ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.131 by root, Fri Nov 23 05:43:45 2007 UTC vs.
Revision 1.229 by root, Fri May 2 08:08:45 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
47# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
48# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
49# endif 62# endif
50# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
51# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
52# endif 73# endif
53# endif 74# endif
54 75
55# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
56# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
90# else 111# else
91# define EV_USE_PORT 0 112# define EV_USE_PORT 0
92# endif 113# endif
93# endif 114# endif
94 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
95#endif 132#endif
96 133
97#include <math.h> 134#include <math.h>
98#include <stdlib.h> 135#include <stdlib.h>
99#include <fcntl.h> 136#include <fcntl.h>
106#include <sys/types.h> 143#include <sys/types.h>
107#include <time.h> 144#include <time.h>
108 145
109#include <signal.h> 146#include <signal.h>
110 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
111#ifndef _WIN32 154#ifndef _WIN32
112# include <unistd.h>
113# include <sys/time.h> 155# include <sys/time.h>
114# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
115#else 158#else
116# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
117# include <windows.h> 160# include <windows.h>
118# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
119# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
120# endif 163# endif
121#endif 164#endif
122 165
123/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
124 167
125#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
126# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
127#endif 170#endif
128 171
129#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
130# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
131#endif 178#endif
132 179
133#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
134# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
135#endif 182#endif
141# define EV_USE_POLL 1 188# define EV_USE_POLL 1
142# endif 189# endif
143#endif 190#endif
144 191
145#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
146# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
147#endif 198#endif
148 199
149#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
150# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
151#endif 202#endif
152 203
153#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
154# define EV_USE_PORT 0 205# define EV_USE_PORT 0
155#endif 206#endif
156 207
157/**/ 208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
158 241
159#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
160# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
161# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
162#endif 245#endif
164#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
165# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
166# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
167#endif 250#endif
168 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
169#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
170# include <winsock.h> 268# include <winsock.h>
171#endif 269#endif
172 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
173/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
174 294
175#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
176#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
177#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
178/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
179 298
180#ifdef EV_H
181# include EV_H
182#else
183# include "ev.h"
184#endif
185
186#if __GNUC__ >= 3 299#if __GNUC__ >= 4
187# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
188# define inline static inline 301# define noinline __attribute__ ((noinline))
189#else 302#else
190# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
191# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
192#endif 308#endif
193 309
194#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
195#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
196 319
197#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
198#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
199 322
200#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
201#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
202 325
203typedef struct ev_watcher *W; 326typedef ev_watcher *W;
204typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
205typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
206 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
207static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
208 338
209#ifdef _WIN32 339#ifdef _WIN32
210# include "ev_win32.c" 340# include "ev_win32.c"
211#endif 341#endif
212 342
213/*****************************************************************************/ 343/*****************************************************************************/
214 344
215static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
216 346
347void
217void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
218{ 349{
219 syserr_cb = cb; 350 syserr_cb = cb;
220} 351}
221 352
222static void 353static void noinline
223syserr (const char *msg) 354syserr (const char *msg)
224{ 355{
225 if (!msg) 356 if (!msg)
226 msg = "(libev) system error"; 357 msg = "(libev) system error";
227 358
232 perror (msg); 363 perror (msg);
233 abort (); 364 abort ();
234 } 365 }
235} 366}
236 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
237static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
238 384
385void
239void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
240{ 387{
241 alloc = cb; 388 alloc = cb;
242} 389}
243 390
244static void * 391inline_speed void *
245ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
246{ 393{
247 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
248 395
249 if (!ptr && size) 396 if (!ptr && size)
250 { 397 {
251 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
252 abort (); 399 abort ();
273typedef struct 420typedef struct
274{ 421{
275 W w; 422 W w;
276 int events; 423 int events;
277} ANPENDING; 424} ANPENDING;
425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
278 432
279#if EV_MULTIPLICITY 433#if EV_MULTIPLICITY
280 434
281 struct ev_loop 435 struct ev_loop
282 { 436 {
316 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
317 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
318#endif 472#endif
319} 473}
320 474
321inline ev_tstamp 475ev_tstamp inline_size
322get_clock (void) 476get_clock (void)
323{ 477{
324#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
325 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
326 { 480 {
339{ 493{
340 return ev_rt_now; 494 return ev_rt_now;
341} 495}
342#endif 496#endif
343 497
344#define array_roundsize(type,n) (((n) | 4) & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525int inline_size
526array_nextsize (int elem, int cur, int cnt)
527{
528 int ncur = cur + 1;
529
530 do
531 ncur <<= 1;
532 while (cnt > ncur);
533
534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
535 if (elem * ncur > 4096)
536 {
537 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
539 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem;
541 }
542
543 return ncur;
544}
545
546static noinline void *
547array_realloc (int elem, void *base, int *cur, int cnt)
548{
549 *cur = array_nextsize (elem, *cur, cnt);
550 return ev_realloc (base, elem * *cur);
551}
345 552
346#define array_needsize(type,base,cur,cnt,init) \ 553#define array_needsize(type,base,cur,cnt,init) \
347 if (expect_false ((cnt) > cur)) \ 554 if (expect_false ((cnt) > (cur))) \
348 { \ 555 { \
349 int newcnt = cur; \ 556 int ocur_ = (cur); \
350 do \ 557 (base) = (type *)array_realloc \
351 { \ 558 (sizeof (type), (base), &(cur), (cnt)); \
352 newcnt = array_roundsize (type, newcnt << 1); \ 559 init ((base) + (ocur_), (cur) - ocur_); \
353 } \
354 while ((cnt) > newcnt); \
355 \
356 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
357 init (base + cur, newcnt - cur); \
358 cur = newcnt; \
359 } 560 }
360 561
562#if 0
361#define array_slim(type,stem) \ 563#define array_slim(type,stem) \
362 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 564 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
363 { \ 565 { \
364 stem ## max = array_roundsize (stem ## cnt >> 1); \ 566 stem ## max = array_roundsize (stem ## cnt >> 1); \
365 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 567 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
366 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 568 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
367 } 569 }
570#endif
368 571
369#define array_free(stem, idx) \ 572#define array_free(stem, idx) \
370 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 573 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
371 574
372/*****************************************************************************/ 575/*****************************************************************************/
373 576
374static void 577void noinline
578ev_feed_event (EV_P_ void *w, int revents)
579{
580 W w_ = (W)w;
581 int pri = ABSPRI (w_);
582
583 if (expect_false (w_->pending))
584 pendings [pri][w_->pending - 1].events |= revents;
585 else
586 {
587 w_->pending = ++pendingcnt [pri];
588 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
589 pendings [pri][w_->pending - 1].w = w_;
590 pendings [pri][w_->pending - 1].events = revents;
591 }
592}
593
594void inline_speed
595queue_events (EV_P_ W *events, int eventcnt, int type)
596{
597 int i;
598
599 for (i = 0; i < eventcnt; ++i)
600 ev_feed_event (EV_A_ events [i], type);
601}
602
603/*****************************************************************************/
604
605void inline_size
375anfds_init (ANFD *base, int count) 606anfds_init (ANFD *base, int count)
376{ 607{
377 while (count--) 608 while (count--)
378 { 609 {
379 base->head = 0; 610 base->head = 0;
382 613
383 ++base; 614 ++base;
384 } 615 }
385} 616}
386 617
387void 618void inline_speed
388ev_feed_event (EV_P_ void *w, int revents)
389{
390 W w_ = (W)w;
391
392 if (expect_false (w_->pending))
393 {
394 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
395 return;
396 }
397
398 w_->pending = ++pendingcnt [ABSPRI (w_)];
399 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
400 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
401 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
402}
403
404static void
405queue_events (EV_P_ W *events, int eventcnt, int type)
406{
407 int i;
408
409 for (i = 0; i < eventcnt; ++i)
410 ev_feed_event (EV_A_ events [i], type);
411}
412
413inline void
414fd_event (EV_P_ int fd, int revents) 619fd_event (EV_P_ int fd, int revents)
415{ 620{
416 ANFD *anfd = anfds + fd; 621 ANFD *anfd = anfds + fd;
417 struct ev_io *w; 622 ev_io *w;
418 623
419 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 624 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
420 { 625 {
421 int ev = w->events & revents; 626 int ev = w->events & revents;
422 627
423 if (ev) 628 if (ev)
424 ev_feed_event (EV_A_ (W)w, ev); 629 ev_feed_event (EV_A_ (W)w, ev);
426} 631}
427 632
428void 633void
429ev_feed_fd_event (EV_P_ int fd, int revents) 634ev_feed_fd_event (EV_P_ int fd, int revents)
430{ 635{
636 if (fd >= 0 && fd < anfdmax)
431 fd_event (EV_A_ fd, revents); 637 fd_event (EV_A_ fd, revents);
432} 638}
433 639
434/*****************************************************************************/ 640void inline_size
435
436inline void
437fd_reify (EV_P) 641fd_reify (EV_P)
438{ 642{
439 int i; 643 int i;
440 644
441 for (i = 0; i < fdchangecnt; ++i) 645 for (i = 0; i < fdchangecnt; ++i)
442 { 646 {
443 int fd = fdchanges [i]; 647 int fd = fdchanges [i];
444 ANFD *anfd = anfds + fd; 648 ANFD *anfd = anfds + fd;
445 struct ev_io *w; 649 ev_io *w;
446 650
447 int events = 0; 651 unsigned char events = 0;
448 652
449 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
450 events |= w->events; 654 events |= (unsigned char)w->events;
451 655
452#if EV_SELECT_IS_WINSOCKET 656#if EV_SELECT_IS_WINSOCKET
453 if (events) 657 if (events)
454 { 658 {
455 unsigned long argp; 659 unsigned long argp;
660 #ifdef EV_FD_TO_WIN32_HANDLE
661 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
662 #else
456 anfd->handle = _get_osfhandle (fd); 663 anfd->handle = _get_osfhandle (fd);
664 #endif
457 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 665 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
458 } 666 }
459#endif 667#endif
460 668
669 {
670 unsigned char o_events = anfd->events;
671 unsigned char o_reify = anfd->reify;
672
461 anfd->reify = 0; 673 anfd->reify = 0;
462
463 backend_modify (EV_A_ fd, anfd->events, events);
464 anfd->events = events; 674 anfd->events = events;
675
676 if (o_events != events || o_reify & EV_IOFDSET)
677 backend_modify (EV_A_ fd, o_events, events);
678 }
465 } 679 }
466 680
467 fdchangecnt = 0; 681 fdchangecnt = 0;
468} 682}
469 683
470static void 684void inline_size
471fd_change (EV_P_ int fd) 685fd_change (EV_P_ int fd, int flags)
472{ 686{
473 if (expect_false (anfds [fd].reify)) 687 unsigned char reify = anfds [fd].reify;
474 return;
475
476 anfds [fd].reify = 1; 688 anfds [fd].reify |= flags;
477 689
690 if (expect_true (!reify))
691 {
478 ++fdchangecnt; 692 ++fdchangecnt;
479 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 693 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
480 fdchanges [fdchangecnt - 1] = fd; 694 fdchanges [fdchangecnt - 1] = fd;
695 }
481} 696}
482 697
483static void 698void inline_speed
484fd_kill (EV_P_ int fd) 699fd_kill (EV_P_ int fd)
485{ 700{
486 struct ev_io *w; 701 ev_io *w;
487 702
488 while ((w = (struct ev_io *)anfds [fd].head)) 703 while ((w = (ev_io *)anfds [fd].head))
489 { 704 {
490 ev_io_stop (EV_A_ w); 705 ev_io_stop (EV_A_ w);
491 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 706 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
492 } 707 }
493} 708}
494 709
495inline int 710int inline_size
496fd_valid (int fd) 711fd_valid (int fd)
497{ 712{
498#ifdef _WIN32 713#ifdef _WIN32
499 return _get_osfhandle (fd) != -1; 714 return _get_osfhandle (fd) != -1;
500#else 715#else
501 return fcntl (fd, F_GETFD) != -1; 716 return fcntl (fd, F_GETFD) != -1;
502#endif 717#endif
503} 718}
504 719
505/* called on EBADF to verify fds */ 720/* called on EBADF to verify fds */
506static void 721static void noinline
507fd_ebadf (EV_P) 722fd_ebadf (EV_P)
508{ 723{
509 int fd; 724 int fd;
510 725
511 for (fd = 0; fd < anfdmax; ++fd) 726 for (fd = 0; fd < anfdmax; ++fd)
513 if (!fd_valid (fd) == -1 && errno == EBADF) 728 if (!fd_valid (fd) == -1 && errno == EBADF)
514 fd_kill (EV_A_ fd); 729 fd_kill (EV_A_ fd);
515} 730}
516 731
517/* called on ENOMEM in select/poll to kill some fds and retry */ 732/* called on ENOMEM in select/poll to kill some fds and retry */
518static void 733static void noinline
519fd_enomem (EV_P) 734fd_enomem (EV_P)
520{ 735{
521 int fd; 736 int fd;
522 737
523 for (fd = anfdmax; fd--; ) 738 for (fd = anfdmax; fd--; )
527 return; 742 return;
528 } 743 }
529} 744}
530 745
531/* usually called after fork if backend needs to re-arm all fds from scratch */ 746/* usually called after fork if backend needs to re-arm all fds from scratch */
532static void 747static void noinline
533fd_rearm_all (EV_P) 748fd_rearm_all (EV_P)
534{ 749{
535 int fd; 750 int fd;
536 751
537 /* this should be highly optimised to not do anything but set a flag */
538 for (fd = 0; fd < anfdmax; ++fd) 752 for (fd = 0; fd < anfdmax; ++fd)
539 if (anfds [fd].events) 753 if (anfds [fd].events)
540 { 754 {
541 anfds [fd].events = 0; 755 anfds [fd].events = 0;
542 fd_change (EV_A_ fd); 756 fd_change (EV_A_ fd, EV_IOFDSET | 1);
543 } 757 }
544} 758}
545 759
546/*****************************************************************************/ 760/*****************************************************************************/
547 761
548static void 762/* towards the root */
763void inline_speed
549upheap (WT *heap, int k) 764upheap (WT *heap, int k)
550{ 765{
551 WT w = heap [k]; 766 WT w = heap [k];
552 767
553 while (k && heap [k >> 1]->at > w->at) 768 for (;;)
554 { 769 {
770 int p = k >> 1;
771
772 /* maybe we could use a dummy element at heap [0]? */
773 if (!p || heap [p]->at <= w->at)
774 break;
775
555 heap [k] = heap [k >> 1]; 776 heap [k] = heap [p];
556 ((W)heap [k])->active = k + 1; 777 ((W)heap [k])->active = k;
557 k >>= 1; 778 k = p;
558 } 779 }
559 780
560 heap [k] = w; 781 heap [k] = w;
561 ((W)heap [k])->active = k + 1; 782 ((W)heap [k])->active = k;
562
563} 783}
564 784
565static void 785/* away from the root */
786void inline_speed
566downheap (WT *heap, int N, int k) 787downheap (WT *heap, int N, int k)
567{ 788{
568 WT w = heap [k]; 789 WT w = heap [k];
569 790
570 while (k < (N >> 1)) 791 for (;;)
571 { 792 {
572 int j = k << 1; 793 int c = k << 1;
573 794
574 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 795 if (c > N)
575 ++j;
576
577 if (w->at <= heap [j]->at)
578 break; 796 break;
579 797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
580 heap [k] = heap [j]; 804 heap [k] = heap [c];
581 ((W)heap [k])->active = k + 1; 805 ((W)heap [k])->active = k;
806
582 k = j; 807 k = c;
583 } 808 }
584 809
585 heap [k] = w; 810 heap [k] = w;
586 ((W)heap [k])->active = k + 1; 811 ((W)heap [k])->active = k;
587} 812}
588 813
589inline void 814void inline_size
590adjustheap (WT *heap, int N, int k) 815adjustheap (WT *heap, int N, int k)
591{ 816{
592 upheap (heap, k); 817 upheap (heap, k);
593 downheap (heap, N, k); 818 downheap (heap, N, k);
594} 819}
596/*****************************************************************************/ 821/*****************************************************************************/
597 822
598typedef struct 823typedef struct
599{ 824{
600 WL head; 825 WL head;
601 sig_atomic_t volatile gotsig; 826 EV_ATOMIC_T gotsig;
602} ANSIG; 827} ANSIG;
603 828
604static ANSIG *signals; 829static ANSIG *signals;
605static int signalmax; 830static int signalmax;
606 831
607static int sigpipe [2]; 832static EV_ATOMIC_T gotsig;
608static sig_atomic_t volatile gotsig;
609static struct ev_io sigev;
610 833
611static void 834void inline_size
612signals_init (ANSIG *base, int count) 835signals_init (ANSIG *base, int count)
613{ 836{
614 while (count--) 837 while (count--)
615 { 838 {
616 base->head = 0; 839 base->head = 0;
618 841
619 ++base; 842 ++base;
620 } 843 }
621} 844}
622 845
623static void 846/*****************************************************************************/
624sighandler (int signum)
625{
626#if _WIN32
627 signal (signum, sighandler);
628#endif
629 847
630 signals [signum - 1].gotsig = 1; 848void inline_speed
631
632 if (!gotsig)
633 {
634 int old_errno = errno;
635 gotsig = 1;
636 write (sigpipe [1], &signum, 1);
637 errno = old_errno;
638 }
639}
640
641void
642ev_feed_signal_event (EV_P_ int signum)
643{
644 WL w;
645
646#if EV_MULTIPLICITY
647 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
648#endif
649
650 --signum;
651
652 if (signum < 0 || signum >= signalmax)
653 return;
654
655 signals [signum].gotsig = 0;
656
657 for (w = signals [signum].head; w; w = w->next)
658 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
659}
660
661static void
662sigcb (EV_P_ struct ev_io *iow, int revents)
663{
664 int signum;
665
666 read (sigpipe [0], &revents, 1);
667 gotsig = 0;
668
669 for (signum = signalmax; signum--; )
670 if (signals [signum].gotsig)
671 ev_feed_signal_event (EV_A_ signum + 1);
672}
673
674static void
675fd_intern (int fd) 849fd_intern (int fd)
676{ 850{
677#ifdef _WIN32 851#ifdef _WIN32
678 int arg = 1; 852 int arg = 1;
679 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 853 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
681 fcntl (fd, F_SETFD, FD_CLOEXEC); 855 fcntl (fd, F_SETFD, FD_CLOEXEC);
682 fcntl (fd, F_SETFL, O_NONBLOCK); 856 fcntl (fd, F_SETFL, O_NONBLOCK);
683#endif 857#endif
684} 858}
685 859
860static void noinline
861evpipe_init (EV_P)
862{
863 if (!ev_is_active (&pipeev))
864 {
865#if EV_USE_EVENTFD
866 if ((evfd = eventfd (0, 0)) >= 0)
867 {
868 evpipe [0] = -1;
869 fd_intern (evfd);
870 ev_io_set (&pipeev, evfd, EV_READ);
871 }
872 else
873#endif
874 {
875 while (pipe (evpipe))
876 syserr ("(libev) error creating signal/async pipe");
877
878 fd_intern (evpipe [0]);
879 fd_intern (evpipe [1]);
880 ev_io_set (&pipeev, evpipe [0], EV_READ);
881 }
882
883 ev_io_start (EV_A_ &pipeev);
884 ev_unref (EV_A); /* watcher should not keep loop alive */
885 }
886}
887
888void inline_size
889evpipe_write (EV_P_ EV_ATOMIC_T *flag)
890{
891 if (!*flag)
892 {
893 int old_errno = errno; /* save errno because write might clobber it */
894
895 *flag = 1;
896
897#if EV_USE_EVENTFD
898 if (evfd >= 0)
899 {
900 uint64_t counter = 1;
901 write (evfd, &counter, sizeof (uint64_t));
902 }
903 else
904#endif
905 write (evpipe [1], &old_errno, 1);
906
907 errno = old_errno;
908 }
909}
910
686static void 911static void
687siginit (EV_P) 912pipecb (EV_P_ ev_io *iow, int revents)
688{ 913{
689 fd_intern (sigpipe [0]); 914#if EV_USE_EVENTFD
690 fd_intern (sigpipe [1]); 915 if (evfd >= 0)
916 {
917 uint64_t counter = 1;
918 read (evfd, &counter, sizeof (uint64_t));
919 }
920 else
921#endif
922 {
923 char dummy;
924 read (evpipe [0], &dummy, 1);
925 }
691 926
692 ev_io_set (&sigev, sigpipe [0], EV_READ); 927 if (gotsig && ev_is_default_loop (EV_A))
693 ev_io_start (EV_A_ &sigev); 928 {
694 ev_unref (EV_A); /* child watcher should not keep loop alive */ 929 int signum;
930 gotsig = 0;
931
932 for (signum = signalmax; signum--; )
933 if (signals [signum].gotsig)
934 ev_feed_signal_event (EV_A_ signum + 1);
935 }
936
937#if EV_ASYNC_ENABLE
938 if (gotasync)
939 {
940 int i;
941 gotasync = 0;
942
943 for (i = asynccnt; i--; )
944 if (asyncs [i]->sent)
945 {
946 asyncs [i]->sent = 0;
947 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
948 }
949 }
950#endif
695} 951}
696 952
697/*****************************************************************************/ 953/*****************************************************************************/
698 954
699static struct ev_child *childs [PID_HASHSIZE]; 955static void
956ev_sighandler (int signum)
957{
958#if EV_MULTIPLICITY
959 struct ev_loop *loop = &default_loop_struct;
960#endif
961
962#if _WIN32
963 signal (signum, ev_sighandler);
964#endif
965
966 signals [signum - 1].gotsig = 1;
967 evpipe_write (EV_A_ &gotsig);
968}
969
970void noinline
971ev_feed_signal_event (EV_P_ int signum)
972{
973 WL w;
974
975#if EV_MULTIPLICITY
976 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
977#endif
978
979 --signum;
980
981 if (signum < 0 || signum >= signalmax)
982 return;
983
984 signals [signum].gotsig = 0;
985
986 for (w = signals [signum].head; w; w = w->next)
987 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
988}
989
990/*****************************************************************************/
991
992static WL childs [EV_PID_HASHSIZE];
700 993
701#ifndef _WIN32 994#ifndef _WIN32
702 995
703static struct ev_signal childev; 996static ev_signal childev;
997
998#ifndef WIFCONTINUED
999# define WIFCONTINUED(status) 0
1000#endif
1001
1002void inline_speed
1003child_reap (EV_P_ int chain, int pid, int status)
1004{
1005 ev_child *w;
1006 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1007
1008 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1009 {
1010 if ((w->pid == pid || !w->pid)
1011 && (!traced || (w->flags & 1)))
1012 {
1013 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1014 w->rpid = pid;
1015 w->rstatus = status;
1016 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1017 }
1018 }
1019}
704 1020
705#ifndef WCONTINUED 1021#ifndef WCONTINUED
706# define WCONTINUED 0 1022# define WCONTINUED 0
707#endif 1023#endif
708 1024
709static void 1025static void
710child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
711{
712 struct ev_child *w;
713
714 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
715 if (w->pid == pid || !w->pid)
716 {
717 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
718 w->rpid = pid;
719 w->rstatus = status;
720 ev_feed_event (EV_A_ (W)w, EV_CHILD);
721 }
722}
723
724static void
725childcb (EV_P_ struct ev_signal *sw, int revents) 1026childcb (EV_P_ ev_signal *sw, int revents)
726{ 1027{
727 int pid, status; 1028 int pid, status;
728 1029
1030 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
729 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1031 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
730 { 1032 if (!WCONTINUED
1033 || errno != EINVAL
1034 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1035 return;
1036
731 /* make sure we are called again until all childs have been reaped */ 1037 /* make sure we are called again until all children have been reaped */
1038 /* we need to do it this way so that the callback gets called before we continue */
732 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1039 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
733 1040
734 child_reap (EV_A_ sw, pid, pid, status); 1041 child_reap (EV_A_ pid, pid, status);
1042 if (EV_PID_HASHSIZE > 1)
735 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1043 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
736 }
737} 1044}
738 1045
739#endif 1046#endif
740 1047
741/*****************************************************************************/ 1048/*****************************************************************************/
767{ 1074{
768 return EV_VERSION_MINOR; 1075 return EV_VERSION_MINOR;
769} 1076}
770 1077
771/* return true if we are running with elevated privileges and should ignore env variables */ 1078/* return true if we are running with elevated privileges and should ignore env variables */
772static int 1079int inline_size
773enable_secure (void) 1080enable_secure (void)
774{ 1081{
775#ifdef _WIN32 1082#ifdef _WIN32
776 return 0; 1083 return 0;
777#else 1084#else
811 1118
812 return flags; 1119 return flags;
813} 1120}
814 1121
815unsigned int 1122unsigned int
1123ev_embeddable_backends (void)
1124{
1125 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1126
1127 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1128 /* please fix it and tell me how to detect the fix */
1129 flags &= ~EVBACKEND_EPOLL;
1130
1131 return flags;
1132}
1133
1134unsigned int
816ev_backend (EV_P) 1135ev_backend (EV_P)
817{ 1136{
818 return backend; 1137 return backend;
819} 1138}
820 1139
821static void 1140unsigned int
1141ev_loop_count (EV_P)
1142{
1143 return loop_count;
1144}
1145
1146void
1147ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 io_blocktime = interval;
1150}
1151
1152void
1153ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1154{
1155 timeout_blocktime = interval;
1156}
1157
1158static void noinline
822loop_init (EV_P_ unsigned int flags) 1159loop_init (EV_P_ unsigned int flags)
823{ 1160{
824 if (!backend) 1161 if (!backend)
825 { 1162 {
826#if EV_USE_MONOTONIC 1163#if EV_USE_MONOTONIC
829 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1166 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
830 have_monotonic = 1; 1167 have_monotonic = 1;
831 } 1168 }
832#endif 1169#endif
833 1170
834 ev_rt_now = ev_time (); 1171 ev_rt_now = ev_time ();
835 mn_now = get_clock (); 1172 mn_now = get_clock ();
836 now_floor = mn_now; 1173 now_floor = mn_now;
837 rtmn_diff = ev_rt_now - mn_now; 1174 rtmn_diff = ev_rt_now - mn_now;
1175
1176 io_blocktime = 0.;
1177 timeout_blocktime = 0.;
1178 backend = 0;
1179 backend_fd = -1;
1180 gotasync = 0;
1181#if EV_USE_INOTIFY
1182 fs_fd = -2;
1183#endif
1184
1185 /* pid check not overridable via env */
1186#ifndef _WIN32
1187 if (flags & EVFLAG_FORKCHECK)
1188 curpid = getpid ();
1189#endif
838 1190
839 if (!(flags & EVFLAG_NOENV) 1191 if (!(flags & EVFLAG_NOENV)
840 && !enable_secure () 1192 && !enable_secure ()
841 && getenv ("LIBEV_FLAGS")) 1193 && getenv ("LIBEV_FLAGS"))
842 flags = atoi (getenv ("LIBEV_FLAGS")); 1194 flags = atoi (getenv ("LIBEV_FLAGS"));
843 1195
844 if (!(flags & 0x0000ffffUL)) 1196 if (!(flags & 0x0000ffffU))
845 flags |= ev_recommended_backends (); 1197 flags |= ev_recommended_backends ();
846 1198
847 backend = 0;
848#if EV_USE_PORT 1199#if EV_USE_PORT
849 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1200 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
850#endif 1201#endif
851#if EV_USE_KQUEUE 1202#if EV_USE_KQUEUE
852 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1203 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
859#endif 1210#endif
860#if EV_USE_SELECT 1211#if EV_USE_SELECT
861 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1212 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
862#endif 1213#endif
863 1214
864 ev_init (&sigev, sigcb); 1215 ev_init (&pipeev, pipecb);
865 ev_set_priority (&sigev, EV_MAXPRI); 1216 ev_set_priority (&pipeev, EV_MAXPRI);
866 } 1217 }
867} 1218}
868 1219
869static void 1220static void noinline
870loop_destroy (EV_P) 1221loop_destroy (EV_P)
871{ 1222{
872 int i; 1223 int i;
1224
1225 if (ev_is_active (&pipeev))
1226 {
1227 ev_ref (EV_A); /* signal watcher */
1228 ev_io_stop (EV_A_ &pipeev);
1229
1230#if EV_USE_EVENTFD
1231 if (evfd >= 0)
1232 close (evfd);
1233#endif
1234
1235 if (evpipe [0] >= 0)
1236 {
1237 close (evpipe [0]);
1238 close (evpipe [1]);
1239 }
1240 }
1241
1242#if EV_USE_INOTIFY
1243 if (fs_fd >= 0)
1244 close (fs_fd);
1245#endif
1246
1247 if (backend_fd >= 0)
1248 close (backend_fd);
873 1249
874#if EV_USE_PORT 1250#if EV_USE_PORT
875 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1251 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
876#endif 1252#endif
877#if EV_USE_KQUEUE 1253#if EV_USE_KQUEUE
886#if EV_USE_SELECT 1262#if EV_USE_SELECT
887 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1263 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
888#endif 1264#endif
889 1265
890 for (i = NUMPRI; i--; ) 1266 for (i = NUMPRI; i--; )
1267 {
891 array_free (pending, [i]); 1268 array_free (pending, [i]);
1269#if EV_IDLE_ENABLE
1270 array_free (idle, [i]);
1271#endif
1272 }
1273
1274 ev_free (anfds); anfdmax = 0;
892 1275
893 /* have to use the microsoft-never-gets-it-right macro */ 1276 /* have to use the microsoft-never-gets-it-right macro */
894 array_free (fdchange, EMPTY0); 1277 array_free (fdchange, EMPTY);
895 array_free (timer, EMPTY0); 1278 array_free (timer, EMPTY);
896#if EV_PERIODICS 1279#if EV_PERIODIC_ENABLE
897 array_free (periodic, EMPTY0); 1280 array_free (periodic, EMPTY);
898#endif 1281#endif
1282#if EV_FORK_ENABLE
899 array_free (idle, EMPTY0); 1283 array_free (fork, EMPTY);
1284#endif
900 array_free (prepare, EMPTY0); 1285 array_free (prepare, EMPTY);
901 array_free (check, EMPTY0); 1286 array_free (check, EMPTY);
1287#if EV_ASYNC_ENABLE
1288 array_free (async, EMPTY);
1289#endif
902 1290
903 backend = 0; 1291 backend = 0;
904} 1292}
905 1293
906static void 1294#if EV_USE_INOTIFY
1295void inline_size infy_fork (EV_P);
1296#endif
1297
1298void inline_size
907loop_fork (EV_P) 1299loop_fork (EV_P)
908{ 1300{
909#if EV_USE_PORT 1301#if EV_USE_PORT
910 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1302 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
911#endif 1303#endif
913 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1305 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
914#endif 1306#endif
915#if EV_USE_EPOLL 1307#if EV_USE_EPOLL
916 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1308 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
917#endif 1309#endif
1310#if EV_USE_INOTIFY
1311 infy_fork (EV_A);
1312#endif
918 1313
919 if (ev_is_active (&sigev)) 1314 if (ev_is_active (&pipeev))
920 { 1315 {
921 /* default loop */ 1316 /* this "locks" the handlers against writing to the pipe */
1317 /* while we modify the fd vars */
1318 gotsig = 1;
1319#if EV_ASYNC_ENABLE
1320 gotasync = 1;
1321#endif
922 1322
923 ev_ref (EV_A); 1323 ev_ref (EV_A);
924 ev_io_stop (EV_A_ &sigev); 1324 ev_io_stop (EV_A_ &pipeev);
1325
1326#if EV_USE_EVENTFD
1327 if (evfd >= 0)
1328 close (evfd);
1329#endif
1330
1331 if (evpipe [0] >= 0)
1332 {
925 close (sigpipe [0]); 1333 close (evpipe [0]);
926 close (sigpipe [1]); 1334 close (evpipe [1]);
1335 }
927 1336
928 while (pipe (sigpipe))
929 syserr ("(libev) error creating pipe");
930
931 siginit (EV_A); 1337 evpipe_init (EV_A);
1338 /* now iterate over everything, in case we missed something */
1339 pipecb (EV_A_ &pipeev, EV_READ);
932 } 1340 }
933 1341
934 postfork = 0; 1342 postfork = 0;
935} 1343}
936 1344
958} 1366}
959 1367
960void 1368void
961ev_loop_fork (EV_P) 1369ev_loop_fork (EV_P)
962{ 1370{
963 postfork = 1; 1371 postfork = 1; /* must be in line with ev_default_fork */
964} 1372}
965 1373
966#endif 1374#endif
967 1375
968#if EV_MULTIPLICITY 1376#if EV_MULTIPLICITY
971#else 1379#else
972int 1380int
973ev_default_loop (unsigned int flags) 1381ev_default_loop (unsigned int flags)
974#endif 1382#endif
975{ 1383{
976 if (sigpipe [0] == sigpipe [1])
977 if (pipe (sigpipe))
978 return 0;
979
980 if (!ev_default_loop_ptr) 1384 if (!ev_default_loop_ptr)
981 { 1385 {
982#if EV_MULTIPLICITY 1386#if EV_MULTIPLICITY
983 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1387 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
984#else 1388#else
987 1391
988 loop_init (EV_A_ flags); 1392 loop_init (EV_A_ flags);
989 1393
990 if (ev_backend (EV_A)) 1394 if (ev_backend (EV_A))
991 { 1395 {
992 siginit (EV_A);
993
994#ifndef _WIN32 1396#ifndef _WIN32
995 ev_signal_init (&childev, childcb, SIGCHLD); 1397 ev_signal_init (&childev, childcb, SIGCHLD);
996 ev_set_priority (&childev, EV_MAXPRI); 1398 ev_set_priority (&childev, EV_MAXPRI);
997 ev_signal_start (EV_A_ &childev); 1399 ev_signal_start (EV_A_ &childev);
998 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1400 ev_unref (EV_A); /* child watcher should not keep loop alive */
1015#ifndef _WIN32 1417#ifndef _WIN32
1016 ev_ref (EV_A); /* child watcher */ 1418 ev_ref (EV_A); /* child watcher */
1017 ev_signal_stop (EV_A_ &childev); 1419 ev_signal_stop (EV_A_ &childev);
1018#endif 1420#endif
1019 1421
1020 ev_ref (EV_A); /* signal watcher */
1021 ev_io_stop (EV_A_ &sigev);
1022
1023 close (sigpipe [0]); sigpipe [0] = 0;
1024 close (sigpipe [1]); sigpipe [1] = 0;
1025
1026 loop_destroy (EV_A); 1422 loop_destroy (EV_A);
1027} 1423}
1028 1424
1029void 1425void
1030ev_default_fork (void) 1426ev_default_fork (void)
1032#if EV_MULTIPLICITY 1428#if EV_MULTIPLICITY
1033 struct ev_loop *loop = ev_default_loop_ptr; 1429 struct ev_loop *loop = ev_default_loop_ptr;
1034#endif 1430#endif
1035 1431
1036 if (backend) 1432 if (backend)
1037 postfork = 1; 1433 postfork = 1; /* must be in line with ev_loop_fork */
1038} 1434}
1039 1435
1040/*****************************************************************************/ 1436/*****************************************************************************/
1041 1437
1042static int 1438void
1043any_pending (EV_P) 1439ev_invoke (EV_P_ void *w, int revents)
1044{ 1440{
1045 int pri; 1441 EV_CB_INVOKE ((W)w, revents);
1046
1047 for (pri = NUMPRI; pri--; )
1048 if (pendingcnt [pri])
1049 return 1;
1050
1051 return 0;
1052} 1442}
1053 1443
1054inline void 1444void inline_speed
1055call_pending (EV_P) 1445call_pending (EV_P)
1056{ 1446{
1057 int pri; 1447 int pri;
1058 1448
1059 for (pri = NUMPRI; pri--; ) 1449 for (pri = NUMPRI; pri--; )
1061 { 1451 {
1062 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1452 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1063 1453
1064 if (expect_true (p->w)) 1454 if (expect_true (p->w))
1065 { 1455 {
1456 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1457
1066 p->w->pending = 0; 1458 p->w->pending = 0;
1067 EV_CB_INVOKE (p->w, p->events); 1459 EV_CB_INVOKE (p->w, p->events);
1068 } 1460 }
1069 } 1461 }
1070} 1462}
1071 1463
1072inline void 1464void inline_size
1073timers_reify (EV_P) 1465timers_reify (EV_P)
1074{ 1466{
1075 while (timercnt && ((WT)timers [0])->at <= mn_now) 1467 while (timercnt && ev_at (timers [1]) <= mn_now)
1076 { 1468 {
1077 struct ev_timer *w = timers [0]; 1469 ev_timer *w = (ev_timer *)timers [1];
1078 1470
1079 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1080 1472
1081 /* first reschedule or stop timer */ 1473 /* first reschedule or stop timer */
1082 if (w->repeat) 1474 if (w->repeat)
1083 { 1475 {
1084 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1085 1477
1086 ((WT)w)->at += w->repeat; 1478 ev_at (w) += w->repeat;
1087 if (((WT)w)->at < mn_now) 1479 if (ev_at (w) < mn_now)
1088 ((WT)w)->at = mn_now; 1480 ev_at (w) = mn_now;
1089 1481
1090 downheap ((WT *)timers, timercnt, 0); 1482 downheap (timers, timercnt, 1);
1091 } 1483 }
1092 else 1484 else
1093 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1094 1486
1095 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1096 } 1488 }
1097} 1489}
1098 1490
1099#if EV_PERIODICS 1491#if EV_PERIODIC_ENABLE
1100inline void 1492void inline_size
1101periodics_reify (EV_P) 1493periodics_reify (EV_P)
1102{ 1494{
1103 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1104 { 1496 {
1105 struct ev_periodic *w = periodics [0]; 1497 ev_periodic *w = (ev_periodic *)periodics [1];
1106 1498
1107 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1108 1500
1109 /* first reschedule or stop timer */ 1501 /* first reschedule or stop timer */
1110 if (w->reschedule_cb) 1502 if (w->reschedule_cb)
1111 { 1503 {
1112 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1113 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1114 downheap ((WT *)periodics, periodiccnt, 0); 1506 downheap (periodics, periodiccnt, 1);
1115 } 1507 }
1116 else if (w->interval) 1508 else if (w->interval)
1117 { 1509 {
1118 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1119 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1120 downheap ((WT *)periodics, periodiccnt, 0); 1513 downheap (periodics, periodiccnt, 1);
1121 } 1514 }
1122 else 1515 else
1123 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1124 1517
1125 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1126 } 1519 }
1127} 1520}
1128 1521
1129static void 1522static void noinline
1130periodics_reschedule (EV_P) 1523periodics_reschedule (EV_P)
1131{ 1524{
1132 int i; 1525 int i;
1133 1526
1134 /* adjust periodics after time jump */ 1527 /* adjust periodics after time jump */
1135 for (i = 0; i < periodiccnt; ++i) 1528 for (i = 0; i < periodiccnt; ++i)
1136 { 1529 {
1137 struct ev_periodic *w = periodics [i]; 1530 ev_periodic *w = (ev_periodic *)periodics [i];
1138 1531
1139 if (w->reschedule_cb) 1532 if (w->reschedule_cb)
1140 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1141 else if (w->interval) 1534 else if (w->interval)
1142 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1143 } 1536 }
1144 1537
1145 /* now rebuild the heap */ 1538 /* now rebuild the heap */
1146 for (i = periodiccnt >> 1; i--; ) 1539 for (i = periodiccnt >> 1; i--; )
1147 downheap ((WT *)periodics, periodiccnt, i); 1540 downheap (periodics, periodiccnt, i);
1148} 1541}
1149#endif 1542#endif
1150 1543
1151inline int 1544#if EV_IDLE_ENABLE
1152time_update_monotonic (EV_P) 1545void inline_size
1546idle_reify (EV_P)
1153{ 1547{
1548 if (expect_false (idleall))
1549 {
1550 int pri;
1551
1552 for (pri = NUMPRI; pri--; )
1553 {
1554 if (pendingcnt [pri])
1555 break;
1556
1557 if (idlecnt [pri])
1558 {
1559 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1560 break;
1561 }
1562 }
1563 }
1564}
1565#endif
1566
1567void inline_speed
1568time_update (EV_P_ ev_tstamp max_block)
1569{
1570 int i;
1571
1572#if EV_USE_MONOTONIC
1573 if (expect_true (have_monotonic))
1574 {
1575 ev_tstamp odiff = rtmn_diff;
1576
1154 mn_now = get_clock (); 1577 mn_now = get_clock ();
1155 1578
1579 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1580 /* interpolate in the meantime */
1156 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1581 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1157 { 1582 {
1158 ev_rt_now = rtmn_diff + mn_now; 1583 ev_rt_now = rtmn_diff + mn_now;
1159 return 0; 1584 return;
1160 } 1585 }
1161 else 1586
1162 {
1163 now_floor = mn_now; 1587 now_floor = mn_now;
1164 ev_rt_now = ev_time (); 1588 ev_rt_now = ev_time ();
1165 return 1;
1166 }
1167}
1168 1589
1169inline void 1590 /* loop a few times, before making important decisions.
1170time_update (EV_P) 1591 * on the choice of "4": one iteration isn't enough,
1171{ 1592 * in case we get preempted during the calls to
1172 int i; 1593 * ev_time and get_clock. a second call is almost guaranteed
1173 1594 * to succeed in that case, though. and looping a few more times
1174#if EV_USE_MONOTONIC 1595 * doesn't hurt either as we only do this on time-jumps or
1175 if (expect_true (have_monotonic)) 1596 * in the unlikely event of having been preempted here.
1176 { 1597 */
1177 if (time_update_monotonic (EV_A)) 1598 for (i = 4; --i; )
1178 { 1599 {
1179 ev_tstamp odiff = rtmn_diff;
1180
1181 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1182 {
1183 rtmn_diff = ev_rt_now - mn_now; 1600 rtmn_diff = ev_rt_now - mn_now;
1184 1601
1185 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1186 return; /* all is well */ 1603 return; /* all is well */
1187 1604
1188 ev_rt_now = ev_time (); 1605 ev_rt_now = ev_time ();
1189 mn_now = get_clock (); 1606 mn_now = get_clock ();
1190 now_floor = mn_now; 1607 now_floor = mn_now;
1191 } 1608 }
1192 1609
1193# if EV_PERIODICS 1610# if EV_PERIODIC_ENABLE
1611 periodics_reschedule (EV_A);
1612# endif
1613 /* no timer adjustment, as the monotonic clock doesn't jump */
1614 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1615 }
1616 else
1617#endif
1618 {
1619 ev_rt_now = ev_time ();
1620
1621 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1622 {
1623#if EV_PERIODIC_ENABLE
1194 periodics_reschedule (EV_A); 1624 periodics_reschedule (EV_A);
1195# endif 1625#endif
1196 /* no timer adjustment, as the monotonic clock doesn't jump */ 1626 /* adjust timers. this is easy, as the offset is the same for all of them */
1197 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1627 for (i = 1; i <= timercnt; ++i)
1628 ev_at (timers [i]) += ev_rt_now - mn_now;
1198 } 1629 }
1199 }
1200 else
1201#endif
1202 {
1203 ev_rt_now = ev_time ();
1204
1205 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1206 {
1207#if EV_PERIODICS
1208 periodics_reschedule (EV_A);
1209#endif
1210
1211 /* adjust timers. this is easy, as the offset is the same for all */
1212 for (i = 0; i < timercnt; ++i)
1213 ((WT)timers [i])->at += ev_rt_now - mn_now;
1214 }
1215 1630
1216 mn_now = ev_rt_now; 1631 mn_now = ev_rt_now;
1217 } 1632 }
1218} 1633}
1219 1634
1232static int loop_done; 1647static int loop_done;
1233 1648
1234void 1649void
1235ev_loop (EV_P_ int flags) 1650ev_loop (EV_P_ int flags)
1236{ 1651{
1237 double block; 1652 loop_done = EVUNLOOP_CANCEL;
1238 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1239 1653
1240 while (activecnt) 1654 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1655
1656 do
1241 { 1657 {
1658#ifndef _WIN32
1659 if (expect_false (curpid)) /* penalise the forking check even more */
1660 if (expect_false (getpid () != curpid))
1661 {
1662 curpid = getpid ();
1663 postfork = 1;
1664 }
1665#endif
1666
1667#if EV_FORK_ENABLE
1668 /* we might have forked, so queue fork handlers */
1669 if (expect_false (postfork))
1670 if (forkcnt)
1671 {
1672 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1673 call_pending (EV_A);
1674 }
1675#endif
1676
1242 /* queue check watchers (and execute them) */ 1677 /* queue prepare watchers (and execute them) */
1243 if (expect_false (preparecnt)) 1678 if (expect_false (preparecnt))
1244 { 1679 {
1245 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1680 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1246 call_pending (EV_A); 1681 call_pending (EV_A);
1247 } 1682 }
1248 1683
1684 if (expect_false (!activecnt))
1685 break;
1686
1249 /* we might have forked, so reify kernel state if necessary */ 1687 /* we might have forked, so reify kernel state if necessary */
1250 if (expect_false (postfork)) 1688 if (expect_false (postfork))
1251 loop_fork (EV_A); 1689 loop_fork (EV_A);
1252 1690
1253 /* update fd-related kernel structures */ 1691 /* update fd-related kernel structures */
1254 fd_reify (EV_A); 1692 fd_reify (EV_A);
1255 1693
1256 /* calculate blocking time */ 1694 /* calculate blocking time */
1695 {
1696 ev_tstamp waittime = 0.;
1697 ev_tstamp sleeptime = 0.;
1257 1698
1258 /* we only need this for !monotonic clock or timers, but as we basically 1699 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1259 always have timers, we just calculate it always */
1260#if EV_USE_MONOTONIC
1261 if (expect_true (have_monotonic))
1262 time_update_monotonic (EV_A);
1263 else
1264#endif
1265 { 1700 {
1266 ev_rt_now = ev_time (); 1701 /* update time to cancel out callback processing overhead */
1267 mn_now = ev_rt_now; 1702 time_update (EV_A_ 1e100);
1268 }
1269 1703
1270 if (flags & EVLOOP_NONBLOCK || idlecnt)
1271 block = 0.;
1272 else
1273 {
1274 block = MAX_BLOCKTIME; 1704 waittime = MAX_BLOCKTIME;
1275 1705
1276 if (timercnt) 1706 if (timercnt)
1277 { 1707 {
1278 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1279 if (block > to) block = to; 1709 if (waittime > to) waittime = to;
1280 } 1710 }
1281 1711
1282#if EV_PERIODICS 1712#if EV_PERIODIC_ENABLE
1283 if (periodiccnt) 1713 if (periodiccnt)
1284 { 1714 {
1285 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1286 if (block > to) block = to; 1716 if (waittime > to) waittime = to;
1287 } 1717 }
1288#endif 1718#endif
1289 1719
1290 if (expect_false (block < 0.)) block = 0.; 1720 if (expect_false (waittime < timeout_blocktime))
1721 waittime = timeout_blocktime;
1722
1723 sleeptime = waittime - backend_fudge;
1724
1725 if (expect_true (sleeptime > io_blocktime))
1726 sleeptime = io_blocktime;
1727
1728 if (sleeptime)
1729 {
1730 ev_sleep (sleeptime);
1731 waittime -= sleeptime;
1732 }
1291 } 1733 }
1292 1734
1735 ++loop_count;
1293 backend_poll (EV_A_ block); 1736 backend_poll (EV_A_ waittime);
1294 1737
1295 /* update ev_rt_now, do magic */ 1738 /* update ev_rt_now, do magic */
1296 time_update (EV_A); 1739 time_update (EV_A_ waittime + sleeptime);
1740 }
1297 1741
1298 /* queue pending timers and reschedule them */ 1742 /* queue pending timers and reschedule them */
1299 timers_reify (EV_A); /* relative timers called last */ 1743 timers_reify (EV_A); /* relative timers called last */
1300#if EV_PERIODICS 1744#if EV_PERIODIC_ENABLE
1301 periodics_reify (EV_A); /* absolute timers called first */ 1745 periodics_reify (EV_A); /* absolute timers called first */
1302#endif 1746#endif
1303 1747
1748#if EV_IDLE_ENABLE
1304 /* queue idle watchers unless io or timers are pending */ 1749 /* queue idle watchers unless other events are pending */
1305 if (idlecnt && !any_pending (EV_A)) 1750 idle_reify (EV_A);
1306 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1751#endif
1307 1752
1308 /* queue check watchers, to be executed first */ 1753 /* queue check watchers, to be executed first */
1309 if (expect_false (checkcnt)) 1754 if (expect_false (checkcnt))
1310 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1755 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1311 1756
1312 call_pending (EV_A); 1757 call_pending (EV_A);
1313
1314 if (expect_false (loop_done))
1315 break;
1316 } 1758 }
1759 while (expect_true (
1760 activecnt
1761 && !loop_done
1762 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1763 ));
1317 1764
1318 if (loop_done != 2) 1765 if (loop_done == EVUNLOOP_ONE)
1319 loop_done = 0; 1766 loop_done = EVUNLOOP_CANCEL;
1320} 1767}
1321 1768
1322void 1769void
1323ev_unloop (EV_P_ int how) 1770ev_unloop (EV_P_ int how)
1324{ 1771{
1325 loop_done = how; 1772 loop_done = how;
1326} 1773}
1327 1774
1328/*****************************************************************************/ 1775/*****************************************************************************/
1329 1776
1330inline void 1777void inline_size
1331wlist_add (WL *head, WL elem) 1778wlist_add (WL *head, WL elem)
1332{ 1779{
1333 elem->next = *head; 1780 elem->next = *head;
1334 *head = elem; 1781 *head = elem;
1335} 1782}
1336 1783
1337inline void 1784void inline_size
1338wlist_del (WL *head, WL elem) 1785wlist_del (WL *head, WL elem)
1339{ 1786{
1340 while (*head) 1787 while (*head)
1341 { 1788 {
1342 if (*head == elem) 1789 if (*head == elem)
1347 1794
1348 head = &(*head)->next; 1795 head = &(*head)->next;
1349 } 1796 }
1350} 1797}
1351 1798
1352inline void 1799void inline_speed
1353ev_clear_pending (EV_P_ W w) 1800clear_pending (EV_P_ W w)
1354{ 1801{
1355 if (w->pending) 1802 if (w->pending)
1356 { 1803 {
1357 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1804 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1358 w->pending = 0; 1805 w->pending = 0;
1359 } 1806 }
1360} 1807}
1361 1808
1362inline void 1809int
1810ev_clear_pending (EV_P_ void *w)
1811{
1812 W w_ = (W)w;
1813 int pending = w_->pending;
1814
1815 if (expect_true (pending))
1816 {
1817 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1818 w_->pending = 0;
1819 p->w = 0;
1820 return p->events;
1821 }
1822 else
1823 return 0;
1824}
1825
1826void inline_size
1827pri_adjust (EV_P_ W w)
1828{
1829 int pri = w->priority;
1830 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1831 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1832 w->priority = pri;
1833}
1834
1835void inline_speed
1363ev_start (EV_P_ W w, int active) 1836ev_start (EV_P_ W w, int active)
1364{ 1837{
1365 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1838 pri_adjust (EV_A_ w);
1366 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1367
1368 w->active = active; 1839 w->active = active;
1369 ev_ref (EV_A); 1840 ev_ref (EV_A);
1370} 1841}
1371 1842
1372inline void 1843void inline_size
1373ev_stop (EV_P_ W w) 1844ev_stop (EV_P_ W w)
1374{ 1845{
1375 ev_unref (EV_A); 1846 ev_unref (EV_A);
1376 w->active = 0; 1847 w->active = 0;
1377} 1848}
1378 1849
1379/*****************************************************************************/ 1850/*****************************************************************************/
1380 1851
1381void 1852void noinline
1382ev_io_start (EV_P_ struct ev_io *w) 1853ev_io_start (EV_P_ ev_io *w)
1383{ 1854{
1384 int fd = w->fd; 1855 int fd = w->fd;
1385 1856
1386 if (expect_false (ev_is_active (w))) 1857 if (expect_false (ev_is_active (w)))
1387 return; 1858 return;
1388 1859
1389 assert (("ev_io_start called with negative fd", fd >= 0)); 1860 assert (("ev_io_start called with negative fd", fd >= 0));
1390 1861
1391 ev_start (EV_A_ (W)w, 1); 1862 ev_start (EV_A_ (W)w, 1);
1392 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1393 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1864 wlist_add (&anfds[fd].head, (WL)w);
1394 1865
1395 fd_change (EV_A_ fd); 1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1867 w->events &= ~EV_IOFDSET;
1396} 1868}
1397 1869
1398void 1870void noinline
1399ev_io_stop (EV_P_ struct ev_io *w) 1871ev_io_stop (EV_P_ ev_io *w)
1400{ 1872{
1401 ev_clear_pending (EV_A_ (W)w); 1873 clear_pending (EV_A_ (W)w);
1402 if (expect_false (!ev_is_active (w))) 1874 if (expect_false (!ev_is_active (w)))
1403 return; 1875 return;
1404 1876
1405 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1406 1878
1407 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1879 wlist_del (&anfds[w->fd].head, (WL)w);
1408 ev_stop (EV_A_ (W)w); 1880 ev_stop (EV_A_ (W)w);
1409 1881
1410 fd_change (EV_A_ w->fd); 1882 fd_change (EV_A_ w->fd, 1);
1411} 1883}
1412 1884
1413void 1885void noinline
1414ev_timer_start (EV_P_ struct ev_timer *w) 1886ev_timer_start (EV_P_ ev_timer *w)
1415{ 1887{
1416 if (expect_false (ev_is_active (w))) 1888 if (expect_false (ev_is_active (w)))
1417 return; 1889 return;
1418 1890
1419 ((WT)w)->at += mn_now; 1891 ev_at (w) += mn_now;
1420 1892
1421 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1422 1894
1423 ev_start (EV_A_ (W)w, ++timercnt); 1895 ev_start (EV_A_ (W)w, ++timercnt);
1424 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1425 timers [timercnt - 1] = w; 1897 timers [timercnt] = (WT)w;
1426 upheap ((WT *)timers, timercnt - 1); 1898 upheap (timers, timercnt);
1427 1899
1428 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1900 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/
1429} 1901}
1430 1902
1431void 1903void noinline
1432ev_timer_stop (EV_P_ struct ev_timer *w) 1904ev_timer_stop (EV_P_ ev_timer *w)
1433{ 1905{
1434 ev_clear_pending (EV_A_ (W)w); 1906 clear_pending (EV_A_ (W)w);
1435 if (expect_false (!ev_is_active (w))) 1907 if (expect_false (!ev_is_active (w)))
1436 return; 1908 return;
1437 1909
1438 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1910 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w));
1439 1911
1912 {
1913 int active = ((W)w)->active;
1914
1440 if (expect_true (((W)w)->active < timercnt--)) 1915 if (expect_true (active < timercnt))
1441 { 1916 {
1442 timers [((W)w)->active - 1] = timers [timercnt]; 1917 timers [active] = timers [timercnt];
1443 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1918 adjustheap (timers, timercnt, active);
1444 } 1919 }
1445 1920
1446 ((WT)w)->at -= mn_now; 1921 --timercnt;
1922 }
1923
1924 ev_at (w) -= mn_now;
1447 1925
1448 ev_stop (EV_A_ (W)w); 1926 ev_stop (EV_A_ (W)w);
1449} 1927}
1450 1928
1451void 1929void noinline
1452ev_timer_again (EV_P_ struct ev_timer *w) 1930ev_timer_again (EV_P_ ev_timer *w)
1453{ 1931{
1454 if (ev_is_active (w)) 1932 if (ev_is_active (w))
1455 { 1933 {
1456 if (w->repeat) 1934 if (w->repeat)
1457 { 1935 {
1458 ((WT)w)->at = mn_now + w->repeat; 1936 ev_at (w) = mn_now + w->repeat;
1459 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1937 adjustheap (timers, timercnt, ((W)w)->active);
1460 } 1938 }
1461 else 1939 else
1462 ev_timer_stop (EV_A_ w); 1940 ev_timer_stop (EV_A_ w);
1463 } 1941 }
1464 else if (w->repeat) 1942 else if (w->repeat)
1465 { 1943 {
1466 w->at = w->repeat; 1944 ev_at (w) = w->repeat;
1467 ev_timer_start (EV_A_ w); 1945 ev_timer_start (EV_A_ w);
1468 } 1946 }
1469} 1947}
1470 1948
1471#if EV_PERIODICS 1949#if EV_PERIODIC_ENABLE
1472void 1950void noinline
1473ev_periodic_start (EV_P_ struct ev_periodic *w) 1951ev_periodic_start (EV_P_ ev_periodic *w)
1474{ 1952{
1475 if (expect_false (ev_is_active (w))) 1953 if (expect_false (ev_is_active (w)))
1476 return; 1954 return;
1477 1955
1478 if (w->reschedule_cb) 1956 if (w->reschedule_cb)
1479 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1957 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1480 else if (w->interval) 1958 else if (w->interval)
1481 { 1959 {
1482 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1960 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1483 /* this formula differs from the one in periodic_reify because we do not always round up */ 1961 /* this formula differs from the one in periodic_reify because we do not always round up */
1484 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1485 } 1963 }
1964 else
1965 ev_at (w) = w->offset;
1486 1966
1487 ev_start (EV_A_ (W)w, ++periodiccnt); 1967 ev_start (EV_A_ (W)w, ++periodiccnt);
1488 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1489 periodics [periodiccnt - 1] = w; 1969 periodics [periodiccnt] = (WT)w;
1490 upheap ((WT *)periodics, periodiccnt - 1); 1970 upheap (periodics, periodiccnt);
1491 1971
1492 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1972 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/
1493} 1973}
1494 1974
1495void 1975void noinline
1496ev_periodic_stop (EV_P_ struct ev_periodic *w) 1976ev_periodic_stop (EV_P_ ev_periodic *w)
1497{ 1977{
1498 ev_clear_pending (EV_A_ (W)w); 1978 clear_pending (EV_A_ (W)w);
1499 if (expect_false (!ev_is_active (w))) 1979 if (expect_false (!ev_is_active (w)))
1500 return; 1980 return;
1501 1981
1502 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1982 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w));
1503 1983
1984 {
1985 int active = ((W)w)->active;
1986
1504 if (expect_true (((W)w)->active < periodiccnt--)) 1987 if (expect_true (active < periodiccnt))
1505 { 1988 {
1506 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1989 periodics [active] = periodics [periodiccnt];
1507 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1990 adjustheap (periodics, periodiccnt, active);
1508 } 1991 }
1992
1993 --periodiccnt;
1994 }
1509 1995
1510 ev_stop (EV_A_ (W)w); 1996 ev_stop (EV_A_ (W)w);
1511} 1997}
1512 1998
1513void 1999void noinline
1514ev_periodic_again (EV_P_ struct ev_periodic *w) 2000ev_periodic_again (EV_P_ ev_periodic *w)
1515{ 2001{
1516 /* TODO: use adjustheap and recalculation */ 2002 /* TODO: use adjustheap and recalculation */
1517 ev_periodic_stop (EV_A_ w); 2003 ev_periodic_stop (EV_A_ w);
1518 ev_periodic_start (EV_A_ w); 2004 ev_periodic_start (EV_A_ w);
1519} 2005}
1520#endif 2006#endif
1521 2007
1522void
1523ev_idle_start (EV_P_ struct ev_idle *w)
1524{
1525 if (expect_false (ev_is_active (w)))
1526 return;
1527
1528 ev_start (EV_A_ (W)w, ++idlecnt);
1529 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1530 idles [idlecnt - 1] = w;
1531}
1532
1533void
1534ev_idle_stop (EV_P_ struct ev_idle *w)
1535{
1536 ev_clear_pending (EV_A_ (W)w);
1537 if (expect_false (!ev_is_active (w)))
1538 return;
1539
1540 idles [((W)w)->active - 1] = idles [--idlecnt];
1541 ev_stop (EV_A_ (W)w);
1542}
1543
1544void
1545ev_prepare_start (EV_P_ struct ev_prepare *w)
1546{
1547 if (expect_false (ev_is_active (w)))
1548 return;
1549
1550 ev_start (EV_A_ (W)w, ++preparecnt);
1551 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1552 prepares [preparecnt - 1] = w;
1553}
1554
1555void
1556ev_prepare_stop (EV_P_ struct ev_prepare *w)
1557{
1558 ev_clear_pending (EV_A_ (W)w);
1559 if (expect_false (!ev_is_active (w)))
1560 return;
1561
1562 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1563 ev_stop (EV_A_ (W)w);
1564}
1565
1566void
1567ev_check_start (EV_P_ struct ev_check *w)
1568{
1569 if (expect_false (ev_is_active (w)))
1570 return;
1571
1572 ev_start (EV_A_ (W)w, ++checkcnt);
1573 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1574 checks [checkcnt - 1] = w;
1575}
1576
1577void
1578ev_check_stop (EV_P_ struct ev_check *w)
1579{
1580 ev_clear_pending (EV_A_ (W)w);
1581 if (expect_false (!ev_is_active (w)))
1582 return;
1583
1584 checks [((W)w)->active - 1] = checks [--checkcnt];
1585 ev_stop (EV_A_ (W)w);
1586}
1587
1588#ifndef SA_RESTART 2008#ifndef SA_RESTART
1589# define SA_RESTART 0 2009# define SA_RESTART 0
1590#endif 2010#endif
1591 2011
1592void 2012void noinline
1593ev_signal_start (EV_P_ struct ev_signal *w) 2013ev_signal_start (EV_P_ ev_signal *w)
1594{ 2014{
1595#if EV_MULTIPLICITY 2015#if EV_MULTIPLICITY
1596 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2016 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1597#endif 2017#endif
1598 if (expect_false (ev_is_active (w))) 2018 if (expect_false (ev_is_active (w)))
1599 return; 2019 return;
1600 2020
1601 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1602 2022
2023 evpipe_init (EV_A);
2024
2025 {
2026#ifndef _WIN32
2027 sigset_t full, prev;
2028 sigfillset (&full);
2029 sigprocmask (SIG_SETMASK, &full, &prev);
2030#endif
2031
2032 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2033
2034#ifndef _WIN32
2035 sigprocmask (SIG_SETMASK, &prev, 0);
2036#endif
2037 }
2038
1603 ev_start (EV_A_ (W)w, 1); 2039 ev_start (EV_A_ (W)w, 1);
1604 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1605 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2040 wlist_add (&signals [w->signum - 1].head, (WL)w);
1606 2041
1607 if (!((WL)w)->next) 2042 if (!((WL)w)->next)
1608 { 2043 {
1609#if _WIN32 2044#if _WIN32
1610 signal (w->signum, sighandler); 2045 signal (w->signum, ev_sighandler);
1611#else 2046#else
1612 struct sigaction sa; 2047 struct sigaction sa;
1613 sa.sa_handler = sighandler; 2048 sa.sa_handler = ev_sighandler;
1614 sigfillset (&sa.sa_mask); 2049 sigfillset (&sa.sa_mask);
1615 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1616 sigaction (w->signum, &sa, 0); 2051 sigaction (w->signum, &sa, 0);
1617#endif 2052#endif
1618 } 2053 }
1619} 2054}
1620 2055
1621void 2056void noinline
1622ev_signal_stop (EV_P_ struct ev_signal *w) 2057ev_signal_stop (EV_P_ ev_signal *w)
1623{ 2058{
1624 ev_clear_pending (EV_A_ (W)w); 2059 clear_pending (EV_A_ (W)w);
1625 if (expect_false (!ev_is_active (w))) 2060 if (expect_false (!ev_is_active (w)))
1626 return; 2061 return;
1627 2062
1628 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2063 wlist_del (&signals [w->signum - 1].head, (WL)w);
1629 ev_stop (EV_A_ (W)w); 2064 ev_stop (EV_A_ (W)w);
1630 2065
1631 if (!signals [w->signum - 1].head) 2066 if (!signals [w->signum - 1].head)
1632 signal (w->signum, SIG_DFL); 2067 signal (w->signum, SIG_DFL);
1633} 2068}
1634 2069
1635void 2070void
1636ev_child_start (EV_P_ struct ev_child *w) 2071ev_child_start (EV_P_ ev_child *w)
1637{ 2072{
1638#if EV_MULTIPLICITY 2073#if EV_MULTIPLICITY
1639 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2074 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1640#endif 2075#endif
1641 if (expect_false (ev_is_active (w))) 2076 if (expect_false (ev_is_active (w)))
1642 return; 2077 return;
1643 2078
1644 ev_start (EV_A_ (W)w, 1); 2079 ev_start (EV_A_ (W)w, 1);
1645 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1646} 2081}
1647 2082
1648void 2083void
1649ev_child_stop (EV_P_ struct ev_child *w) 2084ev_child_stop (EV_P_ ev_child *w)
1650{ 2085{
1651 ev_clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1652 if (expect_false (!ev_is_active (w))) 2087 if (expect_false (!ev_is_active (w)))
1653 return; 2088 return;
1654 2089
1655 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1656 ev_stop (EV_A_ (W)w); 2091 ev_stop (EV_A_ (W)w);
1657} 2092}
1658 2093
2094#if EV_STAT_ENABLE
2095
2096# ifdef _WIN32
2097# undef lstat
2098# define lstat(a,b) _stati64 (a,b)
2099# endif
2100
2101#define DEF_STAT_INTERVAL 5.0074891
2102#define MIN_STAT_INTERVAL 0.1074891
2103
2104static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2105
2106#if EV_USE_INOTIFY
2107# define EV_INOTIFY_BUFSIZE 8192
2108
2109static void noinline
2110infy_add (EV_P_ ev_stat *w)
2111{
2112 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2113
2114 if (w->wd < 0)
2115 {
2116 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2117
2118 /* monitor some parent directory for speedup hints */
2119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2120 {
2121 char path [4096];
2122 strcpy (path, w->path);
2123
2124 do
2125 {
2126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2128
2129 char *pend = strrchr (path, '/');
2130
2131 if (!pend)
2132 break; /* whoops, no '/', complain to your admin */
2133
2134 *pend = 0;
2135 w->wd = inotify_add_watch (fs_fd, path, mask);
2136 }
2137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2138 }
2139 }
2140 else
2141 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2142
2143 if (w->wd >= 0)
2144 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2145}
2146
2147static void noinline
2148infy_del (EV_P_ ev_stat *w)
2149{
2150 int slot;
2151 int wd = w->wd;
2152
2153 if (wd < 0)
2154 return;
2155
2156 w->wd = -2;
2157 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2158 wlist_del (&fs_hash [slot].head, (WL)w);
2159
2160 /* remove this watcher, if others are watching it, they will rearm */
2161 inotify_rm_watch (fs_fd, wd);
2162}
2163
2164static void noinline
2165infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2166{
2167 if (slot < 0)
2168 /* overflow, need to check for all hahs slots */
2169 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2170 infy_wd (EV_A_ slot, wd, ev);
2171 else
2172 {
2173 WL w_;
2174
2175 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2176 {
2177 ev_stat *w = (ev_stat *)w_;
2178 w_ = w_->next; /* lets us remove this watcher and all before it */
2179
2180 if (w->wd == wd || wd == -1)
2181 {
2182 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2183 {
2184 w->wd = -1;
2185 infy_add (EV_A_ w); /* re-add, no matter what */
2186 }
2187
2188 stat_timer_cb (EV_A_ &w->timer, 0);
2189 }
2190 }
2191 }
2192}
2193
2194static void
2195infy_cb (EV_P_ ev_io *w, int revents)
2196{
2197 char buf [EV_INOTIFY_BUFSIZE];
2198 struct inotify_event *ev = (struct inotify_event *)buf;
2199 int ofs;
2200 int len = read (fs_fd, buf, sizeof (buf));
2201
2202 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2203 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2204}
2205
2206void inline_size
2207infy_init (EV_P)
2208{
2209 if (fs_fd != -2)
2210 return;
2211
2212 fs_fd = inotify_init ();
2213
2214 if (fs_fd >= 0)
2215 {
2216 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2217 ev_set_priority (&fs_w, EV_MAXPRI);
2218 ev_io_start (EV_A_ &fs_w);
2219 }
2220}
2221
2222void inline_size
2223infy_fork (EV_P)
2224{
2225 int slot;
2226
2227 if (fs_fd < 0)
2228 return;
2229
2230 close (fs_fd);
2231 fs_fd = inotify_init ();
2232
2233 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2234 {
2235 WL w_ = fs_hash [slot].head;
2236 fs_hash [slot].head = 0;
2237
2238 while (w_)
2239 {
2240 ev_stat *w = (ev_stat *)w_;
2241 w_ = w_->next; /* lets us add this watcher */
2242
2243 w->wd = -1;
2244
2245 if (fs_fd >= 0)
2246 infy_add (EV_A_ w); /* re-add, no matter what */
2247 else
2248 ev_timer_start (EV_A_ &w->timer);
2249 }
2250
2251 }
2252}
2253
2254#endif
2255
2256void
2257ev_stat_stat (EV_P_ ev_stat *w)
2258{
2259 if (lstat (w->path, &w->attr) < 0)
2260 w->attr.st_nlink = 0;
2261 else if (!w->attr.st_nlink)
2262 w->attr.st_nlink = 1;
2263}
2264
2265static void noinline
2266stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2267{
2268 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2269
2270 /* we copy this here each the time so that */
2271 /* prev has the old value when the callback gets invoked */
2272 w->prev = w->attr;
2273 ev_stat_stat (EV_A_ w);
2274
2275 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2276 if (
2277 w->prev.st_dev != w->attr.st_dev
2278 || w->prev.st_ino != w->attr.st_ino
2279 || w->prev.st_mode != w->attr.st_mode
2280 || w->prev.st_nlink != w->attr.st_nlink
2281 || w->prev.st_uid != w->attr.st_uid
2282 || w->prev.st_gid != w->attr.st_gid
2283 || w->prev.st_rdev != w->attr.st_rdev
2284 || w->prev.st_size != w->attr.st_size
2285 || w->prev.st_atime != w->attr.st_atime
2286 || w->prev.st_mtime != w->attr.st_mtime
2287 || w->prev.st_ctime != w->attr.st_ctime
2288 ) {
2289 #if EV_USE_INOTIFY
2290 infy_del (EV_A_ w);
2291 infy_add (EV_A_ w);
2292 ev_stat_stat (EV_A_ w); /* avoid race... */
2293 #endif
2294
2295 ev_feed_event (EV_A_ w, EV_STAT);
2296 }
2297}
2298
2299void
2300ev_stat_start (EV_P_ ev_stat *w)
2301{
2302 if (expect_false (ev_is_active (w)))
2303 return;
2304
2305 /* since we use memcmp, we need to clear any padding data etc. */
2306 memset (&w->prev, 0, sizeof (ev_statdata));
2307 memset (&w->attr, 0, sizeof (ev_statdata));
2308
2309 ev_stat_stat (EV_A_ w);
2310
2311 if (w->interval < MIN_STAT_INTERVAL)
2312 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2313
2314 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2315 ev_set_priority (&w->timer, ev_priority (w));
2316
2317#if EV_USE_INOTIFY
2318 infy_init (EV_A);
2319
2320 if (fs_fd >= 0)
2321 infy_add (EV_A_ w);
2322 else
2323#endif
2324 ev_timer_start (EV_A_ &w->timer);
2325
2326 ev_start (EV_A_ (W)w, 1);
2327}
2328
2329void
2330ev_stat_stop (EV_P_ ev_stat *w)
2331{
2332 clear_pending (EV_A_ (W)w);
2333 if (expect_false (!ev_is_active (w)))
2334 return;
2335
2336#if EV_USE_INOTIFY
2337 infy_del (EV_A_ w);
2338#endif
2339 ev_timer_stop (EV_A_ &w->timer);
2340
2341 ev_stop (EV_A_ (W)w);
2342}
2343#endif
2344
2345#if EV_IDLE_ENABLE
2346void
2347ev_idle_start (EV_P_ ev_idle *w)
2348{
2349 if (expect_false (ev_is_active (w)))
2350 return;
2351
2352 pri_adjust (EV_A_ (W)w);
2353
2354 {
2355 int active = ++idlecnt [ABSPRI (w)];
2356
2357 ++idleall;
2358 ev_start (EV_A_ (W)w, active);
2359
2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2361 idles [ABSPRI (w)][active - 1] = w;
2362 }
2363}
2364
2365void
2366ev_idle_stop (EV_P_ ev_idle *w)
2367{
2368 clear_pending (EV_A_ (W)w);
2369 if (expect_false (!ev_is_active (w)))
2370 return;
2371
2372 {
2373 int active = ((W)w)->active;
2374
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2376 ((W)idles [ABSPRI (w)][active - 1])->active = active;
2377
2378 ev_stop (EV_A_ (W)w);
2379 --idleall;
2380 }
2381}
2382#endif
2383
2384void
2385ev_prepare_start (EV_P_ ev_prepare *w)
2386{
2387 if (expect_false (ev_is_active (w)))
2388 return;
2389
2390 ev_start (EV_A_ (W)w, ++preparecnt);
2391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2392 prepares [preparecnt - 1] = w;
2393}
2394
2395void
2396ev_prepare_stop (EV_P_ ev_prepare *w)
2397{
2398 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w)))
2400 return;
2401
2402 {
2403 int active = ((W)w)->active;
2404 prepares [active - 1] = prepares [--preparecnt];
2405 ((W)prepares [active - 1])->active = active;
2406 }
2407
2408 ev_stop (EV_A_ (W)w);
2409}
2410
2411void
2412ev_check_start (EV_P_ ev_check *w)
2413{
2414 if (expect_false (ev_is_active (w)))
2415 return;
2416
2417 ev_start (EV_A_ (W)w, ++checkcnt);
2418 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2419 checks [checkcnt - 1] = w;
2420}
2421
2422void
2423ev_check_stop (EV_P_ ev_check *w)
2424{
2425 clear_pending (EV_A_ (W)w);
2426 if (expect_false (!ev_is_active (w)))
2427 return;
2428
2429 {
2430 int active = ((W)w)->active;
2431 checks [active - 1] = checks [--checkcnt];
2432 ((W)checks [active - 1])->active = active;
2433 }
2434
2435 ev_stop (EV_A_ (W)w);
2436}
2437
2438#if EV_EMBED_ENABLE
2439void noinline
2440ev_embed_sweep (EV_P_ ev_embed *w)
2441{
2442 ev_loop (w->other, EVLOOP_NONBLOCK);
2443}
2444
2445static void
2446embed_io_cb (EV_P_ ev_io *io, int revents)
2447{
2448 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2449
2450 if (ev_cb (w))
2451 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2452 else
2453 ev_loop (w->other, EVLOOP_NONBLOCK);
2454}
2455
2456static void
2457embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2458{
2459 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2460
2461 {
2462 struct ev_loop *loop = w->other;
2463
2464 while (fdchangecnt)
2465 {
2466 fd_reify (EV_A);
2467 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2468 }
2469 }
2470}
2471
2472#if 0
2473static void
2474embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2475{
2476 ev_idle_stop (EV_A_ idle);
2477}
2478#endif
2479
2480void
2481ev_embed_start (EV_P_ ev_embed *w)
2482{
2483 if (expect_false (ev_is_active (w)))
2484 return;
2485
2486 {
2487 struct ev_loop *loop = w->other;
2488 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2489 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2490 }
2491
2492 ev_set_priority (&w->io, ev_priority (w));
2493 ev_io_start (EV_A_ &w->io);
2494
2495 ev_prepare_init (&w->prepare, embed_prepare_cb);
2496 ev_set_priority (&w->prepare, EV_MINPRI);
2497 ev_prepare_start (EV_A_ &w->prepare);
2498
2499 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2500
2501 ev_start (EV_A_ (W)w, 1);
2502}
2503
2504void
2505ev_embed_stop (EV_P_ ev_embed *w)
2506{
2507 clear_pending (EV_A_ (W)w);
2508 if (expect_false (!ev_is_active (w)))
2509 return;
2510
2511 ev_io_stop (EV_A_ &w->io);
2512 ev_prepare_stop (EV_A_ &w->prepare);
2513
2514 ev_stop (EV_A_ (W)w);
2515}
2516#endif
2517
2518#if EV_FORK_ENABLE
2519void
2520ev_fork_start (EV_P_ ev_fork *w)
2521{
2522 if (expect_false (ev_is_active (w)))
2523 return;
2524
2525 ev_start (EV_A_ (W)w, ++forkcnt);
2526 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2527 forks [forkcnt - 1] = w;
2528}
2529
2530void
2531ev_fork_stop (EV_P_ ev_fork *w)
2532{
2533 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w)))
2535 return;
2536
2537 {
2538 int active = ((W)w)->active;
2539 forks [active - 1] = forks [--forkcnt];
2540 ((W)forks [active - 1])->active = active;
2541 }
2542
2543 ev_stop (EV_A_ (W)w);
2544}
2545#endif
2546
2547#if EV_ASYNC_ENABLE
2548void
2549ev_async_start (EV_P_ ev_async *w)
2550{
2551 if (expect_false (ev_is_active (w)))
2552 return;
2553
2554 evpipe_init (EV_A);
2555
2556 ev_start (EV_A_ (W)w, ++asynccnt);
2557 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2558 asyncs [asynccnt - 1] = w;
2559}
2560
2561void
2562ev_async_stop (EV_P_ ev_async *w)
2563{
2564 clear_pending (EV_A_ (W)w);
2565 if (expect_false (!ev_is_active (w)))
2566 return;
2567
2568 {
2569 int active = ((W)w)->active;
2570 asyncs [active - 1] = asyncs [--asynccnt];
2571 ((W)asyncs [active - 1])->active = active;
2572 }
2573
2574 ev_stop (EV_A_ (W)w);
2575}
2576
2577void
2578ev_async_send (EV_P_ ev_async *w)
2579{
2580 w->sent = 1;
2581 evpipe_write (EV_A_ &gotasync);
2582}
2583#endif
2584
1659/*****************************************************************************/ 2585/*****************************************************************************/
1660 2586
1661struct ev_once 2587struct ev_once
1662{ 2588{
1663 struct ev_io io; 2589 ev_io io;
1664 struct ev_timer to; 2590 ev_timer to;
1665 void (*cb)(int revents, void *arg); 2591 void (*cb)(int revents, void *arg);
1666 void *arg; 2592 void *arg;
1667}; 2593};
1668 2594
1669static void 2595static void
1678 2604
1679 cb (revents, arg); 2605 cb (revents, arg);
1680} 2606}
1681 2607
1682static void 2608static void
1683once_cb_io (EV_P_ struct ev_io *w, int revents) 2609once_cb_io (EV_P_ ev_io *w, int revents)
1684{ 2610{
1685 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1686} 2612}
1687 2613
1688static void 2614static void
1689once_cb_to (EV_P_ struct ev_timer *w, int revents) 2615once_cb_to (EV_P_ ev_timer *w, int revents)
1690{ 2616{
1691 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2617 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1692} 2618}
1693 2619
1694void 2620void
1718 ev_timer_set (&once->to, timeout, 0.); 2644 ev_timer_set (&once->to, timeout, 0.);
1719 ev_timer_start (EV_A_ &once->to); 2645 ev_timer_start (EV_A_ &once->to);
1720 } 2646 }
1721} 2647}
1722 2648
2649#if EV_MULTIPLICITY
2650 #include "ev_wrap.h"
2651#endif
2652
1723#ifdef __cplusplus 2653#ifdef __cplusplus
1724} 2654}
1725#endif 2655#endif
1726 2656

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines