ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.229 by root, Fri May 2 08:08:45 2008 UTC vs.
Revision 1.439 by root, Tue May 29 21:06:11 2012 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
168#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
169# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
170#endif 270#endif
171 271
172#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 274#endif
175 275
176#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
177# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
178#endif 282#endif
179 283
180#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 286#endif
183 287
184#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
185# ifdef _WIN32 289# ifdef _WIN32
186# define EV_USE_POLL 0 290# define EV_USE_POLL 0
187# else 291# else
188# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 293# endif
190#endif 294#endif
191 295
192#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 299# else
196# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
197# endif 301# endif
198#endif 302#endif
199 303
205# define EV_USE_PORT 0 309# define EV_USE_PORT 0
206#endif 310#endif
207 311
208#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 315# else
212# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
213# endif 317# endif
214#endif 318#endif
215 319
216#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 322#endif
223 323
224#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 326#endif
231 327
232#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 331# else
236# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
237# endif 333# endif
238#endif 334#endif
239 335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
363/* which makes programs even slower. might work on other unices, too. */
364#if EV_USE_CLOCK_SYSCALL
365# include <sys/syscall.h>
366# ifdef SYS_clock_gettime
367# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
368# undef EV_USE_MONOTONIC
369# define EV_USE_MONOTONIC 1
370# else
371# undef EV_USE_CLOCK_SYSCALL
372# define EV_USE_CLOCK_SYSCALL 0
373# endif
374#endif
375
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 376/* this block fixes any misconfiguration where we know we run into trouble otherwise */
377
378#ifdef _AIX
379/* AIX has a completely broken poll.h header */
380# undef EV_USE_POLL
381# define EV_USE_POLL 0
382#endif
241 383
242#ifndef CLOCK_MONOTONIC 384#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 385# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 386# define EV_USE_MONOTONIC 0
245#endif 387#endif
253# undef EV_USE_INOTIFY 395# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 396# define EV_USE_INOTIFY 0
255#endif 397#endif
256 398
257#if !EV_USE_NANOSLEEP 399#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 400/* hp-ux has it in sys/time.h, which we unconditionally include above */
401# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 402# include <sys/select.h>
260# endif 403# endif
261#endif 404#endif
262 405
263#if EV_USE_INOTIFY 406#if EV_USE_INOTIFY
407# include <sys/statfs.h>
264# include <sys/inotify.h> 408# include <sys/inotify.h>
409/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
410# ifndef IN_DONT_FOLLOW
411# undef EV_USE_INOTIFY
412# define EV_USE_INOTIFY 0
265#endif 413# endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif 414#endif
270 415
271#if EV_USE_EVENTFD 416#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 417/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 418# include <stdint.h>
274# ifdef __cplusplus 419# ifndef EFD_NONBLOCK
275extern "C" { 420# define EFD_NONBLOCK O_NONBLOCK
276# endif 421# endif
277int eventfd (unsigned int initval, int flags); 422# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 423# ifdef O_CLOEXEC
279} 424# define EFD_CLOEXEC O_CLOEXEC
425# else
426# define EFD_CLOEXEC 02000000
427# endif
280# endif 428# endif
429EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
430#endif
431
432#if EV_USE_SIGNALFD
433/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
434# include <stdint.h>
435# ifndef SFD_NONBLOCK
436# define SFD_NONBLOCK O_NONBLOCK
437# endif
438# ifndef SFD_CLOEXEC
439# ifdef O_CLOEXEC
440# define SFD_CLOEXEC O_CLOEXEC
441# else
442# define SFD_CLOEXEC 02000000
443# endif
444# endif
445EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
446
447struct signalfd_siginfo
448{
449 uint32_t ssi_signo;
450 char pad[128 - sizeof (uint32_t)];
451};
281#endif 452#endif
282 453
283/**/ 454/**/
284 455
456#if EV_VERIFY >= 3
457# define EV_FREQUENT_CHECK ev_verify (EV_A)
458#else
459# define EV_FREQUENT_CHECK do { } while (0)
460#endif
461
285/* 462/*
286 * This is used to avoid floating point rounding problems. 463 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 464 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 465 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 466#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
467/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 468
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 469#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 470#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 471
472#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
473#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
474
475/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
476/* ECB.H BEGIN */
477/*
478 * libecb - http://software.schmorp.de/pkg/libecb
479 *
480 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
481 * Copyright (©) 2011 Emanuele Giaquinta
482 * All rights reserved.
483 *
484 * Redistribution and use in source and binary forms, with or without modifica-
485 * tion, are permitted provided that the following conditions are met:
486 *
487 * 1. Redistributions of source code must retain the above copyright notice,
488 * this list of conditions and the following disclaimer.
489 *
490 * 2. Redistributions in binary form must reproduce the above copyright
491 * notice, this list of conditions and the following disclaimer in the
492 * documentation and/or other materials provided with the distribution.
493 *
494 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
495 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
496 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
497 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
498 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
499 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
500 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
501 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
502 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
503 * OF THE POSSIBILITY OF SUCH DAMAGE.
504 */
505
506#ifndef ECB_H
507#define ECB_H
508
509/* 16 bits major, 16 bits minor */
510#define ECB_VERSION 0x00010001
511
512#ifdef _WIN32
513 typedef signed char int8_t;
514 typedef unsigned char uint8_t;
515 typedef signed short int16_t;
516 typedef unsigned short uint16_t;
517 typedef signed int int32_t;
518 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 519 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 520 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 521 typedef unsigned long long uint64_t;
522 #else /* _MSC_VER || __BORLANDC__ */
523 typedef signed __int64 int64_t;
524 typedef unsigned __int64 uint64_t;
525 #endif
526 #ifdef _WIN64
527 #define ECB_PTRSIZE 8
528 typedef uint64_t uintptr_t;
529 typedef int64_t intptr_t;
530 #else
531 #define ECB_PTRSIZE 4
532 typedef uint32_t uintptr_t;
533 typedef int32_t intptr_t;
534 #endif
535 typedef intptr_t ptrdiff_t;
302#else 536#else
303# define expect(expr,value) (expr) 537 #include <inttypes.h>
304# define noinline 538 #if UINTMAX_MAX > 0xffffffffU
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 539 #define ECB_PTRSIZE 8
306# define inline 540 #else
541 #define ECB_PTRSIZE 4
542 #endif
307# endif 543#endif
544
545/* many compilers define _GNUC_ to some versions but then only implement
546 * what their idiot authors think are the "more important" extensions,
547 * causing enormous grief in return for some better fake benchmark numbers.
548 * or so.
549 * we try to detect these and simply assume they are not gcc - if they have
550 * an issue with that they should have done it right in the first place.
551 */
552#ifndef ECB_GCC_VERSION
553 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
554 #define ECB_GCC_VERSION(major,minor) 0
555 #else
556 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
308#endif 557 #endif
558#endif
309 559
560#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
561#define ECB_C99 (__STDC_VERSION__ >= 199901L)
562#define ECB_C11 (__STDC_VERSION__ >= 201112L)
563#define ECB_CPP (__cplusplus+0)
564#define ECB_CPP98 (__cplusplus >= 199711L)
565#define ECB_CPP11 (__cplusplus >= 201103L)
566
567/*****************************************************************************/
568
569/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
570/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
571
572#if ECB_NO_THREADS
573 #define ECB_NO_SMP 1
574#endif
575
576#if ECB_NO_SMP
577 #define ECB_MEMORY_FENCE do { } while (0)
578#endif
579
580#ifndef ECB_MEMORY_FENCE
581 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
582 #if __i386 || __i386__
583 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
584 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
585 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
586 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
587 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
588 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
589 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
590 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
591 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
592 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
593 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
594 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
595 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
596 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
597 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
598 #elif __sparc || __sparc__
599 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
600 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
601 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
602 #elif defined __s390__ || defined __s390x__
603 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
604 #elif defined __mips__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
606 #elif defined __alpha__
607 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
608 #elif defined __hppa__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
610 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
611 #elif defined __ia64__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
613 #endif
614 #endif
615#endif
616
617#ifndef ECB_MEMORY_FENCE
618 #if ECB_GCC_VERSION(4,7)
619 /* see comment below about the C11 memory model. in short - avoid */
620 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
621 #elif defined __clang && __has_feature (cxx_atomic)
622 /* see above */
623 #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
624 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
625 #define ECB_MEMORY_FENCE __sync_synchronize ()
626 #elif _MSC_VER >= 1400 /* VC++ 2005 */
627 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
628 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
629 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
630 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
631 #elif defined _WIN32
632 #include <WinNT.h>
633 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
634 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
635 #include <mbarrier.h>
636 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
637 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
638 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
639 #elif __xlC__
640 #define ECB_MEMORY_FENCE __sync ()
641 #endif
642#endif
643
644#ifndef ECB_MEMORY_FENCE
645 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
646 /* we assume that these memory fences work on all variables/all memory accesses, */
647 /* not just C11 atomics and atomic accesses */
648 #include <stdatomic.h>
649 /* unfortunately, the C11 memory model seems to be very limited, and unable to express */
650 /* simple barrier semantics. That means we need to take out thor's hammer. */
651 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
652 #endif
653#endif
654
655#ifndef ECB_MEMORY_FENCE
656 #if !ECB_AVOID_PTHREADS
657 /*
658 * if you get undefined symbol references to pthread_mutex_lock,
659 * or failure to find pthread.h, then you should implement
660 * the ECB_MEMORY_FENCE operations for your cpu/compiler
661 * OR provide pthread.h and link against the posix thread library
662 * of your system.
663 */
664 #include <pthread.h>
665 #define ECB_NEEDS_PTHREADS 1
666 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
667
668 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
669 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
670 #endif
671#endif
672
673#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
674 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
675#endif
676
677#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
678 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
679#endif
680
681/*****************************************************************************/
682
683#if __cplusplus
684 #define ecb_inline static inline
685#elif ECB_GCC_VERSION(2,5)
686 #define ecb_inline static __inline__
687#elif ECB_C99
688 #define ecb_inline static inline
689#else
690 #define ecb_inline static
691#endif
692
693#if ECB_GCC_VERSION(3,3)
694 #define ecb_restrict __restrict__
695#elif ECB_C99
696 #define ecb_restrict restrict
697#else
698 #define ecb_restrict
699#endif
700
701typedef int ecb_bool;
702
703#define ECB_CONCAT_(a, b) a ## b
704#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
705#define ECB_STRINGIFY_(a) # a
706#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
707
708#define ecb_function_ ecb_inline
709
710#if ECB_GCC_VERSION(3,1)
711 #define ecb_attribute(attrlist) __attribute__(attrlist)
712 #define ecb_is_constant(expr) __builtin_constant_p (expr)
713 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
714 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
715#else
716 #define ecb_attribute(attrlist)
717 #define ecb_is_constant(expr) 0
718 #define ecb_expect(expr,value) (expr)
719 #define ecb_prefetch(addr,rw,locality)
720#endif
721
722/* no emulation for ecb_decltype */
723#if ECB_GCC_VERSION(4,5)
724 #define ecb_decltype(x) __decltype(x)
725#elif ECB_GCC_VERSION(3,0)
726 #define ecb_decltype(x) __typeof(x)
727#endif
728
729#define ecb_noinline ecb_attribute ((__noinline__))
730#define ecb_unused ecb_attribute ((__unused__))
731#define ecb_const ecb_attribute ((__const__))
732#define ecb_pure ecb_attribute ((__pure__))
733
734#if ECB_C11
735 #define ecb_noreturn _Noreturn
736#else
737 #define ecb_noreturn ecb_attribute ((__noreturn__))
738#endif
739
740#if ECB_GCC_VERSION(4,3)
741 #define ecb_artificial ecb_attribute ((__artificial__))
742 #define ecb_hot ecb_attribute ((__hot__))
743 #define ecb_cold ecb_attribute ((__cold__))
744#else
745 #define ecb_artificial
746 #define ecb_hot
747 #define ecb_cold
748#endif
749
750/* put around conditional expressions if you are very sure that the */
751/* expression is mostly true or mostly false. note that these return */
752/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 753#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 754#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
755/* for compatibility to the rest of the world */
756#define ecb_likely(expr) ecb_expect_true (expr)
757#define ecb_unlikely(expr) ecb_expect_false (expr)
758
759/* count trailing zero bits and count # of one bits */
760#if ECB_GCC_VERSION(3,4)
761 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
762 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
763 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
764 #define ecb_ctz32(x) __builtin_ctz (x)
765 #define ecb_ctz64(x) __builtin_ctzll (x)
766 #define ecb_popcount32(x) __builtin_popcount (x)
767 /* no popcountll */
768#else
769 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
770 ecb_function_ int
771 ecb_ctz32 (uint32_t x)
772 {
773 int r = 0;
774
775 x &= ~x + 1; /* this isolates the lowest bit */
776
777#if ECB_branchless_on_i386
778 r += !!(x & 0xaaaaaaaa) << 0;
779 r += !!(x & 0xcccccccc) << 1;
780 r += !!(x & 0xf0f0f0f0) << 2;
781 r += !!(x & 0xff00ff00) << 3;
782 r += !!(x & 0xffff0000) << 4;
783#else
784 if (x & 0xaaaaaaaa) r += 1;
785 if (x & 0xcccccccc) r += 2;
786 if (x & 0xf0f0f0f0) r += 4;
787 if (x & 0xff00ff00) r += 8;
788 if (x & 0xffff0000) r += 16;
789#endif
790
791 return r;
792 }
793
794 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
795 ecb_function_ int
796 ecb_ctz64 (uint64_t x)
797 {
798 int shift = x & 0xffffffffU ? 0 : 32;
799 return ecb_ctz32 (x >> shift) + shift;
800 }
801
802 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
803 ecb_function_ int
804 ecb_popcount32 (uint32_t x)
805 {
806 x -= (x >> 1) & 0x55555555;
807 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
808 x = ((x >> 4) + x) & 0x0f0f0f0f;
809 x *= 0x01010101;
810
811 return x >> 24;
812 }
813
814 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
815 ecb_function_ int ecb_ld32 (uint32_t x)
816 {
817 int r = 0;
818
819 if (x >> 16) { x >>= 16; r += 16; }
820 if (x >> 8) { x >>= 8; r += 8; }
821 if (x >> 4) { x >>= 4; r += 4; }
822 if (x >> 2) { x >>= 2; r += 2; }
823 if (x >> 1) { r += 1; }
824
825 return r;
826 }
827
828 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
829 ecb_function_ int ecb_ld64 (uint64_t x)
830 {
831 int r = 0;
832
833 if (x >> 32) { x >>= 32; r += 32; }
834
835 return r + ecb_ld32 (x);
836 }
837#endif
838
839ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
840ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
841ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
842ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
843
844ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
845ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
846{
847 return ( (x * 0x0802U & 0x22110U)
848 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
849}
850
851ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
852ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
853{
854 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
855 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
856 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
857 x = ( x >> 8 ) | ( x << 8);
858
859 return x;
860}
861
862ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
863ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
864{
865 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
866 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
867 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
868 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
869 x = ( x >> 16 ) | ( x << 16);
870
871 return x;
872}
873
874/* popcount64 is only available on 64 bit cpus as gcc builtin */
875/* so for this version we are lazy */
876ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
877ecb_function_ int
878ecb_popcount64 (uint64_t x)
879{
880 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
881}
882
883ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
884ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
885ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
886ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
887ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
888ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
889ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
890ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
891
892ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
893ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
894ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
895ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
896ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
897ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
898ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
899ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
900
901#if ECB_GCC_VERSION(4,3)
902 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
903 #define ecb_bswap32(x) __builtin_bswap32 (x)
904 #define ecb_bswap64(x) __builtin_bswap64 (x)
905#else
906 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
907 ecb_function_ uint16_t
908 ecb_bswap16 (uint16_t x)
909 {
910 return ecb_rotl16 (x, 8);
911 }
912
913 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
914 ecb_function_ uint32_t
915 ecb_bswap32 (uint32_t x)
916 {
917 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
918 }
919
920 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
921 ecb_function_ uint64_t
922 ecb_bswap64 (uint64_t x)
923 {
924 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
925 }
926#endif
927
928#if ECB_GCC_VERSION(4,5)
929 #define ecb_unreachable() __builtin_unreachable ()
930#else
931 /* this seems to work fine, but gcc always emits a warning for it :/ */
932 ecb_inline void ecb_unreachable (void) ecb_noreturn;
933 ecb_inline void ecb_unreachable (void) { }
934#endif
935
936/* try to tell the compiler that some condition is definitely true */
937#define ecb_assume(cond) do { if (!(cond)) ecb_unreachable (); } while (0)
938
939ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
940ecb_inline unsigned char
941ecb_byteorder_helper (void)
942{
943 const uint32_t u = 0x11223344;
944 return *(unsigned char *)&u;
945}
946
947ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
948ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
949ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
950ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
951
952#if ECB_GCC_VERSION(3,0) || ECB_C99
953 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
954#else
955 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
956#endif
957
958#if __cplusplus
959 template<typename T>
960 static inline T ecb_div_rd (T val, T div)
961 {
962 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
963 }
964 template<typename T>
965 static inline T ecb_div_ru (T val, T div)
966 {
967 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
968 }
969#else
970 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
971 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
972#endif
973
974#if ecb_cplusplus_does_not_suck
975 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
976 template<typename T, int N>
977 static inline int ecb_array_length (const T (&arr)[N])
978 {
979 return N;
980 }
981#else
982 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
983#endif
984
985#endif
986
987/* ECB.H END */
988
989#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
990/* if your architecture doesn't need memory fences, e.g. because it is
991 * single-cpu/core, or if you use libev in a project that doesn't use libev
992 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
993 * libev, in which cases the memory fences become nops.
994 * alternatively, you can remove this #error and link against libpthread,
995 * which will then provide the memory fences.
996 */
997# error "memory fences not defined for your architecture, please report"
998#endif
999
1000#ifndef ECB_MEMORY_FENCE
1001# define ECB_MEMORY_FENCE do { } while (0)
1002# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1003# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1004#endif
1005
1006#define expect_false(cond) ecb_expect_false (cond)
1007#define expect_true(cond) ecb_expect_true (cond)
1008#define noinline ecb_noinline
1009
312#define inline_size static inline 1010#define inline_size ecb_inline
313 1011
314#if EV_MINIMAL 1012#if EV_FEATURE_CODE
1013# define inline_speed ecb_inline
1014#else
315# define inline_speed static noinline 1015# define inline_speed static noinline
1016#endif
1017
1018#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1019
1020#if EV_MINPRI == EV_MAXPRI
1021# define ABSPRI(w) (((W)w), 0)
316#else 1022#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1023# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1024#endif
322 1025
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1026#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 1027#define EMPTY2(a,b) /* used to suppress some warnings */
325 1028
326typedef ev_watcher *W; 1029typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 1031typedef ev_watcher_time *WT;
329 1032
330#define ev_active(w) ((W)(w))->active 1033#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 1034#define ev_at(w) ((WT)(w))->at
332 1035
1036#if EV_USE_REALTIME
1037/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1038/* giving it a reasonably high chance of working on typical architectures */
1039static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1040#endif
1041
333#if EV_USE_MONOTONIC 1042#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1043static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1044#endif
1045
1046#ifndef EV_FD_TO_WIN32_HANDLE
1047# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1048#endif
1049#ifndef EV_WIN32_HANDLE_TO_FD
1050# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1051#endif
1052#ifndef EV_WIN32_CLOSE_FD
1053# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 1054#endif
338 1055
339#ifdef _WIN32 1056#ifdef _WIN32
340# include "ev_win32.c" 1057# include "ev_win32.c"
341#endif 1058#endif
342 1059
343/*****************************************************************************/ 1060/*****************************************************************************/
344 1061
1062/* define a suitable floor function (only used by periodics atm) */
1063
1064#if EV_USE_FLOOR
1065# include <math.h>
1066# define ev_floor(v) floor (v)
1067#else
1068
1069#include <float.h>
1070
1071/* a floor() replacement function, should be independent of ev_tstamp type */
1072static ev_tstamp noinline
1073ev_floor (ev_tstamp v)
1074{
1075 /* the choice of shift factor is not terribly important */
1076#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1077 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1078#else
1079 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1080#endif
1081
1082 /* argument too large for an unsigned long? */
1083 if (expect_false (v >= shift))
1084 {
1085 ev_tstamp f;
1086
1087 if (v == v - 1.)
1088 return v; /* very large number */
1089
1090 f = shift * ev_floor (v * (1. / shift));
1091 return f + ev_floor (v - f);
1092 }
1093
1094 /* special treatment for negative args? */
1095 if (expect_false (v < 0.))
1096 {
1097 ev_tstamp f = -ev_floor (-v);
1098
1099 return f - (f == v ? 0 : 1);
1100 }
1101
1102 /* fits into an unsigned long */
1103 return (unsigned long)v;
1104}
1105
1106#endif
1107
1108/*****************************************************************************/
1109
1110#ifdef __linux
1111# include <sys/utsname.h>
1112#endif
1113
1114static unsigned int noinline ecb_cold
1115ev_linux_version (void)
1116{
1117#ifdef __linux
1118 unsigned int v = 0;
1119 struct utsname buf;
1120 int i;
1121 char *p = buf.release;
1122
1123 if (uname (&buf))
1124 return 0;
1125
1126 for (i = 3+1; --i; )
1127 {
1128 unsigned int c = 0;
1129
1130 for (;;)
1131 {
1132 if (*p >= '0' && *p <= '9')
1133 c = c * 10 + *p++ - '0';
1134 else
1135 {
1136 p += *p == '.';
1137 break;
1138 }
1139 }
1140
1141 v = (v << 8) | c;
1142 }
1143
1144 return v;
1145#else
1146 return 0;
1147#endif
1148}
1149
1150/*****************************************************************************/
1151
1152#if EV_AVOID_STDIO
1153static void noinline ecb_cold
1154ev_printerr (const char *msg)
1155{
1156 write (STDERR_FILENO, msg, strlen (msg));
1157}
1158#endif
1159
345static void (*syserr_cb)(const char *msg); 1160static void (*syserr_cb)(const char *msg) EV_THROW;
346 1161
347void 1162void ecb_cold
348ev_set_syserr_cb (void (*cb)(const char *msg)) 1163ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
349{ 1164{
350 syserr_cb = cb; 1165 syserr_cb = cb;
351} 1166}
352 1167
353static void noinline 1168static void noinline ecb_cold
354syserr (const char *msg) 1169ev_syserr (const char *msg)
355{ 1170{
356 if (!msg) 1171 if (!msg)
357 msg = "(libev) system error"; 1172 msg = "(libev) system error";
358 1173
359 if (syserr_cb) 1174 if (syserr_cb)
360 syserr_cb (msg); 1175 syserr_cb (msg);
361 else 1176 else
362 { 1177 {
1178#if EV_AVOID_STDIO
1179 ev_printerr (msg);
1180 ev_printerr (": ");
1181 ev_printerr (strerror (errno));
1182 ev_printerr ("\n");
1183#else
363 perror (msg); 1184 perror (msg);
1185#endif
364 abort (); 1186 abort ();
365 } 1187 }
366} 1188}
367 1189
368static void * 1190static void *
369ev_realloc_emul (void *ptr, long size) 1191ev_realloc_emul (void *ptr, long size) EV_THROW
370{ 1192{
1193#if __GLIBC__
1194 return realloc (ptr, size);
1195#else
371 /* some systems, notably openbsd and darwin, fail to properly 1196 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 1197 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 1198 * the single unix specification, so work around them here.
374 */ 1199 */
375 1200
376 if (size) 1201 if (size)
377 return realloc (ptr, size); 1202 return realloc (ptr, size);
378 1203
379 free (ptr); 1204 free (ptr);
380 return 0; 1205 return 0;
1206#endif
381} 1207}
382 1208
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1209static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
384 1210
385void 1211void ecb_cold
386ev_set_allocator (void *(*cb)(void *ptr, long size)) 1212ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
387{ 1213{
388 alloc = cb; 1214 alloc = cb;
389} 1215}
390 1216
391inline_speed void * 1217inline_speed void *
393{ 1219{
394 ptr = alloc (ptr, size); 1220 ptr = alloc (ptr, size);
395 1221
396 if (!ptr && size) 1222 if (!ptr && size)
397 { 1223 {
1224#if EV_AVOID_STDIO
1225 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1226#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1227 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1228#endif
399 abort (); 1229 abort ();
400 } 1230 }
401 1231
402 return ptr; 1232 return ptr;
403} 1233}
405#define ev_malloc(size) ev_realloc (0, (size)) 1235#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 1236#define ev_free(ptr) ev_realloc ((ptr), 0)
407 1237
408/*****************************************************************************/ 1238/*****************************************************************************/
409 1239
1240/* set in reify when reification needed */
1241#define EV_ANFD_REIFY 1
1242
1243/* file descriptor info structure */
410typedef struct 1244typedef struct
411{ 1245{
412 WL head; 1246 WL head;
413 unsigned char events; 1247 unsigned char events; /* the events watched for */
1248 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1249 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 1250 unsigned char unused;
1251#if EV_USE_EPOLL
1252 unsigned int egen; /* generation counter to counter epoll bugs */
1253#endif
415#if EV_SELECT_IS_WINSOCKET 1254#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 1255 SOCKET handle;
417#endif 1256#endif
1257#if EV_USE_IOCP
1258 OVERLAPPED or, ow;
1259#endif
418} ANFD; 1260} ANFD;
419 1261
1262/* stores the pending event set for a given watcher */
420typedef struct 1263typedef struct
421{ 1264{
422 W w; 1265 W w;
423 int events; 1266 int events; /* the pending event set for the given watcher */
424} ANPENDING; 1267} ANPENDING;
425 1268
426#if EV_USE_INOTIFY 1269#if EV_USE_INOTIFY
1270/* hash table entry per inotify-id */
427typedef struct 1271typedef struct
428{ 1272{
429 WL head; 1273 WL head;
430} ANFS; 1274} ANFS;
1275#endif
1276
1277/* Heap Entry */
1278#if EV_HEAP_CACHE_AT
1279 /* a heap element */
1280 typedef struct {
1281 ev_tstamp at;
1282 WT w;
1283 } ANHE;
1284
1285 #define ANHE_w(he) (he).w /* access watcher, read-write */
1286 #define ANHE_at(he) (he).at /* access cached at, read-only */
1287 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1288#else
1289 /* a heap element */
1290 typedef WT ANHE;
1291
1292 #define ANHE_w(he) (he)
1293 #define ANHE_at(he) (he)->at
1294 #define ANHE_at_cache(he)
431#endif 1295#endif
432 1296
433#if EV_MULTIPLICITY 1297#if EV_MULTIPLICITY
434 1298
435 struct ev_loop 1299 struct ev_loop
441 #undef VAR 1305 #undef VAR
442 }; 1306 };
443 #include "ev_wrap.h" 1307 #include "ev_wrap.h"
444 1308
445 static struct ev_loop default_loop_struct; 1309 static struct ev_loop default_loop_struct;
446 struct ev_loop *ev_default_loop_ptr; 1310 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
447 1311
448#else 1312#else
449 1313
450 ev_tstamp ev_rt_now; 1314 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
451 #define VAR(name,decl) static decl; 1315 #define VAR(name,decl) static decl;
452 #include "ev_vars.h" 1316 #include "ev_vars.h"
453 #undef VAR 1317 #undef VAR
454 1318
455 static int ev_default_loop_ptr; 1319 static int ev_default_loop_ptr;
456 1320
457#endif 1321#endif
458 1322
1323#if EV_FEATURE_API
1324# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1325# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1326# define EV_INVOKE_PENDING invoke_cb (EV_A)
1327#else
1328# define EV_RELEASE_CB (void)0
1329# define EV_ACQUIRE_CB (void)0
1330# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1331#endif
1332
1333#define EVBREAK_RECURSE 0x80
1334
459/*****************************************************************************/ 1335/*****************************************************************************/
460 1336
1337#ifndef EV_HAVE_EV_TIME
461ev_tstamp 1338ev_tstamp
462ev_time (void) 1339ev_time (void) EV_THROW
463{ 1340{
464#if EV_USE_REALTIME 1341#if EV_USE_REALTIME
1342 if (expect_true (have_realtime))
1343 {
465 struct timespec ts; 1344 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 1345 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 1346 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 1347 }
1348#endif
1349
469 struct timeval tv; 1350 struct timeval tv;
470 gettimeofday (&tv, 0); 1351 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 1352 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 1353}
1354#endif
474 1355
475ev_tstamp inline_size 1356inline_size ev_tstamp
476get_clock (void) 1357get_clock (void)
477{ 1358{
478#if EV_USE_MONOTONIC 1359#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 1360 if (expect_true (have_monotonic))
480 { 1361 {
487 return ev_time (); 1368 return ev_time ();
488} 1369}
489 1370
490#if EV_MULTIPLICITY 1371#if EV_MULTIPLICITY
491ev_tstamp 1372ev_tstamp
492ev_now (EV_P) 1373ev_now (EV_P) EV_THROW
493{ 1374{
494 return ev_rt_now; 1375 return ev_rt_now;
495} 1376}
496#endif 1377#endif
497 1378
498void 1379void
499ev_sleep (ev_tstamp delay) 1380ev_sleep (ev_tstamp delay) EV_THROW
500{ 1381{
501 if (delay > 0.) 1382 if (delay > 0.)
502 { 1383 {
503#if EV_USE_NANOSLEEP 1384#if EV_USE_NANOSLEEP
504 struct timespec ts; 1385 struct timespec ts;
505 1386
506 ts.tv_sec = (time_t)delay; 1387 EV_TS_SET (ts, delay);
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0); 1388 nanosleep (&ts, 0);
510#elif defined(_WIN32) 1389#elif defined _WIN32
511 Sleep ((unsigned long)(delay * 1e3)); 1390 Sleep ((unsigned long)(delay * 1e3));
512#else 1391#else
513 struct timeval tv; 1392 struct timeval tv;
514 1393
515 tv.tv_sec = (time_t)delay; 1394 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1395 /* something not guaranteed by newer posix versions, but guaranteed */
517 1396 /* by older ones */
1397 EV_TV_SET (tv, delay);
518 select (0, 0, 0, 0, &tv); 1398 select (0, 0, 0, 0, &tv);
519#endif 1399#endif
520 } 1400 }
521} 1401}
522 1402
523/*****************************************************************************/ 1403/*****************************************************************************/
524 1404
525int inline_size 1405#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1406
1407/* find a suitable new size for the given array, */
1408/* hopefully by rounding to a nice-to-malloc size */
1409inline_size int
526array_nextsize (int elem, int cur, int cnt) 1410array_nextsize (int elem, int cur, int cnt)
527{ 1411{
528 int ncur = cur + 1; 1412 int ncur = cur + 1;
529 1413
530 do 1414 do
531 ncur <<= 1; 1415 ncur <<= 1;
532 while (cnt > ncur); 1416 while (cnt > ncur);
533 1417
534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1418 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
535 if (elem * ncur > 4096) 1419 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
536 { 1420 {
537 ncur *= elem; 1421 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1422 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
539 ncur = ncur - sizeof (void *) * 4; 1423 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem; 1424 ncur /= elem;
541 } 1425 }
542 1426
543 return ncur; 1427 return ncur;
544} 1428}
545 1429
546static noinline void * 1430static void * noinline ecb_cold
547array_realloc (int elem, void *base, int *cur, int cnt) 1431array_realloc (int elem, void *base, int *cur, int cnt)
548{ 1432{
549 *cur = array_nextsize (elem, *cur, cnt); 1433 *cur = array_nextsize (elem, *cur, cnt);
550 return ev_realloc (base, elem * *cur); 1434 return ev_realloc (base, elem * *cur);
551} 1435}
1436
1437#define array_init_zero(base,count) \
1438 memset ((void *)(base), 0, sizeof (*(base)) * (count))
552 1439
553#define array_needsize(type,base,cur,cnt,init) \ 1440#define array_needsize(type,base,cur,cnt,init) \
554 if (expect_false ((cnt) > (cur))) \ 1441 if (expect_false ((cnt) > (cur))) \
555 { \ 1442 { \
556 int ocur_ = (cur); \ 1443 int ecb_unused ocur_ = (cur); \
557 (base) = (type *)array_realloc \ 1444 (base) = (type *)array_realloc \
558 (sizeof (type), (base), &(cur), (cnt)); \ 1445 (sizeof (type), (base), &(cur), (cnt)); \
559 init ((base) + (ocur_), (cur) - ocur_); \ 1446 init ((base) + (ocur_), (cur) - ocur_); \
560 } 1447 }
561 1448
568 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1455 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
569 } 1456 }
570#endif 1457#endif
571 1458
572#define array_free(stem, idx) \ 1459#define array_free(stem, idx) \
573 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1460 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
574 1461
575/*****************************************************************************/ 1462/*****************************************************************************/
576 1463
1464/* dummy callback for pending events */
1465static void noinline
1466pendingcb (EV_P_ ev_prepare *w, int revents)
1467{
1468}
1469
577void noinline 1470void noinline
578ev_feed_event (EV_P_ void *w, int revents) 1471ev_feed_event (EV_P_ void *w, int revents) EV_THROW
579{ 1472{
580 W w_ = (W)w; 1473 W w_ = (W)w;
581 int pri = ABSPRI (w_); 1474 int pri = ABSPRI (w_);
582 1475
583 if (expect_false (w_->pending)) 1476 if (expect_false (w_->pending))
587 w_->pending = ++pendingcnt [pri]; 1480 w_->pending = ++pendingcnt [pri];
588 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1481 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
589 pendings [pri][w_->pending - 1].w = w_; 1482 pendings [pri][w_->pending - 1].w = w_;
590 pendings [pri][w_->pending - 1].events = revents; 1483 pendings [pri][w_->pending - 1].events = revents;
591 } 1484 }
592}
593 1485
594void inline_speed 1486 pendingpri = NUMPRI - 1;
1487}
1488
1489inline_speed void
1490feed_reverse (EV_P_ W w)
1491{
1492 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1493 rfeeds [rfeedcnt++] = w;
1494}
1495
1496inline_size void
1497feed_reverse_done (EV_P_ int revents)
1498{
1499 do
1500 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1501 while (rfeedcnt);
1502}
1503
1504inline_speed void
595queue_events (EV_P_ W *events, int eventcnt, int type) 1505queue_events (EV_P_ W *events, int eventcnt, int type)
596{ 1506{
597 int i; 1507 int i;
598 1508
599 for (i = 0; i < eventcnt; ++i) 1509 for (i = 0; i < eventcnt; ++i)
600 ev_feed_event (EV_A_ events [i], type); 1510 ev_feed_event (EV_A_ events [i], type);
601} 1511}
602 1512
603/*****************************************************************************/ 1513/*****************************************************************************/
604 1514
605void inline_size 1515inline_speed void
606anfds_init (ANFD *base, int count)
607{
608 while (count--)
609 {
610 base->head = 0;
611 base->events = EV_NONE;
612 base->reify = 0;
613
614 ++base;
615 }
616}
617
618void inline_speed
619fd_event (EV_P_ int fd, int revents) 1516fd_event_nocheck (EV_P_ int fd, int revents)
620{ 1517{
621 ANFD *anfd = anfds + fd; 1518 ANFD *anfd = anfds + fd;
622 ev_io *w; 1519 ev_io *w;
623 1520
624 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1521 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
628 if (ev) 1525 if (ev)
629 ev_feed_event (EV_A_ (W)w, ev); 1526 ev_feed_event (EV_A_ (W)w, ev);
630 } 1527 }
631} 1528}
632 1529
1530/* do not submit kernel events for fds that have reify set */
1531/* because that means they changed while we were polling for new events */
1532inline_speed void
1533fd_event (EV_P_ int fd, int revents)
1534{
1535 ANFD *anfd = anfds + fd;
1536
1537 if (expect_true (!anfd->reify))
1538 fd_event_nocheck (EV_A_ fd, revents);
1539}
1540
633void 1541void
634ev_feed_fd_event (EV_P_ int fd, int revents) 1542ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
635{ 1543{
636 if (fd >= 0 && fd < anfdmax) 1544 if (fd >= 0 && fd < anfdmax)
637 fd_event (EV_A_ fd, revents); 1545 fd_event_nocheck (EV_A_ fd, revents);
638} 1546}
639 1547
640void inline_size 1548/* make sure the external fd watch events are in-sync */
1549/* with the kernel/libev internal state */
1550inline_size void
641fd_reify (EV_P) 1551fd_reify (EV_P)
642{ 1552{
643 int i; 1553 int i;
1554
1555#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1556 for (i = 0; i < fdchangecnt; ++i)
1557 {
1558 int fd = fdchanges [i];
1559 ANFD *anfd = anfds + fd;
1560
1561 if (anfd->reify & EV__IOFDSET && anfd->head)
1562 {
1563 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1564
1565 if (handle != anfd->handle)
1566 {
1567 unsigned long arg;
1568
1569 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1570
1571 /* handle changed, but fd didn't - we need to do it in two steps */
1572 backend_modify (EV_A_ fd, anfd->events, 0);
1573 anfd->events = 0;
1574 anfd->handle = handle;
1575 }
1576 }
1577 }
1578#endif
644 1579
645 for (i = 0; i < fdchangecnt; ++i) 1580 for (i = 0; i < fdchangecnt; ++i)
646 { 1581 {
647 int fd = fdchanges [i]; 1582 int fd = fdchanges [i];
648 ANFD *anfd = anfds + fd; 1583 ANFD *anfd = anfds + fd;
649 ev_io *w; 1584 ev_io *w;
650 1585
651 unsigned char events = 0; 1586 unsigned char o_events = anfd->events;
1587 unsigned char o_reify = anfd->reify;
652 1588
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1589 anfd->reify = 0;
654 events |= (unsigned char)w->events;
655 1590
656#if EV_SELECT_IS_WINSOCKET 1591 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
657 if (events)
658 { 1592 {
659 unsigned long argp; 1593 anfd->events = 0;
660 #ifdef EV_FD_TO_WIN32_HANDLE 1594
661 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1595 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
662 #else 1596 anfd->events |= (unsigned char)w->events;
663 anfd->handle = _get_osfhandle (fd); 1597
664 #endif 1598 if (o_events != anfd->events)
665 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1599 o_reify = EV__IOFDSET; /* actually |= */
666 } 1600 }
667#endif
668 1601
669 { 1602 if (o_reify & EV__IOFDSET)
670 unsigned char o_events = anfd->events;
671 unsigned char o_reify = anfd->reify;
672
673 anfd->reify = 0;
674 anfd->events = events;
675
676 if (o_events != events || o_reify & EV_IOFDSET)
677 backend_modify (EV_A_ fd, o_events, events); 1603 backend_modify (EV_A_ fd, o_events, anfd->events);
678 }
679 } 1604 }
680 1605
681 fdchangecnt = 0; 1606 fdchangecnt = 0;
682} 1607}
683 1608
684void inline_size 1609/* something about the given fd changed */
1610inline_size void
685fd_change (EV_P_ int fd, int flags) 1611fd_change (EV_P_ int fd, int flags)
686{ 1612{
687 unsigned char reify = anfds [fd].reify; 1613 unsigned char reify = anfds [fd].reify;
688 anfds [fd].reify |= flags; 1614 anfds [fd].reify |= flags;
689 1615
693 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1619 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
694 fdchanges [fdchangecnt - 1] = fd; 1620 fdchanges [fdchangecnt - 1] = fd;
695 } 1621 }
696} 1622}
697 1623
698void inline_speed 1624/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1625inline_speed void ecb_cold
699fd_kill (EV_P_ int fd) 1626fd_kill (EV_P_ int fd)
700{ 1627{
701 ev_io *w; 1628 ev_io *w;
702 1629
703 while ((w = (ev_io *)anfds [fd].head)) 1630 while ((w = (ev_io *)anfds [fd].head))
705 ev_io_stop (EV_A_ w); 1632 ev_io_stop (EV_A_ w);
706 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1633 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
707 } 1634 }
708} 1635}
709 1636
710int inline_size 1637/* check whether the given fd is actually valid, for error recovery */
1638inline_size int ecb_cold
711fd_valid (int fd) 1639fd_valid (int fd)
712{ 1640{
713#ifdef _WIN32 1641#ifdef _WIN32
714 return _get_osfhandle (fd) != -1; 1642 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
715#else 1643#else
716 return fcntl (fd, F_GETFD) != -1; 1644 return fcntl (fd, F_GETFD) != -1;
717#endif 1645#endif
718} 1646}
719 1647
720/* called on EBADF to verify fds */ 1648/* called on EBADF to verify fds */
721static void noinline 1649static void noinline ecb_cold
722fd_ebadf (EV_P) 1650fd_ebadf (EV_P)
723{ 1651{
724 int fd; 1652 int fd;
725 1653
726 for (fd = 0; fd < anfdmax; ++fd) 1654 for (fd = 0; fd < anfdmax; ++fd)
727 if (anfds [fd].events) 1655 if (anfds [fd].events)
728 if (!fd_valid (fd) == -1 && errno == EBADF) 1656 if (!fd_valid (fd) && errno == EBADF)
729 fd_kill (EV_A_ fd); 1657 fd_kill (EV_A_ fd);
730} 1658}
731 1659
732/* called on ENOMEM in select/poll to kill some fds and retry */ 1660/* called on ENOMEM in select/poll to kill some fds and retry */
733static void noinline 1661static void noinline ecb_cold
734fd_enomem (EV_P) 1662fd_enomem (EV_P)
735{ 1663{
736 int fd; 1664 int fd;
737 1665
738 for (fd = anfdmax; fd--; ) 1666 for (fd = anfdmax; fd--; )
739 if (anfds [fd].events) 1667 if (anfds [fd].events)
740 { 1668 {
741 fd_kill (EV_A_ fd); 1669 fd_kill (EV_A_ fd);
742 return; 1670 break;
743 } 1671 }
744} 1672}
745 1673
746/* usually called after fork if backend needs to re-arm all fds from scratch */ 1674/* usually called after fork if backend needs to re-arm all fds from scratch */
747static void noinline 1675static void noinline
751 1679
752 for (fd = 0; fd < anfdmax; ++fd) 1680 for (fd = 0; fd < anfdmax; ++fd)
753 if (anfds [fd].events) 1681 if (anfds [fd].events)
754 { 1682 {
755 anfds [fd].events = 0; 1683 anfds [fd].events = 0;
1684 anfds [fd].emask = 0;
756 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1685 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
757 } 1686 }
758} 1687}
759 1688
760/*****************************************************************************/ 1689/* used to prepare libev internal fd's */
761 1690/* this is not fork-safe */
762/* towards the root */ 1691inline_speed void
763void inline_speed
764upheap (WT *heap, int k)
765{
766 WT w = heap [k];
767
768 for (;;)
769 {
770 int p = k >> 1;
771
772 /* maybe we could use a dummy element at heap [0]? */
773 if (!p || heap [p]->at <= w->at)
774 break;
775
776 heap [k] = heap [p];
777 ((W)heap [k])->active = k;
778 k = p;
779 }
780
781 heap [k] = w;
782 ((W)heap [k])->active = k;
783}
784
785/* away from the root */
786void inline_speed
787downheap (WT *heap, int N, int k)
788{
789 WT w = heap [k];
790
791 for (;;)
792 {
793 int c = k << 1;
794
795 if (c > N)
796 break;
797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
804 heap [k] = heap [c];
805 ((W)heap [k])->active = k;
806
807 k = c;
808 }
809
810 heap [k] = w;
811 ((W)heap [k])->active = k;
812}
813
814void inline_size
815adjustheap (WT *heap, int N, int k)
816{
817 upheap (heap, k);
818 downheap (heap, N, k);
819}
820
821/*****************************************************************************/
822
823typedef struct
824{
825 WL head;
826 EV_ATOMIC_T gotsig;
827} ANSIG;
828
829static ANSIG *signals;
830static int signalmax;
831
832static EV_ATOMIC_T gotsig;
833
834void inline_size
835signals_init (ANSIG *base, int count)
836{
837 while (count--)
838 {
839 base->head = 0;
840 base->gotsig = 0;
841
842 ++base;
843 }
844}
845
846/*****************************************************************************/
847
848void inline_speed
849fd_intern (int fd) 1692fd_intern (int fd)
850{ 1693{
851#ifdef _WIN32 1694#ifdef _WIN32
852 int arg = 1; 1695 unsigned long arg = 1;
853 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1696 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
854#else 1697#else
855 fcntl (fd, F_SETFD, FD_CLOEXEC); 1698 fcntl (fd, F_SETFD, FD_CLOEXEC);
856 fcntl (fd, F_SETFL, O_NONBLOCK); 1699 fcntl (fd, F_SETFL, O_NONBLOCK);
857#endif 1700#endif
858} 1701}
859 1702
1703/*****************************************************************************/
1704
1705/*
1706 * the heap functions want a real array index. array index 0 is guaranteed to not
1707 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1708 * the branching factor of the d-tree.
1709 */
1710
1711/*
1712 * at the moment we allow libev the luxury of two heaps,
1713 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1714 * which is more cache-efficient.
1715 * the difference is about 5% with 50000+ watchers.
1716 */
1717#if EV_USE_4HEAP
1718
1719#define DHEAP 4
1720#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1721#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1722#define UPHEAP_DONE(p,k) ((p) == (k))
1723
1724/* away from the root */
1725inline_speed void
1726downheap (ANHE *heap, int N, int k)
1727{
1728 ANHE he = heap [k];
1729 ANHE *E = heap + N + HEAP0;
1730
1731 for (;;)
1732 {
1733 ev_tstamp minat;
1734 ANHE *minpos;
1735 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1736
1737 /* find minimum child */
1738 if (expect_true (pos + DHEAP - 1 < E))
1739 {
1740 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1741 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1742 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1743 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1744 }
1745 else if (pos < E)
1746 {
1747 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1748 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1749 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1750 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1751 }
1752 else
1753 break;
1754
1755 if (ANHE_at (he) <= minat)
1756 break;
1757
1758 heap [k] = *minpos;
1759 ev_active (ANHE_w (*minpos)) = k;
1760
1761 k = minpos - heap;
1762 }
1763
1764 heap [k] = he;
1765 ev_active (ANHE_w (he)) = k;
1766}
1767
1768#else /* 4HEAP */
1769
1770#define HEAP0 1
1771#define HPARENT(k) ((k) >> 1)
1772#define UPHEAP_DONE(p,k) (!(p))
1773
1774/* away from the root */
1775inline_speed void
1776downheap (ANHE *heap, int N, int k)
1777{
1778 ANHE he = heap [k];
1779
1780 for (;;)
1781 {
1782 int c = k << 1;
1783
1784 if (c >= N + HEAP0)
1785 break;
1786
1787 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
1788 ? 1 : 0;
1789
1790 if (ANHE_at (he) <= ANHE_at (heap [c]))
1791 break;
1792
1793 heap [k] = heap [c];
1794 ev_active (ANHE_w (heap [k])) = k;
1795
1796 k = c;
1797 }
1798
1799 heap [k] = he;
1800 ev_active (ANHE_w (he)) = k;
1801}
1802#endif
1803
1804/* towards the root */
1805inline_speed void
1806upheap (ANHE *heap, int k)
1807{
1808 ANHE he = heap [k];
1809
1810 for (;;)
1811 {
1812 int p = HPARENT (k);
1813
1814 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
1815 break;
1816
1817 heap [k] = heap [p];
1818 ev_active (ANHE_w (heap [k])) = k;
1819 k = p;
1820 }
1821
1822 heap [k] = he;
1823 ev_active (ANHE_w (he)) = k;
1824}
1825
1826/* move an element suitably so it is in a correct place */
1827inline_size void
1828adjustheap (ANHE *heap, int N, int k)
1829{
1830 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
1831 upheap (heap, k);
1832 else
1833 downheap (heap, N, k);
1834}
1835
1836/* rebuild the heap: this function is used only once and executed rarely */
1837inline_size void
1838reheap (ANHE *heap, int N)
1839{
1840 int i;
1841
1842 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1843 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1844 for (i = 0; i < N; ++i)
1845 upheap (heap, i + HEAP0);
1846}
1847
1848/*****************************************************************************/
1849
1850/* associate signal watchers to a signal signal */
1851typedef struct
1852{
1853 EV_ATOMIC_T pending;
1854#if EV_MULTIPLICITY
1855 EV_P;
1856#endif
1857 WL head;
1858} ANSIG;
1859
1860static ANSIG signals [EV_NSIG - 1];
1861
1862/*****************************************************************************/
1863
1864#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1865
860static void noinline 1866static void noinline ecb_cold
861evpipe_init (EV_P) 1867evpipe_init (EV_P)
862{ 1868{
863 if (!ev_is_active (&pipeev)) 1869 if (!ev_is_active (&pipe_w))
864 { 1870 {
865#if EV_USE_EVENTFD 1871# if EV_USE_EVENTFD
1872 evfd = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
1873 if (evfd < 0 && errno == EINVAL)
866 if ((evfd = eventfd (0, 0)) >= 0) 1874 evfd = eventfd (0, 0);
1875
1876 if (evfd >= 0)
867 { 1877 {
868 evpipe [0] = -1; 1878 evpipe [0] = -1;
869 fd_intern (evfd); 1879 fd_intern (evfd); /* doing it twice doesn't hurt */
870 ev_io_set (&pipeev, evfd, EV_READ); 1880 ev_io_set (&pipe_w, evfd, EV_READ);
871 } 1881 }
872 else 1882 else
873#endif 1883# endif
874 { 1884 {
875 while (pipe (evpipe)) 1885 while (pipe (evpipe))
876 syserr ("(libev) error creating signal/async pipe"); 1886 ev_syserr ("(libev) error creating signal/async pipe");
877 1887
878 fd_intern (evpipe [0]); 1888 fd_intern (evpipe [0]);
879 fd_intern (evpipe [1]); 1889 fd_intern (evpipe [1]);
880 ev_io_set (&pipeev, evpipe [0], EV_READ); 1890 ev_io_set (&pipe_w, evpipe [0], EV_READ);
881 } 1891 }
882 1892
883 ev_io_start (EV_A_ &pipeev); 1893 ev_io_start (EV_A_ &pipe_w);
884 ev_unref (EV_A); /* watcher should not keep loop alive */ 1894 ev_unref (EV_A); /* watcher should not keep loop alive */
885 } 1895 }
886} 1896}
887 1897
888void inline_size 1898inline_speed void
889evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1899evpipe_write (EV_P_ EV_ATOMIC_T *flag)
890{ 1900{
891 if (!*flag) 1901 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
1902
1903 if (expect_true (*flag))
1904 return;
1905
1906 *flag = 1;
1907 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
1908
1909 pipe_write_skipped = 1;
1910
1911 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
1912
1913 if (pipe_write_wanted)
892 { 1914 {
1915 int old_errno;
1916
1917 pipe_write_skipped = 0;
1918 ECB_MEMORY_FENCE_RELEASE;
1919
893 int old_errno = errno; /* save errno because write might clobber it */ 1920 old_errno = errno; /* save errno because write will clobber it */
894
895 *flag = 1;
896 1921
897#if EV_USE_EVENTFD 1922#if EV_USE_EVENTFD
898 if (evfd >= 0) 1923 if (evfd >= 0)
899 { 1924 {
900 uint64_t counter = 1; 1925 uint64_t counter = 1;
901 write (evfd, &counter, sizeof (uint64_t)); 1926 write (evfd, &counter, sizeof (uint64_t));
902 } 1927 }
903 else 1928 else
904#endif 1929#endif
1930 {
1931#ifdef _WIN32
1932 WSABUF buf;
1933 DWORD sent;
1934 buf.buf = &buf;
1935 buf.len = 1;
1936 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
1937#else
905 write (evpipe [1], &old_errno, 1); 1938 write (evpipe [1], &(evpipe [1]), 1);
1939#endif
1940 }
906 1941
907 errno = old_errno; 1942 errno = old_errno;
908 } 1943 }
909} 1944}
910 1945
1946/* called whenever the libev signal pipe */
1947/* got some events (signal, async) */
911static void 1948static void
912pipecb (EV_P_ ev_io *iow, int revents) 1949pipecb (EV_P_ ev_io *iow, int revents)
913{ 1950{
1951 int i;
1952
1953 if (revents & EV_READ)
1954 {
914#if EV_USE_EVENTFD 1955#if EV_USE_EVENTFD
915 if (evfd >= 0) 1956 if (evfd >= 0)
916 { 1957 {
917 uint64_t counter = 1; 1958 uint64_t counter;
918 read (evfd, &counter, sizeof (uint64_t)); 1959 read (evfd, &counter, sizeof (uint64_t));
919 } 1960 }
920 else 1961 else
921#endif 1962#endif
922 { 1963 {
923 char dummy; 1964 char dummy[4];
1965#ifdef _WIN32
1966 WSABUF buf;
1967 DWORD recvd;
1968 DWORD flags = 0;
1969 buf.buf = dummy;
1970 buf.len = sizeof (dummy);
1971 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
1972#else
924 read (evpipe [0], &dummy, 1); 1973 read (evpipe [0], &dummy, sizeof (dummy));
1974#endif
1975 }
1976 }
1977
1978 pipe_write_skipped = 0;
1979
1980 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
1981
1982#if EV_SIGNAL_ENABLE
1983 if (sig_pending)
925 } 1984 {
1985 sig_pending = 0;
926 1986
927 if (gotsig && ev_is_default_loop (EV_A)) 1987 ECB_MEMORY_FENCE;
928 {
929 int signum;
930 gotsig = 0;
931 1988
932 for (signum = signalmax; signum--; ) 1989 for (i = EV_NSIG - 1; i--; )
933 if (signals [signum].gotsig) 1990 if (expect_false (signals [i].pending))
934 ev_feed_signal_event (EV_A_ signum + 1); 1991 ev_feed_signal_event (EV_A_ i + 1);
935 } 1992 }
1993#endif
936 1994
937#if EV_ASYNC_ENABLE 1995#if EV_ASYNC_ENABLE
938 if (gotasync) 1996 if (async_pending)
939 { 1997 {
940 int i; 1998 async_pending = 0;
941 gotasync = 0; 1999
2000 ECB_MEMORY_FENCE;
942 2001
943 for (i = asynccnt; i--; ) 2002 for (i = asynccnt; i--; )
944 if (asyncs [i]->sent) 2003 if (asyncs [i]->sent)
945 { 2004 {
946 asyncs [i]->sent = 0; 2005 asyncs [i]->sent = 0;
2006 ECB_MEMORY_FENCE_RELEASE;
947 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2007 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
948 } 2008 }
949 } 2009 }
950#endif 2010#endif
951} 2011}
952 2012
953/*****************************************************************************/ 2013/*****************************************************************************/
954 2014
2015void
2016ev_feed_signal (int signum) EV_THROW
2017{
2018#if EV_MULTIPLICITY
2019 EV_P = signals [signum - 1].loop;
2020
2021 if (!EV_A)
2022 return;
2023#endif
2024
2025 if (!ev_active (&pipe_w))
2026 return;
2027
2028 signals [signum - 1].pending = 1;
2029 evpipe_write (EV_A_ &sig_pending);
2030}
2031
955static void 2032static void
956ev_sighandler (int signum) 2033ev_sighandler (int signum)
957{ 2034{
2035#ifdef _WIN32
2036 signal (signum, ev_sighandler);
2037#endif
2038
2039 ev_feed_signal (signum);
2040}
2041
2042void noinline
2043ev_feed_signal_event (EV_P_ int signum) EV_THROW
2044{
2045 WL w;
2046
2047 if (expect_false (signum <= 0 || signum > EV_NSIG))
2048 return;
2049
2050 --signum;
2051
958#if EV_MULTIPLICITY 2052#if EV_MULTIPLICITY
959 struct ev_loop *loop = &default_loop_struct; 2053 /* it is permissible to try to feed a signal to the wrong loop */
960#endif 2054 /* or, likely more useful, feeding a signal nobody is waiting for */
961 2055
962#if _WIN32 2056 if (expect_false (signals [signum].loop != EV_A))
963 signal (signum, ev_sighandler);
964#endif
965
966 signals [signum - 1].gotsig = 1;
967 evpipe_write (EV_A_ &gotsig);
968}
969
970void noinline
971ev_feed_signal_event (EV_P_ int signum)
972{
973 WL w;
974
975#if EV_MULTIPLICITY
976 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
977#endif
978
979 --signum;
980
981 if (signum < 0 || signum >= signalmax)
982 return; 2057 return;
2058#endif
983 2059
984 signals [signum].gotsig = 0; 2060 signals [signum].pending = 0;
2061 ECB_MEMORY_FENCE_RELEASE;
985 2062
986 for (w = signals [signum].head; w; w = w->next) 2063 for (w = signals [signum].head; w; w = w->next)
987 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2064 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
988} 2065}
989 2066
2067#if EV_USE_SIGNALFD
2068static void
2069sigfdcb (EV_P_ ev_io *iow, int revents)
2070{
2071 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2072
2073 for (;;)
2074 {
2075 ssize_t res = read (sigfd, si, sizeof (si));
2076
2077 /* not ISO-C, as res might be -1, but works with SuS */
2078 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2079 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2080
2081 if (res < (ssize_t)sizeof (si))
2082 break;
2083 }
2084}
2085#endif
2086
2087#endif
2088
990/*****************************************************************************/ 2089/*****************************************************************************/
991 2090
2091#if EV_CHILD_ENABLE
992static WL childs [EV_PID_HASHSIZE]; 2092static WL childs [EV_PID_HASHSIZE];
993
994#ifndef _WIN32
995 2093
996static ev_signal childev; 2094static ev_signal childev;
997 2095
998#ifndef WIFCONTINUED 2096#ifndef WIFCONTINUED
999# define WIFCONTINUED(status) 0 2097# define WIFCONTINUED(status) 0
1000#endif 2098#endif
1001 2099
1002void inline_speed 2100/* handle a single child status event */
2101inline_speed void
1003child_reap (EV_P_ int chain, int pid, int status) 2102child_reap (EV_P_ int chain, int pid, int status)
1004{ 2103{
1005 ev_child *w; 2104 ev_child *w;
1006 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2105 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1007 2106
1008 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2107 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1009 { 2108 {
1010 if ((w->pid == pid || !w->pid) 2109 if ((w->pid == pid || !w->pid)
1011 && (!traced || (w->flags & 1))) 2110 && (!traced || (w->flags & 1)))
1012 { 2111 {
1013 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2112 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1020 2119
1021#ifndef WCONTINUED 2120#ifndef WCONTINUED
1022# define WCONTINUED 0 2121# define WCONTINUED 0
1023#endif 2122#endif
1024 2123
2124/* called on sigchld etc., calls waitpid */
1025static void 2125static void
1026childcb (EV_P_ ev_signal *sw, int revents) 2126childcb (EV_P_ ev_signal *sw, int revents)
1027{ 2127{
1028 int pid, status; 2128 int pid, status;
1029 2129
1037 /* make sure we are called again until all children have been reaped */ 2137 /* make sure we are called again until all children have been reaped */
1038 /* we need to do it this way so that the callback gets called before we continue */ 2138 /* we need to do it this way so that the callback gets called before we continue */
1039 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2139 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1040 2140
1041 child_reap (EV_A_ pid, pid, status); 2141 child_reap (EV_A_ pid, pid, status);
1042 if (EV_PID_HASHSIZE > 1) 2142 if ((EV_PID_HASHSIZE) > 1)
1043 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2143 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1044} 2144}
1045 2145
1046#endif 2146#endif
1047 2147
1048/*****************************************************************************/ 2148/*****************************************************************************/
1049 2149
2150#if EV_USE_IOCP
2151# include "ev_iocp.c"
2152#endif
1050#if EV_USE_PORT 2153#if EV_USE_PORT
1051# include "ev_port.c" 2154# include "ev_port.c"
1052#endif 2155#endif
1053#if EV_USE_KQUEUE 2156#if EV_USE_KQUEUE
1054# include "ev_kqueue.c" 2157# include "ev_kqueue.c"
1061#endif 2164#endif
1062#if EV_USE_SELECT 2165#if EV_USE_SELECT
1063# include "ev_select.c" 2166# include "ev_select.c"
1064#endif 2167#endif
1065 2168
1066int 2169int ecb_cold
1067ev_version_major (void) 2170ev_version_major (void) EV_THROW
1068{ 2171{
1069 return EV_VERSION_MAJOR; 2172 return EV_VERSION_MAJOR;
1070} 2173}
1071 2174
1072int 2175int ecb_cold
1073ev_version_minor (void) 2176ev_version_minor (void) EV_THROW
1074{ 2177{
1075 return EV_VERSION_MINOR; 2178 return EV_VERSION_MINOR;
1076} 2179}
1077 2180
1078/* return true if we are running with elevated privileges and should ignore env variables */ 2181/* return true if we are running with elevated privileges and should ignore env variables */
1079int inline_size 2182int inline_size ecb_cold
1080enable_secure (void) 2183enable_secure (void)
1081{ 2184{
1082#ifdef _WIN32 2185#ifdef _WIN32
1083 return 0; 2186 return 0;
1084#else 2187#else
1085 return getuid () != geteuid () 2188 return getuid () != geteuid ()
1086 || getgid () != getegid (); 2189 || getgid () != getegid ();
1087#endif 2190#endif
1088} 2191}
1089 2192
1090unsigned int 2193unsigned int ecb_cold
1091ev_supported_backends (void) 2194ev_supported_backends (void) EV_THROW
1092{ 2195{
1093 unsigned int flags = 0; 2196 unsigned int flags = 0;
1094 2197
1095 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2198 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1096 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2199 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1099 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2202 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1100 2203
1101 return flags; 2204 return flags;
1102} 2205}
1103 2206
1104unsigned int 2207unsigned int ecb_cold
1105ev_recommended_backends (void) 2208ev_recommended_backends (void) EV_THROW
1106{ 2209{
1107 unsigned int flags = ev_supported_backends (); 2210 unsigned int flags = ev_supported_backends ();
1108 2211
1109#ifndef __NetBSD__ 2212#ifndef __NetBSD__
1110 /* kqueue is borked on everything but netbsd apparently */ 2213 /* kqueue is borked on everything but netbsd apparently */
1111 /* it usually doesn't work correctly on anything but sockets and pipes */ 2214 /* it usually doesn't work correctly on anything but sockets and pipes */
1112 flags &= ~EVBACKEND_KQUEUE; 2215 flags &= ~EVBACKEND_KQUEUE;
1113#endif 2216#endif
1114#ifdef __APPLE__ 2217#ifdef __APPLE__
1115 // flags &= ~EVBACKEND_KQUEUE; for documentation 2218 /* only select works correctly on that "unix-certified" platform */
1116 flags &= ~EVBACKEND_POLL; 2219 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2220 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2221#endif
2222#ifdef __FreeBSD__
2223 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1117#endif 2224#endif
1118 2225
1119 return flags; 2226 return flags;
1120} 2227}
1121 2228
2229unsigned int ecb_cold
2230ev_embeddable_backends (void) EV_THROW
2231{
2232 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2233
2234 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2235 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2236 flags &= ~EVBACKEND_EPOLL;
2237
2238 return flags;
2239}
2240
1122unsigned int 2241unsigned int
1123ev_embeddable_backends (void) 2242ev_backend (EV_P) EV_THROW
1124{ 2243{
1125 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2244 return backend;
1126
1127 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1128 /* please fix it and tell me how to detect the fix */
1129 flags &= ~EVBACKEND_EPOLL;
1130
1131 return flags;
1132} 2245}
1133 2246
2247#if EV_FEATURE_API
1134unsigned int 2248unsigned int
1135ev_backend (EV_P) 2249ev_iteration (EV_P) EV_THROW
1136{ 2250{
1137 return backend; 2251 return loop_count;
1138} 2252}
1139 2253
1140unsigned int 2254unsigned int
1141ev_loop_count (EV_P) 2255ev_depth (EV_P) EV_THROW
1142{ 2256{
1143 return loop_count; 2257 return loop_depth;
1144} 2258}
1145 2259
1146void 2260void
1147ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2261ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1148{ 2262{
1149 io_blocktime = interval; 2263 io_blocktime = interval;
1150} 2264}
1151 2265
1152void 2266void
1153ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2267ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1154{ 2268{
1155 timeout_blocktime = interval; 2269 timeout_blocktime = interval;
1156} 2270}
1157 2271
2272void
2273ev_set_userdata (EV_P_ void *data) EV_THROW
2274{
2275 userdata = data;
2276}
2277
2278void *
2279ev_userdata (EV_P) EV_THROW
2280{
2281 return userdata;
2282}
2283
2284void
2285ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2286{
2287 invoke_cb = invoke_pending_cb;
2288}
2289
2290void
2291ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2292{
2293 release_cb = release;
2294 acquire_cb = acquire;
2295}
2296#endif
2297
2298/* initialise a loop structure, must be zero-initialised */
1158static void noinline 2299static void noinline ecb_cold
1159loop_init (EV_P_ unsigned int flags) 2300loop_init (EV_P_ unsigned int flags) EV_THROW
1160{ 2301{
1161 if (!backend) 2302 if (!backend)
1162 { 2303 {
2304 origflags = flags;
2305
2306#if EV_USE_REALTIME
2307 if (!have_realtime)
2308 {
2309 struct timespec ts;
2310
2311 if (!clock_gettime (CLOCK_REALTIME, &ts))
2312 have_realtime = 1;
2313 }
2314#endif
2315
1163#if EV_USE_MONOTONIC 2316#if EV_USE_MONOTONIC
2317 if (!have_monotonic)
1164 { 2318 {
1165 struct timespec ts; 2319 struct timespec ts;
2320
1166 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2321 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1167 have_monotonic = 1; 2322 have_monotonic = 1;
1168 } 2323 }
1169#endif
1170
1171 ev_rt_now = ev_time ();
1172 mn_now = get_clock ();
1173 now_floor = mn_now;
1174 rtmn_diff = ev_rt_now - mn_now;
1175
1176 io_blocktime = 0.;
1177 timeout_blocktime = 0.;
1178 backend = 0;
1179 backend_fd = -1;
1180 gotasync = 0;
1181#if EV_USE_INOTIFY
1182 fs_fd = -2;
1183#endif 2324#endif
1184 2325
1185 /* pid check not overridable via env */ 2326 /* pid check not overridable via env */
1186#ifndef _WIN32 2327#ifndef _WIN32
1187 if (flags & EVFLAG_FORKCHECK) 2328 if (flags & EVFLAG_FORKCHECK)
1191 if (!(flags & EVFLAG_NOENV) 2332 if (!(flags & EVFLAG_NOENV)
1192 && !enable_secure () 2333 && !enable_secure ()
1193 && getenv ("LIBEV_FLAGS")) 2334 && getenv ("LIBEV_FLAGS"))
1194 flags = atoi (getenv ("LIBEV_FLAGS")); 2335 flags = atoi (getenv ("LIBEV_FLAGS"));
1195 2336
1196 if (!(flags & 0x0000ffffU)) 2337 ev_rt_now = ev_time ();
2338 mn_now = get_clock ();
2339 now_floor = mn_now;
2340 rtmn_diff = ev_rt_now - mn_now;
2341#if EV_FEATURE_API
2342 invoke_cb = ev_invoke_pending;
2343#endif
2344
2345 io_blocktime = 0.;
2346 timeout_blocktime = 0.;
2347 backend = 0;
2348 backend_fd = -1;
2349 sig_pending = 0;
2350#if EV_ASYNC_ENABLE
2351 async_pending = 0;
2352#endif
2353 pipe_write_skipped = 0;
2354 pipe_write_wanted = 0;
2355#if EV_USE_INOTIFY
2356 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2357#endif
2358#if EV_USE_SIGNALFD
2359 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2360#endif
2361
2362 if (!(flags & EVBACKEND_MASK))
1197 flags |= ev_recommended_backends (); 2363 flags |= ev_recommended_backends ();
1198 2364
2365#if EV_USE_IOCP
2366 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2367#endif
1199#if EV_USE_PORT 2368#if EV_USE_PORT
1200 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2369 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1201#endif 2370#endif
1202#if EV_USE_KQUEUE 2371#if EV_USE_KQUEUE
1203 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2372 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1210#endif 2379#endif
1211#if EV_USE_SELECT 2380#if EV_USE_SELECT
1212 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2381 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1213#endif 2382#endif
1214 2383
2384 ev_prepare_init (&pending_w, pendingcb);
2385
2386#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1215 ev_init (&pipeev, pipecb); 2387 ev_init (&pipe_w, pipecb);
1216 ev_set_priority (&pipeev, EV_MAXPRI); 2388 ev_set_priority (&pipe_w, EV_MAXPRI);
2389#endif
1217 } 2390 }
1218} 2391}
1219 2392
1220static void noinline 2393/* free up a loop structure */
2394void ecb_cold
1221loop_destroy (EV_P) 2395ev_loop_destroy (EV_P)
1222{ 2396{
1223 int i; 2397 int i;
1224 2398
2399#if EV_MULTIPLICITY
2400 /* mimic free (0) */
2401 if (!EV_A)
2402 return;
2403#endif
2404
2405#if EV_CLEANUP_ENABLE
2406 /* queue cleanup watchers (and execute them) */
2407 if (expect_false (cleanupcnt))
2408 {
2409 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2410 EV_INVOKE_PENDING;
2411 }
2412#endif
2413
2414#if EV_CHILD_ENABLE
2415 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2416 {
2417 ev_ref (EV_A); /* child watcher */
2418 ev_signal_stop (EV_A_ &childev);
2419 }
2420#endif
2421
1225 if (ev_is_active (&pipeev)) 2422 if (ev_is_active (&pipe_w))
1226 { 2423 {
1227 ev_ref (EV_A); /* signal watcher */ 2424 /*ev_ref (EV_A);*/
1228 ev_io_stop (EV_A_ &pipeev); 2425 /*ev_io_stop (EV_A_ &pipe_w);*/
1229 2426
1230#if EV_USE_EVENTFD 2427#if EV_USE_EVENTFD
1231 if (evfd >= 0) 2428 if (evfd >= 0)
1232 close (evfd); 2429 close (evfd);
1233#endif 2430#endif
1234 2431
1235 if (evpipe [0] >= 0) 2432 if (evpipe [0] >= 0)
1236 { 2433 {
1237 close (evpipe [0]); 2434 EV_WIN32_CLOSE_FD (evpipe [0]);
1238 close (evpipe [1]); 2435 EV_WIN32_CLOSE_FD (evpipe [1]);
1239 } 2436 }
1240 } 2437 }
2438
2439#if EV_USE_SIGNALFD
2440 if (ev_is_active (&sigfd_w))
2441 close (sigfd);
2442#endif
1241 2443
1242#if EV_USE_INOTIFY 2444#if EV_USE_INOTIFY
1243 if (fs_fd >= 0) 2445 if (fs_fd >= 0)
1244 close (fs_fd); 2446 close (fs_fd);
1245#endif 2447#endif
1246 2448
1247 if (backend_fd >= 0) 2449 if (backend_fd >= 0)
1248 close (backend_fd); 2450 close (backend_fd);
1249 2451
2452#if EV_USE_IOCP
2453 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2454#endif
1250#if EV_USE_PORT 2455#if EV_USE_PORT
1251 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2456 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1252#endif 2457#endif
1253#if EV_USE_KQUEUE 2458#if EV_USE_KQUEUE
1254 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2459 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1269#if EV_IDLE_ENABLE 2474#if EV_IDLE_ENABLE
1270 array_free (idle, [i]); 2475 array_free (idle, [i]);
1271#endif 2476#endif
1272 } 2477 }
1273 2478
1274 ev_free (anfds); anfdmax = 0; 2479 ev_free (anfds); anfds = 0; anfdmax = 0;
1275 2480
1276 /* have to use the microsoft-never-gets-it-right macro */ 2481 /* have to use the microsoft-never-gets-it-right macro */
2482 array_free (rfeed, EMPTY);
1277 array_free (fdchange, EMPTY); 2483 array_free (fdchange, EMPTY);
1278 array_free (timer, EMPTY); 2484 array_free (timer, EMPTY);
1279#if EV_PERIODIC_ENABLE 2485#if EV_PERIODIC_ENABLE
1280 array_free (periodic, EMPTY); 2486 array_free (periodic, EMPTY);
1281#endif 2487#endif
1282#if EV_FORK_ENABLE 2488#if EV_FORK_ENABLE
1283 array_free (fork, EMPTY); 2489 array_free (fork, EMPTY);
1284#endif 2490#endif
2491#if EV_CLEANUP_ENABLE
2492 array_free (cleanup, EMPTY);
2493#endif
1285 array_free (prepare, EMPTY); 2494 array_free (prepare, EMPTY);
1286 array_free (check, EMPTY); 2495 array_free (check, EMPTY);
1287#if EV_ASYNC_ENABLE 2496#if EV_ASYNC_ENABLE
1288 array_free (async, EMPTY); 2497 array_free (async, EMPTY);
1289#endif 2498#endif
1290 2499
1291 backend = 0; 2500 backend = 0;
2501
2502#if EV_MULTIPLICITY
2503 if (ev_is_default_loop (EV_A))
2504#endif
2505 ev_default_loop_ptr = 0;
2506#if EV_MULTIPLICITY
2507 else
2508 ev_free (EV_A);
2509#endif
1292} 2510}
1293 2511
1294#if EV_USE_INOTIFY 2512#if EV_USE_INOTIFY
1295void inline_size infy_fork (EV_P); 2513inline_size void infy_fork (EV_P);
1296#endif 2514#endif
1297 2515
1298void inline_size 2516inline_size void
1299loop_fork (EV_P) 2517loop_fork (EV_P)
1300{ 2518{
1301#if EV_USE_PORT 2519#if EV_USE_PORT
1302 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2520 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1303#endif 2521#endif
1309#endif 2527#endif
1310#if EV_USE_INOTIFY 2528#if EV_USE_INOTIFY
1311 infy_fork (EV_A); 2529 infy_fork (EV_A);
1312#endif 2530#endif
1313 2531
1314 if (ev_is_active (&pipeev)) 2532 if (ev_is_active (&pipe_w))
1315 { 2533 {
1316 /* this "locks" the handlers against writing to the pipe */ 2534 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
1317 /* while we modify the fd vars */
1318 gotsig = 1;
1319#if EV_ASYNC_ENABLE
1320 gotasync = 1;
1321#endif
1322 2535
1323 ev_ref (EV_A); 2536 ev_ref (EV_A);
1324 ev_io_stop (EV_A_ &pipeev); 2537 ev_io_stop (EV_A_ &pipe_w);
1325 2538
1326#if EV_USE_EVENTFD 2539#if EV_USE_EVENTFD
1327 if (evfd >= 0) 2540 if (evfd >= 0)
1328 close (evfd); 2541 close (evfd);
1329#endif 2542#endif
1330 2543
1331 if (evpipe [0] >= 0) 2544 if (evpipe [0] >= 0)
1332 { 2545 {
1333 close (evpipe [0]); 2546 EV_WIN32_CLOSE_FD (evpipe [0]);
1334 close (evpipe [1]); 2547 EV_WIN32_CLOSE_FD (evpipe [1]);
1335 } 2548 }
1336 2549
2550#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1337 evpipe_init (EV_A); 2551 evpipe_init (EV_A);
1338 /* now iterate over everything, in case we missed something */ 2552 /* now iterate over everything, in case we missed something */
1339 pipecb (EV_A_ &pipeev, EV_READ); 2553 pipecb (EV_A_ &pipe_w, EV_READ);
2554#endif
1340 } 2555 }
1341 2556
1342 postfork = 0; 2557 postfork = 0;
1343} 2558}
1344 2559
1345#if EV_MULTIPLICITY 2560#if EV_MULTIPLICITY
2561
1346struct ev_loop * 2562struct ev_loop * ecb_cold
1347ev_loop_new (unsigned int flags) 2563ev_loop_new (unsigned int flags) EV_THROW
1348{ 2564{
1349 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 2565 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1350 2566
1351 memset (loop, 0, sizeof (struct ev_loop)); 2567 memset (EV_A, 0, sizeof (struct ev_loop));
1352
1353 loop_init (EV_A_ flags); 2568 loop_init (EV_A_ flags);
1354 2569
1355 if (ev_backend (EV_A)) 2570 if (ev_backend (EV_A))
1356 return loop; 2571 return EV_A;
1357 2572
2573 ev_free (EV_A);
1358 return 0; 2574 return 0;
1359} 2575}
1360 2576
1361void 2577#endif /* multiplicity */
1362ev_loop_destroy (EV_P)
1363{
1364 loop_destroy (EV_A);
1365 ev_free (loop);
1366}
1367 2578
1368void 2579#if EV_VERIFY
1369ev_loop_fork (EV_P) 2580static void noinline ecb_cold
2581verify_watcher (EV_P_ W w)
1370{ 2582{
1371 postfork = 1; /* must be in line with ev_default_fork */ 2583 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1372}
1373 2584
2585 if (w->pending)
2586 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2587}
2588
2589static void noinline ecb_cold
2590verify_heap (EV_P_ ANHE *heap, int N)
2591{
2592 int i;
2593
2594 for (i = HEAP0; i < N + HEAP0; ++i)
2595 {
2596 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2597 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2598 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2599
2600 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2601 }
2602}
2603
2604static void noinline ecb_cold
2605array_verify (EV_P_ W *ws, int cnt)
2606{
2607 while (cnt--)
2608 {
2609 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2610 verify_watcher (EV_A_ ws [cnt]);
2611 }
2612}
2613#endif
2614
2615#if EV_FEATURE_API
2616void ecb_cold
2617ev_verify (EV_P) EV_THROW
2618{
2619#if EV_VERIFY
2620 int i;
2621 WL w, w2;
2622
2623 assert (activecnt >= -1);
2624
2625 assert (fdchangemax >= fdchangecnt);
2626 for (i = 0; i < fdchangecnt; ++i)
2627 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2628
2629 assert (anfdmax >= 0);
2630 for (i = 0; i < anfdmax; ++i)
2631 {
2632 int j = 0;
2633
2634 for (w = w2 = anfds [i].head; w; w = w->next)
2635 {
2636 verify_watcher (EV_A_ (W)w);
2637
2638 if (j++ & 1)
2639 {
2640 assert (("libev: io watcher list contains a loop", w != w2));
2641 w2 = w2->next;
2642 }
2643
2644 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2645 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2646 }
2647 }
2648
2649 assert (timermax >= timercnt);
2650 verify_heap (EV_A_ timers, timercnt);
2651
2652#if EV_PERIODIC_ENABLE
2653 assert (periodicmax >= periodiccnt);
2654 verify_heap (EV_A_ periodics, periodiccnt);
2655#endif
2656
2657 for (i = NUMPRI; i--; )
2658 {
2659 assert (pendingmax [i] >= pendingcnt [i]);
2660#if EV_IDLE_ENABLE
2661 assert (idleall >= 0);
2662 assert (idlemax [i] >= idlecnt [i]);
2663 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2664#endif
2665 }
2666
2667#if EV_FORK_ENABLE
2668 assert (forkmax >= forkcnt);
2669 array_verify (EV_A_ (W *)forks, forkcnt);
2670#endif
2671
2672#if EV_CLEANUP_ENABLE
2673 assert (cleanupmax >= cleanupcnt);
2674 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2675#endif
2676
2677#if EV_ASYNC_ENABLE
2678 assert (asyncmax >= asynccnt);
2679 array_verify (EV_A_ (W *)asyncs, asynccnt);
2680#endif
2681
2682#if EV_PREPARE_ENABLE
2683 assert (preparemax >= preparecnt);
2684 array_verify (EV_A_ (W *)prepares, preparecnt);
2685#endif
2686
2687#if EV_CHECK_ENABLE
2688 assert (checkmax >= checkcnt);
2689 array_verify (EV_A_ (W *)checks, checkcnt);
2690#endif
2691
2692# if 0
2693#if EV_CHILD_ENABLE
2694 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2695 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2696#endif
2697# endif
2698#endif
2699}
1374#endif 2700#endif
1375 2701
1376#if EV_MULTIPLICITY 2702#if EV_MULTIPLICITY
1377struct ev_loop * 2703struct ev_loop * ecb_cold
1378ev_default_loop_init (unsigned int flags)
1379#else 2704#else
1380int 2705int
2706#endif
1381ev_default_loop (unsigned int flags) 2707ev_default_loop (unsigned int flags) EV_THROW
1382#endif
1383{ 2708{
1384 if (!ev_default_loop_ptr) 2709 if (!ev_default_loop_ptr)
1385 { 2710 {
1386#if EV_MULTIPLICITY 2711#if EV_MULTIPLICITY
1387 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2712 EV_P = ev_default_loop_ptr = &default_loop_struct;
1388#else 2713#else
1389 ev_default_loop_ptr = 1; 2714 ev_default_loop_ptr = 1;
1390#endif 2715#endif
1391 2716
1392 loop_init (EV_A_ flags); 2717 loop_init (EV_A_ flags);
1393 2718
1394 if (ev_backend (EV_A)) 2719 if (ev_backend (EV_A))
1395 { 2720 {
1396#ifndef _WIN32 2721#if EV_CHILD_ENABLE
1397 ev_signal_init (&childev, childcb, SIGCHLD); 2722 ev_signal_init (&childev, childcb, SIGCHLD);
1398 ev_set_priority (&childev, EV_MAXPRI); 2723 ev_set_priority (&childev, EV_MAXPRI);
1399 ev_signal_start (EV_A_ &childev); 2724 ev_signal_start (EV_A_ &childev);
1400 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2725 ev_unref (EV_A); /* child watcher should not keep loop alive */
1401#endif 2726#endif
1406 2731
1407 return ev_default_loop_ptr; 2732 return ev_default_loop_ptr;
1408} 2733}
1409 2734
1410void 2735void
1411ev_default_destroy (void) 2736ev_loop_fork (EV_P) EV_THROW
1412{ 2737{
1413#if EV_MULTIPLICITY
1414 struct ev_loop *loop = ev_default_loop_ptr;
1415#endif
1416
1417#ifndef _WIN32
1418 ev_ref (EV_A); /* child watcher */
1419 ev_signal_stop (EV_A_ &childev);
1420#endif
1421
1422 loop_destroy (EV_A);
1423}
1424
1425void
1426ev_default_fork (void)
1427{
1428#if EV_MULTIPLICITY
1429 struct ev_loop *loop = ev_default_loop_ptr;
1430#endif
1431
1432 if (backend)
1433 postfork = 1; /* must be in line with ev_loop_fork */ 2738 postfork = 1; /* must be in line with ev_default_fork */
1434} 2739}
1435 2740
1436/*****************************************************************************/ 2741/*****************************************************************************/
1437 2742
1438void 2743void
1439ev_invoke (EV_P_ void *w, int revents) 2744ev_invoke (EV_P_ void *w, int revents)
1440{ 2745{
1441 EV_CB_INVOKE ((W)w, revents); 2746 EV_CB_INVOKE ((W)w, revents);
1442} 2747}
1443 2748
1444void inline_speed 2749unsigned int
1445call_pending (EV_P) 2750ev_pending_count (EV_P) EV_THROW
1446{ 2751{
1447 int pri; 2752 int pri;
2753 unsigned int count = 0;
1448 2754
1449 for (pri = NUMPRI; pri--; ) 2755 for (pri = NUMPRI; pri--; )
2756 count += pendingcnt [pri];
2757
2758 return count;
2759}
2760
2761void noinline
2762ev_invoke_pending (EV_P)
2763{
2764 for (pendingpri = NUMPRI; pendingpri--; ) /* pendingpri is modified during the loop */
1450 while (pendingcnt [pri]) 2765 while (pendingcnt [pendingpri])
1451 { 2766 {
1452 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 2767 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1453 2768
1454 if (expect_true (p->w))
1455 {
1456 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1457
1458 p->w->pending = 0; 2769 p->w->pending = 0;
1459 EV_CB_INVOKE (p->w, p->events); 2770 EV_CB_INVOKE (p->w, p->events);
1460 } 2771 EV_FREQUENT_CHECK;
1461 } 2772 }
1462} 2773}
1463 2774
1464void inline_size
1465timers_reify (EV_P)
1466{
1467 while (timercnt && ev_at (timers [1]) <= mn_now)
1468 {
1469 ev_timer *w = (ev_timer *)timers [1];
1470
1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1472
1473 /* first reschedule or stop timer */
1474 if (w->repeat)
1475 {
1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1477
1478 ev_at (w) += w->repeat;
1479 if (ev_at (w) < mn_now)
1480 ev_at (w) = mn_now;
1481
1482 downheap (timers, timercnt, 1);
1483 }
1484 else
1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1486
1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1488 }
1489}
1490
1491#if EV_PERIODIC_ENABLE
1492void inline_size
1493periodics_reify (EV_P)
1494{
1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1496 {
1497 ev_periodic *w = (ev_periodic *)periodics [1];
1498
1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1500
1501 /* first reschedule or stop timer */
1502 if (w->reschedule_cb)
1503 {
1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1506 downheap (periodics, periodiccnt, 1);
1507 }
1508 else if (w->interval)
1509 {
1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1513 downheap (periodics, periodiccnt, 1);
1514 }
1515 else
1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1517
1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1519 }
1520}
1521
1522static void noinline
1523periodics_reschedule (EV_P)
1524{
1525 int i;
1526
1527 /* adjust periodics after time jump */
1528 for (i = 0; i < periodiccnt; ++i)
1529 {
1530 ev_periodic *w = (ev_periodic *)periodics [i];
1531
1532 if (w->reschedule_cb)
1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1534 else if (w->interval)
1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1536 }
1537
1538 /* now rebuild the heap */
1539 for (i = periodiccnt >> 1; i--; )
1540 downheap (periodics, periodiccnt, i);
1541}
1542#endif
1543
1544#if EV_IDLE_ENABLE 2775#if EV_IDLE_ENABLE
1545void inline_size 2776/* make idle watchers pending. this handles the "call-idle */
2777/* only when higher priorities are idle" logic */
2778inline_size void
1546idle_reify (EV_P) 2779idle_reify (EV_P)
1547{ 2780{
1548 if (expect_false (idleall)) 2781 if (expect_false (idleall))
1549 { 2782 {
1550 int pri; 2783 int pri;
1562 } 2795 }
1563 } 2796 }
1564} 2797}
1565#endif 2798#endif
1566 2799
1567void inline_speed 2800/* make timers pending */
2801inline_size void
2802timers_reify (EV_P)
2803{
2804 EV_FREQUENT_CHECK;
2805
2806 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
2807 {
2808 do
2809 {
2810 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
2811
2812 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
2813
2814 /* first reschedule or stop timer */
2815 if (w->repeat)
2816 {
2817 ev_at (w) += w->repeat;
2818 if (ev_at (w) < mn_now)
2819 ev_at (w) = mn_now;
2820
2821 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
2822
2823 ANHE_at_cache (timers [HEAP0]);
2824 downheap (timers, timercnt, HEAP0);
2825 }
2826 else
2827 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
2828
2829 EV_FREQUENT_CHECK;
2830 feed_reverse (EV_A_ (W)w);
2831 }
2832 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
2833
2834 feed_reverse_done (EV_A_ EV_TIMER);
2835 }
2836}
2837
2838#if EV_PERIODIC_ENABLE
2839
2840static void noinline
2841periodic_recalc (EV_P_ ev_periodic *w)
2842{
2843 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
2844 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
2845
2846 /* the above almost always errs on the low side */
2847 while (at <= ev_rt_now)
2848 {
2849 ev_tstamp nat = at + w->interval;
2850
2851 /* when resolution fails us, we use ev_rt_now */
2852 if (expect_false (nat == at))
2853 {
2854 at = ev_rt_now;
2855 break;
2856 }
2857
2858 at = nat;
2859 }
2860
2861 ev_at (w) = at;
2862}
2863
2864/* make periodics pending */
2865inline_size void
2866periodics_reify (EV_P)
2867{
2868 EV_FREQUENT_CHECK;
2869
2870 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
2871 {
2872 do
2873 {
2874 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
2875
2876 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
2877
2878 /* first reschedule or stop timer */
2879 if (w->reschedule_cb)
2880 {
2881 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2882
2883 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
2884
2885 ANHE_at_cache (periodics [HEAP0]);
2886 downheap (periodics, periodiccnt, HEAP0);
2887 }
2888 else if (w->interval)
2889 {
2890 periodic_recalc (EV_A_ w);
2891 ANHE_at_cache (periodics [HEAP0]);
2892 downheap (periodics, periodiccnt, HEAP0);
2893 }
2894 else
2895 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
2896
2897 EV_FREQUENT_CHECK;
2898 feed_reverse (EV_A_ (W)w);
2899 }
2900 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
2901
2902 feed_reverse_done (EV_A_ EV_PERIODIC);
2903 }
2904}
2905
2906/* simply recalculate all periodics */
2907/* TODO: maybe ensure that at least one event happens when jumping forward? */
2908static void noinline ecb_cold
2909periodics_reschedule (EV_P)
2910{
2911 int i;
2912
2913 /* adjust periodics after time jump */
2914 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
2915 {
2916 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
2917
2918 if (w->reschedule_cb)
2919 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
2920 else if (w->interval)
2921 periodic_recalc (EV_A_ w);
2922
2923 ANHE_at_cache (periodics [i]);
2924 }
2925
2926 reheap (periodics, periodiccnt);
2927}
2928#endif
2929
2930/* adjust all timers by a given offset */
2931static void noinline ecb_cold
2932timers_reschedule (EV_P_ ev_tstamp adjust)
2933{
2934 int i;
2935
2936 for (i = 0; i < timercnt; ++i)
2937 {
2938 ANHE *he = timers + i + HEAP0;
2939 ANHE_w (*he)->at += adjust;
2940 ANHE_at_cache (*he);
2941 }
2942}
2943
2944/* fetch new monotonic and realtime times from the kernel */
2945/* also detect if there was a timejump, and act accordingly */
2946inline_speed void
1568time_update (EV_P_ ev_tstamp max_block) 2947time_update (EV_P_ ev_tstamp max_block)
1569{ 2948{
1570 int i;
1571
1572#if EV_USE_MONOTONIC 2949#if EV_USE_MONOTONIC
1573 if (expect_true (have_monotonic)) 2950 if (expect_true (have_monotonic))
1574 { 2951 {
2952 int i;
1575 ev_tstamp odiff = rtmn_diff; 2953 ev_tstamp odiff = rtmn_diff;
1576 2954
1577 mn_now = get_clock (); 2955 mn_now = get_clock ();
1578 2956
1579 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 2957 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1595 * doesn't hurt either as we only do this on time-jumps or 2973 * doesn't hurt either as we only do this on time-jumps or
1596 * in the unlikely event of having been preempted here. 2974 * in the unlikely event of having been preempted here.
1597 */ 2975 */
1598 for (i = 4; --i; ) 2976 for (i = 4; --i; )
1599 { 2977 {
2978 ev_tstamp diff;
1600 rtmn_diff = ev_rt_now - mn_now; 2979 rtmn_diff = ev_rt_now - mn_now;
1601 2980
1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 2981 diff = odiff - rtmn_diff;
2982
2983 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1603 return; /* all is well */ 2984 return; /* all is well */
1604 2985
1605 ev_rt_now = ev_time (); 2986 ev_rt_now = ev_time ();
1606 mn_now = get_clock (); 2987 mn_now = get_clock ();
1607 now_floor = mn_now; 2988 now_floor = mn_now;
1608 } 2989 }
1609 2990
2991 /* no timer adjustment, as the monotonic clock doesn't jump */
2992 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1610# if EV_PERIODIC_ENABLE 2993# if EV_PERIODIC_ENABLE
1611 periodics_reschedule (EV_A); 2994 periodics_reschedule (EV_A);
1612# endif 2995# endif
1613 /* no timer adjustment, as the monotonic clock doesn't jump */
1614 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1615 } 2996 }
1616 else 2997 else
1617#endif 2998#endif
1618 { 2999 {
1619 ev_rt_now = ev_time (); 3000 ev_rt_now = ev_time ();
1620 3001
1621 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3002 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1622 { 3003 {
3004 /* adjust timers. this is easy, as the offset is the same for all of them */
3005 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1623#if EV_PERIODIC_ENABLE 3006#if EV_PERIODIC_ENABLE
1624 periodics_reschedule (EV_A); 3007 periodics_reschedule (EV_A);
1625#endif 3008#endif
1626 /* adjust timers. this is easy, as the offset is the same for all of them */
1627 for (i = 1; i <= timercnt; ++i)
1628 ev_at (timers [i]) += ev_rt_now - mn_now;
1629 } 3009 }
1630 3010
1631 mn_now = ev_rt_now; 3011 mn_now = ev_rt_now;
1632 } 3012 }
1633} 3013}
1634 3014
1635void 3015int
1636ev_ref (EV_P)
1637{
1638 ++activecnt;
1639}
1640
1641void
1642ev_unref (EV_P)
1643{
1644 --activecnt;
1645}
1646
1647static int loop_done;
1648
1649void
1650ev_loop (EV_P_ int flags) 3016ev_run (EV_P_ int flags)
1651{ 3017{
3018#if EV_FEATURE_API
3019 ++loop_depth;
3020#endif
3021
3022 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3023
1652 loop_done = EVUNLOOP_CANCEL; 3024 loop_done = EVBREAK_CANCEL;
1653 3025
1654 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3026 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1655 3027
1656 do 3028 do
1657 { 3029 {
3030#if EV_VERIFY >= 2
3031 ev_verify (EV_A);
3032#endif
3033
1658#ifndef _WIN32 3034#ifndef _WIN32
1659 if (expect_false (curpid)) /* penalise the forking check even more */ 3035 if (expect_false (curpid)) /* penalise the forking check even more */
1660 if (expect_false (getpid () != curpid)) 3036 if (expect_false (getpid () != curpid))
1661 { 3037 {
1662 curpid = getpid (); 3038 curpid = getpid ();
1668 /* we might have forked, so queue fork handlers */ 3044 /* we might have forked, so queue fork handlers */
1669 if (expect_false (postfork)) 3045 if (expect_false (postfork))
1670 if (forkcnt) 3046 if (forkcnt)
1671 { 3047 {
1672 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3048 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1673 call_pending (EV_A); 3049 EV_INVOKE_PENDING;
1674 } 3050 }
1675#endif 3051#endif
1676 3052
3053#if EV_PREPARE_ENABLE
1677 /* queue prepare watchers (and execute them) */ 3054 /* queue prepare watchers (and execute them) */
1678 if (expect_false (preparecnt)) 3055 if (expect_false (preparecnt))
1679 { 3056 {
1680 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3057 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1681 call_pending (EV_A); 3058 EV_INVOKE_PENDING;
1682 } 3059 }
3060#endif
1683 3061
1684 if (expect_false (!activecnt)) 3062 if (expect_false (loop_done))
1685 break; 3063 break;
1686 3064
1687 /* we might have forked, so reify kernel state if necessary */ 3065 /* we might have forked, so reify kernel state if necessary */
1688 if (expect_false (postfork)) 3066 if (expect_false (postfork))
1689 loop_fork (EV_A); 3067 loop_fork (EV_A);
1694 /* calculate blocking time */ 3072 /* calculate blocking time */
1695 { 3073 {
1696 ev_tstamp waittime = 0.; 3074 ev_tstamp waittime = 0.;
1697 ev_tstamp sleeptime = 0.; 3075 ev_tstamp sleeptime = 0.;
1698 3076
3077 /* remember old timestamp for io_blocktime calculation */
3078 ev_tstamp prev_mn_now = mn_now;
3079
3080 /* update time to cancel out callback processing overhead */
3081 time_update (EV_A_ 1e100);
3082
3083 /* from now on, we want a pipe-wake-up */
3084 pipe_write_wanted = 1;
3085
3086 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3087
1699 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3088 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1700 { 3089 {
1701 /* update time to cancel out callback processing overhead */
1702 time_update (EV_A_ 1e100);
1703
1704 waittime = MAX_BLOCKTIME; 3090 waittime = MAX_BLOCKTIME;
1705 3091
1706 if (timercnt) 3092 if (timercnt)
1707 { 3093 {
1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 3094 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1709 if (waittime > to) waittime = to; 3095 if (waittime > to) waittime = to;
1710 } 3096 }
1711 3097
1712#if EV_PERIODIC_ENABLE 3098#if EV_PERIODIC_ENABLE
1713 if (periodiccnt) 3099 if (periodiccnt)
1714 { 3100 {
1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 3101 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1716 if (waittime > to) waittime = to; 3102 if (waittime > to) waittime = to;
1717 } 3103 }
1718#endif 3104#endif
1719 3105
3106 /* don't let timeouts decrease the waittime below timeout_blocktime */
1720 if (expect_false (waittime < timeout_blocktime)) 3107 if (expect_false (waittime < timeout_blocktime))
1721 waittime = timeout_blocktime; 3108 waittime = timeout_blocktime;
1722 3109
1723 sleeptime = waittime - backend_fudge; 3110 /* at this point, we NEED to wait, so we have to ensure */
3111 /* to pass a minimum nonzero value to the backend */
3112 if (expect_false (waittime < backend_mintime))
3113 waittime = backend_mintime;
1724 3114
3115 /* extra check because io_blocktime is commonly 0 */
1725 if (expect_true (sleeptime > io_blocktime)) 3116 if (expect_false (io_blocktime))
1726 sleeptime = io_blocktime;
1727
1728 if (sleeptime)
1729 { 3117 {
3118 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3119
3120 if (sleeptime > waittime - backend_mintime)
3121 sleeptime = waittime - backend_mintime;
3122
3123 if (expect_true (sleeptime > 0.))
3124 {
1730 ev_sleep (sleeptime); 3125 ev_sleep (sleeptime);
1731 waittime -= sleeptime; 3126 waittime -= sleeptime;
3127 }
1732 } 3128 }
1733 } 3129 }
1734 3130
3131#if EV_FEATURE_API
1735 ++loop_count; 3132 ++loop_count;
3133#endif
3134 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1736 backend_poll (EV_A_ waittime); 3135 backend_poll (EV_A_ waittime);
3136 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3137
3138 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3139
3140 if (pipe_write_skipped)
3141 {
3142 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3143 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3144 }
3145
1737 3146
1738 /* update ev_rt_now, do magic */ 3147 /* update ev_rt_now, do magic */
1739 time_update (EV_A_ waittime + sleeptime); 3148 time_update (EV_A_ waittime + sleeptime);
1740 } 3149 }
1741 3150
1748#if EV_IDLE_ENABLE 3157#if EV_IDLE_ENABLE
1749 /* queue idle watchers unless other events are pending */ 3158 /* queue idle watchers unless other events are pending */
1750 idle_reify (EV_A); 3159 idle_reify (EV_A);
1751#endif 3160#endif
1752 3161
3162#if EV_CHECK_ENABLE
1753 /* queue check watchers, to be executed first */ 3163 /* queue check watchers, to be executed first */
1754 if (expect_false (checkcnt)) 3164 if (expect_false (checkcnt))
1755 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3165 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3166#endif
1756 3167
1757 call_pending (EV_A); 3168 EV_INVOKE_PENDING;
1758 } 3169 }
1759 while (expect_true ( 3170 while (expect_true (
1760 activecnt 3171 activecnt
1761 && !loop_done 3172 && !loop_done
1762 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3173 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1763 )); 3174 ));
1764 3175
1765 if (loop_done == EVUNLOOP_ONE) 3176 if (loop_done == EVBREAK_ONE)
1766 loop_done = EVUNLOOP_CANCEL; 3177 loop_done = EVBREAK_CANCEL;
3178
3179#if EV_FEATURE_API
3180 --loop_depth;
3181#endif
3182
3183 return activecnt;
1767} 3184}
1768 3185
1769void 3186void
1770ev_unloop (EV_P_ int how) 3187ev_break (EV_P_ int how) EV_THROW
1771{ 3188{
1772 loop_done = how; 3189 loop_done = how;
1773} 3190}
1774 3191
3192void
3193ev_ref (EV_P) EV_THROW
3194{
3195 ++activecnt;
3196}
3197
3198void
3199ev_unref (EV_P) EV_THROW
3200{
3201 --activecnt;
3202}
3203
3204void
3205ev_now_update (EV_P) EV_THROW
3206{
3207 time_update (EV_A_ 1e100);
3208}
3209
3210void
3211ev_suspend (EV_P) EV_THROW
3212{
3213 ev_now_update (EV_A);
3214}
3215
3216void
3217ev_resume (EV_P) EV_THROW
3218{
3219 ev_tstamp mn_prev = mn_now;
3220
3221 ev_now_update (EV_A);
3222 timers_reschedule (EV_A_ mn_now - mn_prev);
3223#if EV_PERIODIC_ENABLE
3224 /* TODO: really do this? */
3225 periodics_reschedule (EV_A);
3226#endif
3227}
3228
1775/*****************************************************************************/ 3229/*****************************************************************************/
3230/* singly-linked list management, used when the expected list length is short */
1776 3231
1777void inline_size 3232inline_size void
1778wlist_add (WL *head, WL elem) 3233wlist_add (WL *head, WL elem)
1779{ 3234{
1780 elem->next = *head; 3235 elem->next = *head;
1781 *head = elem; 3236 *head = elem;
1782} 3237}
1783 3238
1784void inline_size 3239inline_size void
1785wlist_del (WL *head, WL elem) 3240wlist_del (WL *head, WL elem)
1786{ 3241{
1787 while (*head) 3242 while (*head)
1788 { 3243 {
1789 if (*head == elem) 3244 if (expect_true (*head == elem))
1790 { 3245 {
1791 *head = elem->next; 3246 *head = elem->next;
1792 return; 3247 break;
1793 } 3248 }
1794 3249
1795 head = &(*head)->next; 3250 head = &(*head)->next;
1796 } 3251 }
1797} 3252}
1798 3253
1799void inline_speed 3254/* internal, faster, version of ev_clear_pending */
3255inline_speed void
1800clear_pending (EV_P_ W w) 3256clear_pending (EV_P_ W w)
1801{ 3257{
1802 if (w->pending) 3258 if (w->pending)
1803 { 3259 {
1804 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3260 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1805 w->pending = 0; 3261 w->pending = 0;
1806 } 3262 }
1807} 3263}
1808 3264
1809int 3265int
1810ev_clear_pending (EV_P_ void *w) 3266ev_clear_pending (EV_P_ void *w) EV_THROW
1811{ 3267{
1812 W w_ = (W)w; 3268 W w_ = (W)w;
1813 int pending = w_->pending; 3269 int pending = w_->pending;
1814 3270
1815 if (expect_true (pending)) 3271 if (expect_true (pending))
1816 { 3272 {
1817 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3273 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3274 p->w = (W)&pending_w;
1818 w_->pending = 0; 3275 w_->pending = 0;
1819 p->w = 0;
1820 return p->events; 3276 return p->events;
1821 } 3277 }
1822 else 3278 else
1823 return 0; 3279 return 0;
1824} 3280}
1825 3281
1826void inline_size 3282inline_size void
1827pri_adjust (EV_P_ W w) 3283pri_adjust (EV_P_ W w)
1828{ 3284{
1829 int pri = w->priority; 3285 int pri = ev_priority (w);
1830 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3286 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1831 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3287 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1832 w->priority = pri; 3288 ev_set_priority (w, pri);
1833} 3289}
1834 3290
1835void inline_speed 3291inline_speed void
1836ev_start (EV_P_ W w, int active) 3292ev_start (EV_P_ W w, int active)
1837{ 3293{
1838 pri_adjust (EV_A_ w); 3294 pri_adjust (EV_A_ w);
1839 w->active = active; 3295 w->active = active;
1840 ev_ref (EV_A); 3296 ev_ref (EV_A);
1841} 3297}
1842 3298
1843void inline_size 3299inline_size void
1844ev_stop (EV_P_ W w) 3300ev_stop (EV_P_ W w)
1845{ 3301{
1846 ev_unref (EV_A); 3302 ev_unref (EV_A);
1847 w->active = 0; 3303 w->active = 0;
1848} 3304}
1849 3305
1850/*****************************************************************************/ 3306/*****************************************************************************/
1851 3307
1852void noinline 3308void noinline
1853ev_io_start (EV_P_ ev_io *w) 3309ev_io_start (EV_P_ ev_io *w) EV_THROW
1854{ 3310{
1855 int fd = w->fd; 3311 int fd = w->fd;
1856 3312
1857 if (expect_false (ev_is_active (w))) 3313 if (expect_false (ev_is_active (w)))
1858 return; 3314 return;
1859 3315
1860 assert (("ev_io_start called with negative fd", fd >= 0)); 3316 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3317 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3318
3319 EV_FREQUENT_CHECK;
1861 3320
1862 ev_start (EV_A_ (W)w, 1); 3321 ev_start (EV_A_ (W)w, 1);
1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3322 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1864 wlist_add (&anfds[fd].head, (WL)w); 3323 wlist_add (&anfds[fd].head, (WL)w);
1865 3324
3325 /* common bug, apparently */
3326 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3327
1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3328 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1867 w->events &= ~EV_IOFDSET; 3329 w->events &= ~EV__IOFDSET;
3330
3331 EV_FREQUENT_CHECK;
1868} 3332}
1869 3333
1870void noinline 3334void noinline
1871ev_io_stop (EV_P_ ev_io *w) 3335ev_io_stop (EV_P_ ev_io *w) EV_THROW
1872{ 3336{
1873 clear_pending (EV_A_ (W)w); 3337 clear_pending (EV_A_ (W)w);
1874 if (expect_false (!ev_is_active (w))) 3338 if (expect_false (!ev_is_active (w)))
1875 return; 3339 return;
1876 3340
1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3341 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3342
3343 EV_FREQUENT_CHECK;
1878 3344
1879 wlist_del (&anfds[w->fd].head, (WL)w); 3345 wlist_del (&anfds[w->fd].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 3346 ev_stop (EV_A_ (W)w);
1881 3347
1882 fd_change (EV_A_ w->fd, 1); 3348 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3349
3350 EV_FREQUENT_CHECK;
1883} 3351}
1884 3352
1885void noinline 3353void noinline
1886ev_timer_start (EV_P_ ev_timer *w) 3354ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1887{ 3355{
1888 if (expect_false (ev_is_active (w))) 3356 if (expect_false (ev_is_active (w)))
1889 return; 3357 return;
1890 3358
1891 ev_at (w) += mn_now; 3359 ev_at (w) += mn_now;
1892 3360
1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3361 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1894 3362
3363 EV_FREQUENT_CHECK;
3364
3365 ++timercnt;
1895 ev_start (EV_A_ (W)w, ++timercnt); 3366 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 3367 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1897 timers [timercnt] = (WT)w; 3368 ANHE_w (timers [ev_active (w)]) = (WT)w;
3369 ANHE_at_cache (timers [ev_active (w)]);
1898 upheap (timers, timercnt); 3370 upheap (timers, ev_active (w));
1899 3371
3372 EV_FREQUENT_CHECK;
3373
1900 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 3374 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1901} 3375}
1902 3376
1903void noinline 3377void noinline
1904ev_timer_stop (EV_P_ ev_timer *w) 3378ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1905{ 3379{
1906 clear_pending (EV_A_ (W)w); 3380 clear_pending (EV_A_ (W)w);
1907 if (expect_false (!ev_is_active (w))) 3381 if (expect_false (!ev_is_active (w)))
1908 return; 3382 return;
1909 3383
1910 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 3384 EV_FREQUENT_CHECK;
1911 3385
1912 { 3386 {
1913 int active = ((W)w)->active; 3387 int active = ev_active (w);
1914 3388
3389 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3390
3391 --timercnt;
3392
1915 if (expect_true (active < timercnt)) 3393 if (expect_true (active < timercnt + HEAP0))
1916 { 3394 {
1917 timers [active] = timers [timercnt]; 3395 timers [active] = timers [timercnt + HEAP0];
1918 adjustheap (timers, timercnt, active); 3396 adjustheap (timers, timercnt, active);
1919 } 3397 }
1920
1921 --timercnt;
1922 } 3398 }
1923 3399
1924 ev_at (w) -= mn_now; 3400 ev_at (w) -= mn_now;
1925 3401
1926 ev_stop (EV_A_ (W)w); 3402 ev_stop (EV_A_ (W)w);
3403
3404 EV_FREQUENT_CHECK;
1927} 3405}
1928 3406
1929void noinline 3407void noinline
1930ev_timer_again (EV_P_ ev_timer *w) 3408ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1931{ 3409{
3410 EV_FREQUENT_CHECK;
3411
3412 clear_pending (EV_A_ (W)w);
3413
1932 if (ev_is_active (w)) 3414 if (ev_is_active (w))
1933 { 3415 {
1934 if (w->repeat) 3416 if (w->repeat)
1935 { 3417 {
1936 ev_at (w) = mn_now + w->repeat; 3418 ev_at (w) = mn_now + w->repeat;
3419 ANHE_at_cache (timers [ev_active (w)]);
1937 adjustheap (timers, timercnt, ((W)w)->active); 3420 adjustheap (timers, timercnt, ev_active (w));
1938 } 3421 }
1939 else 3422 else
1940 ev_timer_stop (EV_A_ w); 3423 ev_timer_stop (EV_A_ w);
1941 } 3424 }
1942 else if (w->repeat) 3425 else if (w->repeat)
1943 { 3426 {
1944 ev_at (w) = w->repeat; 3427 ev_at (w) = w->repeat;
1945 ev_timer_start (EV_A_ w); 3428 ev_timer_start (EV_A_ w);
1946 } 3429 }
3430
3431 EV_FREQUENT_CHECK;
3432}
3433
3434ev_tstamp
3435ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3436{
3437 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1947} 3438}
1948 3439
1949#if EV_PERIODIC_ENABLE 3440#if EV_PERIODIC_ENABLE
1950void noinline 3441void noinline
1951ev_periodic_start (EV_P_ ev_periodic *w) 3442ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1952{ 3443{
1953 if (expect_false (ev_is_active (w))) 3444 if (expect_false (ev_is_active (w)))
1954 return; 3445 return;
1955 3446
1956 if (w->reschedule_cb) 3447 if (w->reschedule_cb)
1957 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3448 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1958 else if (w->interval) 3449 else if (w->interval)
1959 { 3450 {
1960 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3451 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1961 /* this formula differs from the one in periodic_reify because we do not always round up */ 3452 periodic_recalc (EV_A_ w);
1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1963 } 3453 }
1964 else 3454 else
1965 ev_at (w) = w->offset; 3455 ev_at (w) = w->offset;
1966 3456
3457 EV_FREQUENT_CHECK;
3458
3459 ++periodiccnt;
1967 ev_start (EV_A_ (W)w, ++periodiccnt); 3460 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 3461 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1969 periodics [periodiccnt] = (WT)w; 3462 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1970 upheap (periodics, periodiccnt); 3463 ANHE_at_cache (periodics [ev_active (w)]);
3464 upheap (periodics, ev_active (w));
1971 3465
3466 EV_FREQUENT_CHECK;
3467
1972 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3468 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1973} 3469}
1974 3470
1975void noinline 3471void noinline
1976ev_periodic_stop (EV_P_ ev_periodic *w) 3472ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1977{ 3473{
1978 clear_pending (EV_A_ (W)w); 3474 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 3475 if (expect_false (!ev_is_active (w)))
1980 return; 3476 return;
1981 3477
1982 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 3478 EV_FREQUENT_CHECK;
1983 3479
1984 { 3480 {
1985 int active = ((W)w)->active; 3481 int active = ev_active (w);
1986 3482
3483 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3484
3485 --periodiccnt;
3486
1987 if (expect_true (active < periodiccnt)) 3487 if (expect_true (active < periodiccnt + HEAP0))
1988 { 3488 {
1989 periodics [active] = periodics [periodiccnt]; 3489 periodics [active] = periodics [periodiccnt + HEAP0];
1990 adjustheap (periodics, periodiccnt, active); 3490 adjustheap (periodics, periodiccnt, active);
1991 } 3491 }
1992
1993 --periodiccnt;
1994 } 3492 }
1995 3493
1996 ev_stop (EV_A_ (W)w); 3494 ev_stop (EV_A_ (W)w);
3495
3496 EV_FREQUENT_CHECK;
1997} 3497}
1998 3498
1999void noinline 3499void noinline
2000ev_periodic_again (EV_P_ ev_periodic *w) 3500ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2001{ 3501{
2002 /* TODO: use adjustheap and recalculation */ 3502 /* TODO: use adjustheap and recalculation */
2003 ev_periodic_stop (EV_A_ w); 3503 ev_periodic_stop (EV_A_ w);
2004 ev_periodic_start (EV_A_ w); 3504 ev_periodic_start (EV_A_ w);
2005} 3505}
2007 3507
2008#ifndef SA_RESTART 3508#ifndef SA_RESTART
2009# define SA_RESTART 0 3509# define SA_RESTART 0
2010#endif 3510#endif
2011 3511
3512#if EV_SIGNAL_ENABLE
3513
2012void noinline 3514void noinline
2013ev_signal_start (EV_P_ ev_signal *w) 3515ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2014{ 3516{
2015#if EV_MULTIPLICITY
2016 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2017#endif
2018 if (expect_false (ev_is_active (w))) 3517 if (expect_false (ev_is_active (w)))
2019 return; 3518 return;
2020 3519
2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3520 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2022 3521
2023 evpipe_init (EV_A); 3522#if EV_MULTIPLICITY
3523 assert (("libev: a signal must not be attached to two different loops",
3524 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2024 3525
3526 signals [w->signum - 1].loop = EV_A;
3527#endif
3528
3529 EV_FREQUENT_CHECK;
3530
3531#if EV_USE_SIGNALFD
3532 if (sigfd == -2)
2025 { 3533 {
2026#ifndef _WIN32 3534 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2027 sigset_t full, prev; 3535 if (sigfd < 0 && errno == EINVAL)
2028 sigfillset (&full); 3536 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2029 sigprocmask (SIG_SETMASK, &full, &prev);
2030#endif
2031 3537
2032 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3538 if (sigfd >= 0)
3539 {
3540 fd_intern (sigfd); /* doing it twice will not hurt */
2033 3541
2034#ifndef _WIN32 3542 sigemptyset (&sigfd_set);
2035 sigprocmask (SIG_SETMASK, &prev, 0); 3543
2036#endif 3544 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3545 ev_set_priority (&sigfd_w, EV_MAXPRI);
3546 ev_io_start (EV_A_ &sigfd_w);
3547 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3548 }
2037 } 3549 }
3550
3551 if (sigfd >= 0)
3552 {
3553 /* TODO: check .head */
3554 sigaddset (&sigfd_set, w->signum);
3555 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3556
3557 signalfd (sigfd, &sigfd_set, 0);
3558 }
3559#endif
2038 3560
2039 ev_start (EV_A_ (W)w, 1); 3561 ev_start (EV_A_ (W)w, 1);
2040 wlist_add (&signals [w->signum - 1].head, (WL)w); 3562 wlist_add (&signals [w->signum - 1].head, (WL)w);
2041 3563
2042 if (!((WL)w)->next) 3564 if (!((WL)w)->next)
3565# if EV_USE_SIGNALFD
3566 if (sigfd < 0) /*TODO*/
3567# endif
2043 { 3568 {
2044#if _WIN32 3569# ifdef _WIN32
3570 evpipe_init (EV_A);
3571
2045 signal (w->signum, ev_sighandler); 3572 signal (w->signum, ev_sighandler);
2046#else 3573# else
2047 struct sigaction sa; 3574 struct sigaction sa;
3575
3576 evpipe_init (EV_A);
3577
2048 sa.sa_handler = ev_sighandler; 3578 sa.sa_handler = ev_sighandler;
2049 sigfillset (&sa.sa_mask); 3579 sigfillset (&sa.sa_mask);
2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3580 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2051 sigaction (w->signum, &sa, 0); 3581 sigaction (w->signum, &sa, 0);
3582
3583 if (origflags & EVFLAG_NOSIGMASK)
3584 {
3585 sigemptyset (&sa.sa_mask);
3586 sigaddset (&sa.sa_mask, w->signum);
3587 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3588 }
2052#endif 3589#endif
2053 } 3590 }
3591
3592 EV_FREQUENT_CHECK;
2054} 3593}
2055 3594
2056void noinline 3595void noinline
2057ev_signal_stop (EV_P_ ev_signal *w) 3596ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2058{ 3597{
2059 clear_pending (EV_A_ (W)w); 3598 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 3599 if (expect_false (!ev_is_active (w)))
2061 return; 3600 return;
2062 3601
3602 EV_FREQUENT_CHECK;
3603
2063 wlist_del (&signals [w->signum - 1].head, (WL)w); 3604 wlist_del (&signals [w->signum - 1].head, (WL)w);
2064 ev_stop (EV_A_ (W)w); 3605 ev_stop (EV_A_ (W)w);
2065 3606
2066 if (!signals [w->signum - 1].head) 3607 if (!signals [w->signum - 1].head)
3608 {
3609#if EV_MULTIPLICITY
3610 signals [w->signum - 1].loop = 0; /* unattach from signal */
3611#endif
3612#if EV_USE_SIGNALFD
3613 if (sigfd >= 0)
3614 {
3615 sigset_t ss;
3616
3617 sigemptyset (&ss);
3618 sigaddset (&ss, w->signum);
3619 sigdelset (&sigfd_set, w->signum);
3620
3621 signalfd (sigfd, &sigfd_set, 0);
3622 sigprocmask (SIG_UNBLOCK, &ss, 0);
3623 }
3624 else
3625#endif
2067 signal (w->signum, SIG_DFL); 3626 signal (w->signum, SIG_DFL);
3627 }
3628
3629 EV_FREQUENT_CHECK;
2068} 3630}
3631
3632#endif
3633
3634#if EV_CHILD_ENABLE
2069 3635
2070void 3636void
2071ev_child_start (EV_P_ ev_child *w) 3637ev_child_start (EV_P_ ev_child *w) EV_THROW
2072{ 3638{
2073#if EV_MULTIPLICITY 3639#if EV_MULTIPLICITY
2074 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3640 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2075#endif 3641#endif
2076 if (expect_false (ev_is_active (w))) 3642 if (expect_false (ev_is_active (w)))
2077 return; 3643 return;
2078 3644
3645 EV_FREQUENT_CHECK;
3646
2079 ev_start (EV_A_ (W)w, 1); 3647 ev_start (EV_A_ (W)w, 1);
2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3648 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3649
3650 EV_FREQUENT_CHECK;
2081} 3651}
2082 3652
2083void 3653void
2084ev_child_stop (EV_P_ ev_child *w) 3654ev_child_stop (EV_P_ ev_child *w) EV_THROW
2085{ 3655{
2086 clear_pending (EV_A_ (W)w); 3656 clear_pending (EV_A_ (W)w);
2087 if (expect_false (!ev_is_active (w))) 3657 if (expect_false (!ev_is_active (w)))
2088 return; 3658 return;
2089 3659
3660 EV_FREQUENT_CHECK;
3661
2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3662 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2091 ev_stop (EV_A_ (W)w); 3663 ev_stop (EV_A_ (W)w);
3664
3665 EV_FREQUENT_CHECK;
2092} 3666}
3667
3668#endif
2093 3669
2094#if EV_STAT_ENABLE 3670#if EV_STAT_ENABLE
2095 3671
2096# ifdef _WIN32 3672# ifdef _WIN32
2097# undef lstat 3673# undef lstat
2098# define lstat(a,b) _stati64 (a,b) 3674# define lstat(a,b) _stati64 (a,b)
2099# endif 3675# endif
2100 3676
2101#define DEF_STAT_INTERVAL 5.0074891 3677#define DEF_STAT_INTERVAL 5.0074891
3678#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2102#define MIN_STAT_INTERVAL 0.1074891 3679#define MIN_STAT_INTERVAL 0.1074891
2103 3680
2104static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3681static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2105 3682
2106#if EV_USE_INOTIFY 3683#if EV_USE_INOTIFY
2107# define EV_INOTIFY_BUFSIZE 8192 3684
3685/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3686# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2108 3687
2109static void noinline 3688static void noinline
2110infy_add (EV_P_ ev_stat *w) 3689infy_add (EV_P_ ev_stat *w)
2111{ 3690{
2112 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3691 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2113 3692
2114 if (w->wd < 0) 3693 if (w->wd >= 0)
3694 {
3695 struct statfs sfs;
3696
3697 /* now local changes will be tracked by inotify, but remote changes won't */
3698 /* unless the filesystem is known to be local, we therefore still poll */
3699 /* also do poll on <2.6.25, but with normal frequency */
3700
3701 if (!fs_2625)
3702 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3703 else if (!statfs (w->path, &sfs)
3704 && (sfs.f_type == 0x1373 /* devfs */
3705 || sfs.f_type == 0xEF53 /* ext2/3 */
3706 || sfs.f_type == 0x3153464a /* jfs */
3707 || sfs.f_type == 0x52654973 /* reiser3 */
3708 || sfs.f_type == 0x01021994 /* tempfs */
3709 || sfs.f_type == 0x58465342 /* xfs */))
3710 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3711 else
3712 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2115 { 3713 }
2116 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3714 else
3715 {
3716 /* can't use inotify, continue to stat */
3717 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2117 3718
2118 /* monitor some parent directory for speedup hints */ 3719 /* if path is not there, monitor some parent directory for speedup hints */
3720 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3721 /* but an efficiency issue only */
2119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3722 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2120 { 3723 {
2121 char path [4096]; 3724 char path [4096];
2122 strcpy (path, w->path); 3725 strcpy (path, w->path);
2123 3726
2126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3729 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3730 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2128 3731
2129 char *pend = strrchr (path, '/'); 3732 char *pend = strrchr (path, '/');
2130 3733
2131 if (!pend) 3734 if (!pend || pend == path)
2132 break; /* whoops, no '/', complain to your admin */ 3735 break;
2133 3736
2134 *pend = 0; 3737 *pend = 0;
2135 w->wd = inotify_add_watch (fs_fd, path, mask); 3738 w->wd = inotify_add_watch (fs_fd, path, mask);
2136 } 3739 }
2137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3740 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2138 } 3741 }
2139 } 3742 }
2140 else
2141 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2142 3743
2143 if (w->wd >= 0) 3744 if (w->wd >= 0)
2144 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3745 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3746
3747 /* now re-arm timer, if required */
3748 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3749 ev_timer_again (EV_A_ &w->timer);
3750 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2145} 3751}
2146 3752
2147static void noinline 3753static void noinline
2148infy_del (EV_P_ ev_stat *w) 3754infy_del (EV_P_ ev_stat *w)
2149{ 3755{
2152 3758
2153 if (wd < 0) 3759 if (wd < 0)
2154 return; 3760 return;
2155 3761
2156 w->wd = -2; 3762 w->wd = -2;
2157 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3763 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2158 wlist_del (&fs_hash [slot].head, (WL)w); 3764 wlist_del (&fs_hash [slot].head, (WL)w);
2159 3765
2160 /* remove this watcher, if others are watching it, they will rearm */ 3766 /* remove this watcher, if others are watching it, they will rearm */
2161 inotify_rm_watch (fs_fd, wd); 3767 inotify_rm_watch (fs_fd, wd);
2162} 3768}
2163 3769
2164static void noinline 3770static void noinline
2165infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3771infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2166{ 3772{
2167 if (slot < 0) 3773 if (slot < 0)
2168 /* overflow, need to check for all hahs slots */ 3774 /* overflow, need to check for all hash slots */
2169 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3775 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2170 infy_wd (EV_A_ slot, wd, ev); 3776 infy_wd (EV_A_ slot, wd, ev);
2171 else 3777 else
2172 { 3778 {
2173 WL w_; 3779 WL w_;
2174 3780
2175 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 3781 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2176 { 3782 {
2177 ev_stat *w = (ev_stat *)w_; 3783 ev_stat *w = (ev_stat *)w_;
2178 w_ = w_->next; /* lets us remove this watcher and all before it */ 3784 w_ = w_->next; /* lets us remove this watcher and all before it */
2179 3785
2180 if (w->wd == wd || wd == -1) 3786 if (w->wd == wd || wd == -1)
2181 { 3787 {
2182 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 3788 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2183 { 3789 {
3790 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2184 w->wd = -1; 3791 w->wd = -1;
2185 infy_add (EV_A_ w); /* re-add, no matter what */ 3792 infy_add (EV_A_ w); /* re-add, no matter what */
2186 } 3793 }
2187 3794
2188 stat_timer_cb (EV_A_ &w->timer, 0); 3795 stat_timer_cb (EV_A_ &w->timer, 0);
2193 3800
2194static void 3801static void
2195infy_cb (EV_P_ ev_io *w, int revents) 3802infy_cb (EV_P_ ev_io *w, int revents)
2196{ 3803{
2197 char buf [EV_INOTIFY_BUFSIZE]; 3804 char buf [EV_INOTIFY_BUFSIZE];
2198 struct inotify_event *ev = (struct inotify_event *)buf;
2199 int ofs; 3805 int ofs;
2200 int len = read (fs_fd, buf, sizeof (buf)); 3806 int len = read (fs_fd, buf, sizeof (buf));
2201 3807
2202 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 3808 for (ofs = 0; ofs < len; )
3809 {
3810 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2203 infy_wd (EV_A_ ev->wd, ev->wd, ev); 3811 infy_wd (EV_A_ ev->wd, ev->wd, ev);
3812 ofs += sizeof (struct inotify_event) + ev->len;
3813 }
2204} 3814}
2205 3815
2206void inline_size 3816inline_size void ecb_cold
3817ev_check_2625 (EV_P)
3818{
3819 /* kernels < 2.6.25 are borked
3820 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
3821 */
3822 if (ev_linux_version () < 0x020619)
3823 return;
3824
3825 fs_2625 = 1;
3826}
3827
3828inline_size int
3829infy_newfd (void)
3830{
3831#if defined IN_CLOEXEC && defined IN_NONBLOCK
3832 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
3833 if (fd >= 0)
3834 return fd;
3835#endif
3836 return inotify_init ();
3837}
3838
3839inline_size void
2207infy_init (EV_P) 3840infy_init (EV_P)
2208{ 3841{
2209 if (fs_fd != -2) 3842 if (fs_fd != -2)
2210 return; 3843 return;
2211 3844
3845 fs_fd = -1;
3846
3847 ev_check_2625 (EV_A);
3848
2212 fs_fd = inotify_init (); 3849 fs_fd = infy_newfd ();
2213 3850
2214 if (fs_fd >= 0) 3851 if (fs_fd >= 0)
2215 { 3852 {
3853 fd_intern (fs_fd);
2216 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 3854 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2217 ev_set_priority (&fs_w, EV_MAXPRI); 3855 ev_set_priority (&fs_w, EV_MAXPRI);
2218 ev_io_start (EV_A_ &fs_w); 3856 ev_io_start (EV_A_ &fs_w);
3857 ev_unref (EV_A);
2219 } 3858 }
2220} 3859}
2221 3860
2222void inline_size 3861inline_size void
2223infy_fork (EV_P) 3862infy_fork (EV_P)
2224{ 3863{
2225 int slot; 3864 int slot;
2226 3865
2227 if (fs_fd < 0) 3866 if (fs_fd < 0)
2228 return; 3867 return;
2229 3868
3869 ev_ref (EV_A);
3870 ev_io_stop (EV_A_ &fs_w);
2230 close (fs_fd); 3871 close (fs_fd);
2231 fs_fd = inotify_init (); 3872 fs_fd = infy_newfd ();
2232 3873
3874 if (fs_fd >= 0)
3875 {
3876 fd_intern (fs_fd);
3877 ev_io_set (&fs_w, fs_fd, EV_READ);
3878 ev_io_start (EV_A_ &fs_w);
3879 ev_unref (EV_A);
3880 }
3881
2233 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 3882 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2234 { 3883 {
2235 WL w_ = fs_hash [slot].head; 3884 WL w_ = fs_hash [slot].head;
2236 fs_hash [slot].head = 0; 3885 fs_hash [slot].head = 0;
2237 3886
2238 while (w_) 3887 while (w_)
2243 w->wd = -1; 3892 w->wd = -1;
2244 3893
2245 if (fs_fd >= 0) 3894 if (fs_fd >= 0)
2246 infy_add (EV_A_ w); /* re-add, no matter what */ 3895 infy_add (EV_A_ w); /* re-add, no matter what */
2247 else 3896 else
3897 {
3898 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3899 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2248 ev_timer_start (EV_A_ &w->timer); 3900 ev_timer_again (EV_A_ &w->timer);
3901 if (ev_is_active (&w->timer)) ev_unref (EV_A);
3902 }
2249 } 3903 }
2250
2251 } 3904 }
2252} 3905}
2253 3906
3907#endif
3908
3909#ifdef _WIN32
3910# define EV_LSTAT(p,b) _stati64 (p, b)
3911#else
3912# define EV_LSTAT(p,b) lstat (p, b)
2254#endif 3913#endif
2255 3914
2256void 3915void
2257ev_stat_stat (EV_P_ ev_stat *w) 3916ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2258{ 3917{
2259 if (lstat (w->path, &w->attr) < 0) 3918 if (lstat (w->path, &w->attr) < 0)
2260 w->attr.st_nlink = 0; 3919 w->attr.st_nlink = 0;
2261 else if (!w->attr.st_nlink) 3920 else if (!w->attr.st_nlink)
2262 w->attr.st_nlink = 1; 3921 w->attr.st_nlink = 1;
2265static void noinline 3924static void noinline
2266stat_timer_cb (EV_P_ ev_timer *w_, int revents) 3925stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2267{ 3926{
2268 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 3927 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2269 3928
2270 /* we copy this here each the time so that */ 3929 ev_statdata prev = w->attr;
2271 /* prev has the old value when the callback gets invoked */
2272 w->prev = w->attr;
2273 ev_stat_stat (EV_A_ w); 3930 ev_stat_stat (EV_A_ w);
2274 3931
2275 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 3932 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2276 if ( 3933 if (
2277 w->prev.st_dev != w->attr.st_dev 3934 prev.st_dev != w->attr.st_dev
2278 || w->prev.st_ino != w->attr.st_ino 3935 || prev.st_ino != w->attr.st_ino
2279 || w->prev.st_mode != w->attr.st_mode 3936 || prev.st_mode != w->attr.st_mode
2280 || w->prev.st_nlink != w->attr.st_nlink 3937 || prev.st_nlink != w->attr.st_nlink
2281 || w->prev.st_uid != w->attr.st_uid 3938 || prev.st_uid != w->attr.st_uid
2282 || w->prev.st_gid != w->attr.st_gid 3939 || prev.st_gid != w->attr.st_gid
2283 || w->prev.st_rdev != w->attr.st_rdev 3940 || prev.st_rdev != w->attr.st_rdev
2284 || w->prev.st_size != w->attr.st_size 3941 || prev.st_size != w->attr.st_size
2285 || w->prev.st_atime != w->attr.st_atime 3942 || prev.st_atime != w->attr.st_atime
2286 || w->prev.st_mtime != w->attr.st_mtime 3943 || prev.st_mtime != w->attr.st_mtime
2287 || w->prev.st_ctime != w->attr.st_ctime 3944 || prev.st_ctime != w->attr.st_ctime
2288 ) { 3945 ) {
3946 /* we only update w->prev on actual differences */
3947 /* in case we test more often than invoke the callback, */
3948 /* to ensure that prev is always different to attr */
3949 w->prev = prev;
3950
2289 #if EV_USE_INOTIFY 3951 #if EV_USE_INOTIFY
3952 if (fs_fd >= 0)
3953 {
2290 infy_del (EV_A_ w); 3954 infy_del (EV_A_ w);
2291 infy_add (EV_A_ w); 3955 infy_add (EV_A_ w);
2292 ev_stat_stat (EV_A_ w); /* avoid race... */ 3956 ev_stat_stat (EV_A_ w); /* avoid race... */
3957 }
2293 #endif 3958 #endif
2294 3959
2295 ev_feed_event (EV_A_ w, EV_STAT); 3960 ev_feed_event (EV_A_ w, EV_STAT);
2296 } 3961 }
2297} 3962}
2298 3963
2299void 3964void
2300ev_stat_start (EV_P_ ev_stat *w) 3965ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2301{ 3966{
2302 if (expect_false (ev_is_active (w))) 3967 if (expect_false (ev_is_active (w)))
2303 return; 3968 return;
2304 3969
2305 /* since we use memcmp, we need to clear any padding data etc. */
2306 memset (&w->prev, 0, sizeof (ev_statdata));
2307 memset (&w->attr, 0, sizeof (ev_statdata));
2308
2309 ev_stat_stat (EV_A_ w); 3970 ev_stat_stat (EV_A_ w);
2310 3971
3972 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2311 if (w->interval < MIN_STAT_INTERVAL) 3973 w->interval = MIN_STAT_INTERVAL;
2312 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2313 3974
2314 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 3975 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2315 ev_set_priority (&w->timer, ev_priority (w)); 3976 ev_set_priority (&w->timer, ev_priority (w));
2316 3977
2317#if EV_USE_INOTIFY 3978#if EV_USE_INOTIFY
2318 infy_init (EV_A); 3979 infy_init (EV_A);
2319 3980
2320 if (fs_fd >= 0) 3981 if (fs_fd >= 0)
2321 infy_add (EV_A_ w); 3982 infy_add (EV_A_ w);
2322 else 3983 else
2323#endif 3984#endif
3985 {
2324 ev_timer_start (EV_A_ &w->timer); 3986 ev_timer_again (EV_A_ &w->timer);
3987 ev_unref (EV_A);
3988 }
2325 3989
2326 ev_start (EV_A_ (W)w, 1); 3990 ev_start (EV_A_ (W)w, 1);
3991
3992 EV_FREQUENT_CHECK;
2327} 3993}
2328 3994
2329void 3995void
2330ev_stat_stop (EV_P_ ev_stat *w) 3996ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2331{ 3997{
2332 clear_pending (EV_A_ (W)w); 3998 clear_pending (EV_A_ (W)w);
2333 if (expect_false (!ev_is_active (w))) 3999 if (expect_false (!ev_is_active (w)))
2334 return; 4000 return;
2335 4001
4002 EV_FREQUENT_CHECK;
4003
2336#if EV_USE_INOTIFY 4004#if EV_USE_INOTIFY
2337 infy_del (EV_A_ w); 4005 infy_del (EV_A_ w);
2338#endif 4006#endif
4007
4008 if (ev_is_active (&w->timer))
4009 {
4010 ev_ref (EV_A);
2339 ev_timer_stop (EV_A_ &w->timer); 4011 ev_timer_stop (EV_A_ &w->timer);
4012 }
2340 4013
2341 ev_stop (EV_A_ (W)w); 4014 ev_stop (EV_A_ (W)w);
4015
4016 EV_FREQUENT_CHECK;
2342} 4017}
2343#endif 4018#endif
2344 4019
2345#if EV_IDLE_ENABLE 4020#if EV_IDLE_ENABLE
2346void 4021void
2347ev_idle_start (EV_P_ ev_idle *w) 4022ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2348{ 4023{
2349 if (expect_false (ev_is_active (w))) 4024 if (expect_false (ev_is_active (w)))
2350 return; 4025 return;
2351 4026
2352 pri_adjust (EV_A_ (W)w); 4027 pri_adjust (EV_A_ (W)w);
4028
4029 EV_FREQUENT_CHECK;
2353 4030
2354 { 4031 {
2355 int active = ++idlecnt [ABSPRI (w)]; 4032 int active = ++idlecnt [ABSPRI (w)];
2356 4033
2357 ++idleall; 4034 ++idleall;
2358 ev_start (EV_A_ (W)w, active); 4035 ev_start (EV_A_ (W)w, active);
2359 4036
2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4037 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2361 idles [ABSPRI (w)][active - 1] = w; 4038 idles [ABSPRI (w)][active - 1] = w;
2362 } 4039 }
4040
4041 EV_FREQUENT_CHECK;
2363} 4042}
2364 4043
2365void 4044void
2366ev_idle_stop (EV_P_ ev_idle *w) 4045ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2367{ 4046{
2368 clear_pending (EV_A_ (W)w); 4047 clear_pending (EV_A_ (W)w);
2369 if (expect_false (!ev_is_active (w))) 4048 if (expect_false (!ev_is_active (w)))
2370 return; 4049 return;
2371 4050
4051 EV_FREQUENT_CHECK;
4052
2372 { 4053 {
2373 int active = ((W)w)->active; 4054 int active = ev_active (w);
2374 4055
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4056 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2376 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4057 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2377 4058
2378 ev_stop (EV_A_ (W)w); 4059 ev_stop (EV_A_ (W)w);
2379 --idleall; 4060 --idleall;
2380 } 4061 }
2381}
2382#endif
2383 4062
4063 EV_FREQUENT_CHECK;
4064}
4065#endif
4066
4067#if EV_PREPARE_ENABLE
2384void 4068void
2385ev_prepare_start (EV_P_ ev_prepare *w) 4069ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2386{ 4070{
2387 if (expect_false (ev_is_active (w))) 4071 if (expect_false (ev_is_active (w)))
2388 return; 4072 return;
4073
4074 EV_FREQUENT_CHECK;
2389 4075
2390 ev_start (EV_A_ (W)w, ++preparecnt); 4076 ev_start (EV_A_ (W)w, ++preparecnt);
2391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4077 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2392 prepares [preparecnt - 1] = w; 4078 prepares [preparecnt - 1] = w;
4079
4080 EV_FREQUENT_CHECK;
2393} 4081}
2394 4082
2395void 4083void
2396ev_prepare_stop (EV_P_ ev_prepare *w) 4084ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2397{ 4085{
2398 clear_pending (EV_A_ (W)w); 4086 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 4087 if (expect_false (!ev_is_active (w)))
2400 return; 4088 return;
2401 4089
4090 EV_FREQUENT_CHECK;
4091
2402 { 4092 {
2403 int active = ((W)w)->active; 4093 int active = ev_active (w);
4094
2404 prepares [active - 1] = prepares [--preparecnt]; 4095 prepares [active - 1] = prepares [--preparecnt];
2405 ((W)prepares [active - 1])->active = active; 4096 ev_active (prepares [active - 1]) = active;
2406 } 4097 }
2407 4098
2408 ev_stop (EV_A_ (W)w); 4099 ev_stop (EV_A_ (W)w);
2409}
2410 4100
4101 EV_FREQUENT_CHECK;
4102}
4103#endif
4104
4105#if EV_CHECK_ENABLE
2411void 4106void
2412ev_check_start (EV_P_ ev_check *w) 4107ev_check_start (EV_P_ ev_check *w) EV_THROW
2413{ 4108{
2414 if (expect_false (ev_is_active (w))) 4109 if (expect_false (ev_is_active (w)))
2415 return; 4110 return;
4111
4112 EV_FREQUENT_CHECK;
2416 4113
2417 ev_start (EV_A_ (W)w, ++checkcnt); 4114 ev_start (EV_A_ (W)w, ++checkcnt);
2418 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4115 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2419 checks [checkcnt - 1] = w; 4116 checks [checkcnt - 1] = w;
4117
4118 EV_FREQUENT_CHECK;
2420} 4119}
2421 4120
2422void 4121void
2423ev_check_stop (EV_P_ ev_check *w) 4122ev_check_stop (EV_P_ ev_check *w) EV_THROW
2424{ 4123{
2425 clear_pending (EV_A_ (W)w); 4124 clear_pending (EV_A_ (W)w);
2426 if (expect_false (!ev_is_active (w))) 4125 if (expect_false (!ev_is_active (w)))
2427 return; 4126 return;
2428 4127
4128 EV_FREQUENT_CHECK;
4129
2429 { 4130 {
2430 int active = ((W)w)->active; 4131 int active = ev_active (w);
4132
2431 checks [active - 1] = checks [--checkcnt]; 4133 checks [active - 1] = checks [--checkcnt];
2432 ((W)checks [active - 1])->active = active; 4134 ev_active (checks [active - 1]) = active;
2433 } 4135 }
2434 4136
2435 ev_stop (EV_A_ (W)w); 4137 ev_stop (EV_A_ (W)w);
4138
4139 EV_FREQUENT_CHECK;
2436} 4140}
4141#endif
2437 4142
2438#if EV_EMBED_ENABLE 4143#if EV_EMBED_ENABLE
2439void noinline 4144void noinline
2440ev_embed_sweep (EV_P_ ev_embed *w) 4145ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2441{ 4146{
2442 ev_loop (w->other, EVLOOP_NONBLOCK); 4147 ev_run (w->other, EVRUN_NOWAIT);
2443} 4148}
2444 4149
2445static void 4150static void
2446embed_io_cb (EV_P_ ev_io *io, int revents) 4151embed_io_cb (EV_P_ ev_io *io, int revents)
2447{ 4152{
2448 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4153 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2449 4154
2450 if (ev_cb (w)) 4155 if (ev_cb (w))
2451 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4156 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2452 else 4157 else
2453 ev_loop (w->other, EVLOOP_NONBLOCK); 4158 ev_run (w->other, EVRUN_NOWAIT);
2454} 4159}
2455 4160
2456static void 4161static void
2457embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4162embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2458{ 4163{
2459 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4164 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2460 4165
2461 { 4166 {
2462 struct ev_loop *loop = w->other; 4167 EV_P = w->other;
2463 4168
2464 while (fdchangecnt) 4169 while (fdchangecnt)
2465 { 4170 {
2466 fd_reify (EV_A); 4171 fd_reify (EV_A);
2467 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4172 ev_run (EV_A_ EVRUN_NOWAIT);
2468 } 4173 }
2469 } 4174 }
4175}
4176
4177static void
4178embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4179{
4180 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4181
4182 ev_embed_stop (EV_A_ w);
4183
4184 {
4185 EV_P = w->other;
4186
4187 ev_loop_fork (EV_A);
4188 ev_run (EV_A_ EVRUN_NOWAIT);
4189 }
4190
4191 ev_embed_start (EV_A_ w);
2470} 4192}
2471 4193
2472#if 0 4194#if 0
2473static void 4195static void
2474embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4196embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2476 ev_idle_stop (EV_A_ idle); 4198 ev_idle_stop (EV_A_ idle);
2477} 4199}
2478#endif 4200#endif
2479 4201
2480void 4202void
2481ev_embed_start (EV_P_ ev_embed *w) 4203ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2482{ 4204{
2483 if (expect_false (ev_is_active (w))) 4205 if (expect_false (ev_is_active (w)))
2484 return; 4206 return;
2485 4207
2486 { 4208 {
2487 struct ev_loop *loop = w->other; 4209 EV_P = w->other;
2488 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4210 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2489 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4211 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2490 } 4212 }
4213
4214 EV_FREQUENT_CHECK;
2491 4215
2492 ev_set_priority (&w->io, ev_priority (w)); 4216 ev_set_priority (&w->io, ev_priority (w));
2493 ev_io_start (EV_A_ &w->io); 4217 ev_io_start (EV_A_ &w->io);
2494 4218
2495 ev_prepare_init (&w->prepare, embed_prepare_cb); 4219 ev_prepare_init (&w->prepare, embed_prepare_cb);
2496 ev_set_priority (&w->prepare, EV_MINPRI); 4220 ev_set_priority (&w->prepare, EV_MINPRI);
2497 ev_prepare_start (EV_A_ &w->prepare); 4221 ev_prepare_start (EV_A_ &w->prepare);
2498 4222
4223 ev_fork_init (&w->fork, embed_fork_cb);
4224 ev_fork_start (EV_A_ &w->fork);
4225
2499 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4226 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2500 4227
2501 ev_start (EV_A_ (W)w, 1); 4228 ev_start (EV_A_ (W)w, 1);
4229
4230 EV_FREQUENT_CHECK;
2502} 4231}
2503 4232
2504void 4233void
2505ev_embed_stop (EV_P_ ev_embed *w) 4234ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2506{ 4235{
2507 clear_pending (EV_A_ (W)w); 4236 clear_pending (EV_A_ (W)w);
2508 if (expect_false (!ev_is_active (w))) 4237 if (expect_false (!ev_is_active (w)))
2509 return; 4238 return;
2510 4239
4240 EV_FREQUENT_CHECK;
4241
2511 ev_io_stop (EV_A_ &w->io); 4242 ev_io_stop (EV_A_ &w->io);
2512 ev_prepare_stop (EV_A_ &w->prepare); 4243 ev_prepare_stop (EV_A_ &w->prepare);
4244 ev_fork_stop (EV_A_ &w->fork);
2513 4245
2514 ev_stop (EV_A_ (W)w); 4246 ev_stop (EV_A_ (W)w);
4247
4248 EV_FREQUENT_CHECK;
2515} 4249}
2516#endif 4250#endif
2517 4251
2518#if EV_FORK_ENABLE 4252#if EV_FORK_ENABLE
2519void 4253void
2520ev_fork_start (EV_P_ ev_fork *w) 4254ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2521{ 4255{
2522 if (expect_false (ev_is_active (w))) 4256 if (expect_false (ev_is_active (w)))
2523 return; 4257 return;
4258
4259 EV_FREQUENT_CHECK;
2524 4260
2525 ev_start (EV_A_ (W)w, ++forkcnt); 4261 ev_start (EV_A_ (W)w, ++forkcnt);
2526 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4262 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2527 forks [forkcnt - 1] = w; 4263 forks [forkcnt - 1] = w;
4264
4265 EV_FREQUENT_CHECK;
2528} 4266}
2529 4267
2530void 4268void
2531ev_fork_stop (EV_P_ ev_fork *w) 4269ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2532{ 4270{
2533 clear_pending (EV_A_ (W)w); 4271 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w))) 4272 if (expect_false (!ev_is_active (w)))
2535 return; 4273 return;
2536 4274
4275 EV_FREQUENT_CHECK;
4276
2537 { 4277 {
2538 int active = ((W)w)->active; 4278 int active = ev_active (w);
4279
2539 forks [active - 1] = forks [--forkcnt]; 4280 forks [active - 1] = forks [--forkcnt];
2540 ((W)forks [active - 1])->active = active; 4281 ev_active (forks [active - 1]) = active;
2541 } 4282 }
2542 4283
2543 ev_stop (EV_A_ (W)w); 4284 ev_stop (EV_A_ (W)w);
4285
4286 EV_FREQUENT_CHECK;
4287}
4288#endif
4289
4290#if EV_CLEANUP_ENABLE
4291void
4292ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4293{
4294 if (expect_false (ev_is_active (w)))
4295 return;
4296
4297 EV_FREQUENT_CHECK;
4298
4299 ev_start (EV_A_ (W)w, ++cleanupcnt);
4300 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4301 cleanups [cleanupcnt - 1] = w;
4302
4303 /* cleanup watchers should never keep a refcount on the loop */
4304 ev_unref (EV_A);
4305 EV_FREQUENT_CHECK;
4306}
4307
4308void
4309ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4310{
4311 clear_pending (EV_A_ (W)w);
4312 if (expect_false (!ev_is_active (w)))
4313 return;
4314
4315 EV_FREQUENT_CHECK;
4316 ev_ref (EV_A);
4317
4318 {
4319 int active = ev_active (w);
4320
4321 cleanups [active - 1] = cleanups [--cleanupcnt];
4322 ev_active (cleanups [active - 1]) = active;
4323 }
4324
4325 ev_stop (EV_A_ (W)w);
4326
4327 EV_FREQUENT_CHECK;
2544} 4328}
2545#endif 4329#endif
2546 4330
2547#if EV_ASYNC_ENABLE 4331#if EV_ASYNC_ENABLE
2548void 4332void
2549ev_async_start (EV_P_ ev_async *w) 4333ev_async_start (EV_P_ ev_async *w) EV_THROW
2550{ 4334{
2551 if (expect_false (ev_is_active (w))) 4335 if (expect_false (ev_is_active (w)))
2552 return; 4336 return;
2553 4337
4338 w->sent = 0;
4339
2554 evpipe_init (EV_A); 4340 evpipe_init (EV_A);
4341
4342 EV_FREQUENT_CHECK;
2555 4343
2556 ev_start (EV_A_ (W)w, ++asynccnt); 4344 ev_start (EV_A_ (W)w, ++asynccnt);
2557 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4345 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2558 asyncs [asynccnt - 1] = w; 4346 asyncs [asynccnt - 1] = w;
4347
4348 EV_FREQUENT_CHECK;
2559} 4349}
2560 4350
2561void 4351void
2562ev_async_stop (EV_P_ ev_async *w) 4352ev_async_stop (EV_P_ ev_async *w) EV_THROW
2563{ 4353{
2564 clear_pending (EV_A_ (W)w); 4354 clear_pending (EV_A_ (W)w);
2565 if (expect_false (!ev_is_active (w))) 4355 if (expect_false (!ev_is_active (w)))
2566 return; 4356 return;
2567 4357
4358 EV_FREQUENT_CHECK;
4359
2568 { 4360 {
2569 int active = ((W)w)->active; 4361 int active = ev_active (w);
4362
2570 asyncs [active - 1] = asyncs [--asynccnt]; 4363 asyncs [active - 1] = asyncs [--asynccnt];
2571 ((W)asyncs [active - 1])->active = active; 4364 ev_active (asyncs [active - 1]) = active;
2572 } 4365 }
2573 4366
2574 ev_stop (EV_A_ (W)w); 4367 ev_stop (EV_A_ (W)w);
4368
4369 EV_FREQUENT_CHECK;
2575} 4370}
2576 4371
2577void 4372void
2578ev_async_send (EV_P_ ev_async *w) 4373ev_async_send (EV_P_ ev_async *w) EV_THROW
2579{ 4374{
2580 w->sent = 1; 4375 w->sent = 1;
2581 evpipe_write (EV_A_ &gotasync); 4376 evpipe_write (EV_A_ &async_pending);
2582} 4377}
2583#endif 4378#endif
2584 4379
2585/*****************************************************************************/ 4380/*****************************************************************************/
2586 4381
2596once_cb (EV_P_ struct ev_once *once, int revents) 4391once_cb (EV_P_ struct ev_once *once, int revents)
2597{ 4392{
2598 void (*cb)(int revents, void *arg) = once->cb; 4393 void (*cb)(int revents, void *arg) = once->cb;
2599 void *arg = once->arg; 4394 void *arg = once->arg;
2600 4395
2601 ev_io_stop (EV_A_ &once->io); 4396 ev_io_stop (EV_A_ &once->io);
2602 ev_timer_stop (EV_A_ &once->to); 4397 ev_timer_stop (EV_A_ &once->to);
2603 ev_free (once); 4398 ev_free (once);
2604 4399
2605 cb (revents, arg); 4400 cb (revents, arg);
2606} 4401}
2607 4402
2608static void 4403static void
2609once_cb_io (EV_P_ ev_io *w, int revents) 4404once_cb_io (EV_P_ ev_io *w, int revents)
2610{ 4405{
2611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4406 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4407
4408 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2612} 4409}
2613 4410
2614static void 4411static void
2615once_cb_to (EV_P_ ev_timer *w, int revents) 4412once_cb_to (EV_P_ ev_timer *w, int revents)
2616{ 4413{
2617 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4414 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4415
4416 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2618} 4417}
2619 4418
2620void 4419void
2621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4420ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2622{ 4421{
2623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4422 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2624 4423
2625 if (expect_false (!once)) 4424 if (expect_false (!once))
2626 { 4425 {
2627 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4426 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2628 return; 4427 return;
2629 } 4428 }
2630 4429
2631 once->cb = cb; 4430 once->cb = cb;
2632 once->arg = arg; 4431 once->arg = arg;
2644 ev_timer_set (&once->to, timeout, 0.); 4443 ev_timer_set (&once->to, timeout, 0.);
2645 ev_timer_start (EV_A_ &once->to); 4444 ev_timer_start (EV_A_ &once->to);
2646 } 4445 }
2647} 4446}
2648 4447
4448/*****************************************************************************/
4449
4450#if EV_WALK_ENABLE
4451void ecb_cold
4452ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4453{
4454 int i, j;
4455 ev_watcher_list *wl, *wn;
4456
4457 if (types & (EV_IO | EV_EMBED))
4458 for (i = 0; i < anfdmax; ++i)
4459 for (wl = anfds [i].head; wl; )
4460 {
4461 wn = wl->next;
4462
4463#if EV_EMBED_ENABLE
4464 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4465 {
4466 if (types & EV_EMBED)
4467 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4468 }
4469 else
4470#endif
4471#if EV_USE_INOTIFY
4472 if (ev_cb ((ev_io *)wl) == infy_cb)
4473 ;
4474 else
4475#endif
4476 if ((ev_io *)wl != &pipe_w)
4477 if (types & EV_IO)
4478 cb (EV_A_ EV_IO, wl);
4479
4480 wl = wn;
4481 }
4482
4483 if (types & (EV_TIMER | EV_STAT))
4484 for (i = timercnt + HEAP0; i-- > HEAP0; )
4485#if EV_STAT_ENABLE
4486 /*TODO: timer is not always active*/
4487 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4488 {
4489 if (types & EV_STAT)
4490 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4491 }
4492 else
4493#endif
4494 if (types & EV_TIMER)
4495 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4496
4497#if EV_PERIODIC_ENABLE
4498 if (types & EV_PERIODIC)
4499 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4500 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4501#endif
4502
4503#if EV_IDLE_ENABLE
4504 if (types & EV_IDLE)
4505 for (j = NUMPRI; j--; )
4506 for (i = idlecnt [j]; i--; )
4507 cb (EV_A_ EV_IDLE, idles [j][i]);
4508#endif
4509
4510#if EV_FORK_ENABLE
4511 if (types & EV_FORK)
4512 for (i = forkcnt; i--; )
4513 if (ev_cb (forks [i]) != embed_fork_cb)
4514 cb (EV_A_ EV_FORK, forks [i]);
4515#endif
4516
4517#if EV_ASYNC_ENABLE
4518 if (types & EV_ASYNC)
4519 for (i = asynccnt; i--; )
4520 cb (EV_A_ EV_ASYNC, asyncs [i]);
4521#endif
4522
4523#if EV_PREPARE_ENABLE
4524 if (types & EV_PREPARE)
4525 for (i = preparecnt; i--; )
4526# if EV_EMBED_ENABLE
4527 if (ev_cb (prepares [i]) != embed_prepare_cb)
4528# endif
4529 cb (EV_A_ EV_PREPARE, prepares [i]);
4530#endif
4531
4532#if EV_CHECK_ENABLE
4533 if (types & EV_CHECK)
4534 for (i = checkcnt; i--; )
4535 cb (EV_A_ EV_CHECK, checks [i]);
4536#endif
4537
4538#if EV_SIGNAL_ENABLE
4539 if (types & EV_SIGNAL)
4540 for (i = 0; i < EV_NSIG - 1; ++i)
4541 for (wl = signals [i].head; wl; )
4542 {
4543 wn = wl->next;
4544 cb (EV_A_ EV_SIGNAL, wl);
4545 wl = wn;
4546 }
4547#endif
4548
4549#if EV_CHILD_ENABLE
4550 if (types & EV_CHILD)
4551 for (i = (EV_PID_HASHSIZE); i--; )
4552 for (wl = childs [i]; wl; )
4553 {
4554 wn = wl->next;
4555 cb (EV_A_ EV_CHILD, wl);
4556 wl = wn;
4557 }
4558#endif
4559/* EV_STAT 0x00001000 /* stat data changed */
4560/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4561}
4562#endif
4563
2649#if EV_MULTIPLICITY 4564#if EV_MULTIPLICITY
2650 #include "ev_wrap.h" 4565 #include "ev_wrap.h"
2651#endif 4566#endif
2652 4567
2653#ifdef __cplusplus
2654}
2655#endif
2656

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines