!once))
2625 { 4334 {
2626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4335 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2627 return; 4336 return;
2628 } 4337 }
2629 4338
2630 once->cb = cb; 4339 once->cb = cb;
2631 once->arg = arg; 4340 once->arg = arg;
2643 ev_timer_set (&once->to, timeout, 0.); 4352 ev_timer_set (&once->to, timeout, 0.);
2644 ev_timer_start (EV_A_ &once->to); 4353 ev_timer_start (EV_A_ &once->to);
2645 } 4354 }
2646} 4355}
2647 4356
4357/*****************************************************************************/
4358
4359#if EV_WALK_ENABLE
4360void ecb_cold
4361ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
4362{
4363 int i, j;
4364 ev_watcher_list *wl, *wn;
4365
4366 if (types & (EV_IO | EV_EMBED))
4367 for (i = 0; i < anfdmax; ++i)
4368 for (wl = anfds [i].head; wl; )
4369 {
4370 wn = wl->next;
4371
4372#if EV_EMBED_ENABLE
4373 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4374 {
4375 if (types & EV_EMBED)
4376 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4377 }
4378 else
4379#endif
4380#if EV_USE_INOTIFY
4381 if (ev_cb ((ev_io *)wl) == infy_cb)
4382 ;
4383 else
4384#endif
4385 if ((ev_io *)wl != &pipe_w)
4386 if (types & EV_IO)
4387 cb (EV_A_ EV_IO, wl);
4388
4389 wl = wn;
4390 }
4391
4392 if (types & (EV_TIMER | EV_STAT))
4393 for (i = timercnt + HEAP0; i-- > HEAP0; )
4394#if EV_STAT_ENABLE
4395 /*TODO: timer is not always active*/
4396 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4397 {
4398 if (types & EV_STAT)
4399 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4400 }
4401 else
4402#endif
4403 if (types & EV_TIMER)
4404 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4405
4406#if EV_PERIODIC_ENABLE
4407 if (types & EV_PERIODIC)
4408 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4409 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4410#endif
4411
4412#if EV_IDLE_ENABLE
4413 if (types & EV_IDLE)
4414 for (j = NUMPRI; j--; )
4415 for (i = idlecnt [j]; i--; )
4416 cb (EV_A_ EV_IDLE, idles [j][i]);
4417#endif
4418
4419#if EV_FORK_ENABLE
4420 if (types & EV_FORK)
4421 for (i = forkcnt; i--; )
4422 if (ev_cb (forks [i]) != embed_fork_cb)
4423 cb (EV_A_ EV_FORK, forks [i]);
4424#endif
4425
4426#if EV_ASYNC_ENABLE
4427 if (types & EV_ASYNC)
4428 for (i = asynccnt; i--; )
4429 cb (EV_A_ EV_ASYNC, asyncs [i]);
4430#endif
4431
4432#if EV_PREPARE_ENABLE
4433 if (types & EV_PREPARE)
4434 for (i = preparecnt; i--; )
4435# if EV_EMBED_ENABLE
4436 if (ev_cb (prepares [i]) != embed_prepare_cb)
4437# endif
4438 cb (EV_A_ EV_PREPARE, prepares [i]);
4439#endif
4440
4441#if EV_CHECK_ENABLE
4442 if (types & EV_CHECK)
4443 for (i = checkcnt; i--; )
4444 cb (EV_A_ EV_CHECK, checks [i]);
4445#endif
4446
4447#if EV_SIGNAL_ENABLE
4448 if (types & EV_SIGNAL)
4449 for (i = 0; i < EV_NSIG - 1; ++i)
4450 for (wl = signals [i].head; wl; )
4451 {
4452 wn = wl->next;
4453 cb (EV_A_ EV_SIGNAL, wl);
4454 wl = wn;
4455 }
4456#endif
4457
4458#if EV_CHILD_ENABLE
4459 if (types & EV_CHILD)
4460 for (i = (EV_PID_HASHSIZE); i--; )
4461 for (wl = childs [i]; wl; )
4462 {
4463 wn = wl->next;
4464 cb (EV_A_ EV_CHILD, wl);
4465 wl = wn;
4466 }
4467#endif
4468/* EV_STAT 0x00001000 /* stat data changed */
4469/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4470}
4471#endif
4472
2648#if EV_MULTIPLICITY 4473#if EV_MULTIPLICITY
2649 #include "ev_wrap.h" 4474 #include "ev_wrap.h"
2650#endif 4475#endif
2651 4476
2652#ifdef __cplusplus
2653}
2654#endif
2655

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines