ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.128 by root, Thu Nov 22 12:28:27 2007 UTC vs.
Revision 1.229 by root, Fri May 2 08:08:45 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
47# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
49# endif 62# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
52# endif 73# endif
53# endif 74# endif
54 75
55# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 111# else
91# define EV_USE_PORT 0 112# define EV_USE_PORT 0
92# endif 113# endif
93# endif 114# endif
94 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
95#endif 132#endif
96 133
97#include <math.h> 134#include <math.h>
98#include <stdlib.h> 135#include <stdlib.h>
99#include <fcntl.h> 136#include <fcntl.h>
106#include <sys/types.h> 143#include <sys/types.h>
107#include <time.h> 144#include <time.h>
108 145
109#include <signal.h> 146#include <signal.h>
110 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
111#ifndef _WIN32 154#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 155# include <sys/time.h>
114# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
115#else 158#else
116# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 160# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
120# endif 163# endif
121#endif 164#endif
122 165
123/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
124 167
125#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
126# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
127#endif 170#endif
128 171
129#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
131#endif 178#endif
132 179
133#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
135#endif 182#endif
141# define EV_USE_POLL 1 188# define EV_USE_POLL 1
142# endif 189# endif
143#endif 190#endif
144 191
145#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
146# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
147#endif 198#endif
148 199
149#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
151#endif 202#endif
152 203
153#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 205# define EV_USE_PORT 0
155#endif 206#endif
156 207
157/**/ 208#ifndef EV_USE_INOTIFY
158 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
159/* darwin simply cannot be helped */ 210# define EV_USE_INOTIFY 1
160#ifdef __APPLE__ 211# else
161# undef EV_USE_POLL 212# define EV_USE_INOTIFY 0
162# undef EV_USE_KQUEUE
163#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
164 241
165#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
166# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
167# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
168#endif 245#endif
170#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
171# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
172# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
173#endif 250#endif
174 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
175#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
176# include <winsock.h> 268# include <winsock.h>
177#endif 269#endif
178 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
179/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
180 294
181#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
182#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
183#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
184/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
185 298
186#ifdef EV_H
187# include EV_H
188#else
189# include "ev.h"
190#endif
191
192#if __GNUC__ >= 3 299#if __GNUC__ >= 4
193# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
194# define inline static inline 301# define noinline __attribute__ ((noinline))
195#else 302#else
196# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
197# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
198#endif 308#endif
199 309
200#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
201#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
202 319
203#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
204#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
205 322
206#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
207#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
208 325
209typedef struct ev_watcher *W; 326typedef ev_watcher *W;
210typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
211typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
212 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
213static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
214 338
215#ifdef _WIN32 339#ifdef _WIN32
216# include "ev_win32.c" 340# include "ev_win32.c"
217#endif 341#endif
218 342
219/*****************************************************************************/ 343/*****************************************************************************/
220 344
221static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
222 346
347void
223void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
224{ 349{
225 syserr_cb = cb; 350 syserr_cb = cb;
226} 351}
227 352
228static void 353static void noinline
229syserr (const char *msg) 354syserr (const char *msg)
230{ 355{
231 if (!msg) 356 if (!msg)
232 msg = "(libev) system error"; 357 msg = "(libev) system error";
233 358
238 perror (msg); 363 perror (msg);
239 abort (); 364 abort ();
240 } 365 }
241} 366}
242 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
243static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
244 384
385void
245void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
246{ 387{
247 alloc = cb; 388 alloc = cb;
248} 389}
249 390
250static void * 391inline_speed void *
251ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
252{ 393{
253 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
254 395
255 if (!ptr && size) 396 if (!ptr && size)
256 { 397 {
257 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
258 abort (); 399 abort ();
279typedef struct 420typedef struct
280{ 421{
281 W w; 422 W w;
282 int events; 423 int events;
283} ANPENDING; 424} ANPENDING;
425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
284 432
285#if EV_MULTIPLICITY 433#if EV_MULTIPLICITY
286 434
287 struct ev_loop 435 struct ev_loop
288 { 436 {
322 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
323 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
324#endif 472#endif
325} 473}
326 474
327inline ev_tstamp 475ev_tstamp inline_size
328get_clock (void) 476get_clock (void)
329{ 477{
330#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
331 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
332 { 480 {
345{ 493{
346 return ev_rt_now; 494 return ev_rt_now;
347} 495}
348#endif 496#endif
349 497
350#define array_roundsize(type,n) (((n) | 4) & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525int inline_size
526array_nextsize (int elem, int cur, int cnt)
527{
528 int ncur = cur + 1;
529
530 do
531 ncur <<= 1;
532 while (cnt > ncur);
533
534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
535 if (elem * ncur > 4096)
536 {
537 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
539 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem;
541 }
542
543 return ncur;
544}
545
546static noinline void *
547array_realloc (int elem, void *base, int *cur, int cnt)
548{
549 *cur = array_nextsize (elem, *cur, cnt);
550 return ev_realloc (base, elem * *cur);
551}
351 552
352#define array_needsize(type,base,cur,cnt,init) \ 553#define array_needsize(type,base,cur,cnt,init) \
353 if (expect_false ((cnt) > cur)) \ 554 if (expect_false ((cnt) > (cur))) \
354 { \ 555 { \
355 int newcnt = cur; \ 556 int ocur_ = (cur); \
356 do \ 557 (base) = (type *)array_realloc \
357 { \ 558 (sizeof (type), (base), &(cur), (cnt)); \
358 newcnt = array_roundsize (type, newcnt << 1); \ 559 init ((base) + (ocur_), (cur) - ocur_); \
359 } \
360 while ((cnt) > newcnt); \
361 \
362 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
363 init (base + cur, newcnt - cur); \
364 cur = newcnt; \
365 } 560 }
366 561
562#if 0
367#define array_slim(type,stem) \ 563#define array_slim(type,stem) \
368 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 564 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
369 { \ 565 { \
370 stem ## max = array_roundsize (stem ## cnt >> 1); \ 566 stem ## max = array_roundsize (stem ## cnt >> 1); \
371 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 567 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
372 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 568 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
373 } 569 }
570#endif
374 571
375#define array_free(stem, idx) \ 572#define array_free(stem, idx) \
376 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 573 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
377 574
378/*****************************************************************************/ 575/*****************************************************************************/
379 576
380static void 577void noinline
578ev_feed_event (EV_P_ void *w, int revents)
579{
580 W w_ = (W)w;
581 int pri = ABSPRI (w_);
582
583 if (expect_false (w_->pending))
584 pendings [pri][w_->pending - 1].events |= revents;
585 else
586 {
587 w_->pending = ++pendingcnt [pri];
588 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
589 pendings [pri][w_->pending - 1].w = w_;
590 pendings [pri][w_->pending - 1].events = revents;
591 }
592}
593
594void inline_speed
595queue_events (EV_P_ W *events, int eventcnt, int type)
596{
597 int i;
598
599 for (i = 0; i < eventcnt; ++i)
600 ev_feed_event (EV_A_ events [i], type);
601}
602
603/*****************************************************************************/
604
605void inline_size
381anfds_init (ANFD *base, int count) 606anfds_init (ANFD *base, int count)
382{ 607{
383 while (count--) 608 while (count--)
384 { 609 {
385 base->head = 0; 610 base->head = 0;
388 613
389 ++base; 614 ++base;
390 } 615 }
391} 616}
392 617
393void 618void inline_speed
394ev_feed_event (EV_P_ void *w, int revents)
395{
396 W w_ = (W)w;
397
398 if (expect_false (w_->pending))
399 {
400 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
401 return;
402 }
403
404 w_->pending = ++pendingcnt [ABSPRI (w_)];
405 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
406 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
407 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
408}
409
410static void
411queue_events (EV_P_ W *events, int eventcnt, int type)
412{
413 int i;
414
415 for (i = 0; i < eventcnt; ++i)
416 ev_feed_event (EV_A_ events [i], type);
417}
418
419inline void
420fd_event (EV_P_ int fd, int revents) 619fd_event (EV_P_ int fd, int revents)
421{ 620{
422 ANFD *anfd = anfds + fd; 621 ANFD *anfd = anfds + fd;
423 struct ev_io *w; 622 ev_io *w;
424 623
425 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 624 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
426 { 625 {
427 int ev = w->events & revents; 626 int ev = w->events & revents;
428 627
429 if (ev) 628 if (ev)
430 ev_feed_event (EV_A_ (W)w, ev); 629 ev_feed_event (EV_A_ (W)w, ev);
432} 631}
433 632
434void 633void
435ev_feed_fd_event (EV_P_ int fd, int revents) 634ev_feed_fd_event (EV_P_ int fd, int revents)
436{ 635{
636 if (fd >= 0 && fd < anfdmax)
437 fd_event (EV_A_ fd, revents); 637 fd_event (EV_A_ fd, revents);
438} 638}
439 639
440/*****************************************************************************/ 640void inline_size
441
442inline void
443fd_reify (EV_P) 641fd_reify (EV_P)
444{ 642{
445 int i; 643 int i;
446 644
447 for (i = 0; i < fdchangecnt; ++i) 645 for (i = 0; i < fdchangecnt; ++i)
448 { 646 {
449 int fd = fdchanges [i]; 647 int fd = fdchanges [i];
450 ANFD *anfd = anfds + fd; 648 ANFD *anfd = anfds + fd;
451 struct ev_io *w; 649 ev_io *w;
452 650
453 int events = 0; 651 unsigned char events = 0;
454 652
455 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
456 events |= w->events; 654 events |= (unsigned char)w->events;
457 655
458#if EV_SELECT_IS_WINSOCKET 656#if EV_SELECT_IS_WINSOCKET
459 if (events) 657 if (events)
460 { 658 {
461 unsigned long argp; 659 unsigned long argp;
660 #ifdef EV_FD_TO_WIN32_HANDLE
661 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
662 #else
462 anfd->handle = _get_osfhandle (fd); 663 anfd->handle = _get_osfhandle (fd);
664 #endif
463 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 665 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
464 } 666 }
465#endif 667#endif
466 668
669 {
670 unsigned char o_events = anfd->events;
671 unsigned char o_reify = anfd->reify;
672
467 anfd->reify = 0; 673 anfd->reify = 0;
468
469 method_modify (EV_A_ fd, anfd->events, events);
470 anfd->events = events; 674 anfd->events = events;
675
676 if (o_events != events || o_reify & EV_IOFDSET)
677 backend_modify (EV_A_ fd, o_events, events);
678 }
471 } 679 }
472 680
473 fdchangecnt = 0; 681 fdchangecnt = 0;
474} 682}
475 683
476static void 684void inline_size
477fd_change (EV_P_ int fd) 685fd_change (EV_P_ int fd, int flags)
478{ 686{
479 if (expect_false (anfds [fd].reify)) 687 unsigned char reify = anfds [fd].reify;
480 return;
481
482 anfds [fd].reify = 1; 688 anfds [fd].reify |= flags;
483 689
690 if (expect_true (!reify))
691 {
484 ++fdchangecnt; 692 ++fdchangecnt;
485 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 693 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
486 fdchanges [fdchangecnt - 1] = fd; 694 fdchanges [fdchangecnt - 1] = fd;
695 }
487} 696}
488 697
489static void 698void inline_speed
490fd_kill (EV_P_ int fd) 699fd_kill (EV_P_ int fd)
491{ 700{
492 struct ev_io *w; 701 ev_io *w;
493 702
494 while ((w = (struct ev_io *)anfds [fd].head)) 703 while ((w = (ev_io *)anfds [fd].head))
495 { 704 {
496 ev_io_stop (EV_A_ w); 705 ev_io_stop (EV_A_ w);
497 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 706 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
498 } 707 }
499} 708}
500 709
501inline int 710int inline_size
502fd_valid (int fd) 711fd_valid (int fd)
503{ 712{
504#ifdef _WIN32 713#ifdef _WIN32
505 return _get_osfhandle (fd) != -1; 714 return _get_osfhandle (fd) != -1;
506#else 715#else
507 return fcntl (fd, F_GETFD) != -1; 716 return fcntl (fd, F_GETFD) != -1;
508#endif 717#endif
509} 718}
510 719
511/* called on EBADF to verify fds */ 720/* called on EBADF to verify fds */
512static void 721static void noinline
513fd_ebadf (EV_P) 722fd_ebadf (EV_P)
514{ 723{
515 int fd; 724 int fd;
516 725
517 for (fd = 0; fd < anfdmax; ++fd) 726 for (fd = 0; fd < anfdmax; ++fd)
519 if (!fd_valid (fd) == -1 && errno == EBADF) 728 if (!fd_valid (fd) == -1 && errno == EBADF)
520 fd_kill (EV_A_ fd); 729 fd_kill (EV_A_ fd);
521} 730}
522 731
523/* called on ENOMEM in select/poll to kill some fds and retry */ 732/* called on ENOMEM in select/poll to kill some fds and retry */
524static void 733static void noinline
525fd_enomem (EV_P) 734fd_enomem (EV_P)
526{ 735{
527 int fd; 736 int fd;
528 737
529 for (fd = anfdmax; fd--; ) 738 for (fd = anfdmax; fd--; )
532 fd_kill (EV_A_ fd); 741 fd_kill (EV_A_ fd);
533 return; 742 return;
534 } 743 }
535} 744}
536 745
537/* usually called after fork if method needs to re-arm all fds from scratch */ 746/* usually called after fork if backend needs to re-arm all fds from scratch */
538static void 747static void noinline
539fd_rearm_all (EV_P) 748fd_rearm_all (EV_P)
540{ 749{
541 int fd; 750 int fd;
542 751
543 /* this should be highly optimised to not do anything but set a flag */
544 for (fd = 0; fd < anfdmax; ++fd) 752 for (fd = 0; fd < anfdmax; ++fd)
545 if (anfds [fd].events) 753 if (anfds [fd].events)
546 { 754 {
547 anfds [fd].events = 0; 755 anfds [fd].events = 0;
548 fd_change (EV_A_ fd); 756 fd_change (EV_A_ fd, EV_IOFDSET | 1);
549 } 757 }
550} 758}
551 759
552/*****************************************************************************/ 760/*****************************************************************************/
553 761
554static void 762/* towards the root */
763void inline_speed
555upheap (WT *heap, int k) 764upheap (WT *heap, int k)
556{ 765{
557 WT w = heap [k]; 766 WT w = heap [k];
558 767
559 while (k && heap [k >> 1]->at > w->at) 768 for (;;)
560 { 769 {
770 int p = k >> 1;
771
772 /* maybe we could use a dummy element at heap [0]? */
773 if (!p || heap [p]->at <= w->at)
774 break;
775
561 heap [k] = heap [k >> 1]; 776 heap [k] = heap [p];
562 ((W)heap [k])->active = k + 1; 777 ((W)heap [k])->active = k;
563 k >>= 1; 778 k = p;
564 } 779 }
565 780
566 heap [k] = w; 781 heap [k] = w;
567 ((W)heap [k])->active = k + 1; 782 ((W)heap [k])->active = k;
568
569} 783}
570 784
571static void 785/* away from the root */
786void inline_speed
572downheap (WT *heap, int N, int k) 787downheap (WT *heap, int N, int k)
573{ 788{
574 WT w = heap [k]; 789 WT w = heap [k];
575 790
576 while (k < (N >> 1)) 791 for (;;)
577 { 792 {
578 int j = k << 1; 793 int c = k << 1;
579 794
580 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 795 if (c > N)
581 ++j;
582
583 if (w->at <= heap [j]->at)
584 break; 796 break;
585 797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
586 heap [k] = heap [j]; 804 heap [k] = heap [c];
587 ((W)heap [k])->active = k + 1; 805 ((W)heap [k])->active = k;
806
588 k = j; 807 k = c;
589 } 808 }
590 809
591 heap [k] = w; 810 heap [k] = w;
592 ((W)heap [k])->active = k + 1; 811 ((W)heap [k])->active = k;
593} 812}
594 813
595inline void 814void inline_size
596adjustheap (WT *heap, int N, int k) 815adjustheap (WT *heap, int N, int k)
597{ 816{
598 upheap (heap, k); 817 upheap (heap, k);
599 downheap (heap, N, k); 818 downheap (heap, N, k);
600} 819}
602/*****************************************************************************/ 821/*****************************************************************************/
603 822
604typedef struct 823typedef struct
605{ 824{
606 WL head; 825 WL head;
607 sig_atomic_t volatile gotsig; 826 EV_ATOMIC_T gotsig;
608} ANSIG; 827} ANSIG;
609 828
610static ANSIG *signals; 829static ANSIG *signals;
611static int signalmax; 830static int signalmax;
612 831
613static int sigpipe [2]; 832static EV_ATOMIC_T gotsig;
614static sig_atomic_t volatile gotsig;
615static struct ev_io sigev;
616 833
617static void 834void inline_size
618signals_init (ANSIG *base, int count) 835signals_init (ANSIG *base, int count)
619{ 836{
620 while (count--) 837 while (count--)
621 { 838 {
622 base->head = 0; 839 base->head = 0;
624 841
625 ++base; 842 ++base;
626 } 843 }
627} 844}
628 845
629static void 846/*****************************************************************************/
630sighandler (int signum)
631{
632#if _WIN32
633 signal (signum, sighandler);
634#endif
635 847
636 signals [signum - 1].gotsig = 1; 848void inline_speed
637
638 if (!gotsig)
639 {
640 int old_errno = errno;
641 gotsig = 1;
642 write (sigpipe [1], &signum, 1);
643 errno = old_errno;
644 }
645}
646
647void
648ev_feed_signal_event (EV_P_ int signum)
649{
650 WL w;
651
652#if EV_MULTIPLICITY
653 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
654#endif
655
656 --signum;
657
658 if (signum < 0 || signum >= signalmax)
659 return;
660
661 signals [signum].gotsig = 0;
662
663 for (w = signals [signum].head; w; w = w->next)
664 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
665}
666
667static void
668sigcb (EV_P_ struct ev_io *iow, int revents)
669{
670 int signum;
671
672 read (sigpipe [0], &revents, 1);
673 gotsig = 0;
674
675 for (signum = signalmax; signum--; )
676 if (signals [signum].gotsig)
677 ev_feed_signal_event (EV_A_ signum + 1);
678}
679
680static void
681fd_intern (int fd) 849fd_intern (int fd)
682{ 850{
683#ifdef _WIN32 851#ifdef _WIN32
684 int arg = 1; 852 int arg = 1;
685 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 853 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
687 fcntl (fd, F_SETFD, FD_CLOEXEC); 855 fcntl (fd, F_SETFD, FD_CLOEXEC);
688 fcntl (fd, F_SETFL, O_NONBLOCK); 856 fcntl (fd, F_SETFL, O_NONBLOCK);
689#endif 857#endif
690} 858}
691 859
860static void noinline
861evpipe_init (EV_P)
862{
863 if (!ev_is_active (&pipeev))
864 {
865#if EV_USE_EVENTFD
866 if ((evfd = eventfd (0, 0)) >= 0)
867 {
868 evpipe [0] = -1;
869 fd_intern (evfd);
870 ev_io_set (&pipeev, evfd, EV_READ);
871 }
872 else
873#endif
874 {
875 while (pipe (evpipe))
876 syserr ("(libev) error creating signal/async pipe");
877
878 fd_intern (evpipe [0]);
879 fd_intern (evpipe [1]);
880 ev_io_set (&pipeev, evpipe [0], EV_READ);
881 }
882
883 ev_io_start (EV_A_ &pipeev);
884 ev_unref (EV_A); /* watcher should not keep loop alive */
885 }
886}
887
888void inline_size
889evpipe_write (EV_P_ EV_ATOMIC_T *flag)
890{
891 if (!*flag)
892 {
893 int old_errno = errno; /* save errno because write might clobber it */
894
895 *flag = 1;
896
897#if EV_USE_EVENTFD
898 if (evfd >= 0)
899 {
900 uint64_t counter = 1;
901 write (evfd, &counter, sizeof (uint64_t));
902 }
903 else
904#endif
905 write (evpipe [1], &old_errno, 1);
906
907 errno = old_errno;
908 }
909}
910
692static void 911static void
693siginit (EV_P) 912pipecb (EV_P_ ev_io *iow, int revents)
694{ 913{
695 fd_intern (sigpipe [0]); 914#if EV_USE_EVENTFD
696 fd_intern (sigpipe [1]); 915 if (evfd >= 0)
916 {
917 uint64_t counter = 1;
918 read (evfd, &counter, sizeof (uint64_t));
919 }
920 else
921#endif
922 {
923 char dummy;
924 read (evpipe [0], &dummy, 1);
925 }
697 926
698 ev_io_set (&sigev, sigpipe [0], EV_READ); 927 if (gotsig && ev_is_default_loop (EV_A))
699 ev_io_start (EV_A_ &sigev); 928 {
700 ev_unref (EV_A); /* child watcher should not keep loop alive */ 929 int signum;
930 gotsig = 0;
931
932 for (signum = signalmax; signum--; )
933 if (signals [signum].gotsig)
934 ev_feed_signal_event (EV_A_ signum + 1);
935 }
936
937#if EV_ASYNC_ENABLE
938 if (gotasync)
939 {
940 int i;
941 gotasync = 0;
942
943 for (i = asynccnt; i--; )
944 if (asyncs [i]->sent)
945 {
946 asyncs [i]->sent = 0;
947 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
948 }
949 }
950#endif
701} 951}
702 952
703/*****************************************************************************/ 953/*****************************************************************************/
704 954
705static struct ev_child *childs [PID_HASHSIZE]; 955static void
956ev_sighandler (int signum)
957{
958#if EV_MULTIPLICITY
959 struct ev_loop *loop = &default_loop_struct;
960#endif
961
962#if _WIN32
963 signal (signum, ev_sighandler);
964#endif
965
966 signals [signum - 1].gotsig = 1;
967 evpipe_write (EV_A_ &gotsig);
968}
969
970void noinline
971ev_feed_signal_event (EV_P_ int signum)
972{
973 WL w;
974
975#if EV_MULTIPLICITY
976 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
977#endif
978
979 --signum;
980
981 if (signum < 0 || signum >= signalmax)
982 return;
983
984 signals [signum].gotsig = 0;
985
986 for (w = signals [signum].head; w; w = w->next)
987 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
988}
989
990/*****************************************************************************/
991
992static WL childs [EV_PID_HASHSIZE];
706 993
707#ifndef _WIN32 994#ifndef _WIN32
708 995
709static struct ev_signal childev; 996static ev_signal childev;
997
998#ifndef WIFCONTINUED
999# define WIFCONTINUED(status) 0
1000#endif
1001
1002void inline_speed
1003child_reap (EV_P_ int chain, int pid, int status)
1004{
1005 ev_child *w;
1006 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1007
1008 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1009 {
1010 if ((w->pid == pid || !w->pid)
1011 && (!traced || (w->flags & 1)))
1012 {
1013 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1014 w->rpid = pid;
1015 w->rstatus = status;
1016 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1017 }
1018 }
1019}
710 1020
711#ifndef WCONTINUED 1021#ifndef WCONTINUED
712# define WCONTINUED 0 1022# define WCONTINUED 0
713#endif 1023#endif
714 1024
715static void 1025static void
716child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
717{
718 struct ev_child *w;
719
720 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
721 if (w->pid == pid || !w->pid)
722 {
723 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
724 w->rpid = pid;
725 w->rstatus = status;
726 ev_feed_event (EV_A_ (W)w, EV_CHILD);
727 }
728}
729
730static void
731childcb (EV_P_ struct ev_signal *sw, int revents) 1026childcb (EV_P_ ev_signal *sw, int revents)
732{ 1027{
733 int pid, status; 1028 int pid, status;
734 1029
1030 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
735 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1031 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
736 { 1032 if (!WCONTINUED
1033 || errno != EINVAL
1034 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1035 return;
1036
737 /* make sure we are called again until all childs have been reaped */ 1037 /* make sure we are called again until all children have been reaped */
1038 /* we need to do it this way so that the callback gets called before we continue */
738 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1039 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
739 1040
740 child_reap (EV_A_ sw, pid, pid, status); 1041 child_reap (EV_A_ pid, pid, status);
1042 if (EV_PID_HASHSIZE > 1)
741 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1043 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
742 }
743} 1044}
744 1045
745#endif 1046#endif
746 1047
747/*****************************************************************************/ 1048/*****************************************************************************/
773{ 1074{
774 return EV_VERSION_MINOR; 1075 return EV_VERSION_MINOR;
775} 1076}
776 1077
777/* return true if we are running with elevated privileges and should ignore env variables */ 1078/* return true if we are running with elevated privileges and should ignore env variables */
778static int 1079int inline_size
779enable_secure (void) 1080enable_secure (void)
780{ 1081{
781#ifdef _WIN32 1082#ifdef _WIN32
782 return 0; 1083 return 0;
783#else 1084#else
785 || getgid () != getegid (); 1086 || getgid () != getegid ();
786#endif 1087#endif
787} 1088}
788 1089
789unsigned int 1090unsigned int
790ev_method (EV_P) 1091ev_supported_backends (void)
791{ 1092{
792 return method; 1093 unsigned int flags = 0;
793}
794 1094
795static void 1095 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1096 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1097 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1098 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1099 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1100
1101 return flags;
1102}
1103
1104unsigned int
1105ev_recommended_backends (void)
1106{
1107 unsigned int flags = ev_supported_backends ();
1108
1109#ifndef __NetBSD__
1110 /* kqueue is borked on everything but netbsd apparently */
1111 /* it usually doesn't work correctly on anything but sockets and pipes */
1112 flags &= ~EVBACKEND_KQUEUE;
1113#endif
1114#ifdef __APPLE__
1115 // flags &= ~EVBACKEND_KQUEUE; for documentation
1116 flags &= ~EVBACKEND_POLL;
1117#endif
1118
1119 return flags;
1120}
1121
1122unsigned int
1123ev_embeddable_backends (void)
1124{
1125 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1126
1127 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1128 /* please fix it and tell me how to detect the fix */
1129 flags &= ~EVBACKEND_EPOLL;
1130
1131 return flags;
1132}
1133
1134unsigned int
1135ev_backend (EV_P)
1136{
1137 return backend;
1138}
1139
1140unsigned int
1141ev_loop_count (EV_P)
1142{
1143 return loop_count;
1144}
1145
1146void
1147ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 io_blocktime = interval;
1150}
1151
1152void
1153ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1154{
1155 timeout_blocktime = interval;
1156}
1157
1158static void noinline
796loop_init (EV_P_ unsigned int flags) 1159loop_init (EV_P_ unsigned int flags)
797{ 1160{
798 if (!method) 1161 if (!backend)
799 { 1162 {
800#if EV_USE_MONOTONIC 1163#if EV_USE_MONOTONIC
801 { 1164 {
802 struct timespec ts; 1165 struct timespec ts;
803 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1166 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
804 have_monotonic = 1; 1167 have_monotonic = 1;
805 } 1168 }
806#endif 1169#endif
807 1170
808 ev_rt_now = ev_time (); 1171 ev_rt_now = ev_time ();
809 mn_now = get_clock (); 1172 mn_now = get_clock ();
810 now_floor = mn_now; 1173 now_floor = mn_now;
811 rtmn_diff = ev_rt_now - mn_now; 1174 rtmn_diff = ev_rt_now - mn_now;
1175
1176 io_blocktime = 0.;
1177 timeout_blocktime = 0.;
1178 backend = 0;
1179 backend_fd = -1;
1180 gotasync = 0;
1181#if EV_USE_INOTIFY
1182 fs_fd = -2;
1183#endif
1184
1185 /* pid check not overridable via env */
1186#ifndef _WIN32
1187 if (flags & EVFLAG_FORKCHECK)
1188 curpid = getpid ();
1189#endif
812 1190
813 if (!(flags & EVFLAG_NOENV) 1191 if (!(flags & EVFLAG_NOENV)
814 && !enable_secure () 1192 && !enable_secure ()
815 && getenv ("LIBEV_FLAGS")) 1193 && getenv ("LIBEV_FLAGS"))
816 flags = atoi (getenv ("LIBEV_FLAGS")); 1194 flags = atoi (getenv ("LIBEV_FLAGS"));
817 1195
818 if (!(flags & EVMETHOD_ALL)) 1196 if (!(flags & 0x0000ffffU))
1197 flags |= ev_recommended_backends ();
1198
1199#if EV_USE_PORT
1200 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1201#endif
1202#if EV_USE_KQUEUE
1203 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1204#endif
1205#if EV_USE_EPOLL
1206 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
1207#endif
1208#if EV_USE_POLL
1209 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
1210#endif
1211#if EV_USE_SELECT
1212 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1213#endif
1214
1215 ev_init (&pipeev, pipecb);
1216 ev_set_priority (&pipeev, EV_MAXPRI);
1217 }
1218}
1219
1220static void noinline
1221loop_destroy (EV_P)
1222{
1223 int i;
1224
1225 if (ev_is_active (&pipeev))
1226 {
1227 ev_ref (EV_A); /* signal watcher */
1228 ev_io_stop (EV_A_ &pipeev);
1229
1230#if EV_USE_EVENTFD
1231 if (evfd >= 0)
1232 close (evfd);
1233#endif
1234
1235 if (evpipe [0] >= 0)
819 { 1236 {
820 flags |= EVMETHOD_ALL; 1237 close (evpipe [0]);
821#if EV_USE_KQUEUE && !defined (__NetBSD__) 1238 close (evpipe [1]);
822 /* kqueue is borked on everything but netbsd apparently */
823 /* it usually doesn't work correctly on anything but sockets and pipes */
824 flags &= ~EVMETHOD_KQUEUE;
825#endif
826 } 1239 }
1240 }
827 1241
828 method = 0; 1242#if EV_USE_INOTIFY
1243 if (fs_fd >= 0)
1244 close (fs_fd);
1245#endif
1246
1247 if (backend_fd >= 0)
1248 close (backend_fd);
1249
829#if EV_USE_PORT 1250#if EV_USE_PORT
830 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1251 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
831#endif 1252#endif
832#if EV_USE_KQUEUE 1253#if EV_USE_KQUEUE
833 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1254 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
834#endif 1255#endif
835#if EV_USE_EPOLL 1256#if EV_USE_EPOLL
836 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1257 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
837#endif 1258#endif
838#if EV_USE_POLL 1259#if EV_USE_POLL
839 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1260 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
840#endif 1261#endif
841#if EV_USE_SELECT 1262#if EV_USE_SELECT
842 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1263 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
843#endif 1264#endif
844 1265
845 ev_init (&sigev, sigcb); 1266 for (i = NUMPRI; i--; )
846 ev_set_priority (&sigev, EV_MAXPRI);
847 } 1267 {
848} 1268 array_free (pending, [i]);
1269#if EV_IDLE_ENABLE
1270 array_free (idle, [i]);
1271#endif
1272 }
849 1273
850static void 1274 ev_free (anfds); anfdmax = 0;
851loop_destroy (EV_P)
852{
853 int i;
854 1275
1276 /* have to use the microsoft-never-gets-it-right macro */
1277 array_free (fdchange, EMPTY);
1278 array_free (timer, EMPTY);
1279#if EV_PERIODIC_ENABLE
1280 array_free (periodic, EMPTY);
1281#endif
1282#if EV_FORK_ENABLE
1283 array_free (fork, EMPTY);
1284#endif
1285 array_free (prepare, EMPTY);
1286 array_free (check, EMPTY);
1287#if EV_ASYNC_ENABLE
1288 array_free (async, EMPTY);
1289#endif
1290
1291 backend = 0;
1292}
1293
1294#if EV_USE_INOTIFY
1295void inline_size infy_fork (EV_P);
1296#endif
1297
1298void inline_size
1299loop_fork (EV_P)
1300{
855#if EV_USE_PORT 1301#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1302 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
857#endif 1303#endif
858#if EV_USE_KQUEUE 1304#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1305 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
860#endif 1306#endif
861#if EV_USE_EPOLL 1307#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
863#endif
864#if EV_USE_POLL
865 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
866#endif
867#if EV_USE_SELECT
868 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
869#endif
870
871 for (i = NUMPRI; i--; )
872 array_free (pending, [i]);
873
874 /* have to use the microsoft-never-gets-it-right macro */
875 array_free (fdchange, EMPTY0);
876 array_free (timer, EMPTY0);
877#if EV_PERIODICS
878 array_free (periodic, EMPTY0);
879#endif
880 array_free (idle, EMPTY0);
881 array_free (prepare, EMPTY0);
882 array_free (check, EMPTY0);
883
884 method = 0;
885}
886
887static void
888loop_fork (EV_P)
889{
890#if EV_USE_PORT
891 if (method == EVMETHOD_PORT ) port_fork (EV_A);
892#endif
893#if EV_USE_KQUEUE
894 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
895#endif
896#if EV_USE_EPOLL
897 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1308 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
898#endif 1309#endif
1310#if EV_USE_INOTIFY
1311 infy_fork (EV_A);
1312#endif
899 1313
900 if (ev_is_active (&sigev)) 1314 if (ev_is_active (&pipeev))
901 { 1315 {
902 /* default loop */ 1316 /* this "locks" the handlers against writing to the pipe */
1317 /* while we modify the fd vars */
1318 gotsig = 1;
1319#if EV_ASYNC_ENABLE
1320 gotasync = 1;
1321#endif
903 1322
904 ev_ref (EV_A); 1323 ev_ref (EV_A);
905 ev_io_stop (EV_A_ &sigev); 1324 ev_io_stop (EV_A_ &pipeev);
1325
1326#if EV_USE_EVENTFD
1327 if (evfd >= 0)
1328 close (evfd);
1329#endif
1330
1331 if (evpipe [0] >= 0)
1332 {
906 close (sigpipe [0]); 1333 close (evpipe [0]);
907 close (sigpipe [1]); 1334 close (evpipe [1]);
1335 }
908 1336
909 while (pipe (sigpipe))
910 syserr ("(libev) error creating pipe");
911
912 siginit (EV_A); 1337 evpipe_init (EV_A);
1338 /* now iterate over everything, in case we missed something */
1339 pipecb (EV_A_ &pipeev, EV_READ);
913 } 1340 }
914 1341
915 postfork = 0; 1342 postfork = 0;
916} 1343}
917 1344
923 1350
924 memset (loop, 0, sizeof (struct ev_loop)); 1351 memset (loop, 0, sizeof (struct ev_loop));
925 1352
926 loop_init (EV_A_ flags); 1353 loop_init (EV_A_ flags);
927 1354
928 if (ev_method (EV_A)) 1355 if (ev_backend (EV_A))
929 return loop; 1356 return loop;
930 1357
931 return 0; 1358 return 0;
932} 1359}
933 1360
939} 1366}
940 1367
941void 1368void
942ev_loop_fork (EV_P) 1369ev_loop_fork (EV_P)
943{ 1370{
944 postfork = 1; 1371 postfork = 1; /* must be in line with ev_default_fork */
945} 1372}
946 1373
947#endif 1374#endif
948 1375
949#if EV_MULTIPLICITY 1376#if EV_MULTIPLICITY
952#else 1379#else
953int 1380int
954ev_default_loop (unsigned int flags) 1381ev_default_loop (unsigned int flags)
955#endif 1382#endif
956{ 1383{
957 if (sigpipe [0] == sigpipe [1])
958 if (pipe (sigpipe))
959 return 0;
960
961 if (!ev_default_loop_ptr) 1384 if (!ev_default_loop_ptr)
962 { 1385 {
963#if EV_MULTIPLICITY 1386#if EV_MULTIPLICITY
964 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1387 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
965#else 1388#else
966 ev_default_loop_ptr = 1; 1389 ev_default_loop_ptr = 1;
967#endif 1390#endif
968 1391
969 loop_init (EV_A_ flags); 1392 loop_init (EV_A_ flags);
970 1393
971 if (ev_method (EV_A)) 1394 if (ev_backend (EV_A))
972 { 1395 {
973 siginit (EV_A);
974
975#ifndef _WIN32 1396#ifndef _WIN32
976 ev_signal_init (&childev, childcb, SIGCHLD); 1397 ev_signal_init (&childev, childcb, SIGCHLD);
977 ev_set_priority (&childev, EV_MAXPRI); 1398 ev_set_priority (&childev, EV_MAXPRI);
978 ev_signal_start (EV_A_ &childev); 1399 ev_signal_start (EV_A_ &childev);
979 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1400 ev_unref (EV_A); /* child watcher should not keep loop alive */
996#ifndef _WIN32 1417#ifndef _WIN32
997 ev_ref (EV_A); /* child watcher */ 1418 ev_ref (EV_A); /* child watcher */
998 ev_signal_stop (EV_A_ &childev); 1419 ev_signal_stop (EV_A_ &childev);
999#endif 1420#endif
1000 1421
1001 ev_ref (EV_A); /* signal watcher */
1002 ev_io_stop (EV_A_ &sigev);
1003
1004 close (sigpipe [0]); sigpipe [0] = 0;
1005 close (sigpipe [1]); sigpipe [1] = 0;
1006
1007 loop_destroy (EV_A); 1422 loop_destroy (EV_A);
1008} 1423}
1009 1424
1010void 1425void
1011ev_default_fork (void) 1426ev_default_fork (void)
1012{ 1427{
1013#if EV_MULTIPLICITY 1428#if EV_MULTIPLICITY
1014 struct ev_loop *loop = ev_default_loop_ptr; 1429 struct ev_loop *loop = ev_default_loop_ptr;
1015#endif 1430#endif
1016 1431
1017 if (method) 1432 if (backend)
1018 postfork = 1; 1433 postfork = 1; /* must be in line with ev_loop_fork */
1019} 1434}
1020 1435
1021/*****************************************************************************/ 1436/*****************************************************************************/
1022 1437
1023static int 1438void
1024any_pending (EV_P) 1439ev_invoke (EV_P_ void *w, int revents)
1025{ 1440{
1026 int pri; 1441 EV_CB_INVOKE ((W)w, revents);
1027
1028 for (pri = NUMPRI; pri--; )
1029 if (pendingcnt [pri])
1030 return 1;
1031
1032 return 0;
1033} 1442}
1034 1443
1035inline void 1444void inline_speed
1036call_pending (EV_P) 1445call_pending (EV_P)
1037{ 1446{
1038 int pri; 1447 int pri;
1039 1448
1040 for (pri = NUMPRI; pri--; ) 1449 for (pri = NUMPRI; pri--; )
1042 { 1451 {
1043 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1452 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1044 1453
1045 if (expect_true (p->w)) 1454 if (expect_true (p->w))
1046 { 1455 {
1456 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1457
1047 p->w->pending = 0; 1458 p->w->pending = 0;
1048 EV_CB_INVOKE (p->w, p->events); 1459 EV_CB_INVOKE (p->w, p->events);
1049 } 1460 }
1050 } 1461 }
1051} 1462}
1052 1463
1053inline void 1464void inline_size
1054timers_reify (EV_P) 1465timers_reify (EV_P)
1055{ 1466{
1056 while (timercnt && ((WT)timers [0])->at <= mn_now) 1467 while (timercnt && ev_at (timers [1]) <= mn_now)
1057 { 1468 {
1058 struct ev_timer *w = timers [0]; 1469 ev_timer *w = (ev_timer *)timers [1];
1059 1470
1060 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1061 1472
1062 /* first reschedule or stop timer */ 1473 /* first reschedule or stop timer */
1063 if (w->repeat) 1474 if (w->repeat)
1064 { 1475 {
1065 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1066 1477
1067 ((WT)w)->at += w->repeat; 1478 ev_at (w) += w->repeat;
1068 if (((WT)w)->at < mn_now) 1479 if (ev_at (w) < mn_now)
1069 ((WT)w)->at = mn_now; 1480 ev_at (w) = mn_now;
1070 1481
1071 downheap ((WT *)timers, timercnt, 0); 1482 downheap (timers, timercnt, 1);
1072 } 1483 }
1073 else 1484 else
1074 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1075 1486
1076 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1077 } 1488 }
1078} 1489}
1079 1490
1080#if EV_PERIODICS 1491#if EV_PERIODIC_ENABLE
1081inline void 1492void inline_size
1082periodics_reify (EV_P) 1493periodics_reify (EV_P)
1083{ 1494{
1084 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1085 { 1496 {
1086 struct ev_periodic *w = periodics [0]; 1497 ev_periodic *w = (ev_periodic *)periodics [1];
1087 1498
1088 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1089 1500
1090 /* first reschedule or stop timer */ 1501 /* first reschedule or stop timer */
1091 if (w->reschedule_cb) 1502 if (w->reschedule_cb)
1092 { 1503 {
1093 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1094 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1095 downheap ((WT *)periodics, periodiccnt, 0); 1506 downheap (periodics, periodiccnt, 1);
1096 } 1507 }
1097 else if (w->interval) 1508 else if (w->interval)
1098 { 1509 {
1099 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1100 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1101 downheap ((WT *)periodics, periodiccnt, 0); 1513 downheap (periodics, periodiccnt, 1);
1102 } 1514 }
1103 else 1515 else
1104 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1105 1517
1106 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1107 } 1519 }
1108} 1520}
1109 1521
1110static void 1522static void noinline
1111periodics_reschedule (EV_P) 1523periodics_reschedule (EV_P)
1112{ 1524{
1113 int i; 1525 int i;
1114 1526
1115 /* adjust periodics after time jump */ 1527 /* adjust periodics after time jump */
1116 for (i = 0; i < periodiccnt; ++i) 1528 for (i = 0; i < periodiccnt; ++i)
1117 { 1529 {
1118 struct ev_periodic *w = periodics [i]; 1530 ev_periodic *w = (ev_periodic *)periodics [i];
1119 1531
1120 if (w->reschedule_cb) 1532 if (w->reschedule_cb)
1121 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1122 else if (w->interval) 1534 else if (w->interval)
1123 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1124 } 1536 }
1125 1537
1126 /* now rebuild the heap */ 1538 /* now rebuild the heap */
1127 for (i = periodiccnt >> 1; i--; ) 1539 for (i = periodiccnt >> 1; i--; )
1128 downheap ((WT *)periodics, periodiccnt, i); 1540 downheap (periodics, periodiccnt, i);
1129} 1541}
1130#endif 1542#endif
1131 1543
1132inline int 1544#if EV_IDLE_ENABLE
1133time_update_monotonic (EV_P) 1545void inline_size
1546idle_reify (EV_P)
1134{ 1547{
1548 if (expect_false (idleall))
1549 {
1550 int pri;
1551
1552 for (pri = NUMPRI; pri--; )
1553 {
1554 if (pendingcnt [pri])
1555 break;
1556
1557 if (idlecnt [pri])
1558 {
1559 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1560 break;
1561 }
1562 }
1563 }
1564}
1565#endif
1566
1567void inline_speed
1568time_update (EV_P_ ev_tstamp max_block)
1569{
1570 int i;
1571
1572#if EV_USE_MONOTONIC
1573 if (expect_true (have_monotonic))
1574 {
1575 ev_tstamp odiff = rtmn_diff;
1576
1135 mn_now = get_clock (); 1577 mn_now = get_clock ();
1136 1578
1579 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1580 /* interpolate in the meantime */
1137 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1581 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1138 { 1582 {
1139 ev_rt_now = rtmn_diff + mn_now; 1583 ev_rt_now = rtmn_diff + mn_now;
1140 return 0; 1584 return;
1141 } 1585 }
1142 else 1586
1143 {
1144 now_floor = mn_now; 1587 now_floor = mn_now;
1145 ev_rt_now = ev_time (); 1588 ev_rt_now = ev_time ();
1146 return 1;
1147 }
1148}
1149 1589
1150inline void 1590 /* loop a few times, before making important decisions.
1151time_update (EV_P) 1591 * on the choice of "4": one iteration isn't enough,
1152{ 1592 * in case we get preempted during the calls to
1153 int i; 1593 * ev_time and get_clock. a second call is almost guaranteed
1154 1594 * to succeed in that case, though. and looping a few more times
1155#if EV_USE_MONOTONIC 1595 * doesn't hurt either as we only do this on time-jumps or
1156 if (expect_true (have_monotonic)) 1596 * in the unlikely event of having been preempted here.
1157 { 1597 */
1158 if (time_update_monotonic (EV_A)) 1598 for (i = 4; --i; )
1159 { 1599 {
1160 ev_tstamp odiff = rtmn_diff;
1161
1162 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1163 {
1164 rtmn_diff = ev_rt_now - mn_now; 1600 rtmn_diff = ev_rt_now - mn_now;
1165 1601
1166 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1167 return; /* all is well */ 1603 return; /* all is well */
1168 1604
1169 ev_rt_now = ev_time (); 1605 ev_rt_now = ev_time ();
1170 mn_now = get_clock (); 1606 mn_now = get_clock ();
1171 now_floor = mn_now; 1607 now_floor = mn_now;
1172 } 1608 }
1173 1609
1174# if EV_PERIODICS 1610# if EV_PERIODIC_ENABLE
1611 periodics_reschedule (EV_A);
1612# endif
1613 /* no timer adjustment, as the monotonic clock doesn't jump */
1614 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1615 }
1616 else
1617#endif
1618 {
1619 ev_rt_now = ev_time ();
1620
1621 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1622 {
1623#if EV_PERIODIC_ENABLE
1175 periodics_reschedule (EV_A); 1624 periodics_reschedule (EV_A);
1176# endif 1625#endif
1177 /* no timer adjustment, as the monotonic clock doesn't jump */ 1626 /* adjust timers. this is easy, as the offset is the same for all of them */
1178 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1627 for (i = 1; i <= timercnt; ++i)
1628 ev_at (timers [i]) += ev_rt_now - mn_now;
1179 } 1629 }
1180 }
1181 else
1182#endif
1183 {
1184 ev_rt_now = ev_time ();
1185
1186 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1187 {
1188#if EV_PERIODICS
1189 periodics_reschedule (EV_A);
1190#endif
1191
1192 /* adjust timers. this is easy, as the offset is the same for all */
1193 for (i = 0; i < timercnt; ++i)
1194 ((WT)timers [i])->at += ev_rt_now - mn_now;
1195 }
1196 1630
1197 mn_now = ev_rt_now; 1631 mn_now = ev_rt_now;
1198 } 1632 }
1199} 1633}
1200 1634
1213static int loop_done; 1647static int loop_done;
1214 1648
1215void 1649void
1216ev_loop (EV_P_ int flags) 1650ev_loop (EV_P_ int flags)
1217{ 1651{
1218 double block; 1652 loop_done = EVUNLOOP_CANCEL;
1219 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1220 1653
1221 while (activecnt) 1654 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1655
1656 do
1222 { 1657 {
1658#ifndef _WIN32
1659 if (expect_false (curpid)) /* penalise the forking check even more */
1660 if (expect_false (getpid () != curpid))
1661 {
1662 curpid = getpid ();
1663 postfork = 1;
1664 }
1665#endif
1666
1667#if EV_FORK_ENABLE
1668 /* we might have forked, so queue fork handlers */
1669 if (expect_false (postfork))
1670 if (forkcnt)
1671 {
1672 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1673 call_pending (EV_A);
1674 }
1675#endif
1676
1223 /* queue check watchers (and execute them) */ 1677 /* queue prepare watchers (and execute them) */
1224 if (expect_false (preparecnt)) 1678 if (expect_false (preparecnt))
1225 { 1679 {
1226 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1680 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1227 call_pending (EV_A); 1681 call_pending (EV_A);
1228 } 1682 }
1229 1683
1684 if (expect_false (!activecnt))
1685 break;
1686
1230 /* we might have forked, so reify kernel state if necessary */ 1687 /* we might have forked, so reify kernel state if necessary */
1231 if (expect_false (postfork)) 1688 if (expect_false (postfork))
1232 loop_fork (EV_A); 1689 loop_fork (EV_A);
1233 1690
1234 /* update fd-related kernel structures */ 1691 /* update fd-related kernel structures */
1235 fd_reify (EV_A); 1692 fd_reify (EV_A);
1236 1693
1237 /* calculate blocking time */ 1694 /* calculate blocking time */
1695 {
1696 ev_tstamp waittime = 0.;
1697 ev_tstamp sleeptime = 0.;
1238 1698
1239 /* we only need this for !monotonic clock or timers, but as we basically 1699 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1240 always have timers, we just calculate it always */
1241#if EV_USE_MONOTONIC
1242 if (expect_true (have_monotonic))
1243 time_update_monotonic (EV_A);
1244 else
1245#endif
1246 { 1700 {
1247 ev_rt_now = ev_time (); 1701 /* update time to cancel out callback processing overhead */
1248 mn_now = ev_rt_now; 1702 time_update (EV_A_ 1e100);
1249 }
1250 1703
1251 if (flags & EVLOOP_NONBLOCK || idlecnt)
1252 block = 0.;
1253 else
1254 {
1255 block = MAX_BLOCKTIME; 1704 waittime = MAX_BLOCKTIME;
1256 1705
1257 if (timercnt) 1706 if (timercnt)
1258 { 1707 {
1259 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1260 if (block > to) block = to; 1709 if (waittime > to) waittime = to;
1261 } 1710 }
1262 1711
1263#if EV_PERIODICS 1712#if EV_PERIODIC_ENABLE
1264 if (periodiccnt) 1713 if (periodiccnt)
1265 { 1714 {
1266 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1267 if (block > to) block = to; 1716 if (waittime > to) waittime = to;
1268 } 1717 }
1269#endif 1718#endif
1270 1719
1271 if (expect_false (block < 0.)) block = 0.; 1720 if (expect_false (waittime < timeout_blocktime))
1721 waittime = timeout_blocktime;
1722
1723 sleeptime = waittime - backend_fudge;
1724
1725 if (expect_true (sleeptime > io_blocktime))
1726 sleeptime = io_blocktime;
1727
1728 if (sleeptime)
1729 {
1730 ev_sleep (sleeptime);
1731 waittime -= sleeptime;
1732 }
1272 } 1733 }
1273 1734
1274 method_poll (EV_A_ block); 1735 ++loop_count;
1736 backend_poll (EV_A_ waittime);
1275 1737
1276 /* update ev_rt_now, do magic */ 1738 /* update ev_rt_now, do magic */
1277 time_update (EV_A); 1739 time_update (EV_A_ waittime + sleeptime);
1740 }
1278 1741
1279 /* queue pending timers and reschedule them */ 1742 /* queue pending timers and reschedule them */
1280 timers_reify (EV_A); /* relative timers called last */ 1743 timers_reify (EV_A); /* relative timers called last */
1281#if EV_PERIODICS 1744#if EV_PERIODIC_ENABLE
1282 periodics_reify (EV_A); /* absolute timers called first */ 1745 periodics_reify (EV_A); /* absolute timers called first */
1283#endif 1746#endif
1284 1747
1748#if EV_IDLE_ENABLE
1285 /* queue idle watchers unless io or timers are pending */ 1749 /* queue idle watchers unless other events are pending */
1286 if (idlecnt && !any_pending (EV_A)) 1750 idle_reify (EV_A);
1287 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1751#endif
1288 1752
1289 /* queue check watchers, to be executed first */ 1753 /* queue check watchers, to be executed first */
1290 if (expect_false (checkcnt)) 1754 if (expect_false (checkcnt))
1291 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1755 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1292 1756
1293 call_pending (EV_A); 1757 call_pending (EV_A);
1294
1295 if (expect_false (loop_done))
1296 break;
1297 } 1758 }
1759 while (expect_true (
1760 activecnt
1761 && !loop_done
1762 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1763 ));
1298 1764
1299 if (loop_done != 2) 1765 if (loop_done == EVUNLOOP_ONE)
1300 loop_done = 0; 1766 loop_done = EVUNLOOP_CANCEL;
1301} 1767}
1302 1768
1303void 1769void
1304ev_unloop (EV_P_ int how) 1770ev_unloop (EV_P_ int how)
1305{ 1771{
1306 loop_done = how; 1772 loop_done = how;
1307} 1773}
1308 1774
1309/*****************************************************************************/ 1775/*****************************************************************************/
1310 1776
1311inline void 1777void inline_size
1312wlist_add (WL *head, WL elem) 1778wlist_add (WL *head, WL elem)
1313{ 1779{
1314 elem->next = *head; 1780 elem->next = *head;
1315 *head = elem; 1781 *head = elem;
1316} 1782}
1317 1783
1318inline void 1784void inline_size
1319wlist_del (WL *head, WL elem) 1785wlist_del (WL *head, WL elem)
1320{ 1786{
1321 while (*head) 1787 while (*head)
1322 { 1788 {
1323 if (*head == elem) 1789 if (*head == elem)
1328 1794
1329 head = &(*head)->next; 1795 head = &(*head)->next;
1330 } 1796 }
1331} 1797}
1332 1798
1333inline void 1799void inline_speed
1334ev_clear_pending (EV_P_ W w) 1800clear_pending (EV_P_ W w)
1335{ 1801{
1336 if (w->pending) 1802 if (w->pending)
1337 { 1803 {
1338 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1804 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1339 w->pending = 0; 1805 w->pending = 0;
1340 } 1806 }
1341} 1807}
1342 1808
1343inline void 1809int
1810ev_clear_pending (EV_P_ void *w)
1811{
1812 W w_ = (W)w;
1813 int pending = w_->pending;
1814
1815 if (expect_true (pending))
1816 {
1817 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1818 w_->pending = 0;
1819 p->w = 0;
1820 return p->events;
1821 }
1822 else
1823 return 0;
1824}
1825
1826void inline_size
1827pri_adjust (EV_P_ W w)
1828{
1829 int pri = w->priority;
1830 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1831 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1832 w->priority = pri;
1833}
1834
1835void inline_speed
1344ev_start (EV_P_ W w, int active) 1836ev_start (EV_P_ W w, int active)
1345{ 1837{
1346 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1838 pri_adjust (EV_A_ w);
1347 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1348
1349 w->active = active; 1839 w->active = active;
1350 ev_ref (EV_A); 1840 ev_ref (EV_A);
1351} 1841}
1352 1842
1353inline void 1843void inline_size
1354ev_stop (EV_P_ W w) 1844ev_stop (EV_P_ W w)
1355{ 1845{
1356 ev_unref (EV_A); 1846 ev_unref (EV_A);
1357 w->active = 0; 1847 w->active = 0;
1358} 1848}
1359 1849
1360/*****************************************************************************/ 1850/*****************************************************************************/
1361 1851
1362void 1852void noinline
1363ev_io_start (EV_P_ struct ev_io *w) 1853ev_io_start (EV_P_ ev_io *w)
1364{ 1854{
1365 int fd = w->fd; 1855 int fd = w->fd;
1366 1856
1367 if (expect_false (ev_is_active (w))) 1857 if (expect_false (ev_is_active (w)))
1368 return; 1858 return;
1369 1859
1370 assert (("ev_io_start called with negative fd", fd >= 0)); 1860 assert (("ev_io_start called with negative fd", fd >= 0));
1371 1861
1372 ev_start (EV_A_ (W)w, 1); 1862 ev_start (EV_A_ (W)w, 1);
1373 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1374 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1864 wlist_add (&anfds[fd].head, (WL)w);
1375 1865
1376 fd_change (EV_A_ fd); 1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1867 w->events &= ~EV_IOFDSET;
1377} 1868}
1378 1869
1379void 1870void noinline
1380ev_io_stop (EV_P_ struct ev_io *w) 1871ev_io_stop (EV_P_ ev_io *w)
1381{ 1872{
1382 ev_clear_pending (EV_A_ (W)w); 1873 clear_pending (EV_A_ (W)w);
1383 if (expect_false (!ev_is_active (w))) 1874 if (expect_false (!ev_is_active (w)))
1384 return; 1875 return;
1385 1876
1386 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1387 1878
1388 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1879 wlist_del (&anfds[w->fd].head, (WL)w);
1389 ev_stop (EV_A_ (W)w); 1880 ev_stop (EV_A_ (W)w);
1390 1881
1391 fd_change (EV_A_ w->fd); 1882 fd_change (EV_A_ w->fd, 1);
1392} 1883}
1393 1884
1394void 1885void noinline
1395ev_timer_start (EV_P_ struct ev_timer *w) 1886ev_timer_start (EV_P_ ev_timer *w)
1396{ 1887{
1397 if (expect_false (ev_is_active (w))) 1888 if (expect_false (ev_is_active (w)))
1398 return; 1889 return;
1399 1890
1400 ((WT)w)->at += mn_now; 1891 ev_at (w) += mn_now;
1401 1892
1402 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1403 1894
1404 ev_start (EV_A_ (W)w, ++timercnt); 1895 ev_start (EV_A_ (W)w, ++timercnt);
1405 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1406 timers [timercnt - 1] = w; 1897 timers [timercnt] = (WT)w;
1407 upheap ((WT *)timers, timercnt - 1); 1898 upheap (timers, timercnt);
1408 1899
1409 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1900 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/
1410} 1901}
1411 1902
1412void 1903void noinline
1413ev_timer_stop (EV_P_ struct ev_timer *w) 1904ev_timer_stop (EV_P_ ev_timer *w)
1414{ 1905{
1415 ev_clear_pending (EV_A_ (W)w); 1906 clear_pending (EV_A_ (W)w);
1416 if (expect_false (!ev_is_active (w))) 1907 if (expect_false (!ev_is_active (w)))
1417 return; 1908 return;
1418 1909
1419 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1910 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w));
1420 1911
1912 {
1913 int active = ((W)w)->active;
1914
1421 if (expect_true (((W)w)->active < timercnt--)) 1915 if (expect_true (active < timercnt))
1422 { 1916 {
1423 timers [((W)w)->active - 1] = timers [timercnt]; 1917 timers [active] = timers [timercnt];
1424 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1918 adjustheap (timers, timercnt, active);
1425 } 1919 }
1426 1920
1427 ((WT)w)->at -= mn_now; 1921 --timercnt;
1922 }
1923
1924 ev_at (w) -= mn_now;
1428 1925
1429 ev_stop (EV_A_ (W)w); 1926 ev_stop (EV_A_ (W)w);
1430} 1927}
1431 1928
1432void 1929void noinline
1433ev_timer_again (EV_P_ struct ev_timer *w) 1930ev_timer_again (EV_P_ ev_timer *w)
1434{ 1931{
1435 if (ev_is_active (w)) 1932 if (ev_is_active (w))
1436 { 1933 {
1437 if (w->repeat) 1934 if (w->repeat)
1438 { 1935 {
1439 ((WT)w)->at = mn_now + w->repeat; 1936 ev_at (w) = mn_now + w->repeat;
1440 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1937 adjustheap (timers, timercnt, ((W)w)->active);
1441 } 1938 }
1442 else 1939 else
1443 ev_timer_stop (EV_A_ w); 1940 ev_timer_stop (EV_A_ w);
1444 } 1941 }
1445 else if (w->repeat) 1942 else if (w->repeat)
1446 { 1943 {
1447 w->at = w->repeat; 1944 ev_at (w) = w->repeat;
1448 ev_timer_start (EV_A_ w); 1945 ev_timer_start (EV_A_ w);
1449 } 1946 }
1450} 1947}
1451 1948
1452#if EV_PERIODICS 1949#if EV_PERIODIC_ENABLE
1453void 1950void noinline
1454ev_periodic_start (EV_P_ struct ev_periodic *w) 1951ev_periodic_start (EV_P_ ev_periodic *w)
1455{ 1952{
1456 if (expect_false (ev_is_active (w))) 1953 if (expect_false (ev_is_active (w)))
1457 return; 1954 return;
1458 1955
1459 if (w->reschedule_cb) 1956 if (w->reschedule_cb)
1460 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1957 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1461 else if (w->interval) 1958 else if (w->interval)
1462 { 1959 {
1463 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1960 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1464 /* this formula differs from the one in periodic_reify because we do not always round up */ 1961 /* this formula differs from the one in periodic_reify because we do not always round up */
1465 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1466 } 1963 }
1964 else
1965 ev_at (w) = w->offset;
1467 1966
1468 ev_start (EV_A_ (W)w, ++periodiccnt); 1967 ev_start (EV_A_ (W)w, ++periodiccnt);
1469 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1470 periodics [periodiccnt - 1] = w; 1969 periodics [periodiccnt] = (WT)w;
1471 upheap ((WT *)periodics, periodiccnt - 1); 1970 upheap (periodics, periodiccnt);
1472 1971
1473 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1972 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1474} 1973}
1475 1974
1476void 1975void noinline
1477ev_periodic_stop (EV_P_ struct ev_periodic *w) 1976ev_periodic_stop (EV_P_ ev_periodic *w)
1478{ 1977{
1479 ev_clear_pending (EV_A_ (W)w); 1978 clear_pending (EV_A_ (W)w);
1480 if (expect_false (!ev_is_active (w))) 1979 if (expect_false (!ev_is_active (w)))
1481 return; 1980 return;
1482 1981
1483 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1982 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w));
1484 1983
1984 {
1985 int active = ((W)w)->active;
1986
1485 if (expect_true (((W)w)->active < periodiccnt--)) 1987 if (expect_true (active < periodiccnt))
1486 { 1988 {
1487 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1989 periodics [active] = periodics [periodiccnt];
1488 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1990 adjustheap (periodics, periodiccnt, active);
1489 } 1991 }
1992
1993 --periodiccnt;
1994 }
1490 1995
1491 ev_stop (EV_A_ (W)w); 1996 ev_stop (EV_A_ (W)w);
1492} 1997}
1493 1998
1494void 1999void noinline
1495ev_periodic_again (EV_P_ struct ev_periodic *w) 2000ev_periodic_again (EV_P_ ev_periodic *w)
1496{ 2001{
1497 /* TODO: use adjustheap and recalculation */ 2002 /* TODO: use adjustheap and recalculation */
1498 ev_periodic_stop (EV_A_ w); 2003 ev_periodic_stop (EV_A_ w);
1499 ev_periodic_start (EV_A_ w); 2004 ev_periodic_start (EV_A_ w);
1500} 2005}
1501#endif 2006#endif
1502 2007
1503void
1504ev_idle_start (EV_P_ struct ev_idle *w)
1505{
1506 if (expect_false (ev_is_active (w)))
1507 return;
1508
1509 ev_start (EV_A_ (W)w, ++idlecnt);
1510 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1511 idles [idlecnt - 1] = w;
1512}
1513
1514void
1515ev_idle_stop (EV_P_ struct ev_idle *w)
1516{
1517 ev_clear_pending (EV_A_ (W)w);
1518 if (expect_false (!ev_is_active (w)))
1519 return;
1520
1521 idles [((W)w)->active - 1] = idles [--idlecnt];
1522 ev_stop (EV_A_ (W)w);
1523}
1524
1525void
1526ev_prepare_start (EV_P_ struct ev_prepare *w)
1527{
1528 if (expect_false (ev_is_active (w)))
1529 return;
1530
1531 ev_start (EV_A_ (W)w, ++preparecnt);
1532 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1533 prepares [preparecnt - 1] = w;
1534}
1535
1536void
1537ev_prepare_stop (EV_P_ struct ev_prepare *w)
1538{
1539 ev_clear_pending (EV_A_ (W)w);
1540 if (expect_false (!ev_is_active (w)))
1541 return;
1542
1543 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1544 ev_stop (EV_A_ (W)w);
1545}
1546
1547void
1548ev_check_start (EV_P_ struct ev_check *w)
1549{
1550 if (expect_false (ev_is_active (w)))
1551 return;
1552
1553 ev_start (EV_A_ (W)w, ++checkcnt);
1554 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1555 checks [checkcnt - 1] = w;
1556}
1557
1558void
1559ev_check_stop (EV_P_ struct ev_check *w)
1560{
1561 ev_clear_pending (EV_A_ (W)w);
1562 if (expect_false (!ev_is_active (w)))
1563 return;
1564
1565 checks [((W)w)->active - 1] = checks [--checkcnt];
1566 ev_stop (EV_A_ (W)w);
1567}
1568
1569#ifndef SA_RESTART 2008#ifndef SA_RESTART
1570# define SA_RESTART 0 2009# define SA_RESTART 0
1571#endif 2010#endif
1572 2011
1573void 2012void noinline
1574ev_signal_start (EV_P_ struct ev_signal *w) 2013ev_signal_start (EV_P_ ev_signal *w)
1575{ 2014{
1576#if EV_MULTIPLICITY 2015#if EV_MULTIPLICITY
1577 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2016 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1578#endif 2017#endif
1579 if (expect_false (ev_is_active (w))) 2018 if (expect_false (ev_is_active (w)))
1580 return; 2019 return;
1581 2020
1582 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1583 2022
2023 evpipe_init (EV_A);
2024
2025 {
2026#ifndef _WIN32
2027 sigset_t full, prev;
2028 sigfillset (&full);
2029 sigprocmask (SIG_SETMASK, &full, &prev);
2030#endif
2031
2032 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2033
2034#ifndef _WIN32
2035 sigprocmask (SIG_SETMASK, &prev, 0);
2036#endif
2037 }
2038
1584 ev_start (EV_A_ (W)w, 1); 2039 ev_start (EV_A_ (W)w, 1);
1585 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1586 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2040 wlist_add (&signals [w->signum - 1].head, (WL)w);
1587 2041
1588 if (!((WL)w)->next) 2042 if (!((WL)w)->next)
1589 { 2043 {
1590#if _WIN32 2044#if _WIN32
1591 signal (w->signum, sighandler); 2045 signal (w->signum, ev_sighandler);
1592#else 2046#else
1593 struct sigaction sa; 2047 struct sigaction sa;
1594 sa.sa_handler = sighandler; 2048 sa.sa_handler = ev_sighandler;
1595 sigfillset (&sa.sa_mask); 2049 sigfillset (&sa.sa_mask);
1596 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1597 sigaction (w->signum, &sa, 0); 2051 sigaction (w->signum, &sa, 0);
1598#endif 2052#endif
1599 } 2053 }
1600} 2054}
1601 2055
1602void 2056void noinline
1603ev_signal_stop (EV_P_ struct ev_signal *w) 2057ev_signal_stop (EV_P_ ev_signal *w)
1604{ 2058{
1605 ev_clear_pending (EV_A_ (W)w); 2059 clear_pending (EV_A_ (W)w);
1606 if (expect_false (!ev_is_active (w))) 2060 if (expect_false (!ev_is_active (w)))
1607 return; 2061 return;
1608 2062
1609 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2063 wlist_del (&signals [w->signum - 1].head, (WL)w);
1610 ev_stop (EV_A_ (W)w); 2064 ev_stop (EV_A_ (W)w);
1611 2065
1612 if (!signals [w->signum - 1].head) 2066 if (!signals [w->signum - 1].head)
1613 signal (w->signum, SIG_DFL); 2067 signal (w->signum, SIG_DFL);
1614} 2068}
1615 2069
1616void 2070void
1617ev_child_start (EV_P_ struct ev_child *w) 2071ev_child_start (EV_P_ ev_child *w)
1618{ 2072{
1619#if EV_MULTIPLICITY 2073#if EV_MULTIPLICITY
1620 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2074 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1621#endif 2075#endif
1622 if (expect_false (ev_is_active (w))) 2076 if (expect_false (ev_is_active (w)))
1623 return; 2077 return;
1624 2078
1625 ev_start (EV_A_ (W)w, 1); 2079 ev_start (EV_A_ (W)w, 1);
1626 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1627} 2081}
1628 2082
1629void 2083void
1630ev_child_stop (EV_P_ struct ev_child *w) 2084ev_child_stop (EV_P_ ev_child *w)
1631{ 2085{
1632 ev_clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1633 if (expect_false (!ev_is_active (w))) 2087 if (expect_false (!ev_is_active (w)))
1634 return; 2088 return;
1635 2089
1636 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1637 ev_stop (EV_A_ (W)w); 2091 ev_stop (EV_A_ (W)w);
1638} 2092}
1639 2093
2094#if EV_STAT_ENABLE
2095
2096# ifdef _WIN32
2097# undef lstat
2098# define lstat(a,b) _stati64 (a,b)
2099# endif
2100
2101#define DEF_STAT_INTERVAL 5.0074891
2102#define MIN_STAT_INTERVAL 0.1074891
2103
2104static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2105
2106#if EV_USE_INOTIFY
2107# define EV_INOTIFY_BUFSIZE 8192
2108
2109static void noinline
2110infy_add (EV_P_ ev_stat *w)
2111{
2112 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2113
2114 if (w->wd < 0)
2115 {
2116 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2117
2118 /* monitor some parent directory for speedup hints */
2119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2120 {
2121 char path [4096];
2122 strcpy (path, w->path);
2123
2124 do
2125 {
2126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2128
2129 char *pend = strrchr (path, '/');
2130
2131 if (!pend)
2132 break; /* whoops, no '/', complain to your admin */
2133
2134 *pend = 0;
2135 w->wd = inotify_add_watch (fs_fd, path, mask);
2136 }
2137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2138 }
2139 }
2140 else
2141 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2142
2143 if (w->wd >= 0)
2144 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2145}
2146
2147static void noinline
2148infy_del (EV_P_ ev_stat *w)
2149{
2150 int slot;
2151 int wd = w->wd;
2152
2153 if (wd < 0)
2154 return;
2155
2156 w->wd = -2;
2157 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2158 wlist_del (&fs_hash [slot].head, (WL)w);
2159
2160 /* remove this watcher, if others are watching it, they will rearm */
2161 inotify_rm_watch (fs_fd, wd);
2162}
2163
2164static void noinline
2165infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2166{
2167 if (slot < 0)
2168 /* overflow, need to check for all hahs slots */
2169 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2170 infy_wd (EV_A_ slot, wd, ev);
2171 else
2172 {
2173 WL w_;
2174
2175 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2176 {
2177 ev_stat *w = (ev_stat *)w_;
2178 w_ = w_->next; /* lets us remove this watcher and all before it */
2179
2180 if (w->wd == wd || wd == -1)
2181 {
2182 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2183 {
2184 w->wd = -1;
2185 infy_add (EV_A_ w); /* re-add, no matter what */
2186 }
2187
2188 stat_timer_cb (EV_A_ &w->timer, 0);
2189 }
2190 }
2191 }
2192}
2193
2194static void
2195infy_cb (EV_P_ ev_io *w, int revents)
2196{
2197 char buf [EV_INOTIFY_BUFSIZE];
2198 struct inotify_event *ev = (struct inotify_event *)buf;
2199 int ofs;
2200 int len = read (fs_fd, buf, sizeof (buf));
2201
2202 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2203 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2204}
2205
2206void inline_size
2207infy_init (EV_P)
2208{
2209 if (fs_fd != -2)
2210 return;
2211
2212 fs_fd = inotify_init ();
2213
2214 if (fs_fd >= 0)
2215 {
2216 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2217 ev_set_priority (&fs_w, EV_MAXPRI);
2218 ev_io_start (EV_A_ &fs_w);
2219 }
2220}
2221
2222void inline_size
2223infy_fork (EV_P)
2224{
2225 int slot;
2226
2227 if (fs_fd < 0)
2228 return;
2229
2230 close (fs_fd);
2231 fs_fd = inotify_init ();
2232
2233 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2234 {
2235 WL w_ = fs_hash [slot].head;
2236 fs_hash [slot].head = 0;
2237
2238 while (w_)
2239 {
2240 ev_stat *w = (ev_stat *)w_;
2241 w_ = w_->next; /* lets us add this watcher */
2242
2243 w->wd = -1;
2244
2245 if (fs_fd >= 0)
2246 infy_add (EV_A_ w); /* re-add, no matter what */
2247 else
2248 ev_timer_start (EV_A_ &w->timer);
2249 }
2250
2251 }
2252}
2253
2254#endif
2255
2256void
2257ev_stat_stat (EV_P_ ev_stat *w)
2258{
2259 if (lstat (w->path, &w->attr) < 0)
2260 w->attr.st_nlink = 0;
2261 else if (!w->attr.st_nlink)
2262 w->attr.st_nlink = 1;
2263}
2264
2265static void noinline
2266stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2267{
2268 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2269
2270 /* we copy this here each the time so that */
2271 /* prev has the old value when the callback gets invoked */
2272 w->prev = w->attr;
2273 ev_stat_stat (EV_A_ w);
2274
2275 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2276 if (
2277 w->prev.st_dev != w->attr.st_dev
2278 || w->prev.st_ino != w->attr.st_ino
2279 || w->prev.st_mode != w->attr.st_mode
2280 || w->prev.st_nlink != w->attr.st_nlink
2281 || w->prev.st_uid != w->attr.st_uid
2282 || w->prev.st_gid != w->attr.st_gid
2283 || w->prev.st_rdev != w->attr.st_rdev
2284 || w->prev.st_size != w->attr.st_size
2285 || w->prev.st_atime != w->attr.st_atime
2286 || w->prev.st_mtime != w->attr.st_mtime
2287 || w->prev.st_ctime != w->attr.st_ctime
2288 ) {
2289 #if EV_USE_INOTIFY
2290 infy_del (EV_A_ w);
2291 infy_add (EV_A_ w);
2292 ev_stat_stat (EV_A_ w); /* avoid race... */
2293 #endif
2294
2295 ev_feed_event (EV_A_ w, EV_STAT);
2296 }
2297}
2298
2299void
2300ev_stat_start (EV_P_ ev_stat *w)
2301{
2302 if (expect_false (ev_is_active (w)))
2303 return;
2304
2305 /* since we use memcmp, we need to clear any padding data etc. */
2306 memset (&w->prev, 0, sizeof (ev_statdata));
2307 memset (&w->attr, 0, sizeof (ev_statdata));
2308
2309 ev_stat_stat (EV_A_ w);
2310
2311 if (w->interval < MIN_STAT_INTERVAL)
2312 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2313
2314 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2315 ev_set_priority (&w->timer, ev_priority (w));
2316
2317#if EV_USE_INOTIFY
2318 infy_init (EV_A);
2319
2320 if (fs_fd >= 0)
2321 infy_add (EV_A_ w);
2322 else
2323#endif
2324 ev_timer_start (EV_A_ &w->timer);
2325
2326 ev_start (EV_A_ (W)w, 1);
2327}
2328
2329void
2330ev_stat_stop (EV_P_ ev_stat *w)
2331{
2332 clear_pending (EV_A_ (W)w);
2333 if (expect_false (!ev_is_active (w)))
2334 return;
2335
2336#if EV_USE_INOTIFY
2337 infy_del (EV_A_ w);
2338#endif
2339 ev_timer_stop (EV_A_ &w->timer);
2340
2341 ev_stop (EV_A_ (W)w);
2342}
2343#endif
2344
2345#if EV_IDLE_ENABLE
2346void
2347ev_idle_start (EV_P_ ev_idle *w)
2348{
2349 if (expect_false (ev_is_active (w)))
2350 return;
2351
2352 pri_adjust (EV_A_ (W)w);
2353
2354 {
2355 int active = ++idlecnt [ABSPRI (w)];
2356
2357 ++idleall;
2358 ev_start (EV_A_ (W)w, active);
2359
2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2361 idles [ABSPRI (w)][active - 1] = w;
2362 }
2363}
2364
2365void
2366ev_idle_stop (EV_P_ ev_idle *w)
2367{
2368 clear_pending (EV_A_ (W)w);
2369 if (expect_false (!ev_is_active (w)))
2370 return;
2371
2372 {
2373 int active = ((W)w)->active;
2374
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2376 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2377
2378 ev_stop (EV_A_ (W)w);
2379 --idleall;
2380 }
2381}
2382#endif
2383
2384void
2385ev_prepare_start (EV_P_ ev_prepare *w)
2386{
2387 if (expect_false (ev_is_active (w)))
2388 return;
2389
2390 ev_start (EV_A_ (W)w, ++preparecnt);
2391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2392 prepares [preparecnt - 1] = w;
2393}
2394
2395void
2396ev_prepare_stop (EV_P_ ev_prepare *w)
2397{
2398 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w)))
2400 return;
2401
2402 {
2403 int active = ((W)w)->active;
2404 prepares [active - 1] = prepares [--preparecnt];
2405 ((W)prepares [active - 1])->active = active;
2406 }
2407
2408 ev_stop (EV_A_ (W)w);
2409}
2410
2411void
2412ev_check_start (EV_P_ ev_check *w)
2413{
2414 if (expect_false (ev_is_active (w)))
2415 return;
2416
2417 ev_start (EV_A_ (W)w, ++checkcnt);
2418 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2419 checks [checkcnt - 1] = w;
2420}
2421
2422void
2423ev_check_stop (EV_P_ ev_check *w)
2424{
2425 clear_pending (EV_A_ (W)w);
2426 if (expect_false (!ev_is_active (w)))
2427 return;
2428
2429 {
2430 int active = ((W)w)->active;
2431 checks [active - 1] = checks [--checkcnt];
2432 ((W)checks [active - 1])->active = active;
2433 }
2434
2435 ev_stop (EV_A_ (W)w);
2436}
2437
2438#if EV_EMBED_ENABLE
2439void noinline
2440ev_embed_sweep (EV_P_ ev_embed *w)
2441{
2442 ev_loop (w->other, EVLOOP_NONBLOCK);
2443}
2444
2445static void
2446embed_io_cb (EV_P_ ev_io *io, int revents)
2447{
2448 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2449
2450 if (ev_cb (w))
2451 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2452 else
2453 ev_loop (w->other, EVLOOP_NONBLOCK);
2454}
2455
2456static void
2457embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2458{
2459 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2460
2461 {
2462 struct ev_loop *loop = w->other;
2463
2464 while (fdchangecnt)
2465 {
2466 fd_reify (EV_A);
2467 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2468 }
2469 }
2470}
2471
2472#if 0
2473static void
2474embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2475{
2476 ev_idle_stop (EV_A_ idle);
2477}
2478#endif
2479
2480void
2481ev_embed_start (EV_P_ ev_embed *w)
2482{
2483 if (expect_false (ev_is_active (w)))
2484 return;
2485
2486 {
2487 struct ev_loop *loop = w->other;
2488 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2489 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2490 }
2491
2492 ev_set_priority (&w->io, ev_priority (w));
2493 ev_io_start (EV_A_ &w->io);
2494
2495 ev_prepare_init (&w->prepare, embed_prepare_cb);
2496 ev_set_priority (&w->prepare, EV_MINPRI);
2497 ev_prepare_start (EV_A_ &w->prepare);
2498
2499 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2500
2501 ev_start (EV_A_ (W)w, 1);
2502}
2503
2504void
2505ev_embed_stop (EV_P_ ev_embed *w)
2506{
2507 clear_pending (EV_A_ (W)w);
2508 if (expect_false (!ev_is_active (w)))
2509 return;
2510
2511 ev_io_stop (EV_A_ &w->io);
2512 ev_prepare_stop (EV_A_ &w->prepare);
2513
2514 ev_stop (EV_A_ (W)w);
2515}
2516#endif
2517
2518#if EV_FORK_ENABLE
2519void
2520ev_fork_start (EV_P_ ev_fork *w)
2521{
2522 if (expect_false (ev_is_active (w)))
2523 return;
2524
2525 ev_start (EV_A_ (W)w, ++forkcnt);
2526 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2527 forks [forkcnt - 1] = w;
2528}
2529
2530void
2531ev_fork_stop (EV_P_ ev_fork *w)
2532{
2533 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w)))
2535 return;
2536
2537 {
2538 int active = ((W)w)->active;
2539 forks [active - 1] = forks [--forkcnt];
2540 ((W)forks [active - 1])->active = active;
2541 }
2542
2543 ev_stop (EV_A_ (W)w);
2544}
2545#endif
2546
2547#if EV_ASYNC_ENABLE
2548void
2549ev_async_start (EV_P_ ev_async *w)
2550{
2551 if (expect_false (ev_is_active (w)))
2552 return;
2553
2554 evpipe_init (EV_A);
2555
2556 ev_start (EV_A_ (W)w, ++asynccnt);
2557 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2558 asyncs [asynccnt - 1] = w;
2559}
2560
2561void
2562ev_async_stop (EV_P_ ev_async *w)
2563{
2564 clear_pending (EV_A_ (W)w);
2565 if (expect_false (!ev_is_active (w)))
2566 return;
2567
2568 {
2569 int active = ((W)w)->active;
2570 asyncs [active - 1] = asyncs [--asynccnt];
2571 ((W)asyncs [active - 1])->active = active;
2572 }
2573
2574 ev_stop (EV_A_ (W)w);
2575}
2576
2577void
2578ev_async_send (EV_P_ ev_async *w)
2579{
2580 w->sent = 1;
2581 evpipe_write (EV_A_ &gotasync);
2582}
2583#endif
2584
1640/*****************************************************************************/ 2585/*****************************************************************************/
1641 2586
1642struct ev_once 2587struct ev_once
1643{ 2588{
1644 struct ev_io io; 2589 ev_io io;
1645 struct ev_timer to; 2590 ev_timer to;
1646 void (*cb)(int revents, void *arg); 2591 void (*cb)(int revents, void *arg);
1647 void *arg; 2592 void *arg;
1648}; 2593};
1649 2594
1650static void 2595static void
1659 2604
1660 cb (revents, arg); 2605 cb (revents, arg);
1661} 2606}
1662 2607
1663static void 2608static void
1664once_cb_io (EV_P_ struct ev_io *w, int revents) 2609once_cb_io (EV_P_ ev_io *w, int revents)
1665{ 2610{
1666 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1667} 2612}
1668 2613
1669static void 2614static void
1670once_cb_to (EV_P_ struct ev_timer *w, int revents) 2615once_cb_to (EV_P_ ev_timer *w, int revents)
1671{ 2616{
1672 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2617 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1673} 2618}
1674 2619
1675void 2620void
1699 ev_timer_set (&once->to, timeout, 0.); 2644 ev_timer_set (&once->to, timeout, 0.);
1700 ev_timer_start (EV_A_ &once->to); 2645 ev_timer_start (EV_A_ &once->to);
1701 } 2646 }
1702} 2647}
1703 2648
2649#if EV_MULTIPLICITY
2650 #include "ev_wrap.h"
2651#endif
2652
1704#ifdef __cplusplus 2653#ifdef __cplusplus
1705} 2654}
1706#endif 2655#endif
1707 2656

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines