ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.44 by root, Fri Nov 2 20:59:14 2007 UTC vs.
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
31#if EV_USE_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
90# endif
91
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
33#endif 132#endif
34 133
35#include <math.h> 134#include <math.h>
36#include <stdlib.h> 135#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 136#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 137#include <stddef.h>
41 138
42#include <stdio.h> 139#include <stdio.h>
43 140
44#include <assert.h> 141#include <assert.h>
45#include <errno.h> 142#include <errno.h>
46#include <sys/types.h> 143#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 144#include <time.h>
50 145
51/**/ 146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
163# endif
164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
52 167
53#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
55#endif 178#endif
56 179
57#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
59#endif 182#endif
60 183
61#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
62# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
63#endif 190#endif
64 191
65#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
66# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
67#endif 198#endif
68 199
69#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
70# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
71#endif 202#endif
72 203
73#ifndef EV_USE_REALTIME 204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
74# define EV_USE_REALTIME 1 210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
75#endif 213# endif
214#endif
76 215
77/**/ 216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
78 241
79#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
80# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
81# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
82#endif 245#endif
84#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
85# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
86# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
87#endif 250#endif
88 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
89/**/ 283/**/
90 284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
91#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
92#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
93#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
94/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
95 298
96#include "ev.h"
97
98#if __GNUC__ >= 3 299#if __GNUC__ >= 4
99# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
100# define inline inline 301# define noinline __attribute__ ((noinline))
101#else 302#else
102# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
103# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
104#endif 308#endif
105 309
106#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
107#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
108 319
109#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
110#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
111 322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
112typedef struct ev_watcher *W; 326typedef ev_watcher *W;
113typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
114typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
115 329
116static ev_tstamp now_floor, now, diff; /* monotonic clock */ 330#define ev_at(w) ((WT)(w))->at
331
332#if EV_USE_MONOTONIC
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */
335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
336#endif
337
338#ifdef _WIN32
339# include "ev_win32.c"
340#endif
341
342/*****************************************************************************/
343
344static void (*syserr_cb)(const char *msg);
345
346void
347ev_set_syserr_cb (void (*cb)(const char *msg))
348{
349 syserr_cb = cb;
350}
351
352static void noinline
353syserr (const char *msg)
354{
355 if (!msg)
356 msg = "(libev) system error";
357
358 if (syserr_cb)
359 syserr_cb (msg);
360 else
361 {
362 perror (msg);
363 abort ();
364 }
365}
366
367static void *
368ev_realloc_emul (void *ptr, long size)
369{
370 /* some systems, notably openbsd and darwin, fail to properly
371 * implement realloc (x, 0) (as required by both ansi c-98 and
372 * the single unix specification, so work around them here.
373 */
374
375 if (size)
376 return realloc (ptr, size);
377
378 free (ptr);
379 return 0;
380}
381
382static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
383
384void
385ev_set_allocator (void *(*cb)(void *ptr, long size))
386{
387 alloc = cb;
388}
389
390inline_speed void *
391ev_realloc (void *ptr, long size)
392{
393 ptr = alloc (ptr, size);
394
395 if (!ptr && size)
396 {
397 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
398 abort ();
399 }
400
401 return ptr;
402}
403
404#define ev_malloc(size) ev_realloc (0, (size))
405#define ev_free(ptr) ev_realloc ((ptr), 0)
406
407/*****************************************************************************/
408
409typedef struct
410{
411 WL head;
412 unsigned char events;
413 unsigned char reify;
414#if EV_SELECT_IS_WINSOCKET
415 SOCKET handle;
416#endif
417} ANFD;
418
419typedef struct
420{
421 W w;
422 int events;
423} ANPENDING;
424
425#if EV_USE_INOTIFY
426typedef struct
427{
428 WL head;
429} ANFS;
430#endif
431
432#if EV_MULTIPLICITY
433
434 struct ev_loop
435 {
436 ev_tstamp ev_rt_now;
437 #define ev_rt_now ((loop)->ev_rt_now)
438 #define VAR(name,decl) decl;
439 #include "ev_vars.h"
440 #undef VAR
441 };
442 #include "ev_wrap.h"
443
444 static struct ev_loop default_loop_struct;
445 struct ev_loop *ev_default_loop_ptr;
446
447#else
448
117ev_tstamp ev_now; 449 ev_tstamp ev_rt_now;
118int ev_method; 450 #define VAR(name,decl) static decl;
451 #include "ev_vars.h"
452 #undef VAR
119 453
120static int have_monotonic; /* runtime */ 454 static int ev_default_loop_ptr;
121 455
122static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 456#endif
123static void (*method_modify)(int fd, int oev, int nev);
124static void (*method_poll)(ev_tstamp timeout);
125 457
126/*****************************************************************************/ 458/*****************************************************************************/
127 459
128ev_tstamp 460ev_tstamp
129ev_time (void) 461ev_time (void)
137 gettimeofday (&tv, 0); 469 gettimeofday (&tv, 0);
138 return tv.tv_sec + tv.tv_usec * 1e-6; 470 return tv.tv_sec + tv.tv_usec * 1e-6;
139#endif 471#endif
140} 472}
141 473
142static ev_tstamp 474ev_tstamp inline_size
143get_clock (void) 475get_clock (void)
144{ 476{
145#if EV_USE_MONOTONIC 477#if EV_USE_MONOTONIC
146 if (expect_true (have_monotonic)) 478 if (expect_true (have_monotonic))
147 { 479 {
152#endif 484#endif
153 485
154 return ev_time (); 486 return ev_time ();
155} 487}
156 488
157#define array_roundsize(base,n) ((n) | 4 & ~3) 489#if EV_MULTIPLICITY
490ev_tstamp
491ev_now (EV_P)
492{
493 return ev_rt_now;
494}
495#endif
158 496
159#define array_needsize(base,cur,cnt,init) \ 497void
160 if (expect_false ((cnt) > cur)) \ 498ev_sleep (ev_tstamp delay)
161 { \ 499{
162 int newcnt = cur; \ 500 if (delay > 0.)
163 do \
164 { \
165 newcnt = array_roundsize (base, newcnt << 1); \
166 } \
167 while ((cnt) > newcnt); \
168 \
169 base = realloc (base, sizeof (*base) * (newcnt)); \
170 init (base + cur, newcnt - cur); \
171 cur = newcnt; \
172 } 501 {
502#if EV_USE_NANOSLEEP
503 struct timespec ts;
504
505 ts.tv_sec = (time_t)delay;
506 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
507
508 nanosleep (&ts, 0);
509#elif defined(_WIN32)
510 Sleep ((unsigned long)(delay * 1e3));
511#else
512 struct timeval tv;
513
514 tv.tv_sec = (time_t)delay;
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
516
517 select (0, 0, 0, 0, &tv);
518#endif
519 }
520}
173 521
174/*****************************************************************************/ 522/*****************************************************************************/
175 523
176typedef struct 524int inline_size
525array_nextsize (int elem, int cur, int cnt)
177{ 526{
178 struct ev_io *head; 527 int ncur = cur + 1;
179 unsigned char events;
180 unsigned char reify;
181} ANFD;
182 528
183static ANFD *anfds; 529 do
184static int anfdmax; 530 ncur <<= 1;
531 while (cnt > ncur);
185 532
186static void 533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
534 if (elem * ncur > 4096)
535 {
536 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
538 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem;
540 }
541
542 return ncur;
543}
544
545static noinline void *
546array_realloc (int elem, void *base, int *cur, int cnt)
547{
548 *cur = array_nextsize (elem, *cur, cnt);
549 return ev_realloc (base, elem * *cur);
550}
551
552#define array_needsize(type,base,cur,cnt,init) \
553 if (expect_false ((cnt) > (cur))) \
554 { \
555 int ocur_ = (cur); \
556 (base) = (type *)array_realloc \
557 (sizeof (type), (base), &(cur), (cnt)); \
558 init ((base) + (ocur_), (cur) - ocur_); \
559 }
560
561#if 0
562#define array_slim(type,stem) \
563 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
564 { \
565 stem ## max = array_roundsize (stem ## cnt >> 1); \
566 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
567 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
568 }
569#endif
570
571#define array_free(stem, idx) \
572 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
573
574/*****************************************************************************/
575
576void noinline
577ev_feed_event (EV_P_ void *w, int revents)
578{
579 W w_ = (W)w;
580 int pri = ABSPRI (w_);
581
582 if (expect_false (w_->pending))
583 pendings [pri][w_->pending - 1].events |= revents;
584 else
585 {
586 w_->pending = ++pendingcnt [pri];
587 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
588 pendings [pri][w_->pending - 1].w = w_;
589 pendings [pri][w_->pending - 1].events = revents;
590 }
591}
592
593void inline_speed
594queue_events (EV_P_ W *events, int eventcnt, int type)
595{
596 int i;
597
598 for (i = 0; i < eventcnt; ++i)
599 ev_feed_event (EV_A_ events [i], type);
600}
601
602/*****************************************************************************/
603
604void inline_size
187anfds_init (ANFD *base, int count) 605anfds_init (ANFD *base, int count)
188{ 606{
189 while (count--) 607 while (count--)
190 { 608 {
191 base->head = 0; 609 base->head = 0;
194 612
195 ++base; 613 ++base;
196 } 614 }
197} 615}
198 616
199typedef struct 617void inline_speed
200{
201 W w;
202 int events;
203} ANPENDING;
204
205static ANPENDING *pendings [NUMPRI];
206static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
207
208static void
209event (W w, int events)
210{
211 if (w->pending)
212 {
213 pendings [ABSPRI (w)][w->pending - 1].events |= events;
214 return;
215 }
216
217 w->pending = ++pendingcnt [ABSPRI (w)];
218 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
219 pendings [ABSPRI (w)][w->pending - 1].w = w;
220 pendings [ABSPRI (w)][w->pending - 1].events = events;
221}
222
223static void
224queue_events (W *events, int eventcnt, int type)
225{
226 int i;
227
228 for (i = 0; i < eventcnt; ++i)
229 event (events [i], type);
230}
231
232static void
233fd_event (int fd, int events) 618fd_event (EV_P_ int fd, int revents)
234{ 619{
235 ANFD *anfd = anfds + fd; 620 ANFD *anfd = anfds + fd;
236 struct ev_io *w; 621 ev_io *w;
237 622
238 for (w = anfd->head; w; w = w->next) 623 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
239 { 624 {
240 int ev = w->events & events; 625 int ev = w->events & revents;
241 626
242 if (ev) 627 if (ev)
243 event ((W)w, ev); 628 ev_feed_event (EV_A_ (W)w, ev);
244 } 629 }
245} 630}
246 631
247/*****************************************************************************/ 632void
633ev_feed_fd_event (EV_P_ int fd, int revents)
634{
635 if (fd >= 0 && fd < anfdmax)
636 fd_event (EV_A_ fd, revents);
637}
248 638
249static int *fdchanges; 639void inline_size
250static int fdchangemax, fdchangecnt; 640fd_reify (EV_P)
251
252static void
253fd_reify (void)
254{ 641{
255 int i; 642 int i;
256 643
257 for (i = 0; i < fdchangecnt; ++i) 644 for (i = 0; i < fdchangecnt; ++i)
258 { 645 {
259 int fd = fdchanges [i]; 646 int fd = fdchanges [i];
260 ANFD *anfd = anfds + fd; 647 ANFD *anfd = anfds + fd;
261 struct ev_io *w; 648 ev_io *w;
262 649
263 int events = 0; 650 unsigned char events = 0;
264 651
265 for (w = anfd->head; w; w = w->next) 652 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
266 events |= w->events; 653 events |= (unsigned char)w->events;
267 654
268 anfd->reify = 0; 655#if EV_SELECT_IS_WINSOCKET
269 656 if (events)
270 if (anfd->events != events)
271 { 657 {
272 method_modify (fd, anfd->events, events); 658 unsigned long argp;
273 anfd->events = events; 659 #ifdef EV_FD_TO_WIN32_HANDLE
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
661 #else
662 anfd->handle = _get_osfhandle (fd);
663 #endif
664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
274 } 665 }
666#endif
667
668 {
669 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify;
671
672 anfd->reify = 0;
673 anfd->events = events;
674
675 if (o_events != events || o_reify & EV_IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events);
677 }
275 } 678 }
276 679
277 fdchangecnt = 0; 680 fdchangecnt = 0;
278} 681}
279 682
280static void 683void inline_size
281fd_change (int fd) 684fd_change (EV_P_ int fd, int flags)
282{ 685{
283 if (anfds [fd].reify || fdchangecnt < 0) 686 unsigned char reify = anfds [fd].reify;
284 return;
285
286 anfds [fd].reify = 1; 687 anfds [fd].reify |= flags;
287 688
689 if (expect_true (!reify))
690 {
288 ++fdchangecnt; 691 ++fdchangecnt;
289 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
290 fdchanges [fdchangecnt - 1] = fd; 693 fdchanges [fdchangecnt - 1] = fd;
694 }
291} 695}
292 696
293static void 697void inline_speed
294fd_kill (int fd) 698fd_kill (EV_P_ int fd)
295{ 699{
296 struct ev_io *w; 700 ev_io *w;
297 701
298 printf ("killing fd %d\n", fd);//D
299 while ((w = anfds [fd].head)) 702 while ((w = (ev_io *)anfds [fd].head))
300 { 703 {
301 ev_io_stop (w); 704 ev_io_stop (EV_A_ w);
302 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 705 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
303 } 706 }
707}
708
709int inline_size
710fd_valid (int fd)
711{
712#ifdef _WIN32
713 return _get_osfhandle (fd) != -1;
714#else
715 return fcntl (fd, F_GETFD) != -1;
716#endif
304} 717}
305 718
306/* called on EBADF to verify fds */ 719/* called on EBADF to verify fds */
307static void 720static void noinline
308fd_ebadf (void) 721fd_ebadf (EV_P)
309{ 722{
310 int fd; 723 int fd;
311 724
312 for (fd = 0; fd < anfdmax; ++fd) 725 for (fd = 0; fd < anfdmax; ++fd)
313 if (anfds [fd].events) 726 if (anfds [fd].events)
314 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 727 if (!fd_valid (fd) == -1 && errno == EBADF)
315 fd_kill (fd); 728 fd_kill (EV_A_ fd);
316} 729}
317 730
318/* called on ENOMEM in select/poll to kill some fds and retry */ 731/* called on ENOMEM in select/poll to kill some fds and retry */
319static void 732static void noinline
320fd_enomem (void) 733fd_enomem (EV_P)
321{ 734{
322 int fd = anfdmax; 735 int fd;
323 736
324 while (fd--) 737 for (fd = anfdmax; fd--; )
325 if (anfds [fd].events) 738 if (anfds [fd].events)
326 { 739 {
327 close (fd);
328 fd_kill (fd); 740 fd_kill (EV_A_ fd);
329 return; 741 return;
330 } 742 }
331} 743}
332 744
745/* usually called after fork if backend needs to re-arm all fds from scratch */
746static void noinline
747fd_rearm_all (EV_P)
748{
749 int fd;
750
751 for (fd = 0; fd < anfdmax; ++fd)
752 if (anfds [fd].events)
753 {
754 anfds [fd].events = 0;
755 fd_change (EV_A_ fd, EV_IOFDSET | 1);
756 }
757}
758
333/*****************************************************************************/ 759/*****************************************************************************/
334 760
335static struct ev_timer **timers; 761/* towards the root */
336static int timermax, timercnt; 762void inline_speed
337
338static struct ev_periodic **periodics;
339static int periodicmax, periodiccnt;
340
341static void
342upheap (WT *timers, int k) 763upheap (WT *heap, int k)
343{ 764{
344 WT w = timers [k]; 765 WT w = heap [k];
345 766
346 while (k && timers [k >> 1]->at > w->at) 767 for (;;)
347 {
348 timers [k] = timers [k >> 1];
349 timers [k]->active = k + 1;
350 k >>= 1;
351 } 768 {
352
353 timers [k] = w;
354 timers [k]->active = k + 1;
355
356}
357
358static void
359downheap (WT *timers, int N, int k)
360{
361 WT w = timers [k];
362
363 while (k < (N >> 1))
364 {
365 int j = k << 1; 769 int p = k >> 1;
366 770
367 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 771 /* maybe we could use a dummy element at heap [0]? */
368 ++j; 772 if (!p || heap [p]->at <= w->at)
369
370 if (w->at <= timers [j]->at)
371 break; 773 break;
372 774
373 timers [k] = timers [j]; 775 heap [k] = heap [p];
374 timers [k]->active = k + 1; 776 ((W)heap [k])->active = k;
375 k = j; 777 k = p;
778 }
779
780 heap [k] = w;
781 ((W)heap [k])->active = k;
782}
783
784/* away from the root */
785void inline_speed
786downheap (WT *heap, int N, int k)
787{
788 WT w = heap [k];
789
790 for (;;)
376 } 791 {
792 int c = k << 1;
377 793
794 if (c > N)
795 break;
796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
803 heap [k] = heap [c];
804 ((W)heap [k])->active = k;
805
806 k = c;
807 }
808
378 timers [k] = w; 809 heap [k] = w;
379 timers [k]->active = k + 1; 810 ((W)heap [k])->active = k;
811}
812
813void inline_size
814adjustheap (WT *heap, int N, int k)
815{
816 upheap (heap, k);
817 downheap (heap, N, k);
380} 818}
381 819
382/*****************************************************************************/ 820/*****************************************************************************/
383 821
384typedef struct 822typedef struct
385{ 823{
386 struct ev_signal *head; 824 WL head;
387 sig_atomic_t volatile gotsig; 825 EV_ATOMIC_T gotsig;
388} ANSIG; 826} ANSIG;
389 827
390static ANSIG *signals; 828static ANSIG *signals;
391static int signalmax; 829static int signalmax;
392 830
393static int sigpipe [2]; 831static EV_ATOMIC_T gotsig;
394static sig_atomic_t volatile gotsig;
395static struct ev_io sigev;
396 832
397static void 833void inline_size
398signals_init (ANSIG *base, int count) 834signals_init (ANSIG *base, int count)
399{ 835{
400 while (count--) 836 while (count--)
401 { 837 {
402 base->head = 0; 838 base->head = 0;
404 840
405 ++base; 841 ++base;
406 } 842 }
407} 843}
408 844
845/*****************************************************************************/
846
847void inline_speed
848fd_intern (int fd)
849{
850#ifdef _WIN32
851 int arg = 1;
852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
853#else
854 fcntl (fd, F_SETFD, FD_CLOEXEC);
855 fcntl (fd, F_SETFL, O_NONBLOCK);
856#endif
857}
858
859static void noinline
860evpipe_init (EV_P)
861{
862 if (!ev_is_active (&pipeev))
863 {
864#if EV_USE_EVENTFD
865 if ((evfd = eventfd (0, 0)) >= 0)
866 {
867 evpipe [0] = -1;
868 fd_intern (evfd);
869 ev_io_set (&pipeev, evfd, EV_READ);
870 }
871 else
872#endif
873 {
874 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe");
876
877 fd_intern (evpipe [0]);
878 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ);
880 }
881
882 ev_io_start (EV_A_ &pipeev);
883 ev_unref (EV_A); /* watcher should not keep loop alive */
884 }
885}
886
887void inline_size
888evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{
890 if (!*flag)
891 {
892 int old_errno = errno; /* save errno because write might clobber it */
893
894 *flag = 1;
895
896#if EV_USE_EVENTFD
897 if (evfd >= 0)
898 {
899 uint64_t counter = 1;
900 write (evfd, &counter, sizeof (uint64_t));
901 }
902 else
903#endif
904 write (evpipe [1], &old_errno, 1);
905
906 errno = old_errno;
907 }
908}
909
409static void 910static void
911pipecb (EV_P_ ev_io *iow, int revents)
912{
913#if EV_USE_EVENTFD
914 if (evfd >= 0)
915 {
916 uint64_t counter = 1;
917 read (evfd, &counter, sizeof (uint64_t));
918 }
919 else
920#endif
921 {
922 char dummy;
923 read (evpipe [0], &dummy, 1);
924 }
925
926 if (gotsig && ev_is_default_loop (EV_A))
927 {
928 int signum;
929 gotsig = 0;
930
931 for (signum = signalmax; signum--; )
932 if (signals [signum].gotsig)
933 ev_feed_signal_event (EV_A_ signum + 1);
934 }
935
936#if EV_ASYNC_ENABLE
937 if (gotasync)
938 {
939 int i;
940 gotasync = 0;
941
942 for (i = asynccnt; i--; )
943 if (asyncs [i]->sent)
944 {
945 asyncs [i]->sent = 0;
946 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
947 }
948 }
949#endif
950}
951
952/*****************************************************************************/
953
954static void
410sighandler (int signum) 955ev_sighandler (int signum)
411{ 956{
957#if EV_MULTIPLICITY
958 struct ev_loop *loop = &default_loop_struct;
959#endif
960
961#if _WIN32
962 signal (signum, ev_sighandler);
963#endif
964
412 signals [signum - 1].gotsig = 1; 965 signals [signum - 1].gotsig = 1;
413 966 evpipe_write (EV_A_ &gotsig);
414 if (!gotsig)
415 {
416 gotsig = 1;
417 write (sigpipe [1], &signum, 1);
418 }
419} 967}
420 968
421static void 969void noinline
422sigcb (struct ev_io *iow, int revents) 970ev_feed_signal_event (EV_P_ int signum)
423{ 971{
424 struct ev_signal *w; 972 WL w;
973
974#if EV_MULTIPLICITY
975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
976#endif
977
425 int signum; 978 --signum;
426 979
427 read (sigpipe [0], &revents, 1); 980 if (signum < 0 || signum >= signalmax)
428 gotsig = 0; 981 return;
429 982
430 for (signum = signalmax; signum--; )
431 if (signals [signum].gotsig)
432 {
433 signals [signum].gotsig = 0; 983 signals [signum].gotsig = 0;
434 984
435 for (w = signals [signum].head; w; w = w->next) 985 for (w = signals [signum].head; w; w = w->next)
436 event ((W)w, EV_SIGNAL); 986 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
437 }
438}
439
440static void
441siginit (void)
442{
443 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
444 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
445
446 /* rather than sort out wether we really need nb, set it */
447 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
448 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
449
450 ev_io_set (&sigev, sigpipe [0], EV_READ);
451 ev_io_start (&sigev);
452} 987}
453 988
454/*****************************************************************************/ 989/*****************************************************************************/
455 990
456static struct ev_idle **idles; 991static WL childs [EV_PID_HASHSIZE];
457static int idlemax, idlecnt;
458 992
459static struct ev_prepare **prepares; 993#ifndef _WIN32
460static int preparemax, preparecnt;
461 994
462static struct ev_check **checks;
463static int checkmax, checkcnt;
464
465/*****************************************************************************/
466
467static struct ev_child *childs [PID_HASHSIZE];
468static struct ev_signal childev; 995static ev_signal childev;
996
997#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0
999#endif
1000
1001void inline_speed
1002child_reap (EV_P_ int chain, int pid, int status)
1003{
1004 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1006
1007 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1008 {
1009 if ((w->pid == pid || !w->pid)
1010 && (!traced || (w->flags & 1)))
1011 {
1012 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1013 w->rpid = pid;
1014 w->rstatus = status;
1015 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1016 }
1017 }
1018}
469 1019
470#ifndef WCONTINUED 1020#ifndef WCONTINUED
471# define WCONTINUED 0 1021# define WCONTINUED 0
472#endif 1022#endif
473 1023
474static void 1024static void
475childcb (struct ev_signal *sw, int revents) 1025childcb (EV_P_ ev_signal *sw, int revents)
476{ 1026{
477 struct ev_child *w;
478 int pid, status; 1027 int pid, status;
479 1028
1029 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
480 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1030 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
481 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1031 if (!WCONTINUED
482 if (w->pid == pid || !w->pid) 1032 || errno != EINVAL
483 { 1033 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
484 w->status = status; 1034 return;
485 event ((W)w, EV_CHILD); 1035
486 } 1036 /* make sure we are called again until all children have been reaped */
1037 /* we need to do it this way so that the callback gets called before we continue */
1038 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1039
1040 child_reap (EV_A_ pid, pid, status);
1041 if (EV_PID_HASHSIZE > 1)
1042 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
487} 1043}
1044
1045#endif
488 1046
489/*****************************************************************************/ 1047/*****************************************************************************/
490 1048
1049#if EV_USE_PORT
1050# include "ev_port.c"
1051#endif
491#if EV_USE_KQUEUE 1052#if EV_USE_KQUEUE
492# include "ev_kqueue.c" 1053# include "ev_kqueue.c"
493#endif 1054#endif
494#if EV_USE_EPOLL 1055#if EV_USE_EPOLL
495# include "ev_epoll.c" 1056# include "ev_epoll.c"
511ev_version_minor (void) 1072ev_version_minor (void)
512{ 1073{
513 return EV_VERSION_MINOR; 1074 return EV_VERSION_MINOR;
514} 1075}
515 1076
516/* return true if we are running with elevated privileges and ignore env variables */ 1077/* return true if we are running with elevated privileges and should ignore env variables */
517static int 1078int inline_size
518enable_secure () 1079enable_secure (void)
519{ 1080{
1081#ifdef _WIN32
1082 return 0;
1083#else
520 return getuid () != geteuid () 1084 return getuid () != geteuid ()
521 || getgid () != getegid (); 1085 || getgid () != getegid ();
1086#endif
522} 1087}
523 1088
524int ev_init (int methods) 1089unsigned int
1090ev_supported_backends (void)
525{ 1091{
526 if (!ev_method) 1092 unsigned int flags = 0;
1093
1094 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1095 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1096 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1097 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1098 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1099
1100 return flags;
1101}
1102
1103unsigned int
1104ev_recommended_backends (void)
1105{
1106 unsigned int flags = ev_supported_backends ();
1107
1108#ifndef __NetBSD__
1109 /* kqueue is borked on everything but netbsd apparently */
1110 /* it usually doesn't work correctly on anything but sockets and pipes */
1111 flags &= ~EVBACKEND_KQUEUE;
1112#endif
1113#ifdef __APPLE__
1114 // flags &= ~EVBACKEND_KQUEUE; for documentation
1115 flags &= ~EVBACKEND_POLL;
1116#endif
1117
1118 return flags;
1119}
1120
1121unsigned int
1122ev_embeddable_backends (void)
1123{
1124 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1125
1126 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1127 /* please fix it and tell me how to detect the fix */
1128 flags &= ~EVBACKEND_EPOLL;
1129
1130 return flags;
1131}
1132
1133unsigned int
1134ev_backend (EV_P)
1135{
1136 return backend;
1137}
1138
1139unsigned int
1140ev_loop_count (EV_P)
1141{
1142 return loop_count;
1143}
1144
1145void
1146ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1147{
1148 io_blocktime = interval;
1149}
1150
1151void
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1153{
1154 timeout_blocktime = interval;
1155}
1156
1157static void noinline
1158loop_init (EV_P_ unsigned int flags)
1159{
1160 if (!backend)
527 { 1161 {
528#if EV_USE_MONOTONIC 1162#if EV_USE_MONOTONIC
529 { 1163 {
530 struct timespec ts; 1164 struct timespec ts;
531 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
532 have_monotonic = 1; 1166 have_monotonic = 1;
533 } 1167 }
534#endif 1168#endif
535 1169
536 ev_now = ev_time (); 1170 ev_rt_now = ev_time ();
537 now = get_clock (); 1171 mn_now = get_clock ();
538 now_floor = now; 1172 now_floor = mn_now;
539 diff = ev_now - now; 1173 rtmn_diff = ev_rt_now - mn_now;
540 1174
541 if (pipe (sigpipe)) 1175 io_blocktime = 0.;
542 return 0; 1176 timeout_blocktime = 0.;
1177 backend = 0;
1178 backend_fd = -1;
1179 gotasync = 0;
1180#if EV_USE_INOTIFY
1181 fs_fd = -2;
1182#endif
543 1183
544 if (methods == EVMETHOD_AUTO) 1184 /* pid check not overridable via env */
545 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1185#ifndef _WIN32
1186 if (flags & EVFLAG_FORKCHECK)
1187 curpid = getpid ();
1188#endif
1189
1190 if (!(flags & EVFLAG_NOENV)
1191 && !enable_secure ()
1192 && getenv ("LIBEV_FLAGS"))
546 methods = atoi (getenv ("LIBEV_METHODS")); 1193 flags = atoi (getenv ("LIBEV_FLAGS"));
547 else
548 methods = EVMETHOD_ANY;
549 1194
550 ev_method = 0; 1195 if (!(flags & 0x0000ffffU))
1196 flags |= ev_recommended_backends ();
1197
1198#if EV_USE_PORT
1199 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1200#endif
551#if EV_USE_KQUEUE 1201#if EV_USE_KQUEUE
552 if (!ev_method && (methods & EVMETHOD_KQUEUE)) kqueue_init (methods); 1202 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
553#endif 1203#endif
554#if EV_USE_EPOLL 1204#if EV_USE_EPOLL
555 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 1205 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
556#endif 1206#endif
557#if EV_USE_POLL 1207#if EV_USE_POLL
558 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 1208 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
559#endif 1209#endif
560#if EV_USE_SELECT 1210#if EV_USE_SELECT
561 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
562#endif 1212#endif
563 1213
564 if (ev_method) 1214 ev_init (&pipeev, pipecb);
1215 ev_set_priority (&pipeev, EV_MAXPRI);
1216 }
1217}
1218
1219static void noinline
1220loop_destroy (EV_P)
1221{
1222 int i;
1223
1224 if (ev_is_active (&pipeev))
1225 {
1226 ev_ref (EV_A); /* signal watcher */
1227 ev_io_stop (EV_A_ &pipeev);
1228
1229#if EV_USE_EVENTFD
1230 if (evfd >= 0)
1231 close (evfd);
1232#endif
1233
1234 if (evpipe [0] >= 0)
565 { 1235 {
566 ev_watcher_init (&sigev, sigcb); 1236 close (evpipe [0]);
567 siginit (); 1237 close (evpipe [1]);
1238 }
1239 }
568 1240
1241#if EV_USE_INOTIFY
1242 if (fs_fd >= 0)
1243 close (fs_fd);
1244#endif
1245
1246 if (backend_fd >= 0)
1247 close (backend_fd);
1248
1249#if EV_USE_PORT
1250 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1251#endif
1252#if EV_USE_KQUEUE
1253 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1254#endif
1255#if EV_USE_EPOLL
1256 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1257#endif
1258#if EV_USE_POLL
1259 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1260#endif
1261#if EV_USE_SELECT
1262 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1263#endif
1264
1265 for (i = NUMPRI; i--; )
1266 {
1267 array_free (pending, [i]);
1268#if EV_IDLE_ENABLE
1269 array_free (idle, [i]);
1270#endif
1271 }
1272
1273 ev_free (anfds); anfdmax = 0;
1274
1275 /* have to use the microsoft-never-gets-it-right macro */
1276 array_free (fdchange, EMPTY);
1277 array_free (timer, EMPTY);
1278#if EV_PERIODIC_ENABLE
1279 array_free (periodic, EMPTY);
1280#endif
1281#if EV_FORK_ENABLE
1282 array_free (fork, EMPTY);
1283#endif
1284 array_free (prepare, EMPTY);
1285 array_free (check, EMPTY);
1286#if EV_ASYNC_ENABLE
1287 array_free (async, EMPTY);
1288#endif
1289
1290 backend = 0;
1291}
1292
1293#if EV_USE_INOTIFY
1294void inline_size infy_fork (EV_P);
1295#endif
1296
1297void inline_size
1298loop_fork (EV_P)
1299{
1300#if EV_USE_PORT
1301 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1302#endif
1303#if EV_USE_KQUEUE
1304 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1305#endif
1306#if EV_USE_EPOLL
1307 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1308#endif
1309#if EV_USE_INOTIFY
1310 infy_fork (EV_A);
1311#endif
1312
1313 if (ev_is_active (&pipeev))
1314 {
1315 /* this "locks" the handlers against writing to the pipe */
1316 /* while we modify the fd vars */
1317 gotsig = 1;
1318#if EV_ASYNC_ENABLE
1319 gotasync = 1;
1320#endif
1321
1322 ev_ref (EV_A);
1323 ev_io_stop (EV_A_ &pipeev);
1324
1325#if EV_USE_EVENTFD
1326 if (evfd >= 0)
1327 close (evfd);
1328#endif
1329
1330 if (evpipe [0] >= 0)
1331 {
1332 close (evpipe [0]);
1333 close (evpipe [1]);
1334 }
1335
1336 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */
1338 pipecb (EV_A_ &pipeev, EV_READ);
1339 }
1340
1341 postfork = 0;
1342}
1343
1344#if EV_MULTIPLICITY
1345struct ev_loop *
1346ev_loop_new (unsigned int flags)
1347{
1348 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1349
1350 memset (loop, 0, sizeof (struct ev_loop));
1351
1352 loop_init (EV_A_ flags);
1353
1354 if (ev_backend (EV_A))
1355 return loop;
1356
1357 return 0;
1358}
1359
1360void
1361ev_loop_destroy (EV_P)
1362{
1363 loop_destroy (EV_A);
1364 ev_free (loop);
1365}
1366
1367void
1368ev_loop_fork (EV_P)
1369{
1370 postfork = 1; /* must be in line with ev_default_fork */
1371}
1372
1373#endif
1374
1375#if EV_MULTIPLICITY
1376struct ev_loop *
1377ev_default_loop_init (unsigned int flags)
1378#else
1379int
1380ev_default_loop (unsigned int flags)
1381#endif
1382{
1383 if (!ev_default_loop_ptr)
1384 {
1385#if EV_MULTIPLICITY
1386 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1387#else
1388 ev_default_loop_ptr = 1;
1389#endif
1390
1391 loop_init (EV_A_ flags);
1392
1393 if (ev_backend (EV_A))
1394 {
1395#ifndef _WIN32
569 ev_signal_init (&childev, childcb, SIGCHLD); 1396 ev_signal_init (&childev, childcb, SIGCHLD);
1397 ev_set_priority (&childev, EV_MAXPRI);
570 ev_signal_start (&childev); 1398 ev_signal_start (EV_A_ &childev);
1399 ev_unref (EV_A); /* child watcher should not keep loop alive */
1400#endif
571 } 1401 }
1402 else
1403 ev_default_loop_ptr = 0;
572 } 1404 }
573 1405
574 return ev_method; 1406 return ev_default_loop_ptr;
1407}
1408
1409void
1410ev_default_destroy (void)
1411{
1412#if EV_MULTIPLICITY
1413 struct ev_loop *loop = ev_default_loop_ptr;
1414#endif
1415
1416#ifndef _WIN32
1417 ev_ref (EV_A); /* child watcher */
1418 ev_signal_stop (EV_A_ &childev);
1419#endif
1420
1421 loop_destroy (EV_A);
1422}
1423
1424void
1425ev_default_fork (void)
1426{
1427#if EV_MULTIPLICITY
1428 struct ev_loop *loop = ev_default_loop_ptr;
1429#endif
1430
1431 if (backend)
1432 postfork = 1; /* must be in line with ev_loop_fork */
575} 1433}
576 1434
577/*****************************************************************************/ 1435/*****************************************************************************/
578 1436
579void 1437void
580ev_fork_prepare (void) 1438ev_invoke (EV_P_ void *w, int revents)
581{ 1439{
582 /* nop */ 1440 EV_CB_INVOKE ((W)w, revents);
583} 1441}
584 1442
585void 1443void inline_speed
586ev_fork_parent (void)
587{
588 /* nop */
589}
590
591void
592ev_fork_child (void)
593{
594#if EV_USE_EPOLL
595 if (ev_method == EVMETHOD_EPOLL)
596 epoll_postfork_child ();
597#endif
598
599 ev_io_stop (&sigev);
600 close (sigpipe [0]);
601 close (sigpipe [1]);
602 pipe (sigpipe);
603 siginit ();
604}
605
606/*****************************************************************************/
607
608static void
609call_pending (void) 1444call_pending (EV_P)
610{ 1445{
611 int pri; 1446 int pri;
612 1447
613 for (pri = NUMPRI; pri--; ) 1448 for (pri = NUMPRI; pri--; )
614 while (pendingcnt [pri]) 1449 while (pendingcnt [pri])
615 { 1450 {
616 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1451 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
617 1452
618 if (p->w) 1453 if (expect_true (p->w))
619 { 1454 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1456
620 p->w->pending = 0; 1457 p->w->pending = 0;
621 p->w->cb (p->w, p->events); 1458 EV_CB_INVOKE (p->w, p->events);
622 } 1459 }
623 } 1460 }
624} 1461}
625 1462
626static void 1463void inline_size
627timers_reify (void) 1464timers_reify (EV_P)
628{ 1465{
629 while (timercnt && timers [0]->at <= now) 1466 while (timercnt && ev_at (timers [1]) <= mn_now)
630 { 1467 {
631 struct ev_timer *w = timers [0]; 1468 ev_timer *w = (ev_timer *)timers [1];
1469
1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
632 1471
633 /* first reschedule or stop timer */ 1472 /* first reschedule or stop timer */
634 if (w->repeat) 1473 if (w->repeat)
635 { 1474 {
636 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
637 w->at = now + w->repeat; 1476
1477 ev_at (w) += w->repeat;
1478 if (ev_at (w) < mn_now)
1479 ev_at (w) = mn_now;
1480
638 downheap ((WT *)timers, timercnt, 0); 1481 downheap (timers, timercnt, 1);
639 } 1482 }
640 else 1483 else
641 ev_timer_stop (w); /* nonrepeating: stop timer */ 1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
642 1485
643 event ((W)w, EV_TIMEOUT); 1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
644 } 1487 }
645} 1488}
646 1489
647static void 1490#if EV_PERIODIC_ENABLE
1491void inline_size
648periodics_reify (void) 1492periodics_reify (EV_P)
649{ 1493{
650 while (periodiccnt && periodics [0]->at <= ev_now) 1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
651 { 1495 {
652 struct ev_periodic *w = periodics [0]; 1496 ev_periodic *w = (ev_periodic *)periodics [1];
1497
1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
653 1499
654 /* first reschedule or stop timer */ 1500 /* first reschedule or stop timer */
655 if (w->interval) 1501 if (w->reschedule_cb)
656 { 1502 {
1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1505 downheap (periodics, periodiccnt, 1);
1506 }
1507 else if (w->interval)
1508 {
657 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
658 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
659 downheap ((WT *)periodics, periodiccnt, 0); 1512 downheap (periodics, periodiccnt, 1);
660 } 1513 }
661 else 1514 else
662 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
663 1516
664 event ((W)w, EV_PERIODIC); 1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
665 } 1518 }
666} 1519}
667 1520
668static void 1521static void noinline
669periodics_reschedule (ev_tstamp diff) 1522periodics_reschedule (EV_P)
670{ 1523{
671 int i; 1524 int i;
672 1525
673 /* adjust periodics after time jump */ 1526 /* adjust periodics after time jump */
674 for (i = 0; i < periodiccnt; ++i) 1527 for (i = 0; i < periodiccnt; ++i)
675 { 1528 {
676 struct ev_periodic *w = periodics [i]; 1529 ev_periodic *w = (ev_periodic *)periodics [i];
677 1530
1531 if (w->reschedule_cb)
1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
678 if (w->interval) 1533 else if (w->interval)
1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1535 }
1536
1537 /* now rebuild the heap */
1538 for (i = periodiccnt >> 1; i--; )
1539 downheap (periodics, periodiccnt, i);
1540}
1541#endif
1542
1543#if EV_IDLE_ENABLE
1544void inline_size
1545idle_reify (EV_P)
1546{
1547 if (expect_false (idleall))
1548 {
1549 int pri;
1550
1551 for (pri = NUMPRI; pri--; )
679 { 1552 {
680 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1553 if (pendingcnt [pri])
1554 break;
681 1555
682 if (fabs (diff) >= 1e-4) 1556 if (idlecnt [pri])
683 { 1557 {
684 ev_periodic_stop (w); 1558 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
685 ev_periodic_start (w); 1559 break;
686
687 i = 0; /* restart loop, inefficient, but time jumps should be rare */
688 } 1560 }
689 } 1561 }
690 } 1562 }
691} 1563}
1564#endif
692 1565
693static int 1566void inline_speed
694time_update_monotonic (void) 1567time_update (EV_P_ ev_tstamp max_block)
695{
696 now = get_clock ();
697
698 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5))
699 {
700 ev_now = now + diff;
701 return 0;
702 }
703 else
704 {
705 now_floor = now;
706 ev_now = ev_time ();
707 return 1;
708 }
709}
710
711static void
712time_update (void)
713{ 1568{
714 int i; 1569 int i;
715 1570
716#if EV_USE_MONOTONIC 1571#if EV_USE_MONOTONIC
717 if (expect_true (have_monotonic)) 1572 if (expect_true (have_monotonic))
718 { 1573 {
719 if (time_update_monotonic ()) 1574 ev_tstamp odiff = rtmn_diff;
1575
1576 mn_now = get_clock ();
1577
1578 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1579 /* interpolate in the meantime */
1580 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
720 { 1581 {
721 ev_tstamp odiff = diff; 1582 ev_rt_now = rtmn_diff + mn_now;
722 1583 return;
723 for (i = 4; --i; ) /* loop a few times, before making important decisions */
724 {
725 diff = ev_now - now;
726
727 if (fabs (odiff - diff) < MIN_TIMEJUMP)
728 return; /* all is well */
729
730 ev_now = ev_time ();
731 now = get_clock ();
732 now_floor = now;
733 }
734
735 periodics_reschedule (diff - odiff);
736 /* no timer adjustment, as the monotonic clock doesn't jump */
737 } 1584 }
1585
1586 now_floor = mn_now;
1587 ev_rt_now = ev_time ();
1588
1589 /* loop a few times, before making important decisions.
1590 * on the choice of "4": one iteration isn't enough,
1591 * in case we get preempted during the calls to
1592 * ev_time and get_clock. a second call is almost guaranteed
1593 * to succeed in that case, though. and looping a few more times
1594 * doesn't hurt either as we only do this on time-jumps or
1595 * in the unlikely event of having been preempted here.
1596 */
1597 for (i = 4; --i; )
1598 {
1599 rtmn_diff = ev_rt_now - mn_now;
1600
1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1602 return; /* all is well */
1603
1604 ev_rt_now = ev_time ();
1605 mn_now = get_clock ();
1606 now_floor = mn_now;
1607 }
1608
1609# if EV_PERIODIC_ENABLE
1610 periodics_reschedule (EV_A);
1611# endif
1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
738 } 1614 }
739 else 1615 else
740#endif 1616#endif
741 { 1617 {
742 ev_now = ev_time (); 1618 ev_rt_now = ev_time ();
743 1619
744 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
745 { 1621 {
1622#if EV_PERIODIC_ENABLE
746 periodics_reschedule (ev_now - now); 1623 periodics_reschedule (EV_A);
747 1624#endif
748 /* adjust timers. this is easy, as the offset is the same for all */ 1625 /* adjust timers. this is easy, as the offset is the same for all of them */
749 for (i = 0; i < timercnt; ++i) 1626 for (i = 1; i <= timercnt; ++i)
750 timers [i]->at += diff; 1627 ev_at (timers [i]) += ev_rt_now - mn_now;
751 } 1628 }
752 1629
753 now = ev_now; 1630 mn_now = ev_rt_now;
754 } 1631 }
755} 1632}
756 1633
757int ev_loop_done; 1634void
1635ev_ref (EV_P)
1636{
1637 ++activecnt;
1638}
758 1639
1640void
1641ev_unref (EV_P)
1642{
1643 --activecnt;
1644}
1645
1646static int loop_done;
1647
1648void
759void ev_loop (int flags) 1649ev_loop (EV_P_ int flags)
760{ 1650{
761 double block; 1651 loop_done = EVUNLOOP_CANCEL;
762 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1652
1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
763 1654
764 do 1655 do
765 { 1656 {
1657#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid))
1660 {
1661 curpid = getpid ();
1662 postfork = 1;
1663 }
1664#endif
1665
1666#if EV_FORK_ENABLE
1667 /* we might have forked, so queue fork handlers */
1668 if (expect_false (postfork))
1669 if (forkcnt)
1670 {
1671 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1672 call_pending (EV_A);
1673 }
1674#endif
1675
766 /* queue check watchers (and execute them) */ 1676 /* queue prepare watchers (and execute them) */
767 if (expect_false (preparecnt)) 1677 if (expect_false (preparecnt))
768 { 1678 {
769 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
770 call_pending (); 1680 call_pending (EV_A);
771 } 1681 }
772 1682
1683 if (expect_false (!activecnt))
1684 break;
1685
1686 /* we might have forked, so reify kernel state if necessary */
1687 if (expect_false (postfork))
1688 loop_fork (EV_A);
1689
773 /* update fd-related kernel structures */ 1690 /* update fd-related kernel structures */
774 fd_reify (); 1691 fd_reify (EV_A);
775 1692
776 /* calculate blocking time */ 1693 /* calculate blocking time */
1694 {
1695 ev_tstamp waittime = 0.;
1696 ev_tstamp sleeptime = 0.;
777 1697
778 /* we only need this for !monotonic clockor timers, but as we basically 1698 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
779 always have timers, we just calculate it always */
780#if EV_USE_MONOTONIC
781 if (expect_true (have_monotonic))
782 time_update_monotonic ();
783 else
784#endif
785 { 1699 {
786 ev_now = ev_time (); 1700 /* update time to cancel out callback processing overhead */
787 now = ev_now; 1701 time_update (EV_A_ 1e100);
788 }
789 1702
790 if (flags & EVLOOP_NONBLOCK || idlecnt)
791 block = 0.;
792 else
793 {
794 block = MAX_BLOCKTIME; 1703 waittime = MAX_BLOCKTIME;
795 1704
796 if (timercnt) 1705 if (timercnt)
797 { 1706 {
798 ev_tstamp to = timers [0]->at - now + method_fudge; 1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
799 if (block > to) block = to; 1708 if (waittime > to) waittime = to;
800 } 1709 }
801 1710
1711#if EV_PERIODIC_ENABLE
802 if (periodiccnt) 1712 if (periodiccnt)
803 { 1713 {
804 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
805 if (block > to) block = to; 1715 if (waittime > to) waittime = to;
806 } 1716 }
1717#endif
807 1718
808 if (block < 0.) block = 0.; 1719 if (expect_false (waittime < timeout_blocktime))
1720 waittime = timeout_blocktime;
1721
1722 sleeptime = waittime - backend_fudge;
1723
1724 if (expect_true (sleeptime > io_blocktime))
1725 sleeptime = io_blocktime;
1726
1727 if (sleeptime)
1728 {
1729 ev_sleep (sleeptime);
1730 waittime -= sleeptime;
1731 }
809 } 1732 }
810 1733
811 method_poll (block); 1734 ++loop_count;
1735 backend_poll (EV_A_ waittime);
812 1736
813 /* update ev_now, do magic */ 1737 /* update ev_rt_now, do magic */
814 time_update (); 1738 time_update (EV_A_ waittime + sleeptime);
1739 }
815 1740
816 /* queue pending timers and reschedule them */ 1741 /* queue pending timers and reschedule them */
817 timers_reify (); /* relative timers called last */ 1742 timers_reify (EV_A); /* relative timers called last */
1743#if EV_PERIODIC_ENABLE
818 periodics_reify (); /* absolute timers called first */ 1744 periodics_reify (EV_A); /* absolute timers called first */
1745#endif
819 1746
1747#if EV_IDLE_ENABLE
820 /* queue idle watchers unless io or timers are pending */ 1748 /* queue idle watchers unless other events are pending */
821 if (!pendingcnt) 1749 idle_reify (EV_A);
822 queue_events ((W *)idles, idlecnt, EV_IDLE); 1750#endif
823 1751
824 /* queue check watchers, to be executed first */ 1752 /* queue check watchers, to be executed first */
825 if (checkcnt) 1753 if (expect_false (checkcnt))
826 queue_events ((W *)checks, checkcnt, EV_CHECK); 1754 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
827 1755
828 call_pending (); 1756 call_pending (EV_A);
829 } 1757 }
830 while (!ev_loop_done); 1758 while (expect_true (
1759 activecnt
1760 && !loop_done
1761 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1762 ));
831 1763
832 if (ev_loop_done != 2) 1764 if (loop_done == EVUNLOOP_ONE)
1765 loop_done = EVUNLOOP_CANCEL;
1766}
1767
1768void
1769ev_unloop (EV_P_ int how)
1770{
833 ev_loop_done = 0; 1771 loop_done = how;
834} 1772}
835 1773
836/*****************************************************************************/ 1774/*****************************************************************************/
837 1775
838static void 1776void inline_size
839wlist_add (WL *head, WL elem) 1777wlist_add (WL *head, WL elem)
840{ 1778{
841 elem->next = *head; 1779 elem->next = *head;
842 *head = elem; 1780 *head = elem;
843} 1781}
844 1782
845static void 1783void inline_size
846wlist_del (WL *head, WL elem) 1784wlist_del (WL *head, WL elem)
847{ 1785{
848 while (*head) 1786 while (*head)
849 { 1787 {
850 if (*head == elem) 1788 if (*head == elem)
855 1793
856 head = &(*head)->next; 1794 head = &(*head)->next;
857 } 1795 }
858} 1796}
859 1797
860static void 1798void inline_speed
861ev_clear_pending (W w) 1799clear_pending (EV_P_ W w)
862{ 1800{
863 if (w->pending) 1801 if (w->pending)
864 { 1802 {
865 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1803 pendings [ABSPRI (w)][w->pending - 1].w = 0;
866 w->pending = 0; 1804 w->pending = 0;
867 } 1805 }
868} 1806}
869 1807
870static void 1808int
1809ev_clear_pending (EV_P_ void *w)
1810{
1811 W w_ = (W)w;
1812 int pending = w_->pending;
1813
1814 if (expect_true (pending))
1815 {
1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1817 w_->pending = 0;
1818 p->w = 0;
1819 return p->events;
1820 }
1821 else
1822 return 0;
1823}
1824
1825void inline_size
1826pri_adjust (EV_P_ W w)
1827{
1828 int pri = w->priority;
1829 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1830 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1831 w->priority = pri;
1832}
1833
1834void inline_speed
871ev_start (W w, int active) 1835ev_start (EV_P_ W w, int active)
872{ 1836{
873 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1837 pri_adjust (EV_A_ w);
874 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
875
876 w->active = active; 1838 w->active = active;
1839 ev_ref (EV_A);
877} 1840}
878 1841
879static void 1842void inline_size
880ev_stop (W w) 1843ev_stop (EV_P_ W w)
881{ 1844{
1845 ev_unref (EV_A);
882 w->active = 0; 1846 w->active = 0;
883} 1847}
884 1848
885/*****************************************************************************/ 1849/*****************************************************************************/
886 1850
887void 1851void noinline
888ev_io_start (struct ev_io *w) 1852ev_io_start (EV_P_ ev_io *w)
889{ 1853{
890 int fd = w->fd; 1854 int fd = w->fd;
891 1855
892 if (ev_is_active (w)) 1856 if (expect_false (ev_is_active (w)))
893 return; 1857 return;
894 1858
895 assert (("ev_io_start called with negative fd", fd >= 0)); 1859 assert (("ev_io_start called with negative fd", fd >= 0));
896 1860
897 ev_start ((W)w, 1); 1861 ev_start (EV_A_ (W)w, 1);
898 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
899 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1863 wlist_add (&anfds[fd].head, (WL)w);
900 1864
901 fd_change (fd); 1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1866 w->events &= ~EV_IOFDSET;
902} 1867}
903 1868
904void 1869void noinline
905ev_io_stop (struct ev_io *w) 1870ev_io_stop (EV_P_ ev_io *w)
906{ 1871{
907 ev_clear_pending ((W)w); 1872 clear_pending (EV_A_ (W)w);
908 if (!ev_is_active (w)) 1873 if (expect_false (!ev_is_active (w)))
909 return; 1874 return;
910 1875
1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1877
911 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1878 wlist_del (&anfds[w->fd].head, (WL)w);
912 ev_stop ((W)w); 1879 ev_stop (EV_A_ (W)w);
913 1880
914 fd_change (w->fd); 1881 fd_change (EV_A_ w->fd, 1);
915} 1882}
916 1883
917void 1884void noinline
918ev_timer_start (struct ev_timer *w) 1885ev_timer_start (EV_P_ ev_timer *w)
919{ 1886{
920 if (ev_is_active (w)) 1887 if (expect_false (ev_is_active (w)))
921 return; 1888 return;
922 1889
923 w->at += now; 1890 ev_at (w) += mn_now;
924 1891
925 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
926 1893
927 ev_start ((W)w, ++timercnt); 1894 ev_start (EV_A_ (W)w, ++timercnt);
928 array_needsize (timers, timermax, timercnt, ); 1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
929 timers [timercnt - 1] = w; 1896 timers [timercnt] = (WT)w;
930 upheap ((WT *)timers, timercnt - 1); 1897 upheap (timers, timercnt);
931}
932 1898
933void 1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/
1900}
1901
1902void noinline
934ev_timer_stop (struct ev_timer *w) 1903ev_timer_stop (EV_P_ ev_timer *w)
935{ 1904{
936 ev_clear_pending ((W)w); 1905 clear_pending (EV_A_ (W)w);
937 if (!ev_is_active (w)) 1906 if (expect_false (!ev_is_active (w)))
938 return; 1907 return;
939 1908
940 if (w->active < timercnt--) 1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w));
1910
1911 {
1912 int active = ((W)w)->active;
1913
1914 if (expect_true (active < timercnt))
941 { 1915 {
942 timers [w->active - 1] = timers [timercnt]; 1916 timers [active] = timers [timercnt];
943 downheap ((WT *)timers, timercnt, w->active - 1); 1917 adjustheap (timers, timercnt, active);
944 } 1918 }
945 1919
946 w->at = w->repeat; 1920 --timercnt;
1921 }
947 1922
1923 ev_at (w) -= mn_now;
1924
948 ev_stop ((W)w); 1925 ev_stop (EV_A_ (W)w);
949} 1926}
950 1927
951void 1928void noinline
952ev_timer_again (struct ev_timer *w) 1929ev_timer_again (EV_P_ ev_timer *w)
953{ 1930{
954 if (ev_is_active (w)) 1931 if (ev_is_active (w))
955 { 1932 {
956 if (w->repeat) 1933 if (w->repeat)
957 { 1934 {
958 w->at = now + w->repeat; 1935 ev_at (w) = mn_now + w->repeat;
959 downheap ((WT *)timers, timercnt, w->active - 1); 1936 adjustheap (timers, timercnt, ((W)w)->active);
960 } 1937 }
961 else 1938 else
962 ev_timer_stop (w); 1939 ev_timer_stop (EV_A_ w);
963 } 1940 }
964 else if (w->repeat) 1941 else if (w->repeat)
1942 {
1943 w->at = w->repeat;
965 ev_timer_start (w); 1944 ev_timer_start (EV_A_ w);
1945 }
966} 1946}
967 1947
968void 1948#if EV_PERIODIC_ENABLE
1949void noinline
969ev_periodic_start (struct ev_periodic *w) 1950ev_periodic_start (EV_P_ ev_periodic *w)
970{ 1951{
971 if (ev_is_active (w)) 1952 if (expect_false (ev_is_active (w)))
972 return; 1953 return;
973 1954
1955 if (w->reschedule_cb)
1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1957 else if (w->interval)
1958 {
974 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
975
976 /* this formula differs from the one in periodic_reify because we do not always round up */ 1960 /* this formula differs from the one in periodic_reify because we do not always round up */
977 if (w->interval)
978 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1962 }
1963 else
1964 ev_at (w) = w->offset;
979 1965
980 ev_start ((W)w, ++periodiccnt); 1966 ev_start (EV_A_ (W)w, ++periodiccnt);
981 array_needsize (periodics, periodicmax, periodiccnt, ); 1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
982 periodics [periodiccnt - 1] = w; 1968 periodics [periodiccnt] = (WT)w;
983 upheap ((WT *)periodics, periodiccnt - 1); 1969 upheap (periodics, periodiccnt);
984}
985 1970
986void 1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1972}
1973
1974void noinline
987ev_periodic_stop (struct ev_periodic *w) 1975ev_periodic_stop (EV_P_ ev_periodic *w)
988{ 1976{
989 ev_clear_pending ((W)w); 1977 clear_pending (EV_A_ (W)w);
990 if (!ev_is_active (w)) 1978 if (expect_false (!ev_is_active (w)))
991 return; 1979 return;
992 1980
993 if (w->active < periodiccnt--) 1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w));
1982
1983 {
1984 int active = ((W)w)->active;
1985
1986 if (expect_true (active < periodiccnt))
994 { 1987 {
995 periodics [w->active - 1] = periodics [periodiccnt]; 1988 periodics [active] = periodics [periodiccnt];
996 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1989 adjustheap (periodics, periodiccnt, active);
997 } 1990 }
998 1991
1992 --periodiccnt;
1993 }
1994
999 ev_stop ((W)w); 1995 ev_stop (EV_A_ (W)w);
1000} 1996}
1001 1997
1002void 1998void noinline
1999ev_periodic_again (EV_P_ ev_periodic *w)
2000{
2001 /* TODO: use adjustheap and recalculation */
2002 ev_periodic_stop (EV_A_ w);
2003 ev_periodic_start (EV_A_ w);
2004}
2005#endif
2006
2007#ifndef SA_RESTART
2008# define SA_RESTART 0
2009#endif
2010
2011void noinline
1003ev_signal_start (struct ev_signal *w) 2012ev_signal_start (EV_P_ ev_signal *w)
1004{ 2013{
2014#if EV_MULTIPLICITY
2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2016#endif
1005 if (ev_is_active (w)) 2017 if (expect_false (ev_is_active (w)))
1006 return; 2018 return;
1007 2019
1008 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1009 2021
1010 ev_start ((W)w, 1); 2022 evpipe_init (EV_A);
2023
2024 {
2025#ifndef _WIN32
2026 sigset_t full, prev;
2027 sigfillset (&full);
2028 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif
2030
1011 array_needsize (signals, signalmax, w->signum, signals_init); 2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2032
2033#ifndef _WIN32
2034 sigprocmask (SIG_SETMASK, &prev, 0);
2035#endif
2036 }
2037
2038 ev_start (EV_A_ (W)w, 1);
1012 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2039 wlist_add (&signals [w->signum - 1].head, (WL)w);
1013 2040
1014 if (!w->next) 2041 if (!((WL)w)->next)
1015 { 2042 {
2043#if _WIN32
2044 signal (w->signum, ev_sighandler);
2045#else
1016 struct sigaction sa; 2046 struct sigaction sa;
1017 sa.sa_handler = sighandler; 2047 sa.sa_handler = ev_sighandler;
1018 sigfillset (&sa.sa_mask); 2048 sigfillset (&sa.sa_mask);
1019 sa.sa_flags = 0; 2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1020 sigaction (w->signum, &sa, 0); 2050 sigaction (w->signum, &sa, 0);
2051#endif
1021 } 2052 }
1022} 2053}
1023 2054
1024void 2055void noinline
1025ev_signal_stop (struct ev_signal *w) 2056ev_signal_stop (EV_P_ ev_signal *w)
1026{ 2057{
1027 ev_clear_pending ((W)w); 2058 clear_pending (EV_A_ (W)w);
1028 if (!ev_is_active (w)) 2059 if (expect_false (!ev_is_active (w)))
1029 return; 2060 return;
1030 2061
1031 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2062 wlist_del (&signals [w->signum - 1].head, (WL)w);
1032 ev_stop ((W)w); 2063 ev_stop (EV_A_ (W)w);
1033 2064
1034 if (!signals [w->signum - 1].head) 2065 if (!signals [w->signum - 1].head)
1035 signal (w->signum, SIG_DFL); 2066 signal (w->signum, SIG_DFL);
1036} 2067}
1037 2068
1038void 2069void
1039ev_idle_start (struct ev_idle *w) 2070ev_child_start (EV_P_ ev_child *w)
1040{ 2071{
2072#if EV_MULTIPLICITY
2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2074#endif
1041 if (ev_is_active (w)) 2075 if (expect_false (ev_is_active (w)))
1042 return; 2076 return;
1043 2077
1044 ev_start ((W)w, ++idlecnt); 2078 ev_start (EV_A_ (W)w, 1);
1045 array_needsize (idles, idlemax, idlecnt, ); 2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1046 idles [idlecnt - 1] = w;
1047} 2080}
1048 2081
1049void 2082void
1050ev_idle_stop (struct ev_idle *w) 2083ev_child_stop (EV_P_ ev_child *w)
1051{ 2084{
1052 ev_clear_pending ((W)w); 2085 clear_pending (EV_A_ (W)w);
1053 if (ev_is_active (w)) 2086 if (expect_false (!ev_is_active (w)))
1054 return; 2087 return;
1055 2088
1056 idles [w->active - 1] = idles [--idlecnt]; 2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1057 ev_stop ((W)w); 2090 ev_stop (EV_A_ (W)w);
1058} 2091}
1059 2092
2093#if EV_STAT_ENABLE
2094
2095# ifdef _WIN32
2096# undef lstat
2097# define lstat(a,b) _stati64 (a,b)
2098# endif
2099
2100#define DEF_STAT_INTERVAL 5.0074891
2101#define MIN_STAT_INTERVAL 0.1074891
2102
2103static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2104
2105#if EV_USE_INOTIFY
2106# define EV_INOTIFY_BUFSIZE 8192
2107
2108static void noinline
2109infy_add (EV_P_ ev_stat *w)
2110{
2111 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2112
2113 if (w->wd < 0)
2114 {
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2116
2117 /* monitor some parent directory for speedup hints */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 {
2120 char path [4096];
2121 strcpy (path, w->path);
2122
2123 do
2124 {
2125 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2126 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2127
2128 char *pend = strrchr (path, '/');
2129
2130 if (!pend)
2131 break; /* whoops, no '/', complain to your admin */
2132
2133 *pend = 0;
2134 w->wd = inotify_add_watch (fs_fd, path, mask);
2135 }
2136 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2137 }
2138 }
2139 else
2140 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2141
2142 if (w->wd >= 0)
2143 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2144}
2145
2146static void noinline
2147infy_del (EV_P_ ev_stat *w)
2148{
2149 int slot;
2150 int wd = w->wd;
2151
2152 if (wd < 0)
2153 return;
2154
2155 w->wd = -2;
2156 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2157 wlist_del (&fs_hash [slot].head, (WL)w);
2158
2159 /* remove this watcher, if others are watching it, they will rearm */
2160 inotify_rm_watch (fs_fd, wd);
2161}
2162
2163static void noinline
2164infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2165{
2166 if (slot < 0)
2167 /* overflow, need to check for all hahs slots */
2168 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2169 infy_wd (EV_A_ slot, wd, ev);
2170 else
2171 {
2172 WL w_;
2173
2174 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2175 {
2176 ev_stat *w = (ev_stat *)w_;
2177 w_ = w_->next; /* lets us remove this watcher and all before it */
2178
2179 if (w->wd == wd || wd == -1)
2180 {
2181 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2182 {
2183 w->wd = -1;
2184 infy_add (EV_A_ w); /* re-add, no matter what */
2185 }
2186
2187 stat_timer_cb (EV_A_ &w->timer, 0);
2188 }
2189 }
2190 }
2191}
2192
2193static void
2194infy_cb (EV_P_ ev_io *w, int revents)
2195{
2196 char buf [EV_INOTIFY_BUFSIZE];
2197 struct inotify_event *ev = (struct inotify_event *)buf;
2198 int ofs;
2199 int len = read (fs_fd, buf, sizeof (buf));
2200
2201 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2202 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2203}
2204
2205void inline_size
2206infy_init (EV_P)
2207{
2208 if (fs_fd != -2)
2209 return;
2210
2211 fs_fd = inotify_init ();
2212
2213 if (fs_fd >= 0)
2214 {
2215 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2216 ev_set_priority (&fs_w, EV_MAXPRI);
2217 ev_io_start (EV_A_ &fs_w);
2218 }
2219}
2220
2221void inline_size
2222infy_fork (EV_P)
2223{
2224 int slot;
2225
2226 if (fs_fd < 0)
2227 return;
2228
2229 close (fs_fd);
2230 fs_fd = inotify_init ();
2231
2232 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2233 {
2234 WL w_ = fs_hash [slot].head;
2235 fs_hash [slot].head = 0;
2236
2237 while (w_)
2238 {
2239 ev_stat *w = (ev_stat *)w_;
2240 w_ = w_->next; /* lets us add this watcher */
2241
2242 w->wd = -1;
2243
2244 if (fs_fd >= 0)
2245 infy_add (EV_A_ w); /* re-add, no matter what */
2246 else
2247 ev_timer_start (EV_A_ &w->timer);
2248 }
2249
2250 }
2251}
2252
2253#endif
2254
1060void 2255void
2256ev_stat_stat (EV_P_ ev_stat *w)
2257{
2258 if (lstat (w->path, &w->attr) < 0)
2259 w->attr.st_nlink = 0;
2260 else if (!w->attr.st_nlink)
2261 w->attr.st_nlink = 1;
2262}
2263
2264static void noinline
2265stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2266{
2267 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2268
2269 /* we copy this here each the time so that */
2270 /* prev has the old value when the callback gets invoked */
2271 w->prev = w->attr;
2272 ev_stat_stat (EV_A_ w);
2273
2274 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2275 if (
2276 w->prev.st_dev != w->attr.st_dev
2277 || w->prev.st_ino != w->attr.st_ino
2278 || w->prev.st_mode != w->attr.st_mode
2279 || w->prev.st_nlink != w->attr.st_nlink
2280 || w->prev.st_uid != w->attr.st_uid
2281 || w->prev.st_gid != w->attr.st_gid
2282 || w->prev.st_rdev != w->attr.st_rdev
2283 || w->prev.st_size != w->attr.st_size
2284 || w->prev.st_atime != w->attr.st_atime
2285 || w->prev.st_mtime != w->attr.st_mtime
2286 || w->prev.st_ctime != w->attr.st_ctime
2287 ) {
2288 #if EV_USE_INOTIFY
2289 infy_del (EV_A_ w);
2290 infy_add (EV_A_ w);
2291 ev_stat_stat (EV_A_ w); /* avoid race... */
2292 #endif
2293
2294 ev_feed_event (EV_A_ w, EV_STAT);
2295 }
2296}
2297
2298void
2299ev_stat_start (EV_P_ ev_stat *w)
2300{
2301 if (expect_false (ev_is_active (w)))
2302 return;
2303
2304 /* since we use memcmp, we need to clear any padding data etc. */
2305 memset (&w->prev, 0, sizeof (ev_statdata));
2306 memset (&w->attr, 0, sizeof (ev_statdata));
2307
2308 ev_stat_stat (EV_A_ w);
2309
2310 if (w->interval < MIN_STAT_INTERVAL)
2311 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2312
2313 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2314 ev_set_priority (&w->timer, ev_priority (w));
2315
2316#if EV_USE_INOTIFY
2317 infy_init (EV_A);
2318
2319 if (fs_fd >= 0)
2320 infy_add (EV_A_ w);
2321 else
2322#endif
2323 ev_timer_start (EV_A_ &w->timer);
2324
2325 ev_start (EV_A_ (W)w, 1);
2326}
2327
2328void
2329ev_stat_stop (EV_P_ ev_stat *w)
2330{
2331 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w)))
2333 return;
2334
2335#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w);
2337#endif
2338 ev_timer_stop (EV_A_ &w->timer);
2339
2340 ev_stop (EV_A_ (W)w);
2341}
2342#endif
2343
2344#if EV_IDLE_ENABLE
2345void
2346ev_idle_start (EV_P_ ev_idle *w)
2347{
2348 if (expect_false (ev_is_active (w)))
2349 return;
2350
2351 pri_adjust (EV_A_ (W)w);
2352
2353 {
2354 int active = ++idlecnt [ABSPRI (w)];
2355
2356 ++idleall;
2357 ev_start (EV_A_ (W)w, active);
2358
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w;
2361 }
2362}
2363
2364void
2365ev_idle_stop (EV_P_ ev_idle *w)
2366{
2367 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w)))
2369 return;
2370
2371 {
2372 int active = ((W)w)->active;
2373
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2376
2377 ev_stop (EV_A_ (W)w);
2378 --idleall;
2379 }
2380}
2381#endif
2382
2383void
1061ev_prepare_start (struct ev_prepare *w) 2384ev_prepare_start (EV_P_ ev_prepare *w)
1062{ 2385{
1063 if (ev_is_active (w)) 2386 if (expect_false (ev_is_active (w)))
1064 return; 2387 return;
1065 2388
1066 ev_start ((W)w, ++preparecnt); 2389 ev_start (EV_A_ (W)w, ++preparecnt);
1067 array_needsize (prepares, preparemax, preparecnt, ); 2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1068 prepares [preparecnt - 1] = w; 2391 prepares [preparecnt - 1] = w;
1069} 2392}
1070 2393
1071void 2394void
1072ev_prepare_stop (struct ev_prepare *w) 2395ev_prepare_stop (EV_P_ ev_prepare *w)
1073{ 2396{
1074 ev_clear_pending ((W)w); 2397 clear_pending (EV_A_ (W)w);
1075 if (ev_is_active (w)) 2398 if (expect_false (!ev_is_active (w)))
1076 return; 2399 return;
1077 2400
2401 {
2402 int active = ((W)w)->active;
1078 prepares [w->active - 1] = prepares [--preparecnt]; 2403 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active;
2405 }
2406
1079 ev_stop ((W)w); 2407 ev_stop (EV_A_ (W)w);
1080} 2408}
1081 2409
1082void 2410void
1083ev_check_start (struct ev_check *w) 2411ev_check_start (EV_P_ ev_check *w)
1084{ 2412{
1085 if (ev_is_active (w)) 2413 if (expect_false (ev_is_active (w)))
1086 return; 2414 return;
1087 2415
1088 ev_start ((W)w, ++checkcnt); 2416 ev_start (EV_A_ (W)w, ++checkcnt);
1089 array_needsize (checks, checkmax, checkcnt, ); 2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1090 checks [checkcnt - 1] = w; 2418 checks [checkcnt - 1] = w;
1091} 2419}
1092 2420
1093void 2421void
1094ev_check_stop (struct ev_check *w) 2422ev_check_stop (EV_P_ ev_check *w)
1095{ 2423{
1096 ev_clear_pending ((W)w); 2424 clear_pending (EV_A_ (W)w);
1097 if (ev_is_active (w)) 2425 if (expect_false (!ev_is_active (w)))
1098 return; 2426 return;
1099 2427
2428 {
2429 int active = ((W)w)->active;
1100 checks [w->active - 1] = checks [--checkcnt]; 2430 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active;
2432 }
2433
1101 ev_stop ((W)w); 2434 ev_stop (EV_A_ (W)w);
1102} 2435}
1103 2436
1104void 2437#if EV_EMBED_ENABLE
1105ev_child_start (struct ev_child *w) 2438void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w)
1106{ 2440{
2441 ev_loop (w->other, EVLOOP_NONBLOCK);
2442}
2443
2444static void
2445embed_io_cb (EV_P_ ev_io *io, int revents)
2446{
2447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2448
1107 if (ev_is_active (w)) 2449 if (ev_cb (w))
1108 return; 2450 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2451 else
2452 ev_loop (w->other, EVLOOP_NONBLOCK);
2453}
1109 2454
2455static void
2456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2457{
2458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2459
2460 {
2461 struct ev_loop *loop = w->other;
2462
2463 while (fdchangecnt)
2464 {
2465 fd_reify (EV_A);
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2467 }
2468 }
2469}
2470
2471#if 0
2472static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2474{
2475 ev_idle_stop (EV_A_ idle);
2476}
2477#endif
2478
2479void
2480ev_embed_start (EV_P_ ev_embed *w)
2481{
2482 if (expect_false (ev_is_active (w)))
2483 return;
2484
2485 {
2486 struct ev_loop *loop = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 }
2490
2491 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io);
2493
2494 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare);
2497
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499
1110 ev_start ((W)w, 1); 2500 ev_start (EV_A_ (W)w, 1);
1111 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1112} 2501}
1113 2502
1114void 2503void
1115ev_child_stop (struct ev_child *w) 2504ev_embed_stop (EV_P_ ev_embed *w)
1116{ 2505{
1117 ev_clear_pending ((W)w); 2506 clear_pending (EV_A_ (W)w);
1118 if (ev_is_active (w)) 2507 if (expect_false (!ev_is_active (w)))
1119 return; 2508 return;
1120 2509
1121 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2510 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare);
2512
1122 ev_stop ((W)w); 2513 ev_stop (EV_A_ (W)w);
1123} 2514}
2515#endif
2516
2517#if EV_FORK_ENABLE
2518void
2519ev_fork_start (EV_P_ ev_fork *w)
2520{
2521 if (expect_false (ev_is_active (w)))
2522 return;
2523
2524 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w;
2527}
2528
2529void
2530ev_fork_stop (EV_P_ ev_fork *w)
2531{
2532 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w)))
2534 return;
2535
2536 {
2537 int active = ((W)w)->active;
2538 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active;
2540 }
2541
2542 ev_stop (EV_A_ (W)w);
2543}
2544#endif
2545
2546#if EV_ASYNC_ENABLE
2547void
2548ev_async_start (EV_P_ ev_async *w)
2549{
2550 if (expect_false (ev_is_active (w)))
2551 return;
2552
2553 evpipe_init (EV_A);
2554
2555 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w;
2558}
2559
2560void
2561ev_async_stop (EV_P_ ev_async *w)
2562{
2563 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w)))
2565 return;
2566
2567 {
2568 int active = ((W)w)->active;
2569 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active;
2571 }
2572
2573 ev_stop (EV_A_ (W)w);
2574}
2575
2576void
2577ev_async_send (EV_P_ ev_async *w)
2578{
2579 w->sent = 1;
2580 evpipe_write (EV_A_ &gotasync);
2581}
2582#endif
1124 2583
1125/*****************************************************************************/ 2584/*****************************************************************************/
1126 2585
1127struct ev_once 2586struct ev_once
1128{ 2587{
1129 struct ev_io io; 2588 ev_io io;
1130 struct ev_timer to; 2589 ev_timer to;
1131 void (*cb)(int revents, void *arg); 2590 void (*cb)(int revents, void *arg);
1132 void *arg; 2591 void *arg;
1133}; 2592};
1134 2593
1135static void 2594static void
1136once_cb (struct ev_once *once, int revents) 2595once_cb (EV_P_ struct ev_once *once, int revents)
1137{ 2596{
1138 void (*cb)(int revents, void *arg) = once->cb; 2597 void (*cb)(int revents, void *arg) = once->cb;
1139 void *arg = once->arg; 2598 void *arg = once->arg;
1140 2599
1141 ev_io_stop (&once->io); 2600 ev_io_stop (EV_A_ &once->io);
1142 ev_timer_stop (&once->to); 2601 ev_timer_stop (EV_A_ &once->to);
1143 free (once); 2602 ev_free (once);
1144 2603
1145 cb (revents, arg); 2604 cb (revents, arg);
1146} 2605}
1147 2606
1148static void 2607static void
1149once_cb_io (struct ev_io *w, int revents) 2608once_cb_io (EV_P_ ev_io *w, int revents)
1150{ 2609{
1151 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1152} 2611}
1153 2612
1154static void 2613static void
1155once_cb_to (struct ev_timer *w, int revents) 2614once_cb_to (EV_P_ ev_timer *w, int revents)
1156{ 2615{
1157 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1158} 2617}
1159 2618
1160void 2619void
1161ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2620ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1162{ 2621{
1163 struct ev_once *once = malloc (sizeof (struct ev_once)); 2622 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1164 2623
1165 if (!once) 2624 if (expect_false (!once))
2625 {
1166 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1167 else 2627 return;
1168 { 2628 }
2629
1169 once->cb = cb; 2630 once->cb = cb;
1170 once->arg = arg; 2631 once->arg = arg;
1171 2632
1172 ev_watcher_init (&once->io, once_cb_io); 2633 ev_init (&once->io, once_cb_io);
1173 if (fd >= 0) 2634 if (fd >= 0)
1174 { 2635 {
1175 ev_io_set (&once->io, fd, events); 2636 ev_io_set (&once->io, fd, events);
1176 ev_io_start (&once->io); 2637 ev_io_start (EV_A_ &once->io);
1177 } 2638 }
1178 2639
1179 ev_watcher_init (&once->to, once_cb_to); 2640 ev_init (&once->to, once_cb_to);
1180 if (timeout >= 0.) 2641 if (timeout >= 0.)
1181 { 2642 {
1182 ev_timer_set (&once->to, timeout, 0.); 2643 ev_timer_set (&once->to, timeout, 0.);
1183 ev_timer_start (&once->to); 2644 ev_timer_start (EV_A_ &once->to);
1184 }
1185 }
1186}
1187
1188/*****************************************************************************/
1189
1190#if 0
1191
1192struct ev_io wio;
1193
1194static void
1195sin_cb (struct ev_io *w, int revents)
1196{
1197 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1198}
1199
1200static void
1201ocb (struct ev_timer *w, int revents)
1202{
1203 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1204 ev_timer_stop (w);
1205 ev_timer_start (w);
1206}
1207
1208static void
1209scb (struct ev_signal *w, int revents)
1210{
1211 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1212 ev_io_stop (&wio);
1213 ev_io_start (&wio);
1214}
1215
1216static void
1217gcb (struct ev_signal *w, int revents)
1218{
1219 fprintf (stderr, "generic %x\n", revents);
1220
1221}
1222
1223int main (void)
1224{
1225 ev_init (0);
1226
1227 ev_io_init (&wio, sin_cb, 0, EV_READ);
1228 ev_io_start (&wio);
1229
1230 struct ev_timer t[10000];
1231
1232#if 0
1233 int i;
1234 for (i = 0; i < 10000; ++i)
1235 { 2645 }
1236 struct ev_timer *w = t + i;
1237 ev_watcher_init (w, ocb, i);
1238 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1239 ev_timer_start (w);
1240 if (drand48 () < 0.5)
1241 ev_timer_stop (w);
1242 }
1243#endif
1244
1245 struct ev_timer t1;
1246 ev_timer_init (&t1, ocb, 5, 10);
1247 ev_timer_start (&t1);
1248
1249 struct ev_signal sig;
1250 ev_signal_init (&sig, scb, SIGQUIT);
1251 ev_signal_start (&sig);
1252
1253 struct ev_check cw;
1254 ev_check_init (&cw, gcb);
1255 ev_check_start (&cw);
1256
1257 struct ev_idle iw;
1258 ev_idle_init (&iw, gcb);
1259 ev_idle_start (&iw);
1260
1261 ev_loop (0);
1262
1263 return 0;
1264} 2646}
1265 2647
2648#if EV_MULTIPLICITY
2649 #include "ev_wrap.h"
1266#endif 2650#endif
1267 2651
2652#ifdef __cplusplus
2653}
2654#endif
1268 2655
1269
1270

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines