ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.84 by root, Fri Nov 9 23:04:35 2007 UTC vs.
Revision 1.228 by root, Fri May 2 08:07:37 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
31#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
33 51
34# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
35# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
36# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
37# endif 66# endif
38 67
39# if HAVE_SELECT && HAVE_SYS_SELECT_H 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
40# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
41# endif 74# endif
42 75
43# if HAVE_POLL && HAVE_POLL_H 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
44# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
45# endif 82# endif
46 83
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
48# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
49# endif 90# endif
50 91
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
52# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
53# endif 98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
54 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
55#endif 132#endif
56 133
57#include <math.h> 134#include <math.h>
58#include <stdlib.h> 135#include <stdlib.h>
59#include <fcntl.h> 136#include <fcntl.h>
66#include <sys/types.h> 143#include <sys/types.h>
67#include <time.h> 144#include <time.h>
68 145
69#include <signal.h> 146#include <signal.h>
70 147
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
78#ifndef EV_USE_MONOTONIC
79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
105# endif
106#endif
107
108#ifndef EV_USE_REALTIME
109# define EV_USE_REALTIME 1
110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0
122#endif
123
124/**/
125
126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
130
131#ifdef EV_H 148#ifdef EV_H
132# include EV_H 149# include EV_H
133#else 150#else
134# include "ev.h" 151# include "ev.h"
135#endif 152#endif
136 153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
163# endif
164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
167
168#ifndef EV_USE_MONOTONIC
169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
178#endif
179
180#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1
182#endif
183
184#ifndef EV_USE_POLL
185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
190#endif
191
192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
196# define EV_USE_EPOLL 0
197# endif
198#endif
199
200#ifndef EV_USE_KQUEUE
201# define EV_USE_KQUEUE 0
202#endif
203
204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241
242#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0
245#endif
246
247#ifndef CLOCK_REALTIME
248# undef EV_USE_REALTIME
249# define EV_USE_REALTIME 0
250#endif
251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298
137#if __GNUC__ >= 3 299#if __GNUC__ >= 4
138# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
139# define inline inline 301# define noinline __attribute__ ((noinline))
140#else 302#else
141# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
142# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
143#endif 308#endif
144 309
145#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
146#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
147 319
148#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
149#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
150 322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
151typedef struct ev_watcher *W; 326typedef ev_watcher *W;
152typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
153typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
154 329
330#define ev_at(w) ((WT)(w))->at
331
332#if EV_USE_MONOTONIC
333/* sig_atomic_t is used to avoid per-thread variables or locking but still */
334/* giving it a reasonably high chance of working on typical architetcures */
155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 335static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
336#endif
156 337
338#ifdef _WIN32
157#include "ev_win32.c" 339# include "ev_win32.c"
340#endif
158 341
159/*****************************************************************************/ 342/*****************************************************************************/
160 343
161static void (*syserr_cb)(const char *msg); 344static void (*syserr_cb)(const char *msg);
162 345
346void
163void ev_set_syserr_cb (void (*cb)(const char *msg)) 347ev_set_syserr_cb (void (*cb)(const char *msg))
164{ 348{
165 syserr_cb = cb; 349 syserr_cb = cb;
166} 350}
167 351
168static void 352static void noinline
169syserr (const char *msg) 353syserr (const char *msg)
170{ 354{
171 if (!msg) 355 if (!msg)
172 msg = "(libev) system error"; 356 msg = "(libev) system error";
173 357
178 perror (msg); 362 perror (msg);
179 abort (); 363 abort ();
180 } 364 }
181} 365}
182 366
367static void *
368ev_realloc_emul (void *ptr, long size)
369{
370 /* some systems, notably openbsd and darwin, fail to properly
371 * implement realloc (x, 0) (as required by both ansi c-98 and
372 * the single unix specification, so work around them here.
373 */
374
375 if (size)
376 return realloc (ptr, size);
377
378 free (ptr);
379 return 0;
380}
381
183static void *(*alloc)(void *ptr, long size); 382static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
184 383
384void
185void ev_set_allocator (void *(*cb)(void *ptr, long size)) 385ev_set_allocator (void *(*cb)(void *ptr, long size))
186{ 386{
187 alloc = cb; 387 alloc = cb;
188} 388}
189 389
190static void * 390inline_speed void *
191ev_realloc (void *ptr, long size) 391ev_realloc (void *ptr, long size)
192{ 392{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 393 ptr = alloc (ptr, size);
194 394
195 if (!ptr && size) 395 if (!ptr && size)
196 { 396 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 397 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort (); 398 abort ();
209typedef struct 409typedef struct
210{ 410{
211 WL head; 411 WL head;
212 unsigned char events; 412 unsigned char events;
213 unsigned char reify; 413 unsigned char reify;
414#if EV_SELECT_IS_WINSOCKET
415 SOCKET handle;
416#endif
214} ANFD; 417} ANFD;
215 418
216typedef struct 419typedef struct
217{ 420{
218 W w; 421 W w;
219 int events; 422 int events;
220} ANPENDING; 423} ANPENDING;
221 424
425#if EV_USE_INOTIFY
426typedef struct
427{
428 WL head;
429} ANFS;
430#endif
431
222#if EV_MULTIPLICITY 432#if EV_MULTIPLICITY
223 433
224 struct ev_loop 434 struct ev_loop
225 { 435 {
436 ev_tstamp ev_rt_now;
437 #define ev_rt_now ((loop)->ev_rt_now)
226 #define VAR(name,decl) decl; 438 #define VAR(name,decl) decl;
227 #include "ev_vars.h" 439 #include "ev_vars.h"
228 #undef VAR 440 #undef VAR
229 }; 441 };
230 #include "ev_wrap.h" 442 #include "ev_wrap.h"
231 443
232 struct ev_loop default_loop_struct; 444 static struct ev_loop default_loop_struct;
233 static struct ev_loop *default_loop; 445 struct ev_loop *ev_default_loop_ptr;
234 446
235#else 447#else
236 448
449 ev_tstamp ev_rt_now;
237 #define VAR(name,decl) static decl; 450 #define VAR(name,decl) static decl;
238 #include "ev_vars.h" 451 #include "ev_vars.h"
239 #undef VAR 452 #undef VAR
240 453
241 static int default_loop; 454 static int ev_default_loop_ptr;
242 455
243#endif 456#endif
244 457
245/*****************************************************************************/ 458/*****************************************************************************/
246 459
247inline ev_tstamp 460ev_tstamp
248ev_time (void) 461ev_time (void)
249{ 462{
250#if EV_USE_REALTIME 463#if EV_USE_REALTIME
251 struct timespec ts; 464 struct timespec ts;
252 clock_gettime (CLOCK_REALTIME, &ts); 465 clock_gettime (CLOCK_REALTIME, &ts);
256 gettimeofday (&tv, 0); 469 gettimeofday (&tv, 0);
257 return tv.tv_sec + tv.tv_usec * 1e-6; 470 return tv.tv_sec + tv.tv_usec * 1e-6;
258#endif 471#endif
259} 472}
260 473
261inline ev_tstamp 474ev_tstamp inline_size
262get_clock (void) 475get_clock (void)
263{ 476{
264#if EV_USE_MONOTONIC 477#if EV_USE_MONOTONIC
265 if (expect_true (have_monotonic)) 478 if (expect_true (have_monotonic))
266 { 479 {
271#endif 484#endif
272 485
273 return ev_time (); 486 return ev_time ();
274} 487}
275 488
489#if EV_MULTIPLICITY
276ev_tstamp 490ev_tstamp
277ev_now (EV_P) 491ev_now (EV_P)
278{ 492{
279 return rt_now; 493 return ev_rt_now;
280} 494}
495#endif
281 496
282#define array_roundsize(type,n) ((n) | 4 & ~3) 497void
498ev_sleep (ev_tstamp delay)
499{
500 if (delay > 0.)
501 {
502#if EV_USE_NANOSLEEP
503 struct timespec ts;
504
505 ts.tv_sec = (time_t)delay;
506 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
507
508 nanosleep (&ts, 0);
509#elif defined(_WIN32)
510 Sleep ((unsigned long)(delay * 1e3));
511#else
512 struct timeval tv;
513
514 tv.tv_sec = (time_t)delay;
515 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
516
517 select (0, 0, 0, 0, &tv);
518#endif
519 }
520}
521
522/*****************************************************************************/
523
524int inline_size
525array_nextsize (int elem, int cur, int cnt)
526{
527 int ncur = cur + 1;
528
529 do
530 ncur <<= 1;
531 while (cnt > ncur);
532
533 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
534 if (elem * ncur > 4096)
535 {
536 ncur *= elem;
537 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
538 ncur = ncur - sizeof (void *) * 4;
539 ncur /= elem;
540 }
541
542 return ncur;
543}
544
545static noinline void *
546array_realloc (int elem, void *base, int *cur, int cnt)
547{
548 *cur = array_nextsize (elem, *cur, cnt);
549 return ev_realloc (base, elem * *cur);
550}
283 551
284#define array_needsize(type,base,cur,cnt,init) \ 552#define array_needsize(type,base,cur,cnt,init) \
285 if (expect_false ((cnt) > cur)) \ 553 if (expect_false ((cnt) > (cur))) \
286 { \ 554 { \
287 int newcnt = cur; \ 555 int ocur_ = (cur); \
288 do \ 556 (base) = (type *)array_realloc \
289 { \ 557 (sizeof (type), (base), &(cur), (cnt)); \
290 newcnt = array_roundsize (type, newcnt << 1); \ 558 init ((base) + (ocur_), (cur) - ocur_); \
291 } \
292 while ((cnt) > newcnt); \
293 \
294 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
295 init (base + cur, newcnt - cur); \
296 cur = newcnt; \
297 } 559 }
298 560
561#if 0
299#define array_slim(type,stem) \ 562#define array_slim(type,stem) \
300 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 563 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
301 { \ 564 { \
302 stem ## max = array_roundsize (stem ## cnt >> 1); \ 565 stem ## max = array_roundsize (stem ## cnt >> 1); \
303 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 566 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
304 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 567 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
305 } 568 }
306 569#endif
307/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
308/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
309#define array_free_microshit(stem) \
310 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
311 570
312#define array_free(stem, idx) \ 571#define array_free(stem, idx) \
313 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 572 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
314 573
315/*****************************************************************************/ 574/*****************************************************************************/
316 575
317static void 576void noinline
577ev_feed_event (EV_P_ void *w, int revents)
578{
579 W w_ = (W)w;
580 int pri = ABSPRI (w_);
581
582 if (expect_false (w_->pending))
583 pendings [pri][w_->pending - 1].events |= revents;
584 else
585 {
586 w_->pending = ++pendingcnt [pri];
587 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
588 pendings [pri][w_->pending - 1].w = w_;
589 pendings [pri][w_->pending - 1].events = revents;
590 }
591}
592
593void inline_speed
594queue_events (EV_P_ W *events, int eventcnt, int type)
595{
596 int i;
597
598 for (i = 0; i < eventcnt; ++i)
599 ev_feed_event (EV_A_ events [i], type);
600}
601
602/*****************************************************************************/
603
604void inline_size
318anfds_init (ANFD *base, int count) 605anfds_init (ANFD *base, int count)
319{ 606{
320 while (count--) 607 while (count--)
321 { 608 {
322 base->head = 0; 609 base->head = 0;
325 612
326 ++base; 613 ++base;
327 } 614 }
328} 615}
329 616
330void 617void inline_speed
331ev_feed_event (EV_P_ void *w, int revents)
332{
333 W w_ = (W)w;
334
335 if (w_->pending)
336 {
337 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
338 return;
339 }
340
341 w_->pending = ++pendingcnt [ABSPRI (w_)];
342 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
343 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
344 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
345}
346
347static void
348queue_events (EV_P_ W *events, int eventcnt, int type)
349{
350 int i;
351
352 for (i = 0; i < eventcnt; ++i)
353 ev_feed_event (EV_A_ events [i], type);
354}
355
356inline void
357fd_event (EV_P_ int fd, int revents) 618fd_event (EV_P_ int fd, int revents)
358{ 619{
359 ANFD *anfd = anfds + fd; 620 ANFD *anfd = anfds + fd;
360 struct ev_io *w; 621 ev_io *w;
361 622
362 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 623 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
363 { 624 {
364 int ev = w->events & revents; 625 int ev = w->events & revents;
365 626
366 if (ev) 627 if (ev)
367 ev_feed_event (EV_A_ (W)w, ev); 628 ev_feed_event (EV_A_ (W)w, ev);
369} 630}
370 631
371void 632void
372ev_feed_fd_event (EV_P_ int fd, int revents) 633ev_feed_fd_event (EV_P_ int fd, int revents)
373{ 634{
635 if (fd >= 0 && fd < anfdmax)
374 fd_event (EV_A_ fd, revents); 636 fd_event (EV_A_ fd, revents);
375} 637}
376 638
377/*****************************************************************************/ 639void inline_size
378
379static void
380fd_reify (EV_P) 640fd_reify (EV_P)
381{ 641{
382 int i; 642 int i;
383 643
384 for (i = 0; i < fdchangecnt; ++i) 644 for (i = 0; i < fdchangecnt; ++i)
385 { 645 {
386 int fd = fdchanges [i]; 646 int fd = fdchanges [i];
387 ANFD *anfd = anfds + fd; 647 ANFD *anfd = anfds + fd;
388 struct ev_io *w; 648 ev_io *w;
389 649
390 int events = 0; 650 unsigned char events = 0;
391 651
392 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 652 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
393 events |= w->events; 653 events |= (unsigned char)w->events;
394 654
655#if EV_SELECT_IS_WINSOCKET
656 if (events)
657 {
658 unsigned long argp;
659 #ifdef EV_FD_TO_WIN32_HANDLE
660 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
661 #else
662 anfd->handle = _get_osfhandle (fd);
663 #endif
664 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
665 }
666#endif
667
668 {
669 unsigned char o_events = anfd->events;
670 unsigned char o_reify = anfd->reify;
671
395 anfd->reify = 0; 672 anfd->reify = 0;
396
397 method_modify (EV_A_ fd, anfd->events, events);
398 anfd->events = events; 673 anfd->events = events;
674
675 if (o_events != events || o_reify & EV_IOFDSET)
676 backend_modify (EV_A_ fd, o_events, events);
677 }
399 } 678 }
400 679
401 fdchangecnt = 0; 680 fdchangecnt = 0;
402} 681}
403 682
404static void 683void inline_size
405fd_change (EV_P_ int fd) 684fd_change (EV_P_ int fd, int flags)
406{ 685{
407 if (anfds [fd].reify) 686 unsigned char reify = anfds [fd].reify;
408 return;
409
410 anfds [fd].reify = 1; 687 anfds [fd].reify |= flags;
411 688
689 if (expect_true (!reify))
690 {
412 ++fdchangecnt; 691 ++fdchangecnt;
413 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void)); 692 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
414 fdchanges [fdchangecnt - 1] = fd; 693 fdchanges [fdchangecnt - 1] = fd;
694 }
415} 695}
416 696
417static void 697void inline_speed
418fd_kill (EV_P_ int fd) 698fd_kill (EV_P_ int fd)
419{ 699{
420 struct ev_io *w; 700 ev_io *w;
421 701
422 while ((w = (struct ev_io *)anfds [fd].head)) 702 while ((w = (ev_io *)anfds [fd].head))
423 { 703 {
424 ev_io_stop (EV_A_ w); 704 ev_io_stop (EV_A_ w);
425 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 705 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
426 } 706 }
427} 707}
428 708
429static int 709int inline_size
430fd_valid (int fd) 710fd_valid (int fd)
431{ 711{
432#ifdef WIN32 712#ifdef _WIN32
433 return !!win32_get_osfhandle (fd); 713 return _get_osfhandle (fd) != -1;
434#else 714#else
435 return fcntl (fd, F_GETFD) != -1; 715 return fcntl (fd, F_GETFD) != -1;
436#endif 716#endif
437} 717}
438 718
439/* called on EBADF to verify fds */ 719/* called on EBADF to verify fds */
440static void 720static void noinline
441fd_ebadf (EV_P) 721fd_ebadf (EV_P)
442{ 722{
443 int fd; 723 int fd;
444 724
445 for (fd = 0; fd < anfdmax; ++fd) 725 for (fd = 0; fd < anfdmax; ++fd)
447 if (!fd_valid (fd) == -1 && errno == EBADF) 727 if (!fd_valid (fd) == -1 && errno == EBADF)
448 fd_kill (EV_A_ fd); 728 fd_kill (EV_A_ fd);
449} 729}
450 730
451/* called on ENOMEM in select/poll to kill some fds and retry */ 731/* called on ENOMEM in select/poll to kill some fds and retry */
452static void 732static void noinline
453fd_enomem (EV_P) 733fd_enomem (EV_P)
454{ 734{
455 int fd; 735 int fd;
456 736
457 for (fd = anfdmax; fd--; ) 737 for (fd = anfdmax; fd--; )
460 fd_kill (EV_A_ fd); 740 fd_kill (EV_A_ fd);
461 return; 741 return;
462 } 742 }
463} 743}
464 744
465/* usually called after fork if method needs to re-arm all fds from scratch */ 745/* usually called after fork if backend needs to re-arm all fds from scratch */
466static void 746static void noinline
467fd_rearm_all (EV_P) 747fd_rearm_all (EV_P)
468{ 748{
469 int fd; 749 int fd;
470 750
471 /* this should be highly optimised to not do anything but set a flag */
472 for (fd = 0; fd < anfdmax; ++fd) 751 for (fd = 0; fd < anfdmax; ++fd)
473 if (anfds [fd].events) 752 if (anfds [fd].events)
474 { 753 {
475 anfds [fd].events = 0; 754 anfds [fd].events = 0;
476 fd_change (EV_A_ fd); 755 fd_change (EV_A_ fd, EV_IOFDSET | 1);
477 } 756 }
478} 757}
479 758
480/*****************************************************************************/ 759/*****************************************************************************/
481 760
482static void 761/* towards the root */
762void inline_speed
483upheap (WT *heap, int k) 763upheap (WT *heap, int k)
484{ 764{
485 WT w = heap [k]; 765 WT w = heap [k];
486 766
487 while (k && heap [k >> 1]->at > w->at) 767 for (;;)
488 { 768 {
769 int p = k >> 1;
770
771 /* maybe we could use a dummy element at heap [0]? */
772 if (!p || heap [p]->at <= w->at)
773 break;
774
489 heap [k] = heap [k >> 1]; 775 heap [k] = heap [p];
490 ((W)heap [k])->active = k + 1; 776 ((W)heap [k])->active = k;
491 k >>= 1; 777 k = p;
492 } 778 }
493 779
494 heap [k] = w; 780 heap [k] = w;
495 ((W)heap [k])->active = k + 1; 781 ((W)heap [k])->active = k;
496
497} 782}
498 783
499static void 784/* away from the root */
785void inline_speed
500downheap (WT *heap, int N, int k) 786downheap (WT *heap, int N, int k)
501{ 787{
502 WT w = heap [k]; 788 WT w = heap [k];
503 789
504 while (k < (N >> 1)) 790 for (;;)
505 { 791 {
506 int j = k << 1; 792 int c = k << 1;
507 793
508 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 794 if (c > N)
509 ++j;
510
511 if (w->at <= heap [j]->at)
512 break; 795 break;
513 796
797 c += c < N && heap [c]->at > heap [c + 1]->at
798 ? 1 : 0;
799
800 if (w->at <= heap [c]->at)
801 break;
802
514 heap [k] = heap [j]; 803 heap [k] = heap [c];
515 ((W)heap [k])->active = k + 1; 804 ((W)heap [k])->active = k;
805
516 k = j; 806 k = c;
517 } 807 }
518 808
519 heap [k] = w; 809 heap [k] = w;
520 ((W)heap [k])->active = k + 1; 810 ((W)heap [k])->active = k;
521} 811}
522 812
523inline void 813void inline_size
524adjustheap (WT *heap, int N, int k, ev_tstamp at) 814adjustheap (WT *heap, int N, int k)
525{ 815{
526 ev_tstamp old_at = heap [k]->at; 816 upheap (heap, k);
527 heap [k]->at = at;
528
529 if (old_at < at)
530 downheap (heap, N, k); 817 downheap (heap, N, k);
531 else
532 upheap (heap, k);
533} 818}
534 819
535/*****************************************************************************/ 820/*****************************************************************************/
536 821
537typedef struct 822typedef struct
538{ 823{
539 WL head; 824 WL head;
540 sig_atomic_t volatile gotsig; 825 EV_ATOMIC_T gotsig;
541} ANSIG; 826} ANSIG;
542 827
543static ANSIG *signals; 828static ANSIG *signals;
544static int signalmax; 829static int signalmax;
545 830
546static int sigpipe [2]; 831static EV_ATOMIC_T gotsig;
547static sig_atomic_t volatile gotsig;
548static struct ev_io sigev;
549 832
550static void 833void inline_size
551signals_init (ANSIG *base, int count) 834signals_init (ANSIG *base, int count)
552{ 835{
553 while (count--) 836 while (count--)
554 { 837 {
555 base->head = 0; 838 base->head = 0;
557 840
558 ++base; 841 ++base;
559 } 842 }
560} 843}
561 844
845/*****************************************************************************/
846
847void inline_speed
848fd_intern (int fd)
849{
850#ifdef _WIN32
851 int arg = 1;
852 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
853#else
854 fcntl (fd, F_SETFD, FD_CLOEXEC);
855 fcntl (fd, F_SETFL, O_NONBLOCK);
856#endif
857}
858
859static void noinline
860evpipe_init (EV_P)
861{
862 if (!ev_is_active (&pipeev))
863 {
864#if EV_USE_EVENTFD
865 if ((evfd = eventfd (0, 0)) >= 0)
866 {
867 evpipe [0] = -1;
868 fd_intern (evfd);
869 ev_io_set (&pipeev, evfd, EV_READ);
870 }
871 else
872#endif
873 {
874 while (pipe (evpipe))
875 syserr ("(libev) error creating signal/async pipe");
876
877 fd_intern (evpipe [0]);
878 fd_intern (evpipe [1]);
879 ev_io_set (&pipeev, evpipe [0], EV_READ);
880 }
881
882 ev_io_start (EV_A_ &pipeev);
883 ev_unref (EV_A); /* watcher should not keep loop alive */
884 }
885}
886
887void inline_size
888evpipe_write (EV_P_ EV_ATOMIC_T *flag)
889{
890 if (!*flag)
891 {
892 int old_errno = errno; /* save errno because write might clobber it */
893
894 *flag = 1;
895
896#if EV_USE_EVENTFD
897 if (evfd >= 0)
898 {
899 uint64_t counter = 1;
900 write (evfd, &counter, sizeof (uint64_t));
901 }
902 else
903#endif
904 write (evpipe [1], &old_errno, 1);
905
906 errno = old_errno;
907 }
908}
909
562static void 910static void
911pipecb (EV_P_ ev_io *iow, int revents)
912{
913#if EV_USE_EVENTFD
914 if (evfd >= 0)
915 {
916 uint64_t counter = 1;
917 read (evfd, &counter, sizeof (uint64_t));
918 }
919 else
920#endif
921 {
922 char dummy;
923 read (evpipe [0], &dummy, 1);
924 }
925
926 if (gotsig && ev_is_default_loop (EV_A))
927 {
928 int signum;
929 gotsig = 0;
930
931 for (signum = signalmax; signum--; )
932 if (signals [signum].gotsig)
933 ev_feed_signal_event (EV_A_ signum + 1);
934 }
935
936#if EV_ASYNC_ENABLE
937 if (gotasync)
938 {
939 int i;
940 gotasync = 0;
941
942 for (i = asynccnt; i--; )
943 if (asyncs [i]->sent)
944 {
945 asyncs [i]->sent = 0;
946 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
947 }
948 }
949#endif
950}
951
952/*****************************************************************************/
953
954static void
563sighandler (int signum) 955ev_sighandler (int signum)
564{ 956{
957#if EV_MULTIPLICITY
958 struct ev_loop *loop = &default_loop_struct;
959#endif
960
565#if WIN32 961#if _WIN32
566 signal (signum, sighandler); 962 signal (signum, ev_sighandler);
567#endif 963#endif
568 964
569 signals [signum - 1].gotsig = 1; 965 signals [signum - 1].gotsig = 1;
570 966 evpipe_write (EV_A_ &gotsig);
571 if (!gotsig)
572 {
573 int old_errno = errno;
574 gotsig = 1;
575#ifdef WIN32
576 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
577#else
578 write (sigpipe [1], &signum, 1);
579#endif
580 errno = old_errno;
581 }
582} 967}
583 968
584void 969void noinline
585ev_feed_signal_event (EV_P_ int signum) 970ev_feed_signal_event (EV_P_ int signum)
586{ 971{
587 WL w; 972 WL w;
588 973
589#if EV_MULTIPLICITY 974#if EV_MULTIPLICITY
590 assert (("feeding signal events is only supported in the default loop", loop == default_loop)); 975 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
591#endif 976#endif
592 977
593 --signum; 978 --signum;
594 979
595 if (signum < 0 || signum >= signalmax) 980 if (signum < 0 || signum >= signalmax)
599 984
600 for (w = signals [signum].head; w; w = w->next) 985 for (w = signals [signum].head; w; w = w->next)
601 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 986 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
602} 987}
603 988
604static void
605sigcb (EV_P_ struct ev_io *iow, int revents)
606{
607 int signum;
608
609#ifdef WIN32
610 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
611#else
612 read (sigpipe [0], &revents, 1);
613#endif
614 gotsig = 0;
615
616 for (signum = signalmax; signum--; )
617 if (signals [signum].gotsig)
618 ev_feed_signal_event (EV_A_ signum + 1);
619}
620
621static void
622siginit (EV_P)
623{
624#ifndef WIN32
625 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
626 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
627
628 /* rather than sort out wether we really need nb, set it */
629 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
630 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
631#endif
632
633 ev_io_set (&sigev, sigpipe [0], EV_READ);
634 ev_io_start (EV_A_ &sigev);
635 ev_unref (EV_A); /* child watcher should not keep loop alive */
636}
637
638/*****************************************************************************/ 989/*****************************************************************************/
639 990
640static struct ev_child *childs [PID_HASHSIZE]; 991static WL childs [EV_PID_HASHSIZE];
641 992
642#ifndef WIN32 993#ifndef _WIN32
643 994
644static struct ev_signal childev; 995static ev_signal childev;
996
997#ifndef WIFCONTINUED
998# define WIFCONTINUED(status) 0
999#endif
1000
1001void inline_speed
1002child_reap (EV_P_ int chain, int pid, int status)
1003{
1004 ev_child *w;
1005 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1006
1007 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1008 {
1009 if ((w->pid == pid || !w->pid)
1010 && (!traced || (w->flags & 1)))
1011 {
1012 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1013 w->rpid = pid;
1014 w->rstatus = status;
1015 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1016 }
1017 }
1018}
645 1019
646#ifndef WCONTINUED 1020#ifndef WCONTINUED
647# define WCONTINUED 0 1021# define WCONTINUED 0
648#endif 1022#endif
649 1023
650static void 1024static void
651child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
652{
653 struct ev_child *w;
654
655 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
656 if (w->pid == pid || !w->pid)
657 {
658 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
659 w->rpid = pid;
660 w->rstatus = status;
661 ev_feed_event (EV_A_ (W)w, EV_CHILD);
662 }
663}
664
665static void
666childcb (EV_P_ struct ev_signal *sw, int revents) 1025childcb (EV_P_ ev_signal *sw, int revents)
667{ 1026{
668 int pid, status; 1027 int pid, status;
669 1028
1029 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
670 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1030 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
671 { 1031 if (!WCONTINUED
1032 || errno != EINVAL
1033 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1034 return;
1035
672 /* make sure we are called again until all childs have been reaped */ 1036 /* make sure we are called again until all children have been reaped */
1037 /* we need to do it this way so that the callback gets called before we continue */
673 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1038 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
674 1039
675 child_reap (EV_A_ sw, pid, pid, status); 1040 child_reap (EV_A_ pid, pid, status);
1041 if (EV_PID_HASHSIZE > 1)
676 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1042 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
677 }
678} 1043}
679 1044
680#endif 1045#endif
681 1046
682/*****************************************************************************/ 1047/*****************************************************************************/
683 1048
1049#if EV_USE_PORT
1050# include "ev_port.c"
1051#endif
684#if EV_USE_KQUEUE 1052#if EV_USE_KQUEUE
685# include "ev_kqueue.c" 1053# include "ev_kqueue.c"
686#endif 1054#endif
687#if EV_USE_EPOLL 1055#if EV_USE_EPOLL
688# include "ev_epoll.c" 1056# include "ev_epoll.c"
705{ 1073{
706 return EV_VERSION_MINOR; 1074 return EV_VERSION_MINOR;
707} 1075}
708 1076
709/* return true if we are running with elevated privileges and should ignore env variables */ 1077/* return true if we are running with elevated privileges and should ignore env variables */
710static int 1078int inline_size
711enable_secure (void) 1079enable_secure (void)
712{ 1080{
713#ifdef WIN32 1081#ifdef _WIN32
714 return 0; 1082 return 0;
715#else 1083#else
716 return getuid () != geteuid () 1084 return getuid () != geteuid ()
717 || getgid () != getegid (); 1085 || getgid () != getegid ();
718#endif 1086#endif
719} 1087}
720 1088
721int 1089unsigned int
722ev_method (EV_P) 1090ev_supported_backends (void)
723{ 1091{
724 return method; 1092 unsigned int flags = 0;
725}
726 1093
727static void 1094 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
728loop_init (EV_P_ int methods) 1095 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1096 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1097 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1098 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1099
1100 return flags;
1101}
1102
1103unsigned int
1104ev_recommended_backends (void)
729{ 1105{
730 if (!method) 1106 unsigned int flags = ev_supported_backends ();
1107
1108#ifndef __NetBSD__
1109 /* kqueue is borked on everything but netbsd apparently */
1110 /* it usually doesn't work correctly on anything but sockets and pipes */
1111 flags &= ~EVBACKEND_KQUEUE;
1112#endif
1113#ifdef __APPLE__
1114 // flags &= ~EVBACKEND_KQUEUE; for documentation
1115 flags &= ~EVBACKEND_POLL;
1116#endif
1117
1118 return flags;
1119}
1120
1121unsigned int
1122ev_embeddable_backends (void)
1123{
1124 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1125
1126 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1127 /* please fix it and tell me how to detect the fix */
1128 flags &= ~EVBACKEND_EPOLL;
1129
1130 return flags;
1131}
1132
1133unsigned int
1134ev_backend (EV_P)
1135{
1136 return backend;
1137}
1138
1139unsigned int
1140ev_loop_count (EV_P)
1141{
1142 return loop_count;
1143}
1144
1145void
1146ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1147{
1148 io_blocktime = interval;
1149}
1150
1151void
1152ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1153{
1154 timeout_blocktime = interval;
1155}
1156
1157static void noinline
1158loop_init (EV_P_ unsigned int flags)
1159{
1160 if (!backend)
731 { 1161 {
732#if EV_USE_MONOTONIC 1162#if EV_USE_MONOTONIC
733 { 1163 {
734 struct timespec ts; 1164 struct timespec ts;
735 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1165 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
736 have_monotonic = 1; 1166 have_monotonic = 1;
737 } 1167 }
738#endif 1168#endif
739 1169
740 rt_now = ev_time (); 1170 ev_rt_now = ev_time ();
741 mn_now = get_clock (); 1171 mn_now = get_clock ();
742 now_floor = mn_now; 1172 now_floor = mn_now;
743 rtmn_diff = rt_now - mn_now; 1173 rtmn_diff = ev_rt_now - mn_now;
744 1174
745 if (methods == EVMETHOD_AUTO) 1175 io_blocktime = 0.;
746 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1176 timeout_blocktime = 0.;
1177 backend = 0;
1178 backend_fd = -1;
1179 gotasync = 0;
1180#if EV_USE_INOTIFY
1181 fs_fd = -2;
1182#endif
1183
1184 /* pid check not overridable via env */
1185#ifndef _WIN32
1186 if (flags & EVFLAG_FORKCHECK)
1187 curpid = getpid ();
1188#endif
1189
1190 if (!(flags & EVFLAG_NOENV)
1191 && !enable_secure ()
1192 && getenv ("LIBEV_FLAGS"))
747 methods = atoi (getenv ("LIBEV_METHODS")); 1193 flags = atoi (getenv ("LIBEV_FLAGS"));
748 else
749 methods = EVMETHOD_ANY;
750 1194
751 method = 0; 1195 if (!(flags & 0x0000ffffU))
752#if EV_USE_WIN32 1196 flags |= ev_recommended_backends ();
753 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods); 1197
1198#if EV_USE_PORT
1199 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
754#endif 1200#endif
755#if EV_USE_KQUEUE 1201#if EV_USE_KQUEUE
756 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods); 1202 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
757#endif 1203#endif
758#if EV_USE_EPOLL 1204#if EV_USE_EPOLL
759 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods); 1205 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
760#endif 1206#endif
761#if EV_USE_POLL 1207#if EV_USE_POLL
762 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods); 1208 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
763#endif 1209#endif
764#if EV_USE_SELECT 1210#if EV_USE_SELECT
765 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods); 1211 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
766#endif 1212#endif
767 1213
768 ev_init (&sigev, sigcb); 1214 ev_init (&pipeev, pipecb);
769 ev_set_priority (&sigev, EV_MAXPRI); 1215 ev_set_priority (&pipeev, EV_MAXPRI);
770 } 1216 }
771} 1217}
772 1218
773void 1219static void noinline
774loop_destroy (EV_P) 1220loop_destroy (EV_P)
775{ 1221{
776 int i; 1222 int i;
777 1223
1224 if (ev_is_active (&pipeev))
1225 {
1226 ev_ref (EV_A); /* signal watcher */
1227 ev_io_stop (EV_A_ &pipeev);
1228
1229#if EV_USE_EVENTFD
1230 if (evfd >= 0)
1231 close (evfd);
1232#endif
1233
1234 if (evpipe [0] >= 0)
1235 {
1236 close (evpipe [0]);
1237 close (evpipe [1]);
1238 }
1239 }
1240
778#if EV_USE_WIN32 1241#if EV_USE_INOTIFY
779 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A); 1242 if (fs_fd >= 0)
1243 close (fs_fd);
1244#endif
1245
1246 if (backend_fd >= 0)
1247 close (backend_fd);
1248
1249#if EV_USE_PORT
1250 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
780#endif 1251#endif
781#if EV_USE_KQUEUE 1252#if EV_USE_KQUEUE
782 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1253 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
783#endif 1254#endif
784#if EV_USE_EPOLL 1255#if EV_USE_EPOLL
785 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1256 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
786#endif 1257#endif
787#if EV_USE_POLL 1258#if EV_USE_POLL
788 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1259 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
789#endif 1260#endif
790#if EV_USE_SELECT 1261#if EV_USE_SELECT
791 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1262 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
792#endif 1263#endif
793 1264
794 for (i = NUMPRI; i--; ) 1265 for (i = NUMPRI; i--; )
1266 {
795 array_free (pending, [i]); 1267 array_free (pending, [i]);
1268#if EV_IDLE_ENABLE
1269 array_free (idle, [i]);
1270#endif
1271 }
1272
1273 ev_free (anfds); anfdmax = 0;
796 1274
797 /* have to use the microsoft-never-gets-it-right macro */ 1275 /* have to use the microsoft-never-gets-it-right macro */
798 array_free_microshit (fdchange); 1276 array_free (fdchange, EMPTY);
799 array_free_microshit (timer); 1277 array_free (timer, EMPTY);
800 array_free_microshit (periodic); 1278#if EV_PERIODIC_ENABLE
801 array_free_microshit (idle); 1279 array_free (periodic, EMPTY);
802 array_free_microshit (prepare); 1280#endif
803 array_free_microshit (check); 1281#if EV_FORK_ENABLE
1282 array_free (fork, EMPTY);
1283#endif
1284 array_free (prepare, EMPTY);
1285 array_free (check, EMPTY);
1286#if EV_ASYNC_ENABLE
1287 array_free (async, EMPTY);
1288#endif
804 1289
805 method = 0; 1290 backend = 0;
806} 1291}
807 1292
808static void 1293#if EV_USE_INOTIFY
1294void inline_size infy_fork (EV_P);
1295#endif
1296
1297void inline_size
809loop_fork (EV_P) 1298loop_fork (EV_P)
810{ 1299{
1300#if EV_USE_PORT
1301 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1302#endif
1303#if EV_USE_KQUEUE
1304 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1305#endif
811#if EV_USE_EPOLL 1306#if EV_USE_EPOLL
812 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1307 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
813#endif 1308#endif
814#if EV_USE_KQUEUE 1309#if EV_USE_INOTIFY
815 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1310 infy_fork (EV_A);
816#endif 1311#endif
817 1312
818 if (ev_is_active (&sigev)) 1313 if (ev_is_active (&pipeev))
819 { 1314 {
820 /* default loop */ 1315 /* this "locks" the handlers against writing to the pipe */
1316 /* while we modify the fd vars */
1317 gotsig = 1;
1318#if EV_ASYNC_ENABLE
1319 gotasync = 1;
1320#endif
821 1321
822 ev_ref (EV_A); 1322 ev_ref (EV_A);
823 ev_io_stop (EV_A_ &sigev); 1323 ev_io_stop (EV_A_ &pipeev);
1324
1325#if EV_USE_EVENTFD
1326 if (evfd >= 0)
1327 close (evfd);
1328#endif
1329
1330 if (evpipe [0] >= 0)
1331 {
824 close (sigpipe [0]); 1332 close (evpipe [0]);
825 close (sigpipe [1]); 1333 close (evpipe [1]);
1334 }
826 1335
827 while (pipe (sigpipe))
828 syserr ("(libev) error creating pipe");
829
830 siginit (EV_A); 1336 evpipe_init (EV_A);
1337 /* now iterate over everything, in case we missed something */
1338 pipecb (EV_A_ &pipeev, EV_READ);
831 } 1339 }
832 1340
833 postfork = 0; 1341 postfork = 0;
834} 1342}
835 1343
836#if EV_MULTIPLICITY 1344#if EV_MULTIPLICITY
837struct ev_loop * 1345struct ev_loop *
838ev_loop_new (int methods) 1346ev_loop_new (unsigned int flags)
839{ 1347{
840 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1348 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
841 1349
842 memset (loop, 0, sizeof (struct ev_loop)); 1350 memset (loop, 0, sizeof (struct ev_loop));
843 1351
844 loop_init (EV_A_ methods); 1352 loop_init (EV_A_ flags);
845 1353
846 if (ev_method (EV_A)) 1354 if (ev_backend (EV_A))
847 return loop; 1355 return loop;
848 1356
849 return 0; 1357 return 0;
850} 1358}
851 1359
857} 1365}
858 1366
859void 1367void
860ev_loop_fork (EV_P) 1368ev_loop_fork (EV_P)
861{ 1369{
862 postfork = 1; 1370 postfork = 1; /* must be in line with ev_default_fork */
863} 1371}
864 1372
865#endif 1373#endif
866 1374
867#if EV_MULTIPLICITY 1375#if EV_MULTIPLICITY
868struct ev_loop * 1376struct ev_loop *
1377ev_default_loop_init (unsigned int flags)
869#else 1378#else
870int 1379int
1380ev_default_loop (unsigned int flags)
871#endif 1381#endif
872ev_default_loop (int methods)
873{ 1382{
874 if (sigpipe [0] == sigpipe [1])
875 if (pipe (sigpipe))
876 return 0;
877
878 if (!default_loop) 1383 if (!ev_default_loop_ptr)
879 { 1384 {
880#if EV_MULTIPLICITY 1385#if EV_MULTIPLICITY
881 struct ev_loop *loop = default_loop = &default_loop_struct; 1386 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
882#else 1387#else
883 default_loop = 1; 1388 ev_default_loop_ptr = 1;
884#endif 1389#endif
885 1390
886 loop_init (EV_A_ methods); 1391 loop_init (EV_A_ flags);
887 1392
888 if (ev_method (EV_A)) 1393 if (ev_backend (EV_A))
889 { 1394 {
890 siginit (EV_A);
891
892#ifndef WIN32 1395#ifndef _WIN32
893 ev_signal_init (&childev, childcb, SIGCHLD); 1396 ev_signal_init (&childev, childcb, SIGCHLD);
894 ev_set_priority (&childev, EV_MAXPRI); 1397 ev_set_priority (&childev, EV_MAXPRI);
895 ev_signal_start (EV_A_ &childev); 1398 ev_signal_start (EV_A_ &childev);
896 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1399 ev_unref (EV_A); /* child watcher should not keep loop alive */
897#endif 1400#endif
898 } 1401 }
899 else 1402 else
900 default_loop = 0; 1403 ev_default_loop_ptr = 0;
901 } 1404 }
902 1405
903 return default_loop; 1406 return ev_default_loop_ptr;
904} 1407}
905 1408
906void 1409void
907ev_default_destroy (void) 1410ev_default_destroy (void)
908{ 1411{
909#if EV_MULTIPLICITY 1412#if EV_MULTIPLICITY
910 struct ev_loop *loop = default_loop; 1413 struct ev_loop *loop = ev_default_loop_ptr;
911#endif 1414#endif
912 1415
913#ifndef WIN32 1416#ifndef _WIN32
914 ev_ref (EV_A); /* child watcher */ 1417 ev_ref (EV_A); /* child watcher */
915 ev_signal_stop (EV_A_ &childev); 1418 ev_signal_stop (EV_A_ &childev);
916#endif 1419#endif
917 1420
918 ev_ref (EV_A); /* signal watcher */
919 ev_io_stop (EV_A_ &sigev);
920
921 close (sigpipe [0]); sigpipe [0] = 0;
922 close (sigpipe [1]); sigpipe [1] = 0;
923
924 loop_destroy (EV_A); 1421 loop_destroy (EV_A);
925} 1422}
926 1423
927void 1424void
928ev_default_fork (void) 1425ev_default_fork (void)
929{ 1426{
930#if EV_MULTIPLICITY 1427#if EV_MULTIPLICITY
931 struct ev_loop *loop = default_loop; 1428 struct ev_loop *loop = ev_default_loop_ptr;
932#endif 1429#endif
933 1430
934 if (method) 1431 if (backend)
935 postfork = 1; 1432 postfork = 1; /* must be in line with ev_loop_fork */
936} 1433}
937 1434
938/*****************************************************************************/ 1435/*****************************************************************************/
939 1436
940static int 1437void
941any_pending (EV_P) 1438ev_invoke (EV_P_ void *w, int revents)
942{ 1439{
943 int pri; 1440 EV_CB_INVOKE ((W)w, revents);
944
945 for (pri = NUMPRI; pri--; )
946 if (pendingcnt [pri])
947 return 1;
948
949 return 0;
950} 1441}
951 1442
952static void 1443void inline_speed
953call_pending (EV_P) 1444call_pending (EV_P)
954{ 1445{
955 int pri; 1446 int pri;
956 1447
957 for (pri = NUMPRI; pri--; ) 1448 for (pri = NUMPRI; pri--; )
958 while (pendingcnt [pri]) 1449 while (pendingcnt [pri])
959 { 1450 {
960 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1451 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
961 1452
962 if (p->w) 1453 if (expect_true (p->w))
963 { 1454 {
1455 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1456
964 p->w->pending = 0; 1457 p->w->pending = 0;
965 EV_CB_INVOKE (p->w, p->events); 1458 EV_CB_INVOKE (p->w, p->events);
966 } 1459 }
967 } 1460 }
968} 1461}
969 1462
970static void 1463void inline_size
971timers_reify (EV_P) 1464timers_reify (EV_P)
972{ 1465{
973 while (timercnt && ((WT)timers [0])->at <= mn_now) 1466 while (timercnt && ev_at (timers [1]) <= mn_now)
974 { 1467 {
975 struct ev_timer *w = timers [0]; 1468 ev_timer *w = (ev_timer *)timers [1];
976 1469
977 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1470 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
978 1471
979 /* first reschedule or stop timer */ 1472 /* first reschedule or stop timer */
980 if (w->repeat) 1473 if (w->repeat)
981 { 1474 {
982 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1475 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
983 ((WT)w)->at = mn_now + w->repeat; 1476
1477 ev_at (w) += w->repeat;
1478 if (ev_at (w) < mn_now)
1479 ev_at (w) = mn_now;
1480
984 downheap ((WT *)timers, timercnt, 0); 1481 downheap (timers, timercnt, 1);
985 } 1482 }
986 else 1483 else
987 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1484 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
988 1485
989 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1486 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
990 } 1487 }
991} 1488}
992 1489
993static void 1490#if EV_PERIODIC_ENABLE
1491void inline_size
994periodics_reify (EV_P) 1492periodics_reify (EV_P)
995{ 1493{
996 while (periodiccnt && ((WT)periodics [0])->at <= rt_now) 1494 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
997 { 1495 {
998 struct ev_periodic *w = periodics [0]; 1496 ev_periodic *w = (ev_periodic *)periodics [1];
999 1497
1000 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1498 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1001 1499
1002 /* first reschedule or stop timer */ 1500 /* first reschedule or stop timer */
1003 if (w->reschedule_cb) 1501 if (w->reschedule_cb)
1004 { 1502 {
1005 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001); 1503 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1006
1007 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now)); 1504 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1008 downheap ((WT *)periodics, periodiccnt, 0); 1505 downheap (periodics, periodiccnt, 1);
1009 } 1506 }
1010 else if (w->interval) 1507 else if (w->interval)
1011 { 1508 {
1012 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1509 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1510 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1013 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now)); 1511 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1014 downheap ((WT *)periodics, periodiccnt, 0); 1512 downheap (periodics, periodiccnt, 1);
1015 } 1513 }
1016 else 1514 else
1017 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1515 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1018 1516
1019 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1517 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1020 } 1518 }
1021} 1519}
1022 1520
1023static void 1521static void noinline
1024periodics_reschedule (EV_P) 1522periodics_reschedule (EV_P)
1025{ 1523{
1026 int i; 1524 int i;
1027 1525
1028 /* adjust periodics after time jump */ 1526 /* adjust periodics after time jump */
1029 for (i = 0; i < periodiccnt; ++i) 1527 for (i = 0; i < periodiccnt; ++i)
1030 { 1528 {
1031 struct ev_periodic *w = periodics [i]; 1529 ev_periodic *w = (ev_periodic *)periodics [i];
1032 1530
1033 if (w->reschedule_cb) 1531 if (w->reschedule_cb)
1034 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1532 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1035 else if (w->interval) 1533 else if (w->interval)
1036 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1534 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1037 } 1535 }
1038 1536
1039 /* now rebuild the heap */ 1537 /* now rebuild the heap */
1040 for (i = periodiccnt >> 1; i--; ) 1538 for (i = periodiccnt >> 1; i--; )
1041 downheap ((WT *)periodics, periodiccnt, i); 1539 downheap (periodics, periodiccnt, i);
1042} 1540}
1541#endif
1043 1542
1044inline int 1543#if EV_IDLE_ENABLE
1045time_update_monotonic (EV_P) 1544void inline_size
1545idle_reify (EV_P)
1046{ 1546{
1047 mn_now = get_clock (); 1547 if (expect_false (idleall))
1048
1049 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1050 {
1051 rt_now = rtmn_diff + mn_now;
1052 return 0;
1053 } 1548 {
1054 else 1549 int pri;
1550
1551 for (pri = NUMPRI; pri--; )
1552 {
1553 if (pendingcnt [pri])
1554 break;
1555
1556 if (idlecnt [pri])
1557 {
1558 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1559 break;
1560 }
1561 }
1055 { 1562 }
1056 now_floor = mn_now;
1057 rt_now = ev_time ();
1058 return 1;
1059 }
1060} 1563}
1564#endif
1061 1565
1062static void 1566void inline_speed
1063time_update (EV_P) 1567time_update (EV_P_ ev_tstamp max_block)
1064{ 1568{
1065 int i; 1569 int i;
1066 1570
1067#if EV_USE_MONOTONIC 1571#if EV_USE_MONOTONIC
1068 if (expect_true (have_monotonic)) 1572 if (expect_true (have_monotonic))
1069 { 1573 {
1070 if (time_update_monotonic (EV_A)) 1574 ev_tstamp odiff = rtmn_diff;
1575
1576 mn_now = get_clock ();
1577
1578 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1579 /* interpolate in the meantime */
1580 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1071 { 1581 {
1072 ev_tstamp odiff = rtmn_diff; 1582 ev_rt_now = rtmn_diff + mn_now;
1583 return;
1584 }
1073 1585
1586 now_floor = mn_now;
1587 ev_rt_now = ev_time ();
1588
1074 for (i = 4; --i; ) /* loop a few times, before making important decisions */ 1589 /* loop a few times, before making important decisions.
1590 * on the choice of "4": one iteration isn't enough,
1591 * in case we get preempted during the calls to
1592 * ev_time and get_clock. a second call is almost guaranteed
1593 * to succeed in that case, though. and looping a few more times
1594 * doesn't hurt either as we only do this on time-jumps or
1595 * in the unlikely event of having been preempted here.
1596 */
1597 for (i = 4; --i; )
1075 { 1598 {
1076 rtmn_diff = rt_now - mn_now; 1599 rtmn_diff = ev_rt_now - mn_now;
1077 1600
1078 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1601 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1079 return; /* all is well */ 1602 return; /* all is well */
1080 1603
1081 rt_now = ev_time (); 1604 ev_rt_now = ev_time ();
1082 mn_now = get_clock (); 1605 mn_now = get_clock ();
1083 now_floor = mn_now; 1606 now_floor = mn_now;
1084 } 1607 }
1085 1608
1609# if EV_PERIODIC_ENABLE
1610 periodics_reschedule (EV_A);
1611# endif
1612 /* no timer adjustment, as the monotonic clock doesn't jump */
1613 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1614 }
1615 else
1616#endif
1617 {
1618 ev_rt_now = ev_time ();
1619
1620 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1621 {
1622#if EV_PERIODIC_ENABLE
1086 periodics_reschedule (EV_A); 1623 periodics_reschedule (EV_A);
1087 /* no timer adjustment, as the monotonic clock doesn't jump */ 1624#endif
1088 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1625 /* adjust timers. this is easy, as the offset is the same for all of them */
1626 for (i = 1; i <= timercnt; ++i)
1627 ev_at (timers [i]) += ev_rt_now - mn_now;
1089 } 1628 }
1090 }
1091 else
1092#endif
1093 {
1094 rt_now = ev_time ();
1095 1629
1096 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1097 {
1098 periodics_reschedule (EV_A);
1099
1100 /* adjust timers. this is easy, as the offset is the same for all */
1101 for (i = 0; i < timercnt; ++i)
1102 ((WT)timers [i])->at += rt_now - mn_now;
1103 }
1104
1105 mn_now = rt_now; 1630 mn_now = ev_rt_now;
1106 } 1631 }
1107} 1632}
1108 1633
1109void 1634void
1110ev_ref (EV_P) 1635ev_ref (EV_P)
1121static int loop_done; 1646static int loop_done;
1122 1647
1123void 1648void
1124ev_loop (EV_P_ int flags) 1649ev_loop (EV_P_ int flags)
1125{ 1650{
1126 double block; 1651 loop_done = EVUNLOOP_CANCEL;
1127 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1652
1653 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1128 1654
1129 do 1655 do
1130 { 1656 {
1657#ifndef _WIN32
1658 if (expect_false (curpid)) /* penalise the forking check even more */
1659 if (expect_false (getpid () != curpid))
1660 {
1661 curpid = getpid ();
1662 postfork = 1;
1663 }
1664#endif
1665
1666#if EV_FORK_ENABLE
1667 /* we might have forked, so queue fork handlers */
1668 if (expect_false (postfork))
1669 if (forkcnt)
1670 {
1671 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1672 call_pending (EV_A);
1673 }
1674#endif
1675
1131 /* queue check watchers (and execute them) */ 1676 /* queue prepare watchers (and execute them) */
1132 if (expect_false (preparecnt)) 1677 if (expect_false (preparecnt))
1133 { 1678 {
1134 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1679 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1135 call_pending (EV_A); 1680 call_pending (EV_A);
1136 } 1681 }
1137 1682
1683 if (expect_false (!activecnt))
1684 break;
1685
1138 /* we might have forked, so reify kernel state if necessary */ 1686 /* we might have forked, so reify kernel state if necessary */
1139 if (expect_false (postfork)) 1687 if (expect_false (postfork))
1140 loop_fork (EV_A); 1688 loop_fork (EV_A);
1141 1689
1142 /* update fd-related kernel structures */ 1690 /* update fd-related kernel structures */
1143 fd_reify (EV_A); 1691 fd_reify (EV_A);
1144 1692
1145 /* calculate blocking time */ 1693 /* calculate blocking time */
1694 {
1695 ev_tstamp waittime = 0.;
1696 ev_tstamp sleeptime = 0.;
1146 1697
1147 /* we only need this for !monotonic clock or timers, but as we basically 1698 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1148 always have timers, we just calculate it always */
1149#if EV_USE_MONOTONIC
1150 if (expect_true (have_monotonic))
1151 time_update_monotonic (EV_A);
1152 else
1153#endif
1154 { 1699 {
1155 rt_now = ev_time (); 1700 /* update time to cancel out callback processing overhead */
1156 mn_now = rt_now; 1701 time_update (EV_A_ 1e100);
1157 }
1158 1702
1159 if (flags & EVLOOP_NONBLOCK || idlecnt)
1160 block = 0.;
1161 else
1162 {
1163 block = MAX_BLOCKTIME; 1703 waittime = MAX_BLOCKTIME;
1164 1704
1165 if (timercnt) 1705 if (timercnt)
1166 { 1706 {
1167 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1707 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1168 if (block > to) block = to; 1708 if (waittime > to) waittime = to;
1169 } 1709 }
1170 1710
1711#if EV_PERIODIC_ENABLE
1171 if (periodiccnt) 1712 if (periodiccnt)
1172 { 1713 {
1173 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge; 1714 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1174 if (block > to) block = to; 1715 if (waittime > to) waittime = to;
1175 } 1716 }
1717#endif
1176 1718
1177 if (block < 0.) block = 0.; 1719 if (expect_false (waittime < timeout_blocktime))
1720 waittime = timeout_blocktime;
1721
1722 sleeptime = waittime - backend_fudge;
1723
1724 if (expect_true (sleeptime > io_blocktime))
1725 sleeptime = io_blocktime;
1726
1727 if (sleeptime)
1728 {
1729 ev_sleep (sleeptime);
1730 waittime -= sleeptime;
1731 }
1178 } 1732 }
1179 1733
1180 method_poll (EV_A_ block); 1734 ++loop_count;
1735 backend_poll (EV_A_ waittime);
1181 1736
1182 /* update rt_now, do magic */ 1737 /* update ev_rt_now, do magic */
1183 time_update (EV_A); 1738 time_update (EV_A_ waittime + sleeptime);
1739 }
1184 1740
1185 /* queue pending timers and reschedule them */ 1741 /* queue pending timers and reschedule them */
1186 timers_reify (EV_A); /* relative timers called last */ 1742 timers_reify (EV_A); /* relative timers called last */
1743#if EV_PERIODIC_ENABLE
1187 periodics_reify (EV_A); /* absolute timers called first */ 1744 periodics_reify (EV_A); /* absolute timers called first */
1745#endif
1188 1746
1747#if EV_IDLE_ENABLE
1189 /* queue idle watchers unless io or timers are pending */ 1748 /* queue idle watchers unless other events are pending */
1190 if (idlecnt && !any_pending (EV_A)) 1749 idle_reify (EV_A);
1191 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1750#endif
1192 1751
1193 /* queue check watchers, to be executed first */ 1752 /* queue check watchers, to be executed first */
1194 if (checkcnt) 1753 if (expect_false (checkcnt))
1195 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1754 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1196 1755
1197 call_pending (EV_A); 1756 call_pending (EV_A);
1198 } 1757 }
1199 while (activecnt && !loop_done); 1758 while (expect_true (
1759 activecnt
1760 && !loop_done
1761 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1762 ));
1200 1763
1201 if (loop_done != 2) 1764 if (loop_done == EVUNLOOP_ONE)
1202 loop_done = 0; 1765 loop_done = EVUNLOOP_CANCEL;
1203} 1766}
1204 1767
1205void 1768void
1206ev_unloop (EV_P_ int how) 1769ev_unloop (EV_P_ int how)
1207{ 1770{
1208 loop_done = how; 1771 loop_done = how;
1209} 1772}
1210 1773
1211/*****************************************************************************/ 1774/*****************************************************************************/
1212 1775
1213inline void 1776void inline_size
1214wlist_add (WL *head, WL elem) 1777wlist_add (WL *head, WL elem)
1215{ 1778{
1216 elem->next = *head; 1779 elem->next = *head;
1217 *head = elem; 1780 *head = elem;
1218} 1781}
1219 1782
1220inline void 1783void inline_size
1221wlist_del (WL *head, WL elem) 1784wlist_del (WL *head, WL elem)
1222{ 1785{
1223 while (*head) 1786 while (*head)
1224 { 1787 {
1225 if (*head == elem) 1788 if (*head == elem)
1230 1793
1231 head = &(*head)->next; 1794 head = &(*head)->next;
1232 } 1795 }
1233} 1796}
1234 1797
1235inline void 1798void inline_speed
1236ev_clear_pending (EV_P_ W w) 1799clear_pending (EV_P_ W w)
1237{ 1800{
1238 if (w->pending) 1801 if (w->pending)
1239 { 1802 {
1240 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1803 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1241 w->pending = 0; 1804 w->pending = 0;
1242 } 1805 }
1243} 1806}
1244 1807
1245inline void 1808int
1809ev_clear_pending (EV_P_ void *w)
1810{
1811 W w_ = (W)w;
1812 int pending = w_->pending;
1813
1814 if (expect_true (pending))
1815 {
1816 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1817 w_->pending = 0;
1818 p->w = 0;
1819 return p->events;
1820 }
1821 else
1822 return 0;
1823}
1824
1825void inline_size
1826pri_adjust (EV_P_ W w)
1827{
1828 int pri = w->priority;
1829 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1830 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1831 w->priority = pri;
1832}
1833
1834void inline_speed
1246ev_start (EV_P_ W w, int active) 1835ev_start (EV_P_ W w, int active)
1247{ 1836{
1248 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1837 pri_adjust (EV_A_ w);
1249 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1250
1251 w->active = active; 1838 w->active = active;
1252 ev_ref (EV_A); 1839 ev_ref (EV_A);
1253} 1840}
1254 1841
1255inline void 1842void inline_size
1256ev_stop (EV_P_ W w) 1843ev_stop (EV_P_ W w)
1257{ 1844{
1258 ev_unref (EV_A); 1845 ev_unref (EV_A);
1259 w->active = 0; 1846 w->active = 0;
1260} 1847}
1261 1848
1262/*****************************************************************************/ 1849/*****************************************************************************/
1263 1850
1264void 1851void noinline
1265ev_io_start (EV_P_ struct ev_io *w) 1852ev_io_start (EV_P_ ev_io *w)
1266{ 1853{
1267 int fd = w->fd; 1854 int fd = w->fd;
1268 1855
1269 if (ev_is_active (w)) 1856 if (expect_false (ev_is_active (w)))
1270 return; 1857 return;
1271 1858
1272 assert (("ev_io_start called with negative fd", fd >= 0)); 1859 assert (("ev_io_start called with negative fd", fd >= 0));
1273 1860
1274 ev_start (EV_A_ (W)w, 1); 1861 ev_start (EV_A_ (W)w, 1);
1275 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1862 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1276 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1863 wlist_add (&anfds[fd].head, (WL)w);
1277 1864
1278 fd_change (EV_A_ fd); 1865 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1866 w->events &= ~EV_IOFDSET;
1279} 1867}
1280 1868
1281void 1869void noinline
1282ev_io_stop (EV_P_ struct ev_io *w) 1870ev_io_stop (EV_P_ ev_io *w)
1283{ 1871{
1284 ev_clear_pending (EV_A_ (W)w); 1872 clear_pending (EV_A_ (W)w);
1285 if (!ev_is_active (w)) 1873 if (expect_false (!ev_is_active (w)))
1286 return; 1874 return;
1287 1875
1876 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1877
1288 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1878 wlist_del (&anfds[w->fd].head, (WL)w);
1289 ev_stop (EV_A_ (W)w); 1879 ev_stop (EV_A_ (W)w);
1290 1880
1291 fd_change (EV_A_ w->fd); 1881 fd_change (EV_A_ w->fd, 1);
1292} 1882}
1293 1883
1294void 1884void noinline
1295ev_timer_start (EV_P_ struct ev_timer *w) 1885ev_timer_start (EV_P_ ev_timer *w)
1886{
1887 if (expect_false (ev_is_active (w)))
1888 return;
1889
1890 ev_at (w) += mn_now;
1891
1892 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1893
1894 ev_start (EV_A_ (W)w, ++timercnt);
1895 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1896 timers [timercnt] = (WT)w;
1897 upheap (timers, timercnt);
1898
1899 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/
1900}
1901
1902void noinline
1903ev_timer_stop (EV_P_ ev_timer *w)
1904{
1905 clear_pending (EV_A_ (W)w);
1906 if (expect_false (!ev_is_active (w)))
1907 return;
1908
1909 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w));
1910
1911 {
1912 int active = ((W)w)->active;
1913
1914 if (expect_true (active < timercnt))
1915 {
1916 timers [active] = timers [timercnt];
1917 adjustheap (timers, timercnt, active);
1918 }
1919
1920 --timercnt;
1921 }
1922
1923 ev_at (w) -= mn_now;
1924
1925 ev_stop (EV_A_ (W)w);
1926}
1927
1928void noinline
1929ev_timer_again (EV_P_ ev_timer *w)
1296{ 1930{
1297 if (ev_is_active (w)) 1931 if (ev_is_active (w))
1298 return;
1299
1300 ((WT)w)->at += mn_now;
1301
1302 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1303
1304 ev_start (EV_A_ (W)w, ++timercnt);
1305 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
1306 timers [timercnt - 1] = w;
1307 upheap ((WT *)timers, timercnt - 1);
1308
1309 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1310}
1311
1312void
1313ev_timer_stop (EV_P_ struct ev_timer *w)
1314{
1315 ev_clear_pending (EV_A_ (W)w);
1316 if (!ev_is_active (w))
1317 return;
1318
1319 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1320
1321 if (((W)w)->active < timercnt--)
1322 {
1323 timers [((W)w)->active - 1] = timers [timercnt];
1324 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
1325 }
1326
1327 ((WT)w)->at = w->repeat;
1328
1329 ev_stop (EV_A_ (W)w);
1330}
1331
1332void
1333ev_timer_again (EV_P_ struct ev_timer *w)
1334{
1335 if (ev_is_active (w))
1336 { 1932 {
1337 if (w->repeat) 1933 if (w->repeat)
1934 {
1935 ev_at (w) = mn_now + w->repeat;
1338 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat); 1936 adjustheap (timers, timercnt, ((W)w)->active);
1937 }
1339 else 1938 else
1340 ev_timer_stop (EV_A_ w); 1939 ev_timer_stop (EV_A_ w);
1341 } 1940 }
1342 else if (w->repeat) 1941 else if (w->repeat)
1942 {
1943 w->at = w->repeat;
1343 ev_timer_start (EV_A_ w); 1944 ev_timer_start (EV_A_ w);
1945 }
1344} 1946}
1345 1947
1346void 1948#if EV_PERIODIC_ENABLE
1949void noinline
1347ev_periodic_start (EV_P_ struct ev_periodic *w) 1950ev_periodic_start (EV_P_ ev_periodic *w)
1348{ 1951{
1349 if (ev_is_active (w)) 1952 if (expect_false (ev_is_active (w)))
1350 return; 1953 return;
1351 1954
1352 if (w->reschedule_cb) 1955 if (w->reschedule_cb)
1353 ((WT)w)->at = w->reschedule_cb (w, rt_now); 1956 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1354 else if (w->interval) 1957 else if (w->interval)
1355 { 1958 {
1356 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1959 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1357 /* this formula differs from the one in periodic_reify because we do not always round up */ 1960 /* this formula differs from the one in periodic_reify because we do not always round up */
1358 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval; 1961 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1359 } 1962 }
1963 else
1964 ev_at (w) = w->offset;
1360 1965
1361 ev_start (EV_A_ (W)w, ++periodiccnt); 1966 ev_start (EV_A_ (W)w, ++periodiccnt);
1362 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void)); 1967 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1363 periodics [periodiccnt - 1] = w; 1968 periodics [periodiccnt] = (WT)w;
1364 upheap ((WT *)periodics, periodiccnt - 1); 1969 upheap (periodics, periodiccnt);
1365 1970
1366 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1971 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1367} 1972}
1368 1973
1369void 1974void noinline
1370ev_periodic_stop (EV_P_ struct ev_periodic *w) 1975ev_periodic_stop (EV_P_ ev_periodic *w)
1371{ 1976{
1372 ev_clear_pending (EV_A_ (W)w); 1977 clear_pending (EV_A_ (W)w);
1373 if (!ev_is_active (w)) 1978 if (expect_false (!ev_is_active (w)))
1374 return; 1979 return;
1375 1980
1376 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1981 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w));
1377 1982
1378 if (((W)w)->active < periodiccnt--) 1983 {
1984 int active = ((W)w)->active;
1985
1986 if (expect_true (active < periodiccnt))
1379 { 1987 {
1380 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1988 periodics [active] = periodics [periodiccnt];
1381 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1989 adjustheap (periodics, periodiccnt, active);
1382 } 1990 }
1991
1992 --periodiccnt;
1993 }
1383 1994
1384 ev_stop (EV_A_ (W)w); 1995 ev_stop (EV_A_ (W)w);
1385} 1996}
1386 1997
1387void 1998void noinline
1388ev_periodic_again (EV_P_ struct ev_periodic *w) 1999ev_periodic_again (EV_P_ ev_periodic *w)
1389{ 2000{
1390 /* TODO: use adjustheap and recalculation */ 2001 /* TODO: use adjustheap and recalculation */
1391 ev_periodic_stop (EV_A_ w); 2002 ev_periodic_stop (EV_A_ w);
1392 ev_periodic_start (EV_A_ w); 2003 ev_periodic_start (EV_A_ w);
1393} 2004}
1394 2005#endif
1395void
1396ev_idle_start (EV_P_ struct ev_idle *w)
1397{
1398 if (ev_is_active (w))
1399 return;
1400
1401 ev_start (EV_A_ (W)w, ++idlecnt);
1402 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1403 idles [idlecnt - 1] = w;
1404}
1405
1406void
1407ev_idle_stop (EV_P_ struct ev_idle *w)
1408{
1409 ev_clear_pending (EV_A_ (W)w);
1410 if (ev_is_active (w))
1411 return;
1412
1413 idles [((W)w)->active - 1] = idles [--idlecnt];
1414 ev_stop (EV_A_ (W)w);
1415}
1416
1417void
1418ev_prepare_start (EV_P_ struct ev_prepare *w)
1419{
1420 if (ev_is_active (w))
1421 return;
1422
1423 ev_start (EV_A_ (W)w, ++preparecnt);
1424 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1425 prepares [preparecnt - 1] = w;
1426}
1427
1428void
1429ev_prepare_stop (EV_P_ struct ev_prepare *w)
1430{
1431 ev_clear_pending (EV_A_ (W)w);
1432 if (ev_is_active (w))
1433 return;
1434
1435 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1436 ev_stop (EV_A_ (W)w);
1437}
1438
1439void
1440ev_check_start (EV_P_ struct ev_check *w)
1441{
1442 if (ev_is_active (w))
1443 return;
1444
1445 ev_start (EV_A_ (W)w, ++checkcnt);
1446 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1447 checks [checkcnt - 1] = w;
1448}
1449
1450void
1451ev_check_stop (EV_P_ struct ev_check *w)
1452{
1453 ev_clear_pending (EV_A_ (W)w);
1454 if (ev_is_active (w))
1455 return;
1456
1457 checks [((W)w)->active - 1] = checks [--checkcnt];
1458 ev_stop (EV_A_ (W)w);
1459}
1460 2006
1461#ifndef SA_RESTART 2007#ifndef SA_RESTART
1462# define SA_RESTART 0 2008# define SA_RESTART 0
1463#endif 2009#endif
1464 2010
1465void 2011void noinline
1466ev_signal_start (EV_P_ struct ev_signal *w) 2012ev_signal_start (EV_P_ ev_signal *w)
1467{ 2013{
1468#if EV_MULTIPLICITY 2014#if EV_MULTIPLICITY
1469 assert (("signal watchers are only supported in the default loop", loop == default_loop)); 2015 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1470#endif 2016#endif
1471 if (ev_is_active (w)) 2017 if (expect_false (ev_is_active (w)))
1472 return; 2018 return;
1473 2019
1474 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2020 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1475 2021
2022 evpipe_init (EV_A);
2023
2024 {
2025#ifndef _WIN32
2026 sigset_t full, prev;
2027 sigfillset (&full);
2028 sigprocmask (SIG_SETMASK, &full, &prev);
2029#endif
2030
2031 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2032
2033#ifndef _WIN32
2034 sigprocmask (SIG_SETMASK, &prev, 0);
2035#endif
2036 }
2037
1476 ev_start (EV_A_ (W)w, 1); 2038 ev_start (EV_A_ (W)w, 1);
1477 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1478 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2039 wlist_add (&signals [w->signum - 1].head, (WL)w);
1479 2040
1480 if (!((WL)w)->next) 2041 if (!((WL)w)->next)
1481 { 2042 {
1482#if WIN32 2043#if _WIN32
1483 signal (w->signum, sighandler); 2044 signal (w->signum, ev_sighandler);
1484#else 2045#else
1485 struct sigaction sa; 2046 struct sigaction sa;
1486 sa.sa_handler = sighandler; 2047 sa.sa_handler = ev_sighandler;
1487 sigfillset (&sa.sa_mask); 2048 sigfillset (&sa.sa_mask);
1488 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2049 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1489 sigaction (w->signum, &sa, 0); 2050 sigaction (w->signum, &sa, 0);
1490#endif 2051#endif
1491 } 2052 }
1492} 2053}
1493 2054
1494void 2055void noinline
1495ev_signal_stop (EV_P_ struct ev_signal *w) 2056ev_signal_stop (EV_P_ ev_signal *w)
1496{ 2057{
1497 ev_clear_pending (EV_A_ (W)w); 2058 clear_pending (EV_A_ (W)w);
1498 if (!ev_is_active (w)) 2059 if (expect_false (!ev_is_active (w)))
1499 return; 2060 return;
1500 2061
1501 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2062 wlist_del (&signals [w->signum - 1].head, (WL)w);
1502 ev_stop (EV_A_ (W)w); 2063 ev_stop (EV_A_ (W)w);
1503 2064
1504 if (!signals [w->signum - 1].head) 2065 if (!signals [w->signum - 1].head)
1505 signal (w->signum, SIG_DFL); 2066 signal (w->signum, SIG_DFL);
1506} 2067}
1507 2068
1508void 2069void
1509ev_child_start (EV_P_ struct ev_child *w) 2070ev_child_start (EV_P_ ev_child *w)
1510{ 2071{
1511#if EV_MULTIPLICITY 2072#if EV_MULTIPLICITY
1512 assert (("child watchers are only supported in the default loop", loop == default_loop)); 2073 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1513#endif 2074#endif
1514 if (ev_is_active (w)) 2075 if (expect_false (ev_is_active (w)))
1515 return; 2076 return;
1516 2077
1517 ev_start (EV_A_ (W)w, 1); 2078 ev_start (EV_A_ (W)w, 1);
1518 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2079 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1519} 2080}
1520 2081
1521void 2082void
1522ev_child_stop (EV_P_ struct ev_child *w) 2083ev_child_stop (EV_P_ ev_child *w)
1523{ 2084{
1524 ev_clear_pending (EV_A_ (W)w); 2085 clear_pending (EV_A_ (W)w);
1525 if (ev_is_active (w)) 2086 if (expect_false (!ev_is_active (w)))
1526 return; 2087 return;
1527 2088
1528 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2089 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1529 ev_stop (EV_A_ (W)w); 2090 ev_stop (EV_A_ (W)w);
1530} 2091}
1531 2092
2093#if EV_STAT_ENABLE
2094
2095# ifdef _WIN32
2096# undef lstat
2097# define lstat(a,b) _stati64 (a,b)
2098# endif
2099
2100#define DEF_STAT_INTERVAL 5.0074891
2101#define MIN_STAT_INTERVAL 0.1074891
2102
2103static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2104
2105#if EV_USE_INOTIFY
2106# define EV_INOTIFY_BUFSIZE 8192
2107
2108static void noinline
2109infy_add (EV_P_ ev_stat *w)
2110{
2111 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2112
2113 if (w->wd < 0)
2114 {
2115 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2116
2117 /* monitor some parent directory for speedup hints */
2118 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2119 {
2120 char path [4096];
2121 strcpy (path, w->path);
2122
2123 do
2124 {
2125 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2126 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2127
2128 char *pend = strrchr (path, '/');
2129
2130 if (!pend)
2131 break; /* whoops, no '/', complain to your admin */
2132
2133 *pend = 0;
2134 w->wd = inotify_add_watch (fs_fd, path, mask);
2135 }
2136 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2137 }
2138 }
2139 else
2140 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2141
2142 if (w->wd >= 0)
2143 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2144}
2145
2146static void noinline
2147infy_del (EV_P_ ev_stat *w)
2148{
2149 int slot;
2150 int wd = w->wd;
2151
2152 if (wd < 0)
2153 return;
2154
2155 w->wd = -2;
2156 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2157 wlist_del (&fs_hash [slot].head, (WL)w);
2158
2159 /* remove this watcher, if others are watching it, they will rearm */
2160 inotify_rm_watch (fs_fd, wd);
2161}
2162
2163static void noinline
2164infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2165{
2166 if (slot < 0)
2167 /* overflow, need to check for all hahs slots */
2168 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2169 infy_wd (EV_A_ slot, wd, ev);
2170 else
2171 {
2172 WL w_;
2173
2174 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2175 {
2176 ev_stat *w = (ev_stat *)w_;
2177 w_ = w_->next; /* lets us remove this watcher and all before it */
2178
2179 if (w->wd == wd || wd == -1)
2180 {
2181 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2182 {
2183 w->wd = -1;
2184 infy_add (EV_A_ w); /* re-add, no matter what */
2185 }
2186
2187 stat_timer_cb (EV_A_ &w->timer, 0);
2188 }
2189 }
2190 }
2191}
2192
2193static void
2194infy_cb (EV_P_ ev_io *w, int revents)
2195{
2196 char buf [EV_INOTIFY_BUFSIZE];
2197 struct inotify_event *ev = (struct inotify_event *)buf;
2198 int ofs;
2199 int len = read (fs_fd, buf, sizeof (buf));
2200
2201 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2202 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2203}
2204
2205void inline_size
2206infy_init (EV_P)
2207{
2208 if (fs_fd != -2)
2209 return;
2210
2211 fs_fd = inotify_init ();
2212
2213 if (fs_fd >= 0)
2214 {
2215 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2216 ev_set_priority (&fs_w, EV_MAXPRI);
2217 ev_io_start (EV_A_ &fs_w);
2218 }
2219}
2220
2221void inline_size
2222infy_fork (EV_P)
2223{
2224 int slot;
2225
2226 if (fs_fd < 0)
2227 return;
2228
2229 close (fs_fd);
2230 fs_fd = inotify_init ();
2231
2232 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2233 {
2234 WL w_ = fs_hash [slot].head;
2235 fs_hash [slot].head = 0;
2236
2237 while (w_)
2238 {
2239 ev_stat *w = (ev_stat *)w_;
2240 w_ = w_->next; /* lets us add this watcher */
2241
2242 w->wd = -1;
2243
2244 if (fs_fd >= 0)
2245 infy_add (EV_A_ w); /* re-add, no matter what */
2246 else
2247 ev_timer_start (EV_A_ &w->timer);
2248 }
2249
2250 }
2251}
2252
2253#endif
2254
2255void
2256ev_stat_stat (EV_P_ ev_stat *w)
2257{
2258 if (lstat (w->path, &w->attr) < 0)
2259 w->attr.st_nlink = 0;
2260 else if (!w->attr.st_nlink)
2261 w->attr.st_nlink = 1;
2262}
2263
2264static void noinline
2265stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2266{
2267 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2268
2269 /* we copy this here each the time so that */
2270 /* prev has the old value when the callback gets invoked */
2271 w->prev = w->attr;
2272 ev_stat_stat (EV_A_ w);
2273
2274 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2275 if (
2276 w->prev.st_dev != w->attr.st_dev
2277 || w->prev.st_ino != w->attr.st_ino
2278 || w->prev.st_mode != w->attr.st_mode
2279 || w->prev.st_nlink != w->attr.st_nlink
2280 || w->prev.st_uid != w->attr.st_uid
2281 || w->prev.st_gid != w->attr.st_gid
2282 || w->prev.st_rdev != w->attr.st_rdev
2283 || w->prev.st_size != w->attr.st_size
2284 || w->prev.st_atime != w->attr.st_atime
2285 || w->prev.st_mtime != w->attr.st_mtime
2286 || w->prev.st_ctime != w->attr.st_ctime
2287 ) {
2288 #if EV_USE_INOTIFY
2289 infy_del (EV_A_ w);
2290 infy_add (EV_A_ w);
2291 ev_stat_stat (EV_A_ w); /* avoid race... */
2292 #endif
2293
2294 ev_feed_event (EV_A_ w, EV_STAT);
2295 }
2296}
2297
2298void
2299ev_stat_start (EV_P_ ev_stat *w)
2300{
2301 if (expect_false (ev_is_active (w)))
2302 return;
2303
2304 /* since we use memcmp, we need to clear any padding data etc. */
2305 memset (&w->prev, 0, sizeof (ev_statdata));
2306 memset (&w->attr, 0, sizeof (ev_statdata));
2307
2308 ev_stat_stat (EV_A_ w);
2309
2310 if (w->interval < MIN_STAT_INTERVAL)
2311 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2312
2313 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2314 ev_set_priority (&w->timer, ev_priority (w));
2315
2316#if EV_USE_INOTIFY
2317 infy_init (EV_A);
2318
2319 if (fs_fd >= 0)
2320 infy_add (EV_A_ w);
2321 else
2322#endif
2323 ev_timer_start (EV_A_ &w->timer);
2324
2325 ev_start (EV_A_ (W)w, 1);
2326}
2327
2328void
2329ev_stat_stop (EV_P_ ev_stat *w)
2330{
2331 clear_pending (EV_A_ (W)w);
2332 if (expect_false (!ev_is_active (w)))
2333 return;
2334
2335#if EV_USE_INOTIFY
2336 infy_del (EV_A_ w);
2337#endif
2338 ev_timer_stop (EV_A_ &w->timer);
2339
2340 ev_stop (EV_A_ (W)w);
2341}
2342#endif
2343
2344#if EV_IDLE_ENABLE
2345void
2346ev_idle_start (EV_P_ ev_idle *w)
2347{
2348 if (expect_false (ev_is_active (w)))
2349 return;
2350
2351 pri_adjust (EV_A_ (W)w);
2352
2353 {
2354 int active = ++idlecnt [ABSPRI (w)];
2355
2356 ++idleall;
2357 ev_start (EV_A_ (W)w, active);
2358
2359 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2360 idles [ABSPRI (w)][active - 1] = w;
2361 }
2362}
2363
2364void
2365ev_idle_stop (EV_P_ ev_idle *w)
2366{
2367 clear_pending (EV_A_ (W)w);
2368 if (expect_false (!ev_is_active (w)))
2369 return;
2370
2371 {
2372 int active = ((W)w)->active;
2373
2374 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2375 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2376
2377 ev_stop (EV_A_ (W)w);
2378 --idleall;
2379 }
2380}
2381#endif
2382
2383void
2384ev_prepare_start (EV_P_ ev_prepare *w)
2385{
2386 if (expect_false (ev_is_active (w)))
2387 return;
2388
2389 ev_start (EV_A_ (W)w, ++preparecnt);
2390 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2391 prepares [preparecnt - 1] = w;
2392}
2393
2394void
2395ev_prepare_stop (EV_P_ ev_prepare *w)
2396{
2397 clear_pending (EV_A_ (W)w);
2398 if (expect_false (!ev_is_active (w)))
2399 return;
2400
2401 {
2402 int active = ((W)w)->active;
2403 prepares [active - 1] = prepares [--preparecnt];
2404 ((W)prepares [active - 1])->active = active;
2405 }
2406
2407 ev_stop (EV_A_ (W)w);
2408}
2409
2410void
2411ev_check_start (EV_P_ ev_check *w)
2412{
2413 if (expect_false (ev_is_active (w)))
2414 return;
2415
2416 ev_start (EV_A_ (W)w, ++checkcnt);
2417 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2418 checks [checkcnt - 1] = w;
2419}
2420
2421void
2422ev_check_stop (EV_P_ ev_check *w)
2423{
2424 clear_pending (EV_A_ (W)w);
2425 if (expect_false (!ev_is_active (w)))
2426 return;
2427
2428 {
2429 int active = ((W)w)->active;
2430 checks [active - 1] = checks [--checkcnt];
2431 ((W)checks [active - 1])->active = active;
2432 }
2433
2434 ev_stop (EV_A_ (W)w);
2435}
2436
2437#if EV_EMBED_ENABLE
2438void noinline
2439ev_embed_sweep (EV_P_ ev_embed *w)
2440{
2441 ev_loop (w->other, EVLOOP_NONBLOCK);
2442}
2443
2444static void
2445embed_io_cb (EV_P_ ev_io *io, int revents)
2446{
2447 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2448
2449 if (ev_cb (w))
2450 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2451 else
2452 ev_loop (w->other, EVLOOP_NONBLOCK);
2453}
2454
2455static void
2456embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2457{
2458 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2459
2460 {
2461 struct ev_loop *loop = w->other;
2462
2463 while (fdchangecnt)
2464 {
2465 fd_reify (EV_A);
2466 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2467 }
2468 }
2469}
2470
2471#if 0
2472static void
2473embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2474{
2475 ev_idle_stop (EV_A_ idle);
2476}
2477#endif
2478
2479void
2480ev_embed_start (EV_P_ ev_embed *w)
2481{
2482 if (expect_false (ev_is_active (w)))
2483 return;
2484
2485 {
2486 struct ev_loop *loop = w->other;
2487 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2488 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2489 }
2490
2491 ev_set_priority (&w->io, ev_priority (w));
2492 ev_io_start (EV_A_ &w->io);
2493
2494 ev_prepare_init (&w->prepare, embed_prepare_cb);
2495 ev_set_priority (&w->prepare, EV_MINPRI);
2496 ev_prepare_start (EV_A_ &w->prepare);
2497
2498 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2499
2500 ev_start (EV_A_ (W)w, 1);
2501}
2502
2503void
2504ev_embed_stop (EV_P_ ev_embed *w)
2505{
2506 clear_pending (EV_A_ (W)w);
2507 if (expect_false (!ev_is_active (w)))
2508 return;
2509
2510 ev_io_stop (EV_A_ &w->io);
2511 ev_prepare_stop (EV_A_ &w->prepare);
2512
2513 ev_stop (EV_A_ (W)w);
2514}
2515#endif
2516
2517#if EV_FORK_ENABLE
2518void
2519ev_fork_start (EV_P_ ev_fork *w)
2520{
2521 if (expect_false (ev_is_active (w)))
2522 return;
2523
2524 ev_start (EV_A_ (W)w, ++forkcnt);
2525 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2526 forks [forkcnt - 1] = w;
2527}
2528
2529void
2530ev_fork_stop (EV_P_ ev_fork *w)
2531{
2532 clear_pending (EV_A_ (W)w);
2533 if (expect_false (!ev_is_active (w)))
2534 return;
2535
2536 {
2537 int active = ((W)w)->active;
2538 forks [active - 1] = forks [--forkcnt];
2539 ((W)forks [active - 1])->active = active;
2540 }
2541
2542 ev_stop (EV_A_ (W)w);
2543}
2544#endif
2545
2546#if EV_ASYNC_ENABLE
2547void
2548ev_async_start (EV_P_ ev_async *w)
2549{
2550 if (expect_false (ev_is_active (w)))
2551 return;
2552
2553 evpipe_init (EV_A);
2554
2555 ev_start (EV_A_ (W)w, ++asynccnt);
2556 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2557 asyncs [asynccnt - 1] = w;
2558}
2559
2560void
2561ev_async_stop (EV_P_ ev_async *w)
2562{
2563 clear_pending (EV_A_ (W)w);
2564 if (expect_false (!ev_is_active (w)))
2565 return;
2566
2567 {
2568 int active = ((W)w)->active;
2569 asyncs [active - 1] = asyncs [--asynccnt];
2570 ((W)asyncs [active - 1])->active = active;
2571 }
2572
2573 ev_stop (EV_A_ (W)w);
2574}
2575
2576void
2577ev_async_send (EV_P_ ev_async *w)
2578{
2579 w->sent = 1;
2580 evpipe_write (EV_A_ &gotasync);
2581}
2582#endif
2583
1532/*****************************************************************************/ 2584/*****************************************************************************/
1533 2585
1534struct ev_once 2586struct ev_once
1535{ 2587{
1536 struct ev_io io; 2588 ev_io io;
1537 struct ev_timer to; 2589 ev_timer to;
1538 void (*cb)(int revents, void *arg); 2590 void (*cb)(int revents, void *arg);
1539 void *arg; 2591 void *arg;
1540}; 2592};
1541 2593
1542static void 2594static void
1551 2603
1552 cb (revents, arg); 2604 cb (revents, arg);
1553} 2605}
1554 2606
1555static void 2607static void
1556once_cb_io (EV_P_ struct ev_io *w, int revents) 2608once_cb_io (EV_P_ ev_io *w, int revents)
1557{ 2609{
1558 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2610 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1559} 2611}
1560 2612
1561static void 2613static void
1562once_cb_to (EV_P_ struct ev_timer *w, int revents) 2614once_cb_to (EV_P_ ev_timer *w, int revents)
1563{ 2615{
1564 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2616 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1565} 2617}
1566 2618
1567void 2619void
1568ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2620ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1569{ 2621{
1570 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2622 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1571 2623
1572 if (!once) 2624 if (expect_false (!once))
2625 {
1573 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2626 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1574 else 2627 return;
1575 { 2628 }
2629
1576 once->cb = cb; 2630 once->cb = cb;
1577 once->arg = arg; 2631 once->arg = arg;
1578 2632
1579 ev_init (&once->io, once_cb_io); 2633 ev_init (&once->io, once_cb_io);
1580 if (fd >= 0) 2634 if (fd >= 0)
1581 { 2635 {
1582 ev_io_set (&once->io, fd, events); 2636 ev_io_set (&once->io, fd, events);
1583 ev_io_start (EV_A_ &once->io); 2637 ev_io_start (EV_A_ &once->io);
1584 } 2638 }
1585 2639
1586 ev_init (&once->to, once_cb_to); 2640 ev_init (&once->to, once_cb_to);
1587 if (timeout >= 0.) 2641 if (timeout >= 0.)
1588 { 2642 {
1589 ev_timer_set (&once->to, timeout, 0.); 2643 ev_timer_set (&once->to, timeout, 0.);
1590 ev_timer_start (EV_A_ &once->to); 2644 ev_timer_start (EV_A_ &once->to);
1591 }
1592 } 2645 }
1593} 2646}
1594 2647
2648#if EV_MULTIPLICITY
2649 #include "ev_wrap.h"
2650#endif
2651
2652#ifdef __cplusplus
2653}
2654#endif
2655

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines