ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.229 by root, Fri May 2 08:08:45 2008 UTC vs.
Revision 1.343 by root, Fri Apr 2 21:03:46 2010 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# elif !defined(EV_USE_CLOCK_SYSCALL)
63# define EV_USE_CLOCK_SYSCALL 0
64# endif
65
52# if HAVE_CLOCK_GETTIME 66# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 67# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 68# define EV_USE_MONOTONIC 1
55# endif 69# endif
56# ifndef EV_USE_REALTIME 70# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 71# define EV_USE_REALTIME 0
58# endif 72# endif
59# else 73# else
60# ifndef EV_USE_MONOTONIC 74# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 75# define EV_USE_MONOTONIC 0
62# endif 76# endif
63# ifndef EV_USE_REALTIME 77# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 78# define EV_USE_REALTIME 0
65# endif 79# endif
66# endif 80# endif
67 81
82# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 83# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 84# define EV_USE_NANOSLEEP EV_FEATURE_OS
85# endif
71# else 86# else
87# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 88# define EV_USE_NANOSLEEP 0
89# endif
90
91# if HAVE_SELECT && HAVE_SYS_SELECT_H
92# ifndef EV_USE_SELECT
93# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 94# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else 95# else
96# undef EV_USE_SELECT
80# define EV_USE_SELECT 0 97# define EV_USE_SELECT 0
98# endif
99
100# if HAVE_POLL && HAVE_POLL_H
101# ifndef EV_USE_POLL
102# define EV_USE_POLL EV_FEATURE_BACKENDS
81# endif 103# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 104# else
105# undef EV_USE_POLL
88# define EV_USE_POLL 0 106# define EV_USE_POLL 0
107# endif
108
109# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
110# ifndef EV_USE_EPOLL
111# define EV_USE_EPOLL EV_FEATURE_BACKENDS
89# endif 112# endif
113# else
114# undef EV_USE_EPOLL
115# define EV_USE_EPOLL 0
90# endif 116# endif
91 117
118# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
92# ifndef EV_USE_EPOLL 119# ifndef EV_USE_KQUEUE
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 120# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif 121# endif
122# else
123# undef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0
98# endif 125# endif
99 126
100# ifndef EV_USE_KQUEUE 127# if HAVE_PORT_H && HAVE_PORT_CREATE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 128# ifndef EV_USE_PORT
102# define EV_USE_KQUEUE 1 129# define EV_USE_PORT EV_FEATURE_BACKENDS
103# else
104# define EV_USE_KQUEUE 0
105# endif 130# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else 131# else
132# undef EV_USE_PORT
112# define EV_USE_PORT 0 133# define EV_USE_PORT 0
134# endif
135
136# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
137# ifndef EV_USE_INOTIFY
138# define EV_USE_INOTIFY EV_FEATURE_OS
113# endif 139# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else 140# else
141# undef EV_USE_INOTIFY
120# define EV_USE_INOTIFY 0 142# define EV_USE_INOTIFY 0
143# endif
144
145# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
146# ifndef EV_USE_SIGNALFD
147# define EV_USE_SIGNALFD EV_FEATURE_OS
121# endif 148# endif
149# else
150# undef EV_USE_SIGNALFD
151# define EV_USE_SIGNALFD 0
122# endif 152# endif
123 153
154# if HAVE_EVENTFD
124# ifndef EV_USE_EVENTFD 155# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1 156# define EV_USE_EVENTFD EV_FEATURE_OS
127# else
128# define EV_USE_EVENTFD 0
129# endif 157# endif
158# else
159# undef EV_USE_EVENTFD
160# define EV_USE_EVENTFD 0
130# endif 161# endif
131 162
132#endif 163#endif
133 164
134#include <math.h> 165#include <math.h>
135#include <stdlib.h> 166#include <stdlib.h>
167#include <string.h>
136#include <fcntl.h> 168#include <fcntl.h>
137#include <stddef.h> 169#include <stddef.h>
138 170
139#include <stdio.h> 171#include <stdio.h>
140 172
141#include <assert.h> 173#include <assert.h>
142#include <errno.h> 174#include <errno.h>
143#include <sys/types.h> 175#include <sys/types.h>
144#include <time.h> 176#include <time.h>
177#include <limits.h>
145 178
146#include <signal.h> 179#include <signal.h>
147 180
148#ifdef EV_H 181#ifdef EV_H
149# include EV_H 182# include EV_H
154#ifndef _WIN32 187#ifndef _WIN32
155# include <sys/time.h> 188# include <sys/time.h>
156# include <sys/wait.h> 189# include <sys/wait.h>
157# include <unistd.h> 190# include <unistd.h>
158#else 191#else
192# include <io.h>
159# define WIN32_LEAN_AND_MEAN 193# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 194# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 195# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 196# define EV_SELECT_IS_WINSOCKET 1
163# endif 197# endif
198# undef EV_AVOID_STDIO
164#endif 199#endif
165 200
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 201/* this block tries to deduce configuration from header-defined symbols and defaults */
167 202
203/* try to deduce the maximum number of signals on this platform */
204#if defined (EV_NSIG)
205/* use what's provided */
206#elif defined (NSIG)
207# define EV_NSIG (NSIG)
208#elif defined(_NSIG)
209# define EV_NSIG (_NSIG)
210#elif defined (SIGMAX)
211# define EV_NSIG (SIGMAX+1)
212#elif defined (SIG_MAX)
213# define EV_NSIG (SIG_MAX+1)
214#elif defined (_SIG_MAX)
215# define EV_NSIG (_SIG_MAX+1)
216#elif defined (MAXSIG)
217# define EV_NSIG (MAXSIG+1)
218#elif defined (MAX_SIG)
219# define EV_NSIG (MAX_SIG+1)
220#elif defined (SIGARRAYSIZE)
221# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
222#elif defined (_sys_nsig)
223# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
224#else
225# error "unable to find value for NSIG, please report"
226/* to make it compile regardless, just remove the above line, */
227/* but consider reporting it, too! :) */
228# define EV_NSIG 65
229#endif
230
231#ifndef EV_USE_CLOCK_SYSCALL
232# if __linux && __GLIBC__ >= 2
233# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
234# else
235# define EV_USE_CLOCK_SYSCALL 0
236# endif
237#endif
238
168#ifndef EV_USE_MONOTONIC 239#ifndef EV_USE_MONOTONIC
240# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
241# define EV_USE_MONOTONIC EV_FEATURE_OS
242# else
169# define EV_USE_MONOTONIC 0 243# define EV_USE_MONOTONIC 0
244# endif
170#endif 245#endif
171 246
172#ifndef EV_USE_REALTIME 247#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 248# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 249#endif
175 250
176#ifndef EV_USE_NANOSLEEP 251#ifndef EV_USE_NANOSLEEP
252# if _POSIX_C_SOURCE >= 199309L
253# define EV_USE_NANOSLEEP EV_FEATURE_OS
254# else
177# define EV_USE_NANOSLEEP 0 255# define EV_USE_NANOSLEEP 0
256# endif
178#endif 257#endif
179 258
180#ifndef EV_USE_SELECT 259#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 260# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 261#endif
183 262
184#ifndef EV_USE_POLL 263#ifndef EV_USE_POLL
185# ifdef _WIN32 264# ifdef _WIN32
186# define EV_USE_POLL 0 265# define EV_USE_POLL 0
187# else 266# else
188# define EV_USE_POLL 1 267# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 268# endif
190#endif 269#endif
191 270
192#ifndef EV_USE_EPOLL 271#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 272# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 273# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 274# else
196# define EV_USE_EPOLL 0 275# define EV_USE_EPOLL 0
197# endif 276# endif
198#endif 277#endif
199 278
205# define EV_USE_PORT 0 284# define EV_USE_PORT 0
206#endif 285#endif
207 286
208#ifndef EV_USE_INOTIFY 287#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 288# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 289# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 290# else
212# define EV_USE_INOTIFY 0 291# define EV_USE_INOTIFY 0
213# endif 292# endif
214#endif 293#endif
215 294
216#ifndef EV_PID_HASHSIZE 295#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 296# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 297#endif
223 298
224#ifndef EV_INOTIFY_HASHSIZE 299#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 300# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 301#endif
231 302
232#ifndef EV_USE_EVENTFD 303#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 304# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 305# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 306# else
236# define EV_USE_EVENTFD 0 307# define EV_USE_EVENTFD 0
237# endif 308# endif
238#endif 309#endif
239 310
311#ifndef EV_USE_SIGNALFD
312# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
313# define EV_USE_SIGNALFD EV_FEATURE_OS
314# else
315# define EV_USE_SIGNALFD 0
316# endif
317#endif
318
319#if 0 /* debugging */
320# define EV_VERIFY 3
321# define EV_USE_4HEAP 1
322# define EV_HEAP_CACHE_AT 1
323#endif
324
325#ifndef EV_VERIFY
326# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
327#endif
328
329#ifndef EV_USE_4HEAP
330# define EV_USE_4HEAP EV_FEATURE_DATA
331#endif
332
333#ifndef EV_HEAP_CACHE_AT
334# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
335#endif
336
337/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
338/* which makes programs even slower. might work on other unices, too. */
339#if EV_USE_CLOCK_SYSCALL
340# include <syscall.h>
341# ifdef SYS_clock_gettime
342# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
343# undef EV_USE_MONOTONIC
344# define EV_USE_MONOTONIC 1
345# else
346# undef EV_USE_CLOCK_SYSCALL
347# define EV_USE_CLOCK_SYSCALL 0
348# endif
349#endif
350
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 351/* this block fixes any misconfiguration where we know we run into trouble otherwise */
352
353#ifdef _AIX
354/* AIX has a completely broken poll.h header */
355# undef EV_USE_POLL
356# define EV_USE_POLL 0
357#endif
241 358
242#ifndef CLOCK_MONOTONIC 359#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 360# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 361# define EV_USE_MONOTONIC 0
245#endif 362#endif
259# include <sys/select.h> 376# include <sys/select.h>
260# endif 377# endif
261#endif 378#endif
262 379
263#if EV_USE_INOTIFY 380#if EV_USE_INOTIFY
381# include <sys/utsname.h>
382# include <sys/statfs.h>
264# include <sys/inotify.h> 383# include <sys/inotify.h>
384/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
385# ifndef IN_DONT_FOLLOW
386# undef EV_USE_INOTIFY
387# define EV_USE_INOTIFY 0
388# endif
265#endif 389#endif
266 390
267#if EV_SELECT_IS_WINSOCKET 391#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 392# include <winsock.h>
269#endif 393#endif
270 394
271#if EV_USE_EVENTFD 395#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 396/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 397# include <stdint.h>
398# ifndef EFD_NONBLOCK
399# define EFD_NONBLOCK O_NONBLOCK
400# endif
401# ifndef EFD_CLOEXEC
402# ifdef O_CLOEXEC
403# define EFD_CLOEXEC O_CLOEXEC
404# else
405# define EFD_CLOEXEC 02000000
406# endif
407# endif
274# ifdef __cplusplus 408# ifdef __cplusplus
275extern "C" { 409extern "C" {
276# endif 410# endif
277int eventfd (unsigned int initval, int flags); 411int (eventfd) (unsigned int initval, int flags);
278# ifdef __cplusplus 412# ifdef __cplusplus
279} 413}
280# endif 414# endif
281#endif 415#endif
282 416
417#if EV_USE_SIGNALFD
418/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
419# include <stdint.h>
420# ifndef SFD_NONBLOCK
421# define SFD_NONBLOCK O_NONBLOCK
422# endif
423# ifndef SFD_CLOEXEC
424# ifdef O_CLOEXEC
425# define SFD_CLOEXEC O_CLOEXEC
426# else
427# define SFD_CLOEXEC 02000000
428# endif
429# endif
430# ifdef __cplusplus
431extern "C" {
432# endif
433int signalfd (int fd, const sigset_t *mask, int flags);
434
435struct signalfd_siginfo
436{
437 uint32_t ssi_signo;
438 char pad[128 - sizeof (uint32_t)];
439};
440# ifdef __cplusplus
441}
442# endif
443#endif
444
445
283/**/ 446/**/
447
448#if EV_VERIFY >= 3
449# define EV_FREQUENT_CHECK ev_verify (EV_A)
450#else
451# define EV_FREQUENT_CHECK do { } while (0)
452#endif
284 453
285/* 454/*
286 * This is used to avoid floating point rounding problems. 455 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 456 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 457 * to ensure progress, time-wise, even when rounding
292 */ 461 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 462#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294 463
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 464#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 465#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 466
299#if __GNUC__ >= 4 467#if __GNUC__ >= 4
300# define expect(expr,value) __builtin_expect ((expr),(value)) 468# define expect(expr,value) __builtin_expect ((expr),(value))
301# define noinline __attribute__ ((noinline)) 469# define noinline __attribute__ ((noinline))
302#else 470#else
309 477
310#define expect_false(expr) expect ((expr) != 0, 0) 478#define expect_false(expr) expect ((expr) != 0, 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 479#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline 480#define inline_size static inline
313 481
314#if EV_MINIMAL 482#if EV_FEATURE_CODE
483# define inline_speed static inline
484#else
315# define inline_speed static noinline 485# define inline_speed static noinline
486#endif
487
488#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
489
490#if EV_MINPRI == EV_MAXPRI
491# define ABSPRI(w) (((W)w), 0)
316#else 492#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 493# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
494#endif
322 495
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 496#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 497#define EMPTY2(a,b) /* used to suppress some warnings */
325 498
326typedef ev_watcher *W; 499typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 501typedef ev_watcher_time *WT;
329 502
330#define ev_active(w) ((W)(w))->active 503#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 504#define ev_at(w) ((WT)(w))->at
332 505
333#if EV_USE_MONOTONIC 506#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 507/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 508/* giving it a reasonably high chance of working on typical architetcures */
509static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
510#endif
511
512#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 513static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
514#endif
515
516#ifndef EV_FD_TO_WIN32_HANDLE
517# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
518#endif
519#ifndef EV_WIN32_HANDLE_TO_FD
520# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
521#endif
522#ifndef EV_WIN32_CLOSE_FD
523# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 524#endif
338 525
339#ifdef _WIN32 526#ifdef _WIN32
340# include "ev_win32.c" 527# include "ev_win32.c"
341#endif 528#endif
342 529
343/*****************************************************************************/ 530/*****************************************************************************/
344 531
532#if EV_AVOID_STDIO
533static void noinline
534ev_printerr (const char *msg)
535{
536 write (STDERR_FILENO, msg, strlen (msg));
537}
538#endif
539
345static void (*syserr_cb)(const char *msg); 540static void (*syserr_cb)(const char *msg);
346 541
347void 542void
348ev_set_syserr_cb (void (*cb)(const char *msg)) 543ev_set_syserr_cb (void (*cb)(const char *msg))
349{ 544{
350 syserr_cb = cb; 545 syserr_cb = cb;
351} 546}
352 547
353static void noinline 548static void noinline
354syserr (const char *msg) 549ev_syserr (const char *msg)
355{ 550{
356 if (!msg) 551 if (!msg)
357 msg = "(libev) system error"; 552 msg = "(libev) system error";
358 553
359 if (syserr_cb) 554 if (syserr_cb)
360 syserr_cb (msg); 555 syserr_cb (msg);
361 else 556 else
362 { 557 {
558#if EV_AVOID_STDIO
559 const char *err = strerror (errno);
560
561 ev_printerr (msg);
562 ev_printerr (": ");
563 ev_printerr (err);
564 ev_printerr ("\n");
565#else
363 perror (msg); 566 perror (msg);
567#endif
364 abort (); 568 abort ();
365 } 569 }
366} 570}
367 571
368static void * 572static void *
369ev_realloc_emul (void *ptr, long size) 573ev_realloc_emul (void *ptr, long size)
370{ 574{
575#if __GLIBC__
576 return realloc (ptr, size);
577#else
371 /* some systems, notably openbsd and darwin, fail to properly 578 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 579 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 580 * the single unix specification, so work around them here.
374 */ 581 */
375 582
376 if (size) 583 if (size)
377 return realloc (ptr, size); 584 return realloc (ptr, size);
378 585
379 free (ptr); 586 free (ptr);
380 return 0; 587 return 0;
588#endif
381} 589}
382 590
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 591static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384 592
385void 593void
393{ 601{
394 ptr = alloc (ptr, size); 602 ptr = alloc (ptr, size);
395 603
396 if (!ptr && size) 604 if (!ptr && size)
397 { 605 {
606#if EV_AVOID_STDIO
607 ev_printerr ("libev: memory allocation failed, aborting.\n");
608#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 609 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
610#endif
399 abort (); 611 abort ();
400 } 612 }
401 613
402 return ptr; 614 return ptr;
403} 615}
405#define ev_malloc(size) ev_realloc (0, (size)) 617#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 618#define ev_free(ptr) ev_realloc ((ptr), 0)
407 619
408/*****************************************************************************/ 620/*****************************************************************************/
409 621
622/* set in reify when reification needed */
623#define EV_ANFD_REIFY 1
624
625/* file descriptor info structure */
410typedef struct 626typedef struct
411{ 627{
412 WL head; 628 WL head;
413 unsigned char events; 629 unsigned char events; /* the events watched for */
630 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
631 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 632 unsigned char unused;
633#if EV_USE_EPOLL
634 unsigned int egen; /* generation counter to counter epoll bugs */
635#endif
415#if EV_SELECT_IS_WINSOCKET 636#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 637 SOCKET handle;
417#endif 638#endif
418} ANFD; 639} ANFD;
419 640
641/* stores the pending event set for a given watcher */
420typedef struct 642typedef struct
421{ 643{
422 W w; 644 W w;
423 int events; 645 int events; /* the pending event set for the given watcher */
424} ANPENDING; 646} ANPENDING;
425 647
426#if EV_USE_INOTIFY 648#if EV_USE_INOTIFY
649/* hash table entry per inotify-id */
427typedef struct 650typedef struct
428{ 651{
429 WL head; 652 WL head;
430} ANFS; 653} ANFS;
654#endif
655
656/* Heap Entry */
657#if EV_HEAP_CACHE_AT
658 /* a heap element */
659 typedef struct {
660 ev_tstamp at;
661 WT w;
662 } ANHE;
663
664 #define ANHE_w(he) (he).w /* access watcher, read-write */
665 #define ANHE_at(he) (he).at /* access cached at, read-only */
666 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
667#else
668 /* a heap element */
669 typedef WT ANHE;
670
671 #define ANHE_w(he) (he)
672 #define ANHE_at(he) (he)->at
673 #define ANHE_at_cache(he)
431#endif 674#endif
432 675
433#if EV_MULTIPLICITY 676#if EV_MULTIPLICITY
434 677
435 struct ev_loop 678 struct ev_loop
454 697
455 static int ev_default_loop_ptr; 698 static int ev_default_loop_ptr;
456 699
457#endif 700#endif
458 701
702#if EV_FEATURE_API
703# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
704# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
705# define EV_INVOKE_PENDING invoke_cb (EV_A)
706#else
707# define EV_RELEASE_CB (void)0
708# define EV_ACQUIRE_CB (void)0
709# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
710#endif
711
712#define EVUNLOOP_RECURSE 0x80
713
459/*****************************************************************************/ 714/*****************************************************************************/
460 715
716#ifndef EV_HAVE_EV_TIME
461ev_tstamp 717ev_tstamp
462ev_time (void) 718ev_time (void)
463{ 719{
464#if EV_USE_REALTIME 720#if EV_USE_REALTIME
721 if (expect_true (have_realtime))
722 {
465 struct timespec ts; 723 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 724 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 725 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 726 }
727#endif
728
469 struct timeval tv; 729 struct timeval tv;
470 gettimeofday (&tv, 0); 730 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 731 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 732}
733#endif
474 734
475ev_tstamp inline_size 735inline_size ev_tstamp
476get_clock (void) 736get_clock (void)
477{ 737{
478#if EV_USE_MONOTONIC 738#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 739 if (expect_true (have_monotonic))
480 { 740 {
513 struct timeval tv; 773 struct timeval tv;
514 774
515 tv.tv_sec = (time_t)delay; 775 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 776 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 777
778 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
779 /* something not guaranteed by newer posix versions, but guaranteed */
780 /* by older ones */
518 select (0, 0, 0, 0, &tv); 781 select (0, 0, 0, 0, &tv);
519#endif 782#endif
520 } 783 }
521} 784}
522 785
523/*****************************************************************************/ 786/*****************************************************************************/
524 787
525int inline_size 788#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
789
790/* find a suitable new size for the given array, */
791/* hopefully by rounding to a ncie-to-malloc size */
792inline_size int
526array_nextsize (int elem, int cur, int cnt) 793array_nextsize (int elem, int cur, int cnt)
527{ 794{
528 int ncur = cur + 1; 795 int ncur = cur + 1;
529 796
530 do 797 do
531 ncur <<= 1; 798 ncur <<= 1;
532 while (cnt > ncur); 799 while (cnt > ncur);
533 800
534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 801 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
535 if (elem * ncur > 4096) 802 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
536 { 803 {
537 ncur *= elem; 804 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 805 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
539 ncur = ncur - sizeof (void *) * 4; 806 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem; 807 ncur /= elem;
541 } 808 }
542 809
543 return ncur; 810 return ncur;
547array_realloc (int elem, void *base, int *cur, int cnt) 814array_realloc (int elem, void *base, int *cur, int cnt)
548{ 815{
549 *cur = array_nextsize (elem, *cur, cnt); 816 *cur = array_nextsize (elem, *cur, cnt);
550 return ev_realloc (base, elem * *cur); 817 return ev_realloc (base, elem * *cur);
551} 818}
819
820#define array_init_zero(base,count) \
821 memset ((void *)(base), 0, sizeof (*(base)) * (count))
552 822
553#define array_needsize(type,base,cur,cnt,init) \ 823#define array_needsize(type,base,cur,cnt,init) \
554 if (expect_false ((cnt) > (cur))) \ 824 if (expect_false ((cnt) > (cur))) \
555 { \ 825 { \
556 int ocur_ = (cur); \ 826 int ocur_ = (cur); \
568 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 838 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
569 } 839 }
570#endif 840#endif
571 841
572#define array_free(stem, idx) \ 842#define array_free(stem, idx) \
573 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 843 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
574 844
575/*****************************************************************************/ 845/*****************************************************************************/
846
847/* dummy callback for pending events */
848static void noinline
849pendingcb (EV_P_ ev_prepare *w, int revents)
850{
851}
576 852
577void noinline 853void noinline
578ev_feed_event (EV_P_ void *w, int revents) 854ev_feed_event (EV_P_ void *w, int revents)
579{ 855{
580 W w_ = (W)w; 856 W w_ = (W)w;
589 pendings [pri][w_->pending - 1].w = w_; 865 pendings [pri][w_->pending - 1].w = w_;
590 pendings [pri][w_->pending - 1].events = revents; 866 pendings [pri][w_->pending - 1].events = revents;
591 } 867 }
592} 868}
593 869
594void inline_speed 870inline_speed void
871feed_reverse (EV_P_ W w)
872{
873 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
874 rfeeds [rfeedcnt++] = w;
875}
876
877inline_size void
878feed_reverse_done (EV_P_ int revents)
879{
880 do
881 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
882 while (rfeedcnt);
883}
884
885inline_speed void
595queue_events (EV_P_ W *events, int eventcnt, int type) 886queue_events (EV_P_ W *events, int eventcnt, int type)
596{ 887{
597 int i; 888 int i;
598 889
599 for (i = 0; i < eventcnt; ++i) 890 for (i = 0; i < eventcnt; ++i)
600 ev_feed_event (EV_A_ events [i], type); 891 ev_feed_event (EV_A_ events [i], type);
601} 892}
602 893
603/*****************************************************************************/ 894/*****************************************************************************/
604 895
605void inline_size 896inline_speed void
606anfds_init (ANFD *base, int count)
607{
608 while (count--)
609 {
610 base->head = 0;
611 base->events = EV_NONE;
612 base->reify = 0;
613
614 ++base;
615 }
616}
617
618void inline_speed
619fd_event (EV_P_ int fd, int revents) 897fd_event_nocheck (EV_P_ int fd, int revents)
620{ 898{
621 ANFD *anfd = anfds + fd; 899 ANFD *anfd = anfds + fd;
622 ev_io *w; 900 ev_io *w;
623 901
624 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 902 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
628 if (ev) 906 if (ev)
629 ev_feed_event (EV_A_ (W)w, ev); 907 ev_feed_event (EV_A_ (W)w, ev);
630 } 908 }
631} 909}
632 910
911/* do not submit kernel events for fds that have reify set */
912/* because that means they changed while we were polling for new events */
913inline_speed void
914fd_event (EV_P_ int fd, int revents)
915{
916 ANFD *anfd = anfds + fd;
917
918 if (expect_true (!anfd->reify))
919 fd_event_nocheck (EV_A_ fd, revents);
920}
921
633void 922void
634ev_feed_fd_event (EV_P_ int fd, int revents) 923ev_feed_fd_event (EV_P_ int fd, int revents)
635{ 924{
636 if (fd >= 0 && fd < anfdmax) 925 if (fd >= 0 && fd < anfdmax)
637 fd_event (EV_A_ fd, revents); 926 fd_event_nocheck (EV_A_ fd, revents);
638} 927}
639 928
640void inline_size 929/* make sure the external fd watch events are in-sync */
930/* with the kernel/libev internal state */
931inline_size void
641fd_reify (EV_P) 932fd_reify (EV_P)
642{ 933{
643 int i; 934 int i;
644 935
645 for (i = 0; i < fdchangecnt; ++i) 936 for (i = 0; i < fdchangecnt; ++i)
654 events |= (unsigned char)w->events; 945 events |= (unsigned char)w->events;
655 946
656#if EV_SELECT_IS_WINSOCKET 947#if EV_SELECT_IS_WINSOCKET
657 if (events) 948 if (events)
658 { 949 {
659 unsigned long argp; 950 unsigned long arg;
660 #ifdef EV_FD_TO_WIN32_HANDLE
661 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 951 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
662 #else
663 anfd->handle = _get_osfhandle (fd);
664 #endif
665 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 952 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
666 } 953 }
667#endif 954#endif
668 955
669 { 956 {
670 unsigned char o_events = anfd->events; 957 unsigned char o_events = anfd->events;
671 unsigned char o_reify = anfd->reify; 958 unsigned char o_reify = anfd->reify;
672 959
673 anfd->reify = 0; 960 anfd->reify = 0;
674 anfd->events = events; 961 anfd->events = events;
675 962
676 if (o_events != events || o_reify & EV_IOFDSET) 963 if (o_events != events || o_reify & EV__IOFDSET)
677 backend_modify (EV_A_ fd, o_events, events); 964 backend_modify (EV_A_ fd, o_events, events);
678 } 965 }
679 } 966 }
680 967
681 fdchangecnt = 0; 968 fdchangecnt = 0;
682} 969}
683 970
684void inline_size 971/* something about the given fd changed */
972inline_size void
685fd_change (EV_P_ int fd, int flags) 973fd_change (EV_P_ int fd, int flags)
686{ 974{
687 unsigned char reify = anfds [fd].reify; 975 unsigned char reify = anfds [fd].reify;
688 anfds [fd].reify |= flags; 976 anfds [fd].reify |= flags;
689 977
693 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 981 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
694 fdchanges [fdchangecnt - 1] = fd; 982 fdchanges [fdchangecnt - 1] = fd;
695 } 983 }
696} 984}
697 985
698void inline_speed 986/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
987inline_speed void
699fd_kill (EV_P_ int fd) 988fd_kill (EV_P_ int fd)
700{ 989{
701 ev_io *w; 990 ev_io *w;
702 991
703 while ((w = (ev_io *)anfds [fd].head)) 992 while ((w = (ev_io *)anfds [fd].head))
705 ev_io_stop (EV_A_ w); 994 ev_io_stop (EV_A_ w);
706 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 995 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
707 } 996 }
708} 997}
709 998
710int inline_size 999/* check whether the given fd is actually valid, for error recovery */
1000inline_size int
711fd_valid (int fd) 1001fd_valid (int fd)
712{ 1002{
713#ifdef _WIN32 1003#ifdef _WIN32
714 return _get_osfhandle (fd) != -1; 1004 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
715#else 1005#else
716 return fcntl (fd, F_GETFD) != -1; 1006 return fcntl (fd, F_GETFD) != -1;
717#endif 1007#endif
718} 1008}
719 1009
723{ 1013{
724 int fd; 1014 int fd;
725 1015
726 for (fd = 0; fd < anfdmax; ++fd) 1016 for (fd = 0; fd < anfdmax; ++fd)
727 if (anfds [fd].events) 1017 if (anfds [fd].events)
728 if (!fd_valid (fd) == -1 && errno == EBADF) 1018 if (!fd_valid (fd) && errno == EBADF)
729 fd_kill (EV_A_ fd); 1019 fd_kill (EV_A_ fd);
730} 1020}
731 1021
732/* called on ENOMEM in select/poll to kill some fds and retry */ 1022/* called on ENOMEM in select/poll to kill some fds and retry */
733static void noinline 1023static void noinline
737 1027
738 for (fd = anfdmax; fd--; ) 1028 for (fd = anfdmax; fd--; )
739 if (anfds [fd].events) 1029 if (anfds [fd].events)
740 { 1030 {
741 fd_kill (EV_A_ fd); 1031 fd_kill (EV_A_ fd);
742 return; 1032 break;
743 } 1033 }
744} 1034}
745 1035
746/* usually called after fork if backend needs to re-arm all fds from scratch */ 1036/* usually called after fork if backend needs to re-arm all fds from scratch */
747static void noinline 1037static void noinline
751 1041
752 for (fd = 0; fd < anfdmax; ++fd) 1042 for (fd = 0; fd < anfdmax; ++fd)
753 if (anfds [fd].events) 1043 if (anfds [fd].events)
754 { 1044 {
755 anfds [fd].events = 0; 1045 anfds [fd].events = 0;
1046 anfds [fd].emask = 0;
756 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1047 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
757 } 1048 }
758} 1049}
759 1050
760/*****************************************************************************/ 1051/* used to prepare libev internal fd's */
761 1052/* this is not fork-safe */
762/* towards the root */ 1053inline_speed void
763void inline_speed
764upheap (WT *heap, int k)
765{
766 WT w = heap [k];
767
768 for (;;)
769 {
770 int p = k >> 1;
771
772 /* maybe we could use a dummy element at heap [0]? */
773 if (!p || heap [p]->at <= w->at)
774 break;
775
776 heap [k] = heap [p];
777 ((W)heap [k])->active = k;
778 k = p;
779 }
780
781 heap [k] = w;
782 ((W)heap [k])->active = k;
783}
784
785/* away from the root */
786void inline_speed
787downheap (WT *heap, int N, int k)
788{
789 WT w = heap [k];
790
791 for (;;)
792 {
793 int c = k << 1;
794
795 if (c > N)
796 break;
797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
804 heap [k] = heap [c];
805 ((W)heap [k])->active = k;
806
807 k = c;
808 }
809
810 heap [k] = w;
811 ((W)heap [k])->active = k;
812}
813
814void inline_size
815adjustheap (WT *heap, int N, int k)
816{
817 upheap (heap, k);
818 downheap (heap, N, k);
819}
820
821/*****************************************************************************/
822
823typedef struct
824{
825 WL head;
826 EV_ATOMIC_T gotsig;
827} ANSIG;
828
829static ANSIG *signals;
830static int signalmax;
831
832static EV_ATOMIC_T gotsig;
833
834void inline_size
835signals_init (ANSIG *base, int count)
836{
837 while (count--)
838 {
839 base->head = 0;
840 base->gotsig = 0;
841
842 ++base;
843 }
844}
845
846/*****************************************************************************/
847
848void inline_speed
849fd_intern (int fd) 1054fd_intern (int fd)
850{ 1055{
851#ifdef _WIN32 1056#ifdef _WIN32
852 int arg = 1; 1057 unsigned long arg = 1;
853 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1058 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
854#else 1059#else
855 fcntl (fd, F_SETFD, FD_CLOEXEC); 1060 fcntl (fd, F_SETFD, FD_CLOEXEC);
856 fcntl (fd, F_SETFL, O_NONBLOCK); 1061 fcntl (fd, F_SETFL, O_NONBLOCK);
857#endif 1062#endif
858} 1063}
859 1064
1065/*****************************************************************************/
1066
1067/*
1068 * the heap functions want a real array index. array index 0 uis guaranteed to not
1069 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1070 * the branching factor of the d-tree.
1071 */
1072
1073/*
1074 * at the moment we allow libev the luxury of two heaps,
1075 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1076 * which is more cache-efficient.
1077 * the difference is about 5% with 50000+ watchers.
1078 */
1079#if EV_USE_4HEAP
1080
1081#define DHEAP 4
1082#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1083#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1084#define UPHEAP_DONE(p,k) ((p) == (k))
1085
1086/* away from the root */
1087inline_speed void
1088downheap (ANHE *heap, int N, int k)
1089{
1090 ANHE he = heap [k];
1091 ANHE *E = heap + N + HEAP0;
1092
1093 for (;;)
1094 {
1095 ev_tstamp minat;
1096 ANHE *minpos;
1097 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1098
1099 /* find minimum child */
1100 if (expect_true (pos + DHEAP - 1 < E))
1101 {
1102 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1103 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1104 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1105 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1106 }
1107 else if (pos < E)
1108 {
1109 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1110 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1111 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1112 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1113 }
1114 else
1115 break;
1116
1117 if (ANHE_at (he) <= minat)
1118 break;
1119
1120 heap [k] = *minpos;
1121 ev_active (ANHE_w (*minpos)) = k;
1122
1123 k = minpos - heap;
1124 }
1125
1126 heap [k] = he;
1127 ev_active (ANHE_w (he)) = k;
1128}
1129
1130#else /* 4HEAP */
1131
1132#define HEAP0 1
1133#define HPARENT(k) ((k) >> 1)
1134#define UPHEAP_DONE(p,k) (!(p))
1135
1136/* away from the root */
1137inline_speed void
1138downheap (ANHE *heap, int N, int k)
1139{
1140 ANHE he = heap [k];
1141
1142 for (;;)
1143 {
1144 int c = k << 1;
1145
1146 if (c >= N + HEAP0)
1147 break;
1148
1149 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1150 ? 1 : 0;
1151
1152 if (ANHE_at (he) <= ANHE_at (heap [c]))
1153 break;
1154
1155 heap [k] = heap [c];
1156 ev_active (ANHE_w (heap [k])) = k;
1157
1158 k = c;
1159 }
1160
1161 heap [k] = he;
1162 ev_active (ANHE_w (he)) = k;
1163}
1164#endif
1165
1166/* towards the root */
1167inline_speed void
1168upheap (ANHE *heap, int k)
1169{
1170 ANHE he = heap [k];
1171
1172 for (;;)
1173 {
1174 int p = HPARENT (k);
1175
1176 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1177 break;
1178
1179 heap [k] = heap [p];
1180 ev_active (ANHE_w (heap [k])) = k;
1181 k = p;
1182 }
1183
1184 heap [k] = he;
1185 ev_active (ANHE_w (he)) = k;
1186}
1187
1188/* move an element suitably so it is in a correct place */
1189inline_size void
1190adjustheap (ANHE *heap, int N, int k)
1191{
1192 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1193 upheap (heap, k);
1194 else
1195 downheap (heap, N, k);
1196}
1197
1198/* rebuild the heap: this function is used only once and executed rarely */
1199inline_size void
1200reheap (ANHE *heap, int N)
1201{
1202 int i;
1203
1204 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1205 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1206 for (i = 0; i < N; ++i)
1207 upheap (heap, i + HEAP0);
1208}
1209
1210/*****************************************************************************/
1211
1212/* associate signal watchers to a signal signal */
1213typedef struct
1214{
1215 EV_ATOMIC_T pending;
1216#if EV_MULTIPLICITY
1217 EV_P;
1218#endif
1219 WL head;
1220} ANSIG;
1221
1222static ANSIG signals [EV_NSIG - 1];
1223
1224/*****************************************************************************/
1225
1226#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1227
860static void noinline 1228static void noinline
861evpipe_init (EV_P) 1229evpipe_init (EV_P)
862{ 1230{
863 if (!ev_is_active (&pipeev)) 1231 if (!ev_is_active (&pipe_w))
864 { 1232 {
865#if EV_USE_EVENTFD 1233# if EV_USE_EVENTFD
1234 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1235 if (evfd < 0 && errno == EINVAL)
866 if ((evfd = eventfd (0, 0)) >= 0) 1236 evfd = eventfd (0, 0);
1237
1238 if (evfd >= 0)
867 { 1239 {
868 evpipe [0] = -1; 1240 evpipe [0] = -1;
869 fd_intern (evfd); 1241 fd_intern (evfd); /* doing it twice doesn't hurt */
870 ev_io_set (&pipeev, evfd, EV_READ); 1242 ev_io_set (&pipe_w, evfd, EV_READ);
871 } 1243 }
872 else 1244 else
873#endif 1245# endif
874 { 1246 {
875 while (pipe (evpipe)) 1247 while (pipe (evpipe))
876 syserr ("(libev) error creating signal/async pipe"); 1248 ev_syserr ("(libev) error creating signal/async pipe");
877 1249
878 fd_intern (evpipe [0]); 1250 fd_intern (evpipe [0]);
879 fd_intern (evpipe [1]); 1251 fd_intern (evpipe [1]);
880 ev_io_set (&pipeev, evpipe [0], EV_READ); 1252 ev_io_set (&pipe_w, evpipe [0], EV_READ);
881 } 1253 }
882 1254
883 ev_io_start (EV_A_ &pipeev); 1255 ev_io_start (EV_A_ &pipe_w);
884 ev_unref (EV_A); /* watcher should not keep loop alive */ 1256 ev_unref (EV_A); /* watcher should not keep loop alive */
885 } 1257 }
886} 1258}
887 1259
888void inline_size 1260inline_size void
889evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1261evpipe_write (EV_P_ EV_ATOMIC_T *flag)
890{ 1262{
891 if (!*flag) 1263 if (!*flag)
892 { 1264 {
893 int old_errno = errno; /* save errno because write might clobber it */ 1265 int old_errno = errno; /* save errno because write might clobber it */
1266 char dummy;
894 1267
895 *flag = 1; 1268 *flag = 1;
896 1269
897#if EV_USE_EVENTFD 1270#if EV_USE_EVENTFD
898 if (evfd >= 0) 1271 if (evfd >= 0)
900 uint64_t counter = 1; 1273 uint64_t counter = 1;
901 write (evfd, &counter, sizeof (uint64_t)); 1274 write (evfd, &counter, sizeof (uint64_t));
902 } 1275 }
903 else 1276 else
904#endif 1277#endif
905 write (evpipe [1], &old_errno, 1); 1278 write (evpipe [1], &dummy, 1);
906 1279
907 errno = old_errno; 1280 errno = old_errno;
908 } 1281 }
909} 1282}
910 1283
1284/* called whenever the libev signal pipe */
1285/* got some events (signal, async) */
911static void 1286static void
912pipecb (EV_P_ ev_io *iow, int revents) 1287pipecb (EV_P_ ev_io *iow, int revents)
913{ 1288{
1289 int i;
1290
914#if EV_USE_EVENTFD 1291#if EV_USE_EVENTFD
915 if (evfd >= 0) 1292 if (evfd >= 0)
916 { 1293 {
917 uint64_t counter = 1; 1294 uint64_t counter;
918 read (evfd, &counter, sizeof (uint64_t)); 1295 read (evfd, &counter, sizeof (uint64_t));
919 } 1296 }
920 else 1297 else
921#endif 1298#endif
922 { 1299 {
923 char dummy; 1300 char dummy;
924 read (evpipe [0], &dummy, 1); 1301 read (evpipe [0], &dummy, 1);
925 } 1302 }
926 1303
927 if (gotsig && ev_is_default_loop (EV_A)) 1304 if (sig_pending)
928 { 1305 {
929 int signum; 1306 sig_pending = 0;
930 gotsig = 0;
931 1307
932 for (signum = signalmax; signum--; ) 1308 for (i = EV_NSIG - 1; i--; )
933 if (signals [signum].gotsig) 1309 if (expect_false (signals [i].pending))
934 ev_feed_signal_event (EV_A_ signum + 1); 1310 ev_feed_signal_event (EV_A_ i + 1);
935 } 1311 }
936 1312
937#if EV_ASYNC_ENABLE 1313#if EV_ASYNC_ENABLE
938 if (gotasync) 1314 if (async_pending)
939 { 1315 {
940 int i; 1316 async_pending = 0;
941 gotasync = 0;
942 1317
943 for (i = asynccnt; i--; ) 1318 for (i = asynccnt; i--; )
944 if (asyncs [i]->sent) 1319 if (asyncs [i]->sent)
945 { 1320 {
946 asyncs [i]->sent = 0; 1321 asyncs [i]->sent = 0;
954 1329
955static void 1330static void
956ev_sighandler (int signum) 1331ev_sighandler (int signum)
957{ 1332{
958#if EV_MULTIPLICITY 1333#if EV_MULTIPLICITY
959 struct ev_loop *loop = &default_loop_struct; 1334 EV_P = signals [signum - 1].loop;
960#endif 1335#endif
961 1336
962#if _WIN32 1337#ifdef _WIN32
963 signal (signum, ev_sighandler); 1338 signal (signum, ev_sighandler);
964#endif 1339#endif
965 1340
966 signals [signum - 1].gotsig = 1; 1341 signals [signum - 1].pending = 1;
967 evpipe_write (EV_A_ &gotsig); 1342 evpipe_write (EV_A_ &sig_pending);
968} 1343}
969 1344
970void noinline 1345void noinline
971ev_feed_signal_event (EV_P_ int signum) 1346ev_feed_signal_event (EV_P_ int signum)
972{ 1347{
973 WL w; 1348 WL w;
974 1349
1350 if (expect_false (signum <= 0 || signum > EV_NSIG))
1351 return;
1352
1353 --signum;
1354
975#if EV_MULTIPLICITY 1355#if EV_MULTIPLICITY
976 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1356 /* it is permissible to try to feed a signal to the wrong loop */
977#endif 1357 /* or, likely more useful, feeding a signal nobody is waiting for */
978 1358
979 --signum; 1359 if (expect_false (signals [signum].loop != EV_A))
980
981 if (signum < 0 || signum >= signalmax)
982 return; 1360 return;
1361#endif
983 1362
984 signals [signum].gotsig = 0; 1363 signals [signum].pending = 0;
985 1364
986 for (w = signals [signum].head; w; w = w->next) 1365 for (w = signals [signum].head; w; w = w->next)
987 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 1366 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
988} 1367}
989 1368
1369#if EV_USE_SIGNALFD
1370static void
1371sigfdcb (EV_P_ ev_io *iow, int revents)
1372{
1373 struct signalfd_siginfo si[2], *sip; /* these structs are big */
1374
1375 for (;;)
1376 {
1377 ssize_t res = read (sigfd, si, sizeof (si));
1378
1379 /* not ISO-C, as res might be -1, but works with SuS */
1380 for (sip = si; (char *)sip < (char *)si + res; ++sip)
1381 ev_feed_signal_event (EV_A_ sip->ssi_signo);
1382
1383 if (res < (ssize_t)sizeof (si))
1384 break;
1385 }
1386}
1387#endif
1388
1389#endif
1390
990/*****************************************************************************/ 1391/*****************************************************************************/
991 1392
1393#if EV_CHILD_ENABLE
992static WL childs [EV_PID_HASHSIZE]; 1394static WL childs [EV_PID_HASHSIZE];
993
994#ifndef _WIN32
995 1395
996static ev_signal childev; 1396static ev_signal childev;
997 1397
998#ifndef WIFCONTINUED 1398#ifndef WIFCONTINUED
999# define WIFCONTINUED(status) 0 1399# define WIFCONTINUED(status) 0
1000#endif 1400#endif
1001 1401
1002void inline_speed 1402/* handle a single child status event */
1403inline_speed void
1003child_reap (EV_P_ int chain, int pid, int status) 1404child_reap (EV_P_ int chain, int pid, int status)
1004{ 1405{
1005 ev_child *w; 1406 ev_child *w;
1006 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1407 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1007 1408
1008 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1409 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1009 { 1410 {
1010 if ((w->pid == pid || !w->pid) 1411 if ((w->pid == pid || !w->pid)
1011 && (!traced || (w->flags & 1))) 1412 && (!traced || (w->flags & 1)))
1012 { 1413 {
1013 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 1414 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1020 1421
1021#ifndef WCONTINUED 1422#ifndef WCONTINUED
1022# define WCONTINUED 0 1423# define WCONTINUED 0
1023#endif 1424#endif
1024 1425
1426/* called on sigchld etc., calls waitpid */
1025static void 1427static void
1026childcb (EV_P_ ev_signal *sw, int revents) 1428childcb (EV_P_ ev_signal *sw, int revents)
1027{ 1429{
1028 int pid, status; 1430 int pid, status;
1029 1431
1037 /* make sure we are called again until all children have been reaped */ 1439 /* make sure we are called again until all children have been reaped */
1038 /* we need to do it this way so that the callback gets called before we continue */ 1440 /* we need to do it this way so that the callback gets called before we continue */
1039 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1441 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1040 1442
1041 child_reap (EV_A_ pid, pid, status); 1443 child_reap (EV_A_ pid, pid, status);
1042 if (EV_PID_HASHSIZE > 1) 1444 if ((EV_PID_HASHSIZE) > 1)
1043 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1445 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1044} 1446}
1045 1447
1046#endif 1448#endif
1047 1449
1110 /* kqueue is borked on everything but netbsd apparently */ 1512 /* kqueue is borked on everything but netbsd apparently */
1111 /* it usually doesn't work correctly on anything but sockets and pipes */ 1513 /* it usually doesn't work correctly on anything but sockets and pipes */
1112 flags &= ~EVBACKEND_KQUEUE; 1514 flags &= ~EVBACKEND_KQUEUE;
1113#endif 1515#endif
1114#ifdef __APPLE__ 1516#ifdef __APPLE__
1115 // flags &= ~EVBACKEND_KQUEUE; for documentation 1517 /* only select works correctly on that "unix-certified" platform */
1116 flags &= ~EVBACKEND_POLL; 1518 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1519 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1520#endif
1521#ifdef __FreeBSD__
1522 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1117#endif 1523#endif
1118 1524
1119 return flags; 1525 return flags;
1120} 1526}
1121 1527
1135ev_backend (EV_P) 1541ev_backend (EV_P)
1136{ 1542{
1137 return backend; 1543 return backend;
1138} 1544}
1139 1545
1546#if EV_FEATURE_API
1140unsigned int 1547unsigned int
1141ev_loop_count (EV_P) 1548ev_iteration (EV_P)
1142{ 1549{
1143 return loop_count; 1550 return loop_count;
1144} 1551}
1145 1552
1553unsigned int
1554ev_depth (EV_P)
1555{
1556 return loop_depth;
1557}
1558
1146void 1559void
1147ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 1560ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1148{ 1561{
1149 io_blocktime = interval; 1562 io_blocktime = interval;
1150} 1563}
1153ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1566ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1154{ 1567{
1155 timeout_blocktime = interval; 1568 timeout_blocktime = interval;
1156} 1569}
1157 1570
1571void
1572ev_set_userdata (EV_P_ void *data)
1573{
1574 userdata = data;
1575}
1576
1577void *
1578ev_userdata (EV_P)
1579{
1580 return userdata;
1581}
1582
1583void ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P))
1584{
1585 invoke_cb = invoke_pending_cb;
1586}
1587
1588void ev_set_loop_release_cb (EV_P_ void (*release)(EV_P), void (*acquire)(EV_P))
1589{
1590 release_cb = release;
1591 acquire_cb = acquire;
1592}
1593#endif
1594
1595/* initialise a loop structure, must be zero-initialised */
1158static void noinline 1596static void noinline
1159loop_init (EV_P_ unsigned int flags) 1597loop_init (EV_P_ unsigned int flags)
1160{ 1598{
1161 if (!backend) 1599 if (!backend)
1162 { 1600 {
1601#if EV_USE_REALTIME
1602 if (!have_realtime)
1603 {
1604 struct timespec ts;
1605
1606 if (!clock_gettime (CLOCK_REALTIME, &ts))
1607 have_realtime = 1;
1608 }
1609#endif
1610
1163#if EV_USE_MONOTONIC 1611#if EV_USE_MONOTONIC
1612 if (!have_monotonic)
1164 { 1613 {
1165 struct timespec ts; 1614 struct timespec ts;
1615
1166 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1616 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1167 have_monotonic = 1; 1617 have_monotonic = 1;
1168 } 1618 }
1169#endif 1619#endif
1620
1621 /* pid check not overridable via env */
1622#ifndef _WIN32
1623 if (flags & EVFLAG_FORKCHECK)
1624 curpid = getpid ();
1625#endif
1626
1627 if (!(flags & EVFLAG_NOENV)
1628 && !enable_secure ()
1629 && getenv ("LIBEV_FLAGS"))
1630 flags = atoi (getenv ("LIBEV_FLAGS"));
1170 1631
1171 ev_rt_now = ev_time (); 1632 ev_rt_now = ev_time ();
1172 mn_now = get_clock (); 1633 mn_now = get_clock ();
1173 now_floor = mn_now; 1634 now_floor = mn_now;
1174 rtmn_diff = ev_rt_now - mn_now; 1635 rtmn_diff = ev_rt_now - mn_now;
1636#if EV_FEATURE_API
1637 invoke_cb = ev_invoke_pending;
1638#endif
1175 1639
1176 io_blocktime = 0.; 1640 io_blocktime = 0.;
1177 timeout_blocktime = 0.; 1641 timeout_blocktime = 0.;
1178 backend = 0; 1642 backend = 0;
1179 backend_fd = -1; 1643 backend_fd = -1;
1180 gotasync = 0; 1644 sig_pending = 0;
1645#if EV_ASYNC_ENABLE
1646 async_pending = 0;
1647#endif
1181#if EV_USE_INOTIFY 1648#if EV_USE_INOTIFY
1182 fs_fd = -2; 1649 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
1183#endif 1650#endif
1184 1651#if EV_USE_SIGNALFD
1185 /* pid check not overridable via env */ 1652 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
1186#ifndef _WIN32
1187 if (flags & EVFLAG_FORKCHECK)
1188 curpid = getpid ();
1189#endif 1653#endif
1190
1191 if (!(flags & EVFLAG_NOENV)
1192 && !enable_secure ()
1193 && getenv ("LIBEV_FLAGS"))
1194 flags = atoi (getenv ("LIBEV_FLAGS"));
1195 1654
1196 if (!(flags & 0x0000ffffU)) 1655 if (!(flags & 0x0000ffffU))
1197 flags |= ev_recommended_backends (); 1656 flags |= ev_recommended_backends ();
1198 1657
1199#if EV_USE_PORT 1658#if EV_USE_PORT
1210#endif 1669#endif
1211#if EV_USE_SELECT 1670#if EV_USE_SELECT
1212 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1671 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1213#endif 1672#endif
1214 1673
1674 ev_prepare_init (&pending_w, pendingcb);
1675
1676#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1215 ev_init (&pipeev, pipecb); 1677 ev_init (&pipe_w, pipecb);
1216 ev_set_priority (&pipeev, EV_MAXPRI); 1678 ev_set_priority (&pipe_w, EV_MAXPRI);
1679#endif
1217 } 1680 }
1218} 1681}
1219 1682
1683/* free up a loop structure */
1220static void noinline 1684static void noinline
1221loop_destroy (EV_P) 1685loop_destroy (EV_P)
1222{ 1686{
1223 int i; 1687 int i;
1224 1688
1225 if (ev_is_active (&pipeev)) 1689 if (ev_is_active (&pipe_w))
1226 { 1690 {
1227 ev_ref (EV_A); /* signal watcher */ 1691 /*ev_ref (EV_A);*/
1228 ev_io_stop (EV_A_ &pipeev); 1692 /*ev_io_stop (EV_A_ &pipe_w);*/
1229 1693
1230#if EV_USE_EVENTFD 1694#if EV_USE_EVENTFD
1231 if (evfd >= 0) 1695 if (evfd >= 0)
1232 close (evfd); 1696 close (evfd);
1233#endif 1697#endif
1234 1698
1235 if (evpipe [0] >= 0) 1699 if (evpipe [0] >= 0)
1236 { 1700 {
1237 close (evpipe [0]); 1701 EV_WIN32_CLOSE_FD (evpipe [0]);
1238 close (evpipe [1]); 1702 EV_WIN32_CLOSE_FD (evpipe [1]);
1239 } 1703 }
1240 } 1704 }
1705
1706#if EV_USE_SIGNALFD
1707 if (ev_is_active (&sigfd_w))
1708 close (sigfd);
1709#endif
1241 1710
1242#if EV_USE_INOTIFY 1711#if EV_USE_INOTIFY
1243 if (fs_fd >= 0) 1712 if (fs_fd >= 0)
1244 close (fs_fd); 1713 close (fs_fd);
1245#endif 1714#endif
1269#if EV_IDLE_ENABLE 1738#if EV_IDLE_ENABLE
1270 array_free (idle, [i]); 1739 array_free (idle, [i]);
1271#endif 1740#endif
1272 } 1741 }
1273 1742
1274 ev_free (anfds); anfdmax = 0; 1743 ev_free (anfds); anfds = 0; anfdmax = 0;
1275 1744
1276 /* have to use the microsoft-never-gets-it-right macro */ 1745 /* have to use the microsoft-never-gets-it-right macro */
1746 array_free (rfeed, EMPTY);
1277 array_free (fdchange, EMPTY); 1747 array_free (fdchange, EMPTY);
1278 array_free (timer, EMPTY); 1748 array_free (timer, EMPTY);
1279#if EV_PERIODIC_ENABLE 1749#if EV_PERIODIC_ENABLE
1280 array_free (periodic, EMPTY); 1750 array_free (periodic, EMPTY);
1281#endif 1751#endif
1290 1760
1291 backend = 0; 1761 backend = 0;
1292} 1762}
1293 1763
1294#if EV_USE_INOTIFY 1764#if EV_USE_INOTIFY
1295void inline_size infy_fork (EV_P); 1765inline_size void infy_fork (EV_P);
1296#endif 1766#endif
1297 1767
1298void inline_size 1768inline_size void
1299loop_fork (EV_P) 1769loop_fork (EV_P)
1300{ 1770{
1301#if EV_USE_PORT 1771#if EV_USE_PORT
1302 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1772 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1303#endif 1773#endif
1309#endif 1779#endif
1310#if EV_USE_INOTIFY 1780#if EV_USE_INOTIFY
1311 infy_fork (EV_A); 1781 infy_fork (EV_A);
1312#endif 1782#endif
1313 1783
1314 if (ev_is_active (&pipeev)) 1784 if (ev_is_active (&pipe_w))
1315 { 1785 {
1316 /* this "locks" the handlers against writing to the pipe */ 1786 /* this "locks" the handlers against writing to the pipe */
1317 /* while we modify the fd vars */ 1787 /* while we modify the fd vars */
1318 gotsig = 1; 1788 sig_pending = 1;
1319#if EV_ASYNC_ENABLE 1789#if EV_ASYNC_ENABLE
1320 gotasync = 1; 1790 async_pending = 1;
1321#endif 1791#endif
1322 1792
1323 ev_ref (EV_A); 1793 ev_ref (EV_A);
1324 ev_io_stop (EV_A_ &pipeev); 1794 ev_io_stop (EV_A_ &pipe_w);
1325 1795
1326#if EV_USE_EVENTFD 1796#if EV_USE_EVENTFD
1327 if (evfd >= 0) 1797 if (evfd >= 0)
1328 close (evfd); 1798 close (evfd);
1329#endif 1799#endif
1330 1800
1331 if (evpipe [0] >= 0) 1801 if (evpipe [0] >= 0)
1332 { 1802 {
1333 close (evpipe [0]); 1803 EV_WIN32_CLOSE_FD (evpipe [0]);
1334 close (evpipe [1]); 1804 EV_WIN32_CLOSE_FD (evpipe [1]);
1335 } 1805 }
1336 1806
1807#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1337 evpipe_init (EV_A); 1808 evpipe_init (EV_A);
1338 /* now iterate over everything, in case we missed something */ 1809 /* now iterate over everything, in case we missed something */
1339 pipecb (EV_A_ &pipeev, EV_READ); 1810 pipecb (EV_A_ &pipe_w, EV_READ);
1811#endif
1340 } 1812 }
1341 1813
1342 postfork = 0; 1814 postfork = 0;
1343} 1815}
1344 1816
1345#if EV_MULTIPLICITY 1817#if EV_MULTIPLICITY
1818
1346struct ev_loop * 1819struct ev_loop *
1347ev_loop_new (unsigned int flags) 1820ev_loop_new (unsigned int flags)
1348{ 1821{
1349 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1822 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1350 1823
1351 memset (loop, 0, sizeof (struct ev_loop)); 1824 memset (EV_A, 0, sizeof (struct ev_loop));
1352
1353 loop_init (EV_A_ flags); 1825 loop_init (EV_A_ flags);
1354 1826
1355 if (ev_backend (EV_A)) 1827 if (ev_backend (EV_A))
1356 return loop; 1828 return EV_A;
1357 1829
1358 return 0; 1830 return 0;
1359} 1831}
1360 1832
1361void 1833void
1368void 1840void
1369ev_loop_fork (EV_P) 1841ev_loop_fork (EV_P)
1370{ 1842{
1371 postfork = 1; /* must be in line with ev_default_fork */ 1843 postfork = 1; /* must be in line with ev_default_fork */
1372} 1844}
1845#endif /* multiplicity */
1373 1846
1847#if EV_VERIFY
1848static void noinline
1849verify_watcher (EV_P_ W w)
1850{
1851 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1852
1853 if (w->pending)
1854 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1855}
1856
1857static void noinline
1858verify_heap (EV_P_ ANHE *heap, int N)
1859{
1860 int i;
1861
1862 for (i = HEAP0; i < N + HEAP0; ++i)
1863 {
1864 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1865 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1866 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1867
1868 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1869 }
1870}
1871
1872static void noinline
1873array_verify (EV_P_ W *ws, int cnt)
1874{
1875 while (cnt--)
1876 {
1877 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1878 verify_watcher (EV_A_ ws [cnt]);
1879 }
1880}
1881#endif
1882
1883#if EV_FEATURE_API
1884void
1885ev_verify (EV_P)
1886{
1887#if EV_VERIFY
1888 int i;
1889 WL w;
1890
1891 assert (activecnt >= -1);
1892
1893 assert (fdchangemax >= fdchangecnt);
1894 for (i = 0; i < fdchangecnt; ++i)
1895 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1896
1897 assert (anfdmax >= 0);
1898 for (i = 0; i < anfdmax; ++i)
1899 for (w = anfds [i].head; w; w = w->next)
1900 {
1901 verify_watcher (EV_A_ (W)w);
1902 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1903 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1904 }
1905
1906 assert (timermax >= timercnt);
1907 verify_heap (EV_A_ timers, timercnt);
1908
1909#if EV_PERIODIC_ENABLE
1910 assert (periodicmax >= periodiccnt);
1911 verify_heap (EV_A_ periodics, periodiccnt);
1912#endif
1913
1914 for (i = NUMPRI; i--; )
1915 {
1916 assert (pendingmax [i] >= pendingcnt [i]);
1917#if EV_IDLE_ENABLE
1918 assert (idleall >= 0);
1919 assert (idlemax [i] >= idlecnt [i]);
1920 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1921#endif
1922 }
1923
1924#if EV_FORK_ENABLE
1925 assert (forkmax >= forkcnt);
1926 array_verify (EV_A_ (W *)forks, forkcnt);
1927#endif
1928
1929#if EV_ASYNC_ENABLE
1930 assert (asyncmax >= asynccnt);
1931 array_verify (EV_A_ (W *)asyncs, asynccnt);
1932#endif
1933
1934#if EV_PREPARE_ENABLE
1935 assert (preparemax >= preparecnt);
1936 array_verify (EV_A_ (W *)prepares, preparecnt);
1937#endif
1938
1939#if EV_CHECK_ENABLE
1940 assert (checkmax >= checkcnt);
1941 array_verify (EV_A_ (W *)checks, checkcnt);
1942#endif
1943
1944# if 0
1945#if EV_CHILD_ENABLE
1946 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1947 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
1948#endif
1949# endif
1950#endif
1951}
1374#endif 1952#endif
1375 1953
1376#if EV_MULTIPLICITY 1954#if EV_MULTIPLICITY
1377struct ev_loop * 1955struct ev_loop *
1378ev_default_loop_init (unsigned int flags) 1956ev_default_loop_init (unsigned int flags)
1382#endif 1960#endif
1383{ 1961{
1384 if (!ev_default_loop_ptr) 1962 if (!ev_default_loop_ptr)
1385 { 1963 {
1386#if EV_MULTIPLICITY 1964#if EV_MULTIPLICITY
1387 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1965 EV_P = ev_default_loop_ptr = &default_loop_struct;
1388#else 1966#else
1389 ev_default_loop_ptr = 1; 1967 ev_default_loop_ptr = 1;
1390#endif 1968#endif
1391 1969
1392 loop_init (EV_A_ flags); 1970 loop_init (EV_A_ flags);
1393 1971
1394 if (ev_backend (EV_A)) 1972 if (ev_backend (EV_A))
1395 { 1973 {
1396#ifndef _WIN32 1974#if EV_CHILD_ENABLE
1397 ev_signal_init (&childev, childcb, SIGCHLD); 1975 ev_signal_init (&childev, childcb, SIGCHLD);
1398 ev_set_priority (&childev, EV_MAXPRI); 1976 ev_set_priority (&childev, EV_MAXPRI);
1399 ev_signal_start (EV_A_ &childev); 1977 ev_signal_start (EV_A_ &childev);
1400 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1978 ev_unref (EV_A); /* child watcher should not keep loop alive */
1401#endif 1979#endif
1409 1987
1410void 1988void
1411ev_default_destroy (void) 1989ev_default_destroy (void)
1412{ 1990{
1413#if EV_MULTIPLICITY 1991#if EV_MULTIPLICITY
1414 struct ev_loop *loop = ev_default_loop_ptr; 1992 EV_P = ev_default_loop_ptr;
1415#endif 1993#endif
1416 1994
1417#ifndef _WIN32 1995 ev_default_loop_ptr = 0;
1996
1997#if EV_CHILD_ENABLE
1418 ev_ref (EV_A); /* child watcher */ 1998 ev_ref (EV_A); /* child watcher */
1419 ev_signal_stop (EV_A_ &childev); 1999 ev_signal_stop (EV_A_ &childev);
1420#endif 2000#endif
1421 2001
1422 loop_destroy (EV_A); 2002 loop_destroy (EV_A);
1424 2004
1425void 2005void
1426ev_default_fork (void) 2006ev_default_fork (void)
1427{ 2007{
1428#if EV_MULTIPLICITY 2008#if EV_MULTIPLICITY
1429 struct ev_loop *loop = ev_default_loop_ptr; 2009 EV_P = ev_default_loop_ptr;
1430#endif 2010#endif
1431 2011
1432 if (backend)
1433 postfork = 1; /* must be in line with ev_loop_fork */ 2012 postfork = 1; /* must be in line with ev_loop_fork */
1434} 2013}
1435 2014
1436/*****************************************************************************/ 2015/*****************************************************************************/
1437 2016
1438void 2017void
1439ev_invoke (EV_P_ void *w, int revents) 2018ev_invoke (EV_P_ void *w, int revents)
1440{ 2019{
1441 EV_CB_INVOKE ((W)w, revents); 2020 EV_CB_INVOKE ((W)w, revents);
1442} 2021}
1443 2022
1444void inline_speed 2023unsigned int
1445call_pending (EV_P) 2024ev_pending_count (EV_P)
2025{
2026 int pri;
2027 unsigned int count = 0;
2028
2029 for (pri = NUMPRI; pri--; )
2030 count += pendingcnt [pri];
2031
2032 return count;
2033}
2034
2035void noinline
2036ev_invoke_pending (EV_P)
1446{ 2037{
1447 int pri; 2038 int pri;
1448 2039
1449 for (pri = NUMPRI; pri--; ) 2040 for (pri = NUMPRI; pri--; )
1450 while (pendingcnt [pri]) 2041 while (pendingcnt [pri])
1451 { 2042 {
1452 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2043 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1453 2044
1454 if (expect_true (p->w))
1455 {
1456 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 2045 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
2046 /* ^ this is no longer true, as pending_w could be here */
1457 2047
1458 p->w->pending = 0; 2048 p->w->pending = 0;
1459 EV_CB_INVOKE (p->w, p->events); 2049 EV_CB_INVOKE (p->w, p->events);
1460 } 2050 EV_FREQUENT_CHECK;
1461 } 2051 }
1462} 2052}
1463 2053
1464void inline_size
1465timers_reify (EV_P)
1466{
1467 while (timercnt && ev_at (timers [1]) <= mn_now)
1468 {
1469 ev_timer *w = (ev_timer *)timers [1];
1470
1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1472
1473 /* first reschedule or stop timer */
1474 if (w->repeat)
1475 {
1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1477
1478 ev_at (w) += w->repeat;
1479 if (ev_at (w) < mn_now)
1480 ev_at (w) = mn_now;
1481
1482 downheap (timers, timercnt, 1);
1483 }
1484 else
1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1486
1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1488 }
1489}
1490
1491#if EV_PERIODIC_ENABLE
1492void inline_size
1493periodics_reify (EV_P)
1494{
1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1496 {
1497 ev_periodic *w = (ev_periodic *)periodics [1];
1498
1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1500
1501 /* first reschedule or stop timer */
1502 if (w->reschedule_cb)
1503 {
1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1506 downheap (periodics, periodiccnt, 1);
1507 }
1508 else if (w->interval)
1509 {
1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1513 downheap (periodics, periodiccnt, 1);
1514 }
1515 else
1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1517
1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1519 }
1520}
1521
1522static void noinline
1523periodics_reschedule (EV_P)
1524{
1525 int i;
1526
1527 /* adjust periodics after time jump */
1528 for (i = 0; i < periodiccnt; ++i)
1529 {
1530 ev_periodic *w = (ev_periodic *)periodics [i];
1531
1532 if (w->reschedule_cb)
1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1534 else if (w->interval)
1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1536 }
1537
1538 /* now rebuild the heap */
1539 for (i = periodiccnt >> 1; i--; )
1540 downheap (periodics, periodiccnt, i);
1541}
1542#endif
1543
1544#if EV_IDLE_ENABLE 2054#if EV_IDLE_ENABLE
1545void inline_size 2055/* make idle watchers pending. this handles the "call-idle */
2056/* only when higher priorities are idle" logic */
2057inline_size void
1546idle_reify (EV_P) 2058idle_reify (EV_P)
1547{ 2059{
1548 if (expect_false (idleall)) 2060 if (expect_false (idleall))
1549 { 2061 {
1550 int pri; 2062 int pri;
1562 } 2074 }
1563 } 2075 }
1564} 2076}
1565#endif 2077#endif
1566 2078
1567void inline_speed 2079/* make timers pending */
2080inline_size void
2081timers_reify (EV_P)
2082{
2083 EV_FREQUENT_CHECK;
2084
2085 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2086 {
2087 do
2088 {
2089 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2090
2091 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2092
2093 /* first reschedule or stop timer */
2094 if (w->repeat)
2095 {
2096 ev_at (w) += w->repeat;
2097 if (ev_at (w) < mn_now)
2098 ev_at (w) = mn_now;
2099
2100 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2101
2102 ANHE_at_cache (timers [HEAP0]);
2103 downheap (timers, timercnt, HEAP0);
2104 }
2105 else
2106 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2107
2108 EV_FREQUENT_CHECK;
2109 feed_reverse (EV_A_ (W)w);
2110 }
2111 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2112
2113 feed_reverse_done (EV_A_ EV_TIMER);
2114 }
2115}
2116
2117#if EV_PERIODIC_ENABLE
2118/* make periodics pending */
2119inline_size void
2120periodics_reify (EV_P)
2121{
2122 EV_FREQUENT_CHECK;
2123
2124 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2125 {
2126 int feed_count = 0;
2127
2128 do
2129 {
2130 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2131
2132 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2133
2134 /* first reschedule or stop timer */
2135 if (w->reschedule_cb)
2136 {
2137 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2138
2139 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2140
2141 ANHE_at_cache (periodics [HEAP0]);
2142 downheap (periodics, periodiccnt, HEAP0);
2143 }
2144 else if (w->interval)
2145 {
2146 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2147 /* if next trigger time is not sufficiently in the future, put it there */
2148 /* this might happen because of floating point inexactness */
2149 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
2150 {
2151 ev_at (w) += w->interval;
2152
2153 /* if interval is unreasonably low we might still have a time in the past */
2154 /* so correct this. this will make the periodic very inexact, but the user */
2155 /* has effectively asked to get triggered more often than possible */
2156 if (ev_at (w) < ev_rt_now)
2157 ev_at (w) = ev_rt_now;
2158 }
2159
2160 ANHE_at_cache (periodics [HEAP0]);
2161 downheap (periodics, periodiccnt, HEAP0);
2162 }
2163 else
2164 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2165
2166 EV_FREQUENT_CHECK;
2167 feed_reverse (EV_A_ (W)w);
2168 }
2169 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2170
2171 feed_reverse_done (EV_A_ EV_PERIODIC);
2172 }
2173}
2174
2175/* simply recalculate all periodics */
2176/* TODO: maybe ensure that at leats one event happens when jumping forward? */
2177static void noinline
2178periodics_reschedule (EV_P)
2179{
2180 int i;
2181
2182 /* adjust periodics after time jump */
2183 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2184 {
2185 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2186
2187 if (w->reschedule_cb)
2188 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2189 else if (w->interval)
2190 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
2191
2192 ANHE_at_cache (periodics [i]);
2193 }
2194
2195 reheap (periodics, periodiccnt);
2196}
2197#endif
2198
2199/* adjust all timers by a given offset */
2200static void noinline
2201timers_reschedule (EV_P_ ev_tstamp adjust)
2202{
2203 int i;
2204
2205 for (i = 0; i < timercnt; ++i)
2206 {
2207 ANHE *he = timers + i + HEAP0;
2208 ANHE_w (*he)->at += adjust;
2209 ANHE_at_cache (*he);
2210 }
2211}
2212
2213/* fetch new monotonic and realtime times from the kernel */
2214/* also detect if there was a timejump, and act accordingly */
2215inline_speed void
1568time_update (EV_P_ ev_tstamp max_block) 2216time_update (EV_P_ ev_tstamp max_block)
1569{ 2217{
1570 int i;
1571
1572#if EV_USE_MONOTONIC 2218#if EV_USE_MONOTONIC
1573 if (expect_true (have_monotonic)) 2219 if (expect_true (have_monotonic))
1574 { 2220 {
2221 int i;
1575 ev_tstamp odiff = rtmn_diff; 2222 ev_tstamp odiff = rtmn_diff;
1576 2223
1577 mn_now = get_clock (); 2224 mn_now = get_clock ();
1578 2225
1579 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2226 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1597 */ 2244 */
1598 for (i = 4; --i; ) 2245 for (i = 4; --i; )
1599 { 2246 {
1600 rtmn_diff = ev_rt_now - mn_now; 2247 rtmn_diff = ev_rt_now - mn_now;
1601 2248
1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2249 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1603 return; /* all is well */ 2250 return; /* all is well */
1604 2251
1605 ev_rt_now = ev_time (); 2252 ev_rt_now = ev_time ();
1606 mn_now = get_clock (); 2253 mn_now = get_clock ();
1607 now_floor = mn_now; 2254 now_floor = mn_now;
1608 } 2255 }
1609 2256
2257 /* no timer adjustment, as the monotonic clock doesn't jump */
2258 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1610# if EV_PERIODIC_ENABLE 2259# if EV_PERIODIC_ENABLE
1611 periodics_reschedule (EV_A); 2260 periodics_reschedule (EV_A);
1612# endif 2261# endif
1613 /* no timer adjustment, as the monotonic clock doesn't jump */
1614 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1615 } 2262 }
1616 else 2263 else
1617#endif 2264#endif
1618 { 2265 {
1619 ev_rt_now = ev_time (); 2266 ev_rt_now = ev_time ();
1620 2267
1621 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2268 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1622 { 2269 {
2270 /* adjust timers. this is easy, as the offset is the same for all of them */
2271 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1623#if EV_PERIODIC_ENABLE 2272#if EV_PERIODIC_ENABLE
1624 periodics_reschedule (EV_A); 2273 periodics_reschedule (EV_A);
1625#endif 2274#endif
1626 /* adjust timers. this is easy, as the offset is the same for all of them */
1627 for (i = 1; i <= timercnt; ++i)
1628 ev_at (timers [i]) += ev_rt_now - mn_now;
1629 } 2275 }
1630 2276
1631 mn_now = ev_rt_now; 2277 mn_now = ev_rt_now;
1632 } 2278 }
1633} 2279}
1634 2280
1635void 2281void
1636ev_ref (EV_P)
1637{
1638 ++activecnt;
1639}
1640
1641void
1642ev_unref (EV_P)
1643{
1644 --activecnt;
1645}
1646
1647static int loop_done;
1648
1649void
1650ev_loop (EV_P_ int flags) 2282ev_loop (EV_P_ int flags)
1651{ 2283{
2284#if EV_FEATURE_API
2285 ++loop_depth;
2286#endif
2287
2288 assert (("libev: ev_loop recursion during release detected", loop_done != EVUNLOOP_RECURSE));
2289
1652 loop_done = EVUNLOOP_CANCEL; 2290 loop_done = EVUNLOOP_CANCEL;
1653 2291
1654 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2292 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1655 2293
1656 do 2294 do
1657 { 2295 {
2296#if EV_VERIFY >= 2
2297 ev_verify (EV_A);
2298#endif
2299
1658#ifndef _WIN32 2300#ifndef _WIN32
1659 if (expect_false (curpid)) /* penalise the forking check even more */ 2301 if (expect_false (curpid)) /* penalise the forking check even more */
1660 if (expect_false (getpid () != curpid)) 2302 if (expect_false (getpid () != curpid))
1661 { 2303 {
1662 curpid = getpid (); 2304 curpid = getpid ();
1668 /* we might have forked, so queue fork handlers */ 2310 /* we might have forked, so queue fork handlers */
1669 if (expect_false (postfork)) 2311 if (expect_false (postfork))
1670 if (forkcnt) 2312 if (forkcnt)
1671 { 2313 {
1672 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 2314 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1673 call_pending (EV_A); 2315 EV_INVOKE_PENDING;
1674 } 2316 }
1675#endif 2317#endif
1676 2318
2319#if EV_PREPARE_ENABLE
1677 /* queue prepare watchers (and execute them) */ 2320 /* queue prepare watchers (and execute them) */
1678 if (expect_false (preparecnt)) 2321 if (expect_false (preparecnt))
1679 { 2322 {
1680 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2323 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1681 call_pending (EV_A); 2324 EV_INVOKE_PENDING;
1682 } 2325 }
2326#endif
1683 2327
1684 if (expect_false (!activecnt)) 2328 if (expect_false (loop_done))
1685 break; 2329 break;
1686 2330
1687 /* we might have forked, so reify kernel state if necessary */ 2331 /* we might have forked, so reify kernel state if necessary */
1688 if (expect_false (postfork)) 2332 if (expect_false (postfork))
1689 loop_fork (EV_A); 2333 loop_fork (EV_A);
1696 ev_tstamp waittime = 0.; 2340 ev_tstamp waittime = 0.;
1697 ev_tstamp sleeptime = 0.; 2341 ev_tstamp sleeptime = 0.;
1698 2342
1699 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 2343 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1700 { 2344 {
2345 /* remember old timestamp for io_blocktime calculation */
2346 ev_tstamp prev_mn_now = mn_now;
2347
1701 /* update time to cancel out callback processing overhead */ 2348 /* update time to cancel out callback processing overhead */
1702 time_update (EV_A_ 1e100); 2349 time_update (EV_A_ 1e100);
1703 2350
1704 waittime = MAX_BLOCKTIME; 2351 waittime = MAX_BLOCKTIME;
1705 2352
1706 if (timercnt) 2353 if (timercnt)
1707 { 2354 {
1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 2355 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1709 if (waittime > to) waittime = to; 2356 if (waittime > to) waittime = to;
1710 } 2357 }
1711 2358
1712#if EV_PERIODIC_ENABLE 2359#if EV_PERIODIC_ENABLE
1713 if (periodiccnt) 2360 if (periodiccnt)
1714 { 2361 {
1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 2362 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1716 if (waittime > to) waittime = to; 2363 if (waittime > to) waittime = to;
1717 } 2364 }
1718#endif 2365#endif
1719 2366
2367 /* don't let timeouts decrease the waittime below timeout_blocktime */
1720 if (expect_false (waittime < timeout_blocktime)) 2368 if (expect_false (waittime < timeout_blocktime))
1721 waittime = timeout_blocktime; 2369 waittime = timeout_blocktime;
1722 2370
1723 sleeptime = waittime - backend_fudge; 2371 /* extra check because io_blocktime is commonly 0 */
1724
1725 if (expect_true (sleeptime > io_blocktime)) 2372 if (expect_false (io_blocktime))
1726 sleeptime = io_blocktime;
1727
1728 if (sleeptime)
1729 { 2373 {
2374 sleeptime = io_blocktime - (mn_now - prev_mn_now);
2375
2376 if (sleeptime > waittime - backend_fudge)
2377 sleeptime = waittime - backend_fudge;
2378
2379 if (expect_true (sleeptime > 0.))
2380 {
1730 ev_sleep (sleeptime); 2381 ev_sleep (sleeptime);
1731 waittime -= sleeptime; 2382 waittime -= sleeptime;
2383 }
1732 } 2384 }
1733 } 2385 }
1734 2386
2387#if EV_FEATURE_API
1735 ++loop_count; 2388 ++loop_count;
2389#endif
2390 assert ((loop_done = EVUNLOOP_RECURSE, 1)); /* assert for side effect */
1736 backend_poll (EV_A_ waittime); 2391 backend_poll (EV_A_ waittime);
2392 assert ((loop_done = EVUNLOOP_CANCEL, 1)); /* assert for side effect */
1737 2393
1738 /* update ev_rt_now, do magic */ 2394 /* update ev_rt_now, do magic */
1739 time_update (EV_A_ waittime + sleeptime); 2395 time_update (EV_A_ waittime + sleeptime);
1740 } 2396 }
1741 2397
1748#if EV_IDLE_ENABLE 2404#if EV_IDLE_ENABLE
1749 /* queue idle watchers unless other events are pending */ 2405 /* queue idle watchers unless other events are pending */
1750 idle_reify (EV_A); 2406 idle_reify (EV_A);
1751#endif 2407#endif
1752 2408
2409#if EV_CHECK_ENABLE
1753 /* queue check watchers, to be executed first */ 2410 /* queue check watchers, to be executed first */
1754 if (expect_false (checkcnt)) 2411 if (expect_false (checkcnt))
1755 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 2412 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
2413#endif
1756 2414
1757 call_pending (EV_A); 2415 EV_INVOKE_PENDING;
1758 } 2416 }
1759 while (expect_true ( 2417 while (expect_true (
1760 activecnt 2418 activecnt
1761 && !loop_done 2419 && !loop_done
1762 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 2420 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1763 )); 2421 ));
1764 2422
1765 if (loop_done == EVUNLOOP_ONE) 2423 if (loop_done == EVUNLOOP_ONE)
1766 loop_done = EVUNLOOP_CANCEL; 2424 loop_done = EVUNLOOP_CANCEL;
2425
2426#if EV_FEATURE_API
2427 --loop_depth;
2428#endif
1767} 2429}
1768 2430
1769void 2431void
1770ev_unloop (EV_P_ int how) 2432ev_unloop (EV_P_ int how)
1771{ 2433{
1772 loop_done = how; 2434 loop_done = how;
1773} 2435}
1774 2436
2437void
2438ev_ref (EV_P)
2439{
2440 ++activecnt;
2441}
2442
2443void
2444ev_unref (EV_P)
2445{
2446 --activecnt;
2447}
2448
2449void
2450ev_now_update (EV_P)
2451{
2452 time_update (EV_A_ 1e100);
2453}
2454
2455void
2456ev_suspend (EV_P)
2457{
2458 ev_now_update (EV_A);
2459}
2460
2461void
2462ev_resume (EV_P)
2463{
2464 ev_tstamp mn_prev = mn_now;
2465
2466 ev_now_update (EV_A);
2467 timers_reschedule (EV_A_ mn_now - mn_prev);
2468#if EV_PERIODIC_ENABLE
2469 /* TODO: really do this? */
2470 periodics_reschedule (EV_A);
2471#endif
2472}
2473
1775/*****************************************************************************/ 2474/*****************************************************************************/
2475/* singly-linked list management, used when the expected list length is short */
1776 2476
1777void inline_size 2477inline_size void
1778wlist_add (WL *head, WL elem) 2478wlist_add (WL *head, WL elem)
1779{ 2479{
1780 elem->next = *head; 2480 elem->next = *head;
1781 *head = elem; 2481 *head = elem;
1782} 2482}
1783 2483
1784void inline_size 2484inline_size void
1785wlist_del (WL *head, WL elem) 2485wlist_del (WL *head, WL elem)
1786{ 2486{
1787 while (*head) 2487 while (*head)
1788 { 2488 {
1789 if (*head == elem) 2489 if (expect_true (*head == elem))
1790 { 2490 {
1791 *head = elem->next; 2491 *head = elem->next;
1792 return; 2492 break;
1793 } 2493 }
1794 2494
1795 head = &(*head)->next; 2495 head = &(*head)->next;
1796 } 2496 }
1797} 2497}
1798 2498
1799void inline_speed 2499/* internal, faster, version of ev_clear_pending */
2500inline_speed void
1800clear_pending (EV_P_ W w) 2501clear_pending (EV_P_ W w)
1801{ 2502{
1802 if (w->pending) 2503 if (w->pending)
1803 { 2504 {
1804 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2505 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1805 w->pending = 0; 2506 w->pending = 0;
1806 } 2507 }
1807} 2508}
1808 2509
1809int 2510int
1813 int pending = w_->pending; 2514 int pending = w_->pending;
1814 2515
1815 if (expect_true (pending)) 2516 if (expect_true (pending))
1816 { 2517 {
1817 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2518 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2519 p->w = (W)&pending_w;
1818 w_->pending = 0; 2520 w_->pending = 0;
1819 p->w = 0;
1820 return p->events; 2521 return p->events;
1821 } 2522 }
1822 else 2523 else
1823 return 0; 2524 return 0;
1824} 2525}
1825 2526
1826void inline_size 2527inline_size void
1827pri_adjust (EV_P_ W w) 2528pri_adjust (EV_P_ W w)
1828{ 2529{
1829 int pri = w->priority; 2530 int pri = ev_priority (w);
1830 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2531 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1831 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2532 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1832 w->priority = pri; 2533 ev_set_priority (w, pri);
1833} 2534}
1834 2535
1835void inline_speed 2536inline_speed void
1836ev_start (EV_P_ W w, int active) 2537ev_start (EV_P_ W w, int active)
1837{ 2538{
1838 pri_adjust (EV_A_ w); 2539 pri_adjust (EV_A_ w);
1839 w->active = active; 2540 w->active = active;
1840 ev_ref (EV_A); 2541 ev_ref (EV_A);
1841} 2542}
1842 2543
1843void inline_size 2544inline_size void
1844ev_stop (EV_P_ W w) 2545ev_stop (EV_P_ W w)
1845{ 2546{
1846 ev_unref (EV_A); 2547 ev_unref (EV_A);
1847 w->active = 0; 2548 w->active = 0;
1848} 2549}
1855 int fd = w->fd; 2556 int fd = w->fd;
1856 2557
1857 if (expect_false (ev_is_active (w))) 2558 if (expect_false (ev_is_active (w)))
1858 return; 2559 return;
1859 2560
1860 assert (("ev_io_start called with negative fd", fd >= 0)); 2561 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2562 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2563
2564 EV_FREQUENT_CHECK;
1861 2565
1862 ev_start (EV_A_ (W)w, 1); 2566 ev_start (EV_A_ (W)w, 1);
1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2567 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1864 wlist_add (&anfds[fd].head, (WL)w); 2568 wlist_add (&anfds[fd].head, (WL)w);
1865 2569
1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2570 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1867 w->events &= ~EV_IOFDSET; 2571 w->events &= ~EV__IOFDSET;
2572
2573 EV_FREQUENT_CHECK;
1868} 2574}
1869 2575
1870void noinline 2576void noinline
1871ev_io_stop (EV_P_ ev_io *w) 2577ev_io_stop (EV_P_ ev_io *w)
1872{ 2578{
1873 clear_pending (EV_A_ (W)w); 2579 clear_pending (EV_A_ (W)w);
1874 if (expect_false (!ev_is_active (w))) 2580 if (expect_false (!ev_is_active (w)))
1875 return; 2581 return;
1876 2582
1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2583 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2584
2585 EV_FREQUENT_CHECK;
1878 2586
1879 wlist_del (&anfds[w->fd].head, (WL)w); 2587 wlist_del (&anfds[w->fd].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 2588 ev_stop (EV_A_ (W)w);
1881 2589
1882 fd_change (EV_A_ w->fd, 1); 2590 fd_change (EV_A_ w->fd, 1);
2591
2592 EV_FREQUENT_CHECK;
1883} 2593}
1884 2594
1885void noinline 2595void noinline
1886ev_timer_start (EV_P_ ev_timer *w) 2596ev_timer_start (EV_P_ ev_timer *w)
1887{ 2597{
1888 if (expect_false (ev_is_active (w))) 2598 if (expect_false (ev_is_active (w)))
1889 return; 2599 return;
1890 2600
1891 ev_at (w) += mn_now; 2601 ev_at (w) += mn_now;
1892 2602
1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2603 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1894 2604
2605 EV_FREQUENT_CHECK;
2606
2607 ++timercnt;
1895 ev_start (EV_A_ (W)w, ++timercnt); 2608 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2609 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1897 timers [timercnt] = (WT)w; 2610 ANHE_w (timers [ev_active (w)]) = (WT)w;
2611 ANHE_at_cache (timers [ev_active (w)]);
1898 upheap (timers, timercnt); 2612 upheap (timers, ev_active (w));
1899 2613
2614 EV_FREQUENT_CHECK;
2615
1900 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 2616 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1901} 2617}
1902 2618
1903void noinline 2619void noinline
1904ev_timer_stop (EV_P_ ev_timer *w) 2620ev_timer_stop (EV_P_ ev_timer *w)
1905{ 2621{
1906 clear_pending (EV_A_ (W)w); 2622 clear_pending (EV_A_ (W)w);
1907 if (expect_false (!ev_is_active (w))) 2623 if (expect_false (!ev_is_active (w)))
1908 return; 2624 return;
1909 2625
1910 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 2626 EV_FREQUENT_CHECK;
1911 2627
1912 { 2628 {
1913 int active = ((W)w)->active; 2629 int active = ev_active (w);
1914 2630
2631 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
2632
2633 --timercnt;
2634
1915 if (expect_true (active < timercnt)) 2635 if (expect_true (active < timercnt + HEAP0))
1916 { 2636 {
1917 timers [active] = timers [timercnt]; 2637 timers [active] = timers [timercnt + HEAP0];
1918 adjustheap (timers, timercnt, active); 2638 adjustheap (timers, timercnt, active);
1919 } 2639 }
1920
1921 --timercnt;
1922 } 2640 }
1923 2641
1924 ev_at (w) -= mn_now; 2642 ev_at (w) -= mn_now;
1925 2643
1926 ev_stop (EV_A_ (W)w); 2644 ev_stop (EV_A_ (W)w);
2645
2646 EV_FREQUENT_CHECK;
1927} 2647}
1928 2648
1929void noinline 2649void noinline
1930ev_timer_again (EV_P_ ev_timer *w) 2650ev_timer_again (EV_P_ ev_timer *w)
1931{ 2651{
2652 EV_FREQUENT_CHECK;
2653
1932 if (ev_is_active (w)) 2654 if (ev_is_active (w))
1933 { 2655 {
1934 if (w->repeat) 2656 if (w->repeat)
1935 { 2657 {
1936 ev_at (w) = mn_now + w->repeat; 2658 ev_at (w) = mn_now + w->repeat;
2659 ANHE_at_cache (timers [ev_active (w)]);
1937 adjustheap (timers, timercnt, ((W)w)->active); 2660 adjustheap (timers, timercnt, ev_active (w));
1938 } 2661 }
1939 else 2662 else
1940 ev_timer_stop (EV_A_ w); 2663 ev_timer_stop (EV_A_ w);
1941 } 2664 }
1942 else if (w->repeat) 2665 else if (w->repeat)
1943 { 2666 {
1944 ev_at (w) = w->repeat; 2667 ev_at (w) = w->repeat;
1945 ev_timer_start (EV_A_ w); 2668 ev_timer_start (EV_A_ w);
1946 } 2669 }
2670
2671 EV_FREQUENT_CHECK;
2672}
2673
2674ev_tstamp
2675ev_timer_remaining (EV_P_ ev_timer *w)
2676{
2677 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1947} 2678}
1948 2679
1949#if EV_PERIODIC_ENABLE 2680#if EV_PERIODIC_ENABLE
1950void noinline 2681void noinline
1951ev_periodic_start (EV_P_ ev_periodic *w) 2682ev_periodic_start (EV_P_ ev_periodic *w)
1955 2686
1956 if (w->reschedule_cb) 2687 if (w->reschedule_cb)
1957 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2688 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1958 else if (w->interval) 2689 else if (w->interval)
1959 { 2690 {
1960 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2691 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1961 /* this formula differs from the one in periodic_reify because we do not always round up */ 2692 /* this formula differs from the one in periodic_reify because we do not always round up */
1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2693 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1963 } 2694 }
1964 else 2695 else
1965 ev_at (w) = w->offset; 2696 ev_at (w) = w->offset;
1966 2697
2698 EV_FREQUENT_CHECK;
2699
2700 ++periodiccnt;
1967 ev_start (EV_A_ (W)w, ++periodiccnt); 2701 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2702 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1969 periodics [periodiccnt] = (WT)w; 2703 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1970 upheap (periodics, periodiccnt); 2704 ANHE_at_cache (periodics [ev_active (w)]);
2705 upheap (periodics, ev_active (w));
1971 2706
2707 EV_FREQUENT_CHECK;
2708
1972 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 2709 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1973} 2710}
1974 2711
1975void noinline 2712void noinline
1976ev_periodic_stop (EV_P_ ev_periodic *w) 2713ev_periodic_stop (EV_P_ ev_periodic *w)
1977{ 2714{
1978 clear_pending (EV_A_ (W)w); 2715 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2716 if (expect_false (!ev_is_active (w)))
1980 return; 2717 return;
1981 2718
1982 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 2719 EV_FREQUENT_CHECK;
1983 2720
1984 { 2721 {
1985 int active = ((W)w)->active; 2722 int active = ev_active (w);
1986 2723
2724 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
2725
2726 --periodiccnt;
2727
1987 if (expect_true (active < periodiccnt)) 2728 if (expect_true (active < periodiccnt + HEAP0))
1988 { 2729 {
1989 periodics [active] = periodics [periodiccnt]; 2730 periodics [active] = periodics [periodiccnt + HEAP0];
1990 adjustheap (periodics, periodiccnt, active); 2731 adjustheap (periodics, periodiccnt, active);
1991 } 2732 }
1992
1993 --periodiccnt;
1994 } 2733 }
1995 2734
1996 ev_stop (EV_A_ (W)w); 2735 ev_stop (EV_A_ (W)w);
2736
2737 EV_FREQUENT_CHECK;
1997} 2738}
1998 2739
1999void noinline 2740void noinline
2000ev_periodic_again (EV_P_ ev_periodic *w) 2741ev_periodic_again (EV_P_ ev_periodic *w)
2001{ 2742{
2007 2748
2008#ifndef SA_RESTART 2749#ifndef SA_RESTART
2009# define SA_RESTART 0 2750# define SA_RESTART 0
2010#endif 2751#endif
2011 2752
2753#if EV_SIGNAL_ENABLE
2754
2012void noinline 2755void noinline
2013ev_signal_start (EV_P_ ev_signal *w) 2756ev_signal_start (EV_P_ ev_signal *w)
2014{ 2757{
2015#if EV_MULTIPLICITY
2016 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2017#endif
2018 if (expect_false (ev_is_active (w))) 2758 if (expect_false (ev_is_active (w)))
2019 return; 2759 return;
2020 2760
2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2761 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2022 2762
2023 evpipe_init (EV_A); 2763#if EV_MULTIPLICITY
2764 assert (("libev: a signal must not be attached to two different loops",
2765 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2024 2766
2767 signals [w->signum - 1].loop = EV_A;
2768#endif
2769
2770 EV_FREQUENT_CHECK;
2771
2772#if EV_USE_SIGNALFD
2773 if (sigfd == -2)
2025 { 2774 {
2026#ifndef _WIN32 2775 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2027 sigset_t full, prev; 2776 if (sigfd < 0 && errno == EINVAL)
2028 sigfillset (&full); 2777 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2029 sigprocmask (SIG_SETMASK, &full, &prev);
2030#endif
2031 2778
2032 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2779 if (sigfd >= 0)
2780 {
2781 fd_intern (sigfd); /* doing it twice will not hurt */
2033 2782
2034#ifndef _WIN32 2783 sigemptyset (&sigfd_set);
2035 sigprocmask (SIG_SETMASK, &prev, 0); 2784
2036#endif 2785 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
2786 ev_set_priority (&sigfd_w, EV_MAXPRI);
2787 ev_io_start (EV_A_ &sigfd_w);
2788 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
2789 }
2037 } 2790 }
2791
2792 if (sigfd >= 0)
2793 {
2794 /* TODO: check .head */
2795 sigaddset (&sigfd_set, w->signum);
2796 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
2797
2798 signalfd (sigfd, &sigfd_set, 0);
2799 }
2800#endif
2038 2801
2039 ev_start (EV_A_ (W)w, 1); 2802 ev_start (EV_A_ (W)w, 1);
2040 wlist_add (&signals [w->signum - 1].head, (WL)w); 2803 wlist_add (&signals [w->signum - 1].head, (WL)w);
2041 2804
2042 if (!((WL)w)->next) 2805 if (!((WL)w)->next)
2806# if EV_USE_SIGNALFD
2807 if (sigfd < 0) /*TODO*/
2808# endif
2043 { 2809 {
2044#if _WIN32 2810# ifdef _WIN32
2811 evpipe_init (EV_A);
2812
2045 signal (w->signum, ev_sighandler); 2813 signal (w->signum, ev_sighandler);
2046#else 2814# else
2047 struct sigaction sa; 2815 struct sigaction sa;
2816
2817 evpipe_init (EV_A);
2818
2048 sa.sa_handler = ev_sighandler; 2819 sa.sa_handler = ev_sighandler;
2049 sigfillset (&sa.sa_mask); 2820 sigfillset (&sa.sa_mask);
2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2821 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2051 sigaction (w->signum, &sa, 0); 2822 sigaction (w->signum, &sa, 0);
2823
2824 sigemptyset (&sa.sa_mask);
2825 sigaddset (&sa.sa_mask, w->signum);
2826 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
2052#endif 2827#endif
2053 } 2828 }
2829
2830 EV_FREQUENT_CHECK;
2054} 2831}
2055 2832
2056void noinline 2833void noinline
2057ev_signal_stop (EV_P_ ev_signal *w) 2834ev_signal_stop (EV_P_ ev_signal *w)
2058{ 2835{
2059 clear_pending (EV_A_ (W)w); 2836 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2837 if (expect_false (!ev_is_active (w)))
2061 return; 2838 return;
2062 2839
2840 EV_FREQUENT_CHECK;
2841
2063 wlist_del (&signals [w->signum - 1].head, (WL)w); 2842 wlist_del (&signals [w->signum - 1].head, (WL)w);
2064 ev_stop (EV_A_ (W)w); 2843 ev_stop (EV_A_ (W)w);
2065 2844
2066 if (!signals [w->signum - 1].head) 2845 if (!signals [w->signum - 1].head)
2846 {
2847#if EV_MULTIPLICITY
2848 signals [w->signum - 1].loop = 0; /* unattach from signal */
2849#endif
2850#if EV_USE_SIGNALFD
2851 if (sigfd >= 0)
2852 {
2853 sigset_t ss;
2854
2855 sigemptyset (&ss);
2856 sigaddset (&ss, w->signum);
2857 sigdelset (&sigfd_set, w->signum);
2858
2859 signalfd (sigfd, &sigfd_set, 0);
2860 sigprocmask (SIG_UNBLOCK, &ss, 0);
2861 }
2862 else
2863#endif
2067 signal (w->signum, SIG_DFL); 2864 signal (w->signum, SIG_DFL);
2865 }
2866
2867 EV_FREQUENT_CHECK;
2068} 2868}
2869
2870#endif
2871
2872#if EV_CHILD_ENABLE
2069 2873
2070void 2874void
2071ev_child_start (EV_P_ ev_child *w) 2875ev_child_start (EV_P_ ev_child *w)
2072{ 2876{
2073#if EV_MULTIPLICITY 2877#if EV_MULTIPLICITY
2074 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2878 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2075#endif 2879#endif
2076 if (expect_false (ev_is_active (w))) 2880 if (expect_false (ev_is_active (w)))
2077 return; 2881 return;
2078 2882
2883 EV_FREQUENT_CHECK;
2884
2079 ev_start (EV_A_ (W)w, 1); 2885 ev_start (EV_A_ (W)w, 1);
2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2886 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2887
2888 EV_FREQUENT_CHECK;
2081} 2889}
2082 2890
2083void 2891void
2084ev_child_stop (EV_P_ ev_child *w) 2892ev_child_stop (EV_P_ ev_child *w)
2085{ 2893{
2086 clear_pending (EV_A_ (W)w); 2894 clear_pending (EV_A_ (W)w);
2087 if (expect_false (!ev_is_active (w))) 2895 if (expect_false (!ev_is_active (w)))
2088 return; 2896 return;
2089 2897
2898 EV_FREQUENT_CHECK;
2899
2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2900 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2091 ev_stop (EV_A_ (W)w); 2901 ev_stop (EV_A_ (W)w);
2902
2903 EV_FREQUENT_CHECK;
2092} 2904}
2905
2906#endif
2093 2907
2094#if EV_STAT_ENABLE 2908#if EV_STAT_ENABLE
2095 2909
2096# ifdef _WIN32 2910# ifdef _WIN32
2097# undef lstat 2911# undef lstat
2098# define lstat(a,b) _stati64 (a,b) 2912# define lstat(a,b) _stati64 (a,b)
2099# endif 2913# endif
2100 2914
2101#define DEF_STAT_INTERVAL 5.0074891 2915#define DEF_STAT_INTERVAL 5.0074891
2916#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2102#define MIN_STAT_INTERVAL 0.1074891 2917#define MIN_STAT_INTERVAL 0.1074891
2103 2918
2104static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2919static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2105 2920
2106#if EV_USE_INOTIFY 2921#if EV_USE_INOTIFY
2107# define EV_INOTIFY_BUFSIZE 8192 2922
2923/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
2924# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2108 2925
2109static void noinline 2926static void noinline
2110infy_add (EV_P_ ev_stat *w) 2927infy_add (EV_P_ ev_stat *w)
2111{ 2928{
2112 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2929 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2113 2930
2114 if (w->wd < 0) 2931 if (w->wd >= 0)
2932 {
2933 struct statfs sfs;
2934
2935 /* now local changes will be tracked by inotify, but remote changes won't */
2936 /* unless the filesystem is known to be local, we therefore still poll */
2937 /* also do poll on <2.6.25, but with normal frequency */
2938
2939 if (!fs_2625)
2940 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2941 else if (!statfs (w->path, &sfs)
2942 && (sfs.f_type == 0x1373 /* devfs */
2943 || sfs.f_type == 0xEF53 /* ext2/3 */
2944 || sfs.f_type == 0x3153464a /* jfs */
2945 || sfs.f_type == 0x52654973 /* reiser3 */
2946 || sfs.f_type == 0x01021994 /* tempfs */
2947 || sfs.f_type == 0x58465342 /* xfs */))
2948 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
2949 else
2950 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2115 { 2951 }
2116 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2952 else
2953 {
2954 /* can't use inotify, continue to stat */
2955 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2117 2956
2118 /* monitor some parent directory for speedup hints */ 2957 /* if path is not there, monitor some parent directory for speedup hints */
2958 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2959 /* but an efficiency issue only */
2119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2960 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2120 { 2961 {
2121 char path [4096]; 2962 char path [4096];
2122 strcpy (path, w->path); 2963 strcpy (path, w->path);
2123 2964
2126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2967 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2968 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2128 2969
2129 char *pend = strrchr (path, '/'); 2970 char *pend = strrchr (path, '/');
2130 2971
2131 if (!pend) 2972 if (!pend || pend == path)
2132 break; /* whoops, no '/', complain to your admin */ 2973 break;
2133 2974
2134 *pend = 0; 2975 *pend = 0;
2135 w->wd = inotify_add_watch (fs_fd, path, mask); 2976 w->wd = inotify_add_watch (fs_fd, path, mask);
2136 } 2977 }
2137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2978 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2138 } 2979 }
2139 } 2980 }
2140 else
2141 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2142 2981
2143 if (w->wd >= 0) 2982 if (w->wd >= 0)
2144 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2983 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2984
2985 /* now re-arm timer, if required */
2986 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2987 ev_timer_again (EV_A_ &w->timer);
2988 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2145} 2989}
2146 2990
2147static void noinline 2991static void noinline
2148infy_del (EV_P_ ev_stat *w) 2992infy_del (EV_P_ ev_stat *w)
2149{ 2993{
2152 2996
2153 if (wd < 0) 2997 if (wd < 0)
2154 return; 2998 return;
2155 2999
2156 w->wd = -2; 3000 w->wd = -2;
2157 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3001 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2158 wlist_del (&fs_hash [slot].head, (WL)w); 3002 wlist_del (&fs_hash [slot].head, (WL)w);
2159 3003
2160 /* remove this watcher, if others are watching it, they will rearm */ 3004 /* remove this watcher, if others are watching it, they will rearm */
2161 inotify_rm_watch (fs_fd, wd); 3005 inotify_rm_watch (fs_fd, wd);
2162} 3006}
2163 3007
2164static void noinline 3008static void noinline
2165infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3009infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2166{ 3010{
2167 if (slot < 0) 3011 if (slot < 0)
2168 /* overflow, need to check for all hahs slots */ 3012 /* overflow, need to check for all hash slots */
2169 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3013 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2170 infy_wd (EV_A_ slot, wd, ev); 3014 infy_wd (EV_A_ slot, wd, ev);
2171 else 3015 else
2172 { 3016 {
2173 WL w_; 3017 WL w_;
2174 3018
2175 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3019 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2176 { 3020 {
2177 ev_stat *w = (ev_stat *)w_; 3021 ev_stat *w = (ev_stat *)w_;
2178 w_ = w_->next; /* lets us remove this watcher and all before it */ 3022 w_ = w_->next; /* lets us remove this watcher and all before it */
2179 3023
2180 if (w->wd == wd || wd == -1) 3024 if (w->wd == wd || wd == -1)
2181 { 3025 {
2182 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3026 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2183 { 3027 {
3028 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2184 w->wd = -1; 3029 w->wd = -1;
2185 infy_add (EV_A_ w); /* re-add, no matter what */ 3030 infy_add (EV_A_ w); /* re-add, no matter what */
2186 } 3031 }
2187 3032
2188 stat_timer_cb (EV_A_ &w->timer, 0); 3033 stat_timer_cb (EV_A_ &w->timer, 0);
2193 3038
2194static void 3039static void
2195infy_cb (EV_P_ ev_io *w, int revents) 3040infy_cb (EV_P_ ev_io *w, int revents)
2196{ 3041{
2197 char buf [EV_INOTIFY_BUFSIZE]; 3042 char buf [EV_INOTIFY_BUFSIZE];
2198 struct inotify_event *ev = (struct inotify_event *)buf;
2199 int ofs; 3043 int ofs;
2200 int len = read (fs_fd, buf, sizeof (buf)); 3044 int len = read (fs_fd, buf, sizeof (buf));
2201 3045
2202 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3046 for (ofs = 0; ofs < len; )
3047 {
3048 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2203 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3049 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3050 ofs += sizeof (struct inotify_event) + ev->len;
3051 }
2204} 3052}
2205 3053
2206void inline_size 3054inline_size unsigned int
3055ev_linux_version (void)
3056{
3057 struct utsname buf;
3058 unsigned int v;
3059 int i;
3060 char *p = buf.release;
3061
3062 if (uname (&buf))
3063 return 0;
3064
3065 for (i = 3+1; --i; )
3066 {
3067 unsigned int c = 0;
3068
3069 for (;;)
3070 {
3071 if (*p >= '0' && *p <= '9')
3072 c = c * 10 + *p++ - '0';
3073 else
3074 {
3075 p += *p == '.';
3076 break;
3077 }
3078 }
3079
3080 v = (v << 8) | c;
3081 }
3082
3083 return v;
3084}
3085
3086inline_size void
3087ev_check_2625 (EV_P)
3088{
3089 /* kernels < 2.6.25 are borked
3090 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3091 */
3092 if (ev_linux_version () < 0x020619)
3093 return;
3094
3095 fs_2625 = 1;
3096}
3097
3098inline_size int
3099infy_newfd (void)
3100{
3101#if defined (IN_CLOEXEC) && defined (IN_NONBLOCK)
3102 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3103 if (fd >= 0)
3104 return fd;
3105#endif
3106 return inotify_init ();
3107}
3108
3109inline_size void
2207infy_init (EV_P) 3110infy_init (EV_P)
2208{ 3111{
2209 if (fs_fd != -2) 3112 if (fs_fd != -2)
2210 return; 3113 return;
2211 3114
3115 fs_fd = -1;
3116
3117 ev_check_2625 (EV_A);
3118
2212 fs_fd = inotify_init (); 3119 fs_fd = infy_newfd ();
2213 3120
2214 if (fs_fd >= 0) 3121 if (fs_fd >= 0)
2215 { 3122 {
3123 fd_intern (fs_fd);
2216 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3124 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2217 ev_set_priority (&fs_w, EV_MAXPRI); 3125 ev_set_priority (&fs_w, EV_MAXPRI);
2218 ev_io_start (EV_A_ &fs_w); 3126 ev_io_start (EV_A_ &fs_w);
3127 ev_unref (EV_A);
2219 } 3128 }
2220} 3129}
2221 3130
2222void inline_size 3131inline_size void
2223infy_fork (EV_P) 3132infy_fork (EV_P)
2224{ 3133{
2225 int slot; 3134 int slot;
2226 3135
2227 if (fs_fd < 0) 3136 if (fs_fd < 0)
2228 return; 3137 return;
2229 3138
3139 ev_ref (EV_A);
3140 ev_io_stop (EV_A_ &fs_w);
2230 close (fs_fd); 3141 close (fs_fd);
2231 fs_fd = inotify_init (); 3142 fs_fd = infy_newfd ();
2232 3143
3144 if (fs_fd >= 0)
3145 {
3146 fd_intern (fs_fd);
3147 ev_io_set (&fs_w, fs_fd, EV_READ);
3148 ev_io_start (EV_A_ &fs_w);
3149 ev_unref (EV_A);
3150 }
3151
2233 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3152 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2234 { 3153 {
2235 WL w_ = fs_hash [slot].head; 3154 WL w_ = fs_hash [slot].head;
2236 fs_hash [slot].head = 0; 3155 fs_hash [slot].head = 0;
2237 3156
2238 while (w_) 3157 while (w_)
2243 w->wd = -1; 3162 w->wd = -1;
2244 3163
2245 if (fs_fd >= 0) 3164 if (fs_fd >= 0)
2246 infy_add (EV_A_ w); /* re-add, no matter what */ 3165 infy_add (EV_A_ w); /* re-add, no matter what */
2247 else 3166 else
3167 {
3168 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3169 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2248 ev_timer_start (EV_A_ &w->timer); 3170 ev_timer_again (EV_A_ &w->timer);
3171 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3172 }
2249 } 3173 }
2250
2251 } 3174 }
2252} 3175}
2253 3176
3177#endif
3178
3179#ifdef _WIN32
3180# define EV_LSTAT(p,b) _stati64 (p, b)
3181#else
3182# define EV_LSTAT(p,b) lstat (p, b)
2254#endif 3183#endif
2255 3184
2256void 3185void
2257ev_stat_stat (EV_P_ ev_stat *w) 3186ev_stat_stat (EV_P_ ev_stat *w)
2258{ 3187{
2265static void noinline 3194static void noinline
2266stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3195stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2267{ 3196{
2268 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3197 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2269 3198
2270 /* we copy this here each the time so that */ 3199 ev_statdata prev = w->attr;
2271 /* prev has the old value when the callback gets invoked */
2272 w->prev = w->attr;
2273 ev_stat_stat (EV_A_ w); 3200 ev_stat_stat (EV_A_ w);
2274 3201
2275 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3202 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2276 if ( 3203 if (
2277 w->prev.st_dev != w->attr.st_dev 3204 prev.st_dev != w->attr.st_dev
2278 || w->prev.st_ino != w->attr.st_ino 3205 || prev.st_ino != w->attr.st_ino
2279 || w->prev.st_mode != w->attr.st_mode 3206 || prev.st_mode != w->attr.st_mode
2280 || w->prev.st_nlink != w->attr.st_nlink 3207 || prev.st_nlink != w->attr.st_nlink
2281 || w->prev.st_uid != w->attr.st_uid 3208 || prev.st_uid != w->attr.st_uid
2282 || w->prev.st_gid != w->attr.st_gid 3209 || prev.st_gid != w->attr.st_gid
2283 || w->prev.st_rdev != w->attr.st_rdev 3210 || prev.st_rdev != w->attr.st_rdev
2284 || w->prev.st_size != w->attr.st_size 3211 || prev.st_size != w->attr.st_size
2285 || w->prev.st_atime != w->attr.st_atime 3212 || prev.st_atime != w->attr.st_atime
2286 || w->prev.st_mtime != w->attr.st_mtime 3213 || prev.st_mtime != w->attr.st_mtime
2287 || w->prev.st_ctime != w->attr.st_ctime 3214 || prev.st_ctime != w->attr.st_ctime
2288 ) { 3215 ) {
3216 /* we only update w->prev on actual differences */
3217 /* in case we test more often than invoke the callback, */
3218 /* to ensure that prev is always different to attr */
3219 w->prev = prev;
3220
2289 #if EV_USE_INOTIFY 3221 #if EV_USE_INOTIFY
3222 if (fs_fd >= 0)
3223 {
2290 infy_del (EV_A_ w); 3224 infy_del (EV_A_ w);
2291 infy_add (EV_A_ w); 3225 infy_add (EV_A_ w);
2292 ev_stat_stat (EV_A_ w); /* avoid race... */ 3226 ev_stat_stat (EV_A_ w); /* avoid race... */
3227 }
2293 #endif 3228 #endif
2294 3229
2295 ev_feed_event (EV_A_ w, EV_STAT); 3230 ev_feed_event (EV_A_ w, EV_STAT);
2296 } 3231 }
2297} 3232}
2300ev_stat_start (EV_P_ ev_stat *w) 3235ev_stat_start (EV_P_ ev_stat *w)
2301{ 3236{
2302 if (expect_false (ev_is_active (w))) 3237 if (expect_false (ev_is_active (w)))
2303 return; 3238 return;
2304 3239
2305 /* since we use memcmp, we need to clear any padding data etc. */
2306 memset (&w->prev, 0, sizeof (ev_statdata));
2307 memset (&w->attr, 0, sizeof (ev_statdata));
2308
2309 ev_stat_stat (EV_A_ w); 3240 ev_stat_stat (EV_A_ w);
2310 3241
3242 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2311 if (w->interval < MIN_STAT_INTERVAL) 3243 w->interval = MIN_STAT_INTERVAL;
2312 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2313 3244
2314 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3245 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2315 ev_set_priority (&w->timer, ev_priority (w)); 3246 ev_set_priority (&w->timer, ev_priority (w));
2316 3247
2317#if EV_USE_INOTIFY 3248#if EV_USE_INOTIFY
2318 infy_init (EV_A); 3249 infy_init (EV_A);
2319 3250
2320 if (fs_fd >= 0) 3251 if (fs_fd >= 0)
2321 infy_add (EV_A_ w); 3252 infy_add (EV_A_ w);
2322 else 3253 else
2323#endif 3254#endif
3255 {
2324 ev_timer_start (EV_A_ &w->timer); 3256 ev_timer_again (EV_A_ &w->timer);
3257 ev_unref (EV_A);
3258 }
2325 3259
2326 ev_start (EV_A_ (W)w, 1); 3260 ev_start (EV_A_ (W)w, 1);
3261
3262 EV_FREQUENT_CHECK;
2327} 3263}
2328 3264
2329void 3265void
2330ev_stat_stop (EV_P_ ev_stat *w) 3266ev_stat_stop (EV_P_ ev_stat *w)
2331{ 3267{
2332 clear_pending (EV_A_ (W)w); 3268 clear_pending (EV_A_ (W)w);
2333 if (expect_false (!ev_is_active (w))) 3269 if (expect_false (!ev_is_active (w)))
2334 return; 3270 return;
2335 3271
3272 EV_FREQUENT_CHECK;
3273
2336#if EV_USE_INOTIFY 3274#if EV_USE_INOTIFY
2337 infy_del (EV_A_ w); 3275 infy_del (EV_A_ w);
2338#endif 3276#endif
3277
3278 if (ev_is_active (&w->timer))
3279 {
3280 ev_ref (EV_A);
2339 ev_timer_stop (EV_A_ &w->timer); 3281 ev_timer_stop (EV_A_ &w->timer);
3282 }
2340 3283
2341 ev_stop (EV_A_ (W)w); 3284 ev_stop (EV_A_ (W)w);
3285
3286 EV_FREQUENT_CHECK;
2342} 3287}
2343#endif 3288#endif
2344 3289
2345#if EV_IDLE_ENABLE 3290#if EV_IDLE_ENABLE
2346void 3291void
2348{ 3293{
2349 if (expect_false (ev_is_active (w))) 3294 if (expect_false (ev_is_active (w)))
2350 return; 3295 return;
2351 3296
2352 pri_adjust (EV_A_ (W)w); 3297 pri_adjust (EV_A_ (W)w);
3298
3299 EV_FREQUENT_CHECK;
2353 3300
2354 { 3301 {
2355 int active = ++idlecnt [ABSPRI (w)]; 3302 int active = ++idlecnt [ABSPRI (w)];
2356 3303
2357 ++idleall; 3304 ++idleall;
2358 ev_start (EV_A_ (W)w, active); 3305 ev_start (EV_A_ (W)w, active);
2359 3306
2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 3307 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2361 idles [ABSPRI (w)][active - 1] = w; 3308 idles [ABSPRI (w)][active - 1] = w;
2362 } 3309 }
3310
3311 EV_FREQUENT_CHECK;
2363} 3312}
2364 3313
2365void 3314void
2366ev_idle_stop (EV_P_ ev_idle *w) 3315ev_idle_stop (EV_P_ ev_idle *w)
2367{ 3316{
2368 clear_pending (EV_A_ (W)w); 3317 clear_pending (EV_A_ (W)w);
2369 if (expect_false (!ev_is_active (w))) 3318 if (expect_false (!ev_is_active (w)))
2370 return; 3319 return;
2371 3320
3321 EV_FREQUENT_CHECK;
3322
2372 { 3323 {
2373 int active = ((W)w)->active; 3324 int active = ev_active (w);
2374 3325
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 3326 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2376 ((W)idles [ABSPRI (w)][active - 1])->active = active; 3327 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2377 3328
2378 ev_stop (EV_A_ (W)w); 3329 ev_stop (EV_A_ (W)w);
2379 --idleall; 3330 --idleall;
2380 } 3331 }
2381}
2382#endif
2383 3332
3333 EV_FREQUENT_CHECK;
3334}
3335#endif
3336
3337#if EV_PREPARE_ENABLE
2384void 3338void
2385ev_prepare_start (EV_P_ ev_prepare *w) 3339ev_prepare_start (EV_P_ ev_prepare *w)
2386{ 3340{
2387 if (expect_false (ev_is_active (w))) 3341 if (expect_false (ev_is_active (w)))
2388 return; 3342 return;
3343
3344 EV_FREQUENT_CHECK;
2389 3345
2390 ev_start (EV_A_ (W)w, ++preparecnt); 3346 ev_start (EV_A_ (W)w, ++preparecnt);
2391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 3347 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2392 prepares [preparecnt - 1] = w; 3348 prepares [preparecnt - 1] = w;
3349
3350 EV_FREQUENT_CHECK;
2393} 3351}
2394 3352
2395void 3353void
2396ev_prepare_stop (EV_P_ ev_prepare *w) 3354ev_prepare_stop (EV_P_ ev_prepare *w)
2397{ 3355{
2398 clear_pending (EV_A_ (W)w); 3356 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 3357 if (expect_false (!ev_is_active (w)))
2400 return; 3358 return;
2401 3359
3360 EV_FREQUENT_CHECK;
3361
2402 { 3362 {
2403 int active = ((W)w)->active; 3363 int active = ev_active (w);
3364
2404 prepares [active - 1] = prepares [--preparecnt]; 3365 prepares [active - 1] = prepares [--preparecnt];
2405 ((W)prepares [active - 1])->active = active; 3366 ev_active (prepares [active - 1]) = active;
2406 } 3367 }
2407 3368
2408 ev_stop (EV_A_ (W)w); 3369 ev_stop (EV_A_ (W)w);
2409}
2410 3370
3371 EV_FREQUENT_CHECK;
3372}
3373#endif
3374
3375#if EV_CHECK_ENABLE
2411void 3376void
2412ev_check_start (EV_P_ ev_check *w) 3377ev_check_start (EV_P_ ev_check *w)
2413{ 3378{
2414 if (expect_false (ev_is_active (w))) 3379 if (expect_false (ev_is_active (w)))
2415 return; 3380 return;
3381
3382 EV_FREQUENT_CHECK;
2416 3383
2417 ev_start (EV_A_ (W)w, ++checkcnt); 3384 ev_start (EV_A_ (W)w, ++checkcnt);
2418 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 3385 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2419 checks [checkcnt - 1] = w; 3386 checks [checkcnt - 1] = w;
3387
3388 EV_FREQUENT_CHECK;
2420} 3389}
2421 3390
2422void 3391void
2423ev_check_stop (EV_P_ ev_check *w) 3392ev_check_stop (EV_P_ ev_check *w)
2424{ 3393{
2425 clear_pending (EV_A_ (W)w); 3394 clear_pending (EV_A_ (W)w);
2426 if (expect_false (!ev_is_active (w))) 3395 if (expect_false (!ev_is_active (w)))
2427 return; 3396 return;
2428 3397
3398 EV_FREQUENT_CHECK;
3399
2429 { 3400 {
2430 int active = ((W)w)->active; 3401 int active = ev_active (w);
3402
2431 checks [active - 1] = checks [--checkcnt]; 3403 checks [active - 1] = checks [--checkcnt];
2432 ((W)checks [active - 1])->active = active; 3404 ev_active (checks [active - 1]) = active;
2433 } 3405 }
2434 3406
2435 ev_stop (EV_A_ (W)w); 3407 ev_stop (EV_A_ (W)w);
3408
3409 EV_FREQUENT_CHECK;
2436} 3410}
3411#endif
2437 3412
2438#if EV_EMBED_ENABLE 3413#if EV_EMBED_ENABLE
2439void noinline 3414void noinline
2440ev_embed_sweep (EV_P_ ev_embed *w) 3415ev_embed_sweep (EV_P_ ev_embed *w)
2441{ 3416{
2457embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 3432embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2458{ 3433{
2459 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 3434 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2460 3435
2461 { 3436 {
2462 struct ev_loop *loop = w->other; 3437 EV_P = w->other;
2463 3438
2464 while (fdchangecnt) 3439 while (fdchangecnt)
2465 { 3440 {
2466 fd_reify (EV_A); 3441 fd_reify (EV_A);
2467 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3442 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2468 } 3443 }
2469 } 3444 }
2470} 3445}
2471 3446
3447static void
3448embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3449{
3450 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3451
3452 ev_embed_stop (EV_A_ w);
3453
3454 {
3455 EV_P = w->other;
3456
3457 ev_loop_fork (EV_A);
3458 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3459 }
3460
3461 ev_embed_start (EV_A_ w);
3462}
3463
2472#if 0 3464#if 0
2473static void 3465static void
2474embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3466embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2475{ 3467{
2476 ev_idle_stop (EV_A_ idle); 3468 ev_idle_stop (EV_A_ idle);
2482{ 3474{
2483 if (expect_false (ev_is_active (w))) 3475 if (expect_false (ev_is_active (w)))
2484 return; 3476 return;
2485 3477
2486 { 3478 {
2487 struct ev_loop *loop = w->other; 3479 EV_P = w->other;
2488 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3480 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2489 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3481 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2490 } 3482 }
3483
3484 EV_FREQUENT_CHECK;
2491 3485
2492 ev_set_priority (&w->io, ev_priority (w)); 3486 ev_set_priority (&w->io, ev_priority (w));
2493 ev_io_start (EV_A_ &w->io); 3487 ev_io_start (EV_A_ &w->io);
2494 3488
2495 ev_prepare_init (&w->prepare, embed_prepare_cb); 3489 ev_prepare_init (&w->prepare, embed_prepare_cb);
2496 ev_set_priority (&w->prepare, EV_MINPRI); 3490 ev_set_priority (&w->prepare, EV_MINPRI);
2497 ev_prepare_start (EV_A_ &w->prepare); 3491 ev_prepare_start (EV_A_ &w->prepare);
2498 3492
3493 ev_fork_init (&w->fork, embed_fork_cb);
3494 ev_fork_start (EV_A_ &w->fork);
3495
2499 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3496 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2500 3497
2501 ev_start (EV_A_ (W)w, 1); 3498 ev_start (EV_A_ (W)w, 1);
3499
3500 EV_FREQUENT_CHECK;
2502} 3501}
2503 3502
2504void 3503void
2505ev_embed_stop (EV_P_ ev_embed *w) 3504ev_embed_stop (EV_P_ ev_embed *w)
2506{ 3505{
2507 clear_pending (EV_A_ (W)w); 3506 clear_pending (EV_A_ (W)w);
2508 if (expect_false (!ev_is_active (w))) 3507 if (expect_false (!ev_is_active (w)))
2509 return; 3508 return;
2510 3509
3510 EV_FREQUENT_CHECK;
3511
2511 ev_io_stop (EV_A_ &w->io); 3512 ev_io_stop (EV_A_ &w->io);
2512 ev_prepare_stop (EV_A_ &w->prepare); 3513 ev_prepare_stop (EV_A_ &w->prepare);
3514 ev_fork_stop (EV_A_ &w->fork);
2513 3515
2514 ev_stop (EV_A_ (W)w); 3516 ev_stop (EV_A_ (W)w);
3517
3518 EV_FREQUENT_CHECK;
2515} 3519}
2516#endif 3520#endif
2517 3521
2518#if EV_FORK_ENABLE 3522#if EV_FORK_ENABLE
2519void 3523void
2520ev_fork_start (EV_P_ ev_fork *w) 3524ev_fork_start (EV_P_ ev_fork *w)
2521{ 3525{
2522 if (expect_false (ev_is_active (w))) 3526 if (expect_false (ev_is_active (w)))
2523 return; 3527 return;
3528
3529 EV_FREQUENT_CHECK;
2524 3530
2525 ev_start (EV_A_ (W)w, ++forkcnt); 3531 ev_start (EV_A_ (W)w, ++forkcnt);
2526 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3532 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2527 forks [forkcnt - 1] = w; 3533 forks [forkcnt - 1] = w;
3534
3535 EV_FREQUENT_CHECK;
2528} 3536}
2529 3537
2530void 3538void
2531ev_fork_stop (EV_P_ ev_fork *w) 3539ev_fork_stop (EV_P_ ev_fork *w)
2532{ 3540{
2533 clear_pending (EV_A_ (W)w); 3541 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w))) 3542 if (expect_false (!ev_is_active (w)))
2535 return; 3543 return;
2536 3544
3545 EV_FREQUENT_CHECK;
3546
2537 { 3547 {
2538 int active = ((W)w)->active; 3548 int active = ev_active (w);
3549
2539 forks [active - 1] = forks [--forkcnt]; 3550 forks [active - 1] = forks [--forkcnt];
2540 ((W)forks [active - 1])->active = active; 3551 ev_active (forks [active - 1]) = active;
2541 } 3552 }
2542 3553
2543 ev_stop (EV_A_ (W)w); 3554 ev_stop (EV_A_ (W)w);
3555
3556 EV_FREQUENT_CHECK;
2544} 3557}
2545#endif 3558#endif
2546 3559
2547#if EV_ASYNC_ENABLE 3560#if EV_ASYNC_ENABLE
2548void 3561void
2550{ 3563{
2551 if (expect_false (ev_is_active (w))) 3564 if (expect_false (ev_is_active (w)))
2552 return; 3565 return;
2553 3566
2554 evpipe_init (EV_A); 3567 evpipe_init (EV_A);
3568
3569 EV_FREQUENT_CHECK;
2555 3570
2556 ev_start (EV_A_ (W)w, ++asynccnt); 3571 ev_start (EV_A_ (W)w, ++asynccnt);
2557 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3572 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2558 asyncs [asynccnt - 1] = w; 3573 asyncs [asynccnt - 1] = w;
3574
3575 EV_FREQUENT_CHECK;
2559} 3576}
2560 3577
2561void 3578void
2562ev_async_stop (EV_P_ ev_async *w) 3579ev_async_stop (EV_P_ ev_async *w)
2563{ 3580{
2564 clear_pending (EV_A_ (W)w); 3581 clear_pending (EV_A_ (W)w);
2565 if (expect_false (!ev_is_active (w))) 3582 if (expect_false (!ev_is_active (w)))
2566 return; 3583 return;
2567 3584
3585 EV_FREQUENT_CHECK;
3586
2568 { 3587 {
2569 int active = ((W)w)->active; 3588 int active = ev_active (w);
3589
2570 asyncs [active - 1] = asyncs [--asynccnt]; 3590 asyncs [active - 1] = asyncs [--asynccnt];
2571 ((W)asyncs [active - 1])->active = active; 3591 ev_active (asyncs [active - 1]) = active;
2572 } 3592 }
2573 3593
2574 ev_stop (EV_A_ (W)w); 3594 ev_stop (EV_A_ (W)w);
3595
3596 EV_FREQUENT_CHECK;
2575} 3597}
2576 3598
2577void 3599void
2578ev_async_send (EV_P_ ev_async *w) 3600ev_async_send (EV_P_ ev_async *w)
2579{ 3601{
2580 w->sent = 1; 3602 w->sent = 1;
2581 evpipe_write (EV_A_ &gotasync); 3603 evpipe_write (EV_A_ &async_pending);
2582} 3604}
2583#endif 3605#endif
2584 3606
2585/*****************************************************************************/ 3607/*****************************************************************************/
2586 3608
2596once_cb (EV_P_ struct ev_once *once, int revents) 3618once_cb (EV_P_ struct ev_once *once, int revents)
2597{ 3619{
2598 void (*cb)(int revents, void *arg) = once->cb; 3620 void (*cb)(int revents, void *arg) = once->cb;
2599 void *arg = once->arg; 3621 void *arg = once->arg;
2600 3622
2601 ev_io_stop (EV_A_ &once->io); 3623 ev_io_stop (EV_A_ &once->io);
2602 ev_timer_stop (EV_A_ &once->to); 3624 ev_timer_stop (EV_A_ &once->to);
2603 ev_free (once); 3625 ev_free (once);
2604 3626
2605 cb (revents, arg); 3627 cb (revents, arg);
2606} 3628}
2607 3629
2608static void 3630static void
2609once_cb_io (EV_P_ ev_io *w, int revents) 3631once_cb_io (EV_P_ ev_io *w, int revents)
2610{ 3632{
2611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3633 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3634
3635 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2612} 3636}
2613 3637
2614static void 3638static void
2615once_cb_to (EV_P_ ev_timer *w, int revents) 3639once_cb_to (EV_P_ ev_timer *w, int revents)
2616{ 3640{
2617 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3641 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3642
3643 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2618} 3644}
2619 3645
2620void 3646void
2621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3647ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2622{ 3648{
2623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 3649 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2624 3650
2625 if (expect_false (!once)) 3651 if (expect_false (!once))
2626 { 3652 {
2627 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 3653 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2628 return; 3654 return;
2629 } 3655 }
2630 3656
2631 once->cb = cb; 3657 once->cb = cb;
2632 once->arg = arg; 3658 once->arg = arg;
2644 ev_timer_set (&once->to, timeout, 0.); 3670 ev_timer_set (&once->to, timeout, 0.);
2645 ev_timer_start (EV_A_ &once->to); 3671 ev_timer_start (EV_A_ &once->to);
2646 } 3672 }
2647} 3673}
2648 3674
3675/*****************************************************************************/
3676
3677#if EV_WALK_ENABLE
3678void
3679ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3680{
3681 int i, j;
3682 ev_watcher_list *wl, *wn;
3683
3684 if (types & (EV_IO | EV_EMBED))
3685 for (i = 0; i < anfdmax; ++i)
3686 for (wl = anfds [i].head; wl; )
3687 {
3688 wn = wl->next;
3689
3690#if EV_EMBED_ENABLE
3691 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3692 {
3693 if (types & EV_EMBED)
3694 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3695 }
3696 else
3697#endif
3698#if EV_USE_INOTIFY
3699 if (ev_cb ((ev_io *)wl) == infy_cb)
3700 ;
3701 else
3702#endif
3703 if ((ev_io *)wl != &pipe_w)
3704 if (types & EV_IO)
3705 cb (EV_A_ EV_IO, wl);
3706
3707 wl = wn;
3708 }
3709
3710 if (types & (EV_TIMER | EV_STAT))
3711 for (i = timercnt + HEAP0; i-- > HEAP0; )
3712#if EV_STAT_ENABLE
3713 /*TODO: timer is not always active*/
3714 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3715 {
3716 if (types & EV_STAT)
3717 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3718 }
3719 else
3720#endif
3721 if (types & EV_TIMER)
3722 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3723
3724#if EV_PERIODIC_ENABLE
3725 if (types & EV_PERIODIC)
3726 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3727 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3728#endif
3729
3730#if EV_IDLE_ENABLE
3731 if (types & EV_IDLE)
3732 for (j = NUMPRI; i--; )
3733 for (i = idlecnt [j]; i--; )
3734 cb (EV_A_ EV_IDLE, idles [j][i]);
3735#endif
3736
3737#if EV_FORK_ENABLE
3738 if (types & EV_FORK)
3739 for (i = forkcnt; i--; )
3740 if (ev_cb (forks [i]) != embed_fork_cb)
3741 cb (EV_A_ EV_FORK, forks [i]);
3742#endif
3743
3744#if EV_ASYNC_ENABLE
3745 if (types & EV_ASYNC)
3746 for (i = asynccnt; i--; )
3747 cb (EV_A_ EV_ASYNC, asyncs [i]);
3748#endif
3749
3750#if EV_PREPARE_ENABLE
3751 if (types & EV_PREPARE)
3752 for (i = preparecnt; i--; )
3753# if EV_EMBED_ENABLE
3754 if (ev_cb (prepares [i]) != embed_prepare_cb)
3755# endif
3756 cb (EV_A_ EV_PREPARE, prepares [i]);
3757#endif
3758
3759#if EV_CHECK_ENABLE
3760 if (types & EV_CHECK)
3761 for (i = checkcnt; i--; )
3762 cb (EV_A_ EV_CHECK, checks [i]);
3763#endif
3764
3765#if EV_SIGNAL_ENABLE
3766 if (types & EV_SIGNAL)
3767 for (i = 0; i < EV_NSIG - 1; ++i)
3768 for (wl = signals [i].head; wl; )
3769 {
3770 wn = wl->next;
3771 cb (EV_A_ EV_SIGNAL, wl);
3772 wl = wn;
3773 }
3774#endif
3775
3776#if EV_CHILD_ENABLE
3777 if (types & EV_CHILD)
3778 for (i = (EV_PID_HASHSIZE); i--; )
3779 for (wl = childs [i]; wl; )
3780 {
3781 wn = wl->next;
3782 cb (EV_A_ EV_CHILD, wl);
3783 wl = wn;
3784 }
3785#endif
3786/* EV_STAT 0x00001000 /* stat data changed */
3787/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3788}
3789#endif
3790
2649#if EV_MULTIPLICITY 3791#if EV_MULTIPLICITY
2650 #include "ev_wrap.h" 3792 #include "ev_wrap.h"
2651#endif 3793#endif
2652 3794
2653#ifdef __cplusplus 3795#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines