ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.229 by root, Fri May 2 08:08:45 2008 UTC vs.
Revision 1.452 by root, Mon Feb 18 03:20:29 2013 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009,2010,2011,2012 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
10 * 1. Redistributions of source code must retain the above copyright notice, 10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer. 11 * this list of conditions and the following disclaimer.
12 * 12 *
13 * 2. Redistributions in binary form must reproduce the above copyright 13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the 14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution. 15 * documentation and/or other materials provided with the distribution.
16 * 16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER- 18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO 19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE- 20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
35 * and other provisions required by the GPL. If you do not delete the 35 * and other provisions required by the GPL. If you do not delete the
36 * provisions above, a recipient may use your version of this file under 36 * provisions above, a recipient may use your version of this file under
37 * either the BSD or the GPL. 37 * either the BSD or the GPL.
38 */ 38 */
39 39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */ 40/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE 41#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H 42# ifdef EV_CONFIG_H
47# include EV_CONFIG_H 43# include EV_CONFIG_H
48# else 44# else
49# include "config.h" 45# include "config.h"
50# endif 46# endif
51 47
48#if HAVE_FLOOR
49# ifndef EV_USE_FLOOR
50# define EV_USE_FLOOR 1
51# endif
52#endif
53
54# if HAVE_CLOCK_SYSCALL
55# ifndef EV_USE_CLOCK_SYSCALL
56# define EV_USE_CLOCK_SYSCALL 1
57# ifndef EV_USE_REALTIME
58# define EV_USE_REALTIME 0
59# endif
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 1
62# endif
63# endif
64# elif !defined EV_USE_CLOCK_SYSCALL
65# define EV_USE_CLOCK_SYSCALL 0
66# endif
67
52# if HAVE_CLOCK_GETTIME 68# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 69# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 70# define EV_USE_MONOTONIC 1
55# endif 71# endif
56# ifndef EV_USE_REALTIME 72# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 73# define EV_USE_REALTIME 0
58# endif 74# endif
59# else 75# else
60# ifndef EV_USE_MONOTONIC 76# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 77# define EV_USE_MONOTONIC 0
62# endif 78# endif
63# ifndef EV_USE_REALTIME 79# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0 80# define EV_USE_REALTIME 0
65# endif 81# endif
66# endif 82# endif
67 83
84# if HAVE_NANOSLEEP
68# ifndef EV_USE_NANOSLEEP 85# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1 86# define EV_USE_NANOSLEEP EV_FEATURE_OS
87# endif
71# else 88# else
89# undef EV_USE_NANOSLEEP
72# define EV_USE_NANOSLEEP 0 90# define EV_USE_NANOSLEEP 0
91# endif
92
93# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# ifndef EV_USE_SELECT
95# define EV_USE_SELECT EV_FEATURE_BACKENDS
73# endif 96# endif
97# else
98# undef EV_USE_SELECT
99# define EV_USE_SELECT 0
74# endif 100# endif
75 101
102# if HAVE_POLL && HAVE_POLL_H
76# ifndef EV_USE_SELECT 103# ifndef EV_USE_POLL
77# if HAVE_SELECT && HAVE_SYS_SELECT_H 104# define EV_USE_POLL EV_FEATURE_BACKENDS
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif 105# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else 106# else
107# undef EV_USE_POLL
88# define EV_USE_POLL 0 108# define EV_USE_POLL 0
89# endif
90# endif 109# endif
91 110
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H 111# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1 112# ifndef EV_USE_EPOLL
95# else 113# define EV_USE_EPOLL EV_FEATURE_BACKENDS
96# define EV_USE_EPOLL 0
97# endif 114# endif
115# else
116# undef EV_USE_EPOLL
117# define EV_USE_EPOLL 0
98# endif 118# endif
99 119
120# if HAVE_KQUEUE && HAVE_SYS_EVENT_H
100# ifndef EV_USE_KQUEUE 121# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H 122# define EV_USE_KQUEUE EV_FEATURE_BACKENDS
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif 123# endif
124# else
125# undef EV_USE_KQUEUE
126# define EV_USE_KQUEUE 0
106# endif 127# endif
107 128
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE 129# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1 130# ifndef EV_USE_PORT
111# else 131# define EV_USE_PORT EV_FEATURE_BACKENDS
112# define EV_USE_PORT 0
113# endif 132# endif
133# else
134# undef EV_USE_PORT
135# define EV_USE_PORT 0
114# endif 136# endif
115 137
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H 138# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1 139# ifndef EV_USE_INOTIFY
119# else
120# define EV_USE_INOTIFY 0 140# define EV_USE_INOTIFY EV_FEATURE_OS
121# endif 141# endif
142# else
143# undef EV_USE_INOTIFY
144# define EV_USE_INOTIFY 0
122# endif 145# endif
123 146
147# if HAVE_SIGNALFD && HAVE_SYS_SIGNALFD_H
124# ifndef EV_USE_EVENTFD 148# ifndef EV_USE_SIGNALFD
125# if HAVE_EVENTFD 149# define EV_USE_SIGNALFD EV_FEATURE_OS
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif 150# endif
151# else
152# undef EV_USE_SIGNALFD
153# define EV_USE_SIGNALFD 0
130# endif 154# endif
131 155
156# if HAVE_EVENTFD
157# ifndef EV_USE_EVENTFD
158# define EV_USE_EVENTFD EV_FEATURE_OS
159# endif
160# else
161# undef EV_USE_EVENTFD
162# define EV_USE_EVENTFD 0
132#endif 163# endif
164
165#endif
133 166
134#include <math.h>
135#include <stdlib.h> 167#include <stdlib.h>
168#include <string.h>
136#include <fcntl.h> 169#include <fcntl.h>
137#include <stddef.h> 170#include <stddef.h>
138 171
139#include <stdio.h> 172#include <stdio.h>
140 173
141#include <assert.h> 174#include <assert.h>
142#include <errno.h> 175#include <errno.h>
143#include <sys/types.h> 176#include <sys/types.h>
144#include <time.h> 177#include <time.h>
178#include <limits.h>
145 179
146#include <signal.h> 180#include <signal.h>
147 181
148#ifdef EV_H 182#ifdef EV_H
149# include EV_H 183# include EV_H
150#else 184#else
151# include "ev.h" 185# include "ev.h"
186#endif
187
188#if EV_NO_THREADS
189# undef EV_NO_SMP
190# define EV_NO_SMP 1
191# undef ECB_NO_THREADS
192# define ECB_NO_THREADS 1
193#endif
194#if EV_NO_SMP
195# undef EV_NO_SMP
196# define ECB_NO_SMP 1
152#endif 197#endif
153 198
154#ifndef _WIN32 199#ifndef _WIN32
155# include <sys/time.h> 200# include <sys/time.h>
156# include <sys/wait.h> 201# include <sys/wait.h>
157# include <unistd.h> 202# include <unistd.h>
158#else 203#else
204# include <io.h>
159# define WIN32_LEAN_AND_MEAN 205# define WIN32_LEAN_AND_MEAN
206# include <winsock2.h>
160# include <windows.h> 207# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 208# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 209# define EV_SELECT_IS_WINSOCKET 1
163# endif 210# endif
211# undef EV_AVOID_STDIO
164#endif 212#endif
213
214/* OS X, in its infinite idiocy, actually HARDCODES
215 * a limit of 1024 into their select. Where people have brains,
216 * OS X engineers apparently have a vacuum. Or maybe they were
217 * ordered to have a vacuum, or they do anything for money.
218 * This might help. Or not.
219 */
220#define _DARWIN_UNLIMITED_SELECT 1
165 221
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 222/* this block tries to deduce configuration from header-defined symbols and defaults */
167 223
224/* try to deduce the maximum number of signals on this platform */
225#if defined EV_NSIG
226/* use what's provided */
227#elif defined NSIG
228# define EV_NSIG (NSIG)
229#elif defined _NSIG
230# define EV_NSIG (_NSIG)
231#elif defined SIGMAX
232# define EV_NSIG (SIGMAX+1)
233#elif defined SIG_MAX
234# define EV_NSIG (SIG_MAX+1)
235#elif defined _SIG_MAX
236# define EV_NSIG (_SIG_MAX+1)
237#elif defined MAXSIG
238# define EV_NSIG (MAXSIG+1)
239#elif defined MAX_SIG
240# define EV_NSIG (MAX_SIG+1)
241#elif defined SIGARRAYSIZE
242# define EV_NSIG (SIGARRAYSIZE) /* Assume ary[SIGARRAYSIZE] */
243#elif defined _sys_nsig
244# define EV_NSIG (_sys_nsig) /* Solaris 2.5 */
245#else
246# error "unable to find value for NSIG, please report"
247/* to make it compile regardless, just remove the above line, */
248/* but consider reporting it, too! :) */
249# define EV_NSIG 65
250#endif
251
252#ifndef EV_USE_FLOOR
253# define EV_USE_FLOOR 0
254#endif
255
256#ifndef EV_USE_CLOCK_SYSCALL
257# if __linux && __GLIBC__ >= 2
258# define EV_USE_CLOCK_SYSCALL EV_FEATURE_OS
259# else
260# define EV_USE_CLOCK_SYSCALL 0
261# endif
262#endif
263
168#ifndef EV_USE_MONOTONIC 264#ifndef EV_USE_MONOTONIC
265# if defined _POSIX_MONOTONIC_CLOCK && _POSIX_MONOTONIC_CLOCK >= 0
266# define EV_USE_MONOTONIC EV_FEATURE_OS
267# else
169# define EV_USE_MONOTONIC 0 268# define EV_USE_MONOTONIC 0
269# endif
170#endif 270#endif
171 271
172#ifndef EV_USE_REALTIME 272#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 273# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 274#endif
175 275
176#ifndef EV_USE_NANOSLEEP 276#ifndef EV_USE_NANOSLEEP
277# if _POSIX_C_SOURCE >= 199309L
278# define EV_USE_NANOSLEEP EV_FEATURE_OS
279# else
177# define EV_USE_NANOSLEEP 0 280# define EV_USE_NANOSLEEP 0
281# endif
178#endif 282#endif
179 283
180#ifndef EV_USE_SELECT 284#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 285# define EV_USE_SELECT EV_FEATURE_BACKENDS
182#endif 286#endif
183 287
184#ifndef EV_USE_POLL 288#ifndef EV_USE_POLL
185# ifdef _WIN32 289# ifdef _WIN32
186# define EV_USE_POLL 0 290# define EV_USE_POLL 0
187# else 291# else
188# define EV_USE_POLL 1 292# define EV_USE_POLL EV_FEATURE_BACKENDS
189# endif 293# endif
190#endif 294#endif
191 295
192#ifndef EV_USE_EPOLL 296#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 297# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1 298# define EV_USE_EPOLL EV_FEATURE_BACKENDS
195# else 299# else
196# define EV_USE_EPOLL 0 300# define EV_USE_EPOLL 0
197# endif 301# endif
198#endif 302#endif
199 303
205# define EV_USE_PORT 0 309# define EV_USE_PORT 0
206#endif 310#endif
207 311
208#ifndef EV_USE_INOTIFY 312#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4)) 313# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1 314# define EV_USE_INOTIFY EV_FEATURE_OS
211# else 315# else
212# define EV_USE_INOTIFY 0 316# define EV_USE_INOTIFY 0
213# endif 317# endif
214#endif 318#endif
215 319
216#ifndef EV_PID_HASHSIZE 320#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL 321# define EV_PID_HASHSIZE EV_FEATURE_DATA ? 16 : 1
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif 322#endif
223 323
224#ifndef EV_INOTIFY_HASHSIZE 324#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL 325# define EV_INOTIFY_HASHSIZE EV_FEATURE_DATA ? 16 : 1
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif 326#endif
231 327
232#ifndef EV_USE_EVENTFD 328#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 329# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 330# define EV_USE_EVENTFD EV_FEATURE_OS
235# else 331# else
236# define EV_USE_EVENTFD 0 332# define EV_USE_EVENTFD 0
237# endif 333# endif
238#endif 334#endif
239 335
336#ifndef EV_USE_SIGNALFD
337# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
338# define EV_USE_SIGNALFD EV_FEATURE_OS
339# else
340# define EV_USE_SIGNALFD 0
341# endif
342#endif
343
344#if 0 /* debugging */
345# define EV_VERIFY 3
346# define EV_USE_4HEAP 1
347# define EV_HEAP_CACHE_AT 1
348#endif
349
350#ifndef EV_VERIFY
351# define EV_VERIFY (EV_FEATURE_API ? 1 : 0)
352#endif
353
354#ifndef EV_USE_4HEAP
355# define EV_USE_4HEAP EV_FEATURE_DATA
356#endif
357
358#ifndef EV_HEAP_CACHE_AT
359# define EV_HEAP_CACHE_AT EV_FEATURE_DATA
360#endif
361
362#ifdef ANDROID
363/* supposedly, android doesn't typedef fd_mask */
364# undef EV_USE_SELECT
365# define EV_USE_SELECT 0
366/* supposedly, we need to include syscall.h, not sys/syscall.h, so just disable */
367# undef EV_USE_CLOCK_SYSCALL
368# define EV_USE_CLOCK_SYSCALL 0
369#endif
370
371/* aix's poll.h seems to cause lots of trouble */
372#ifdef _AIX
373/* AIX has a completely broken poll.h header */
374# undef EV_USE_POLL
375# define EV_USE_POLL 0
376#endif
377
378/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
379/* which makes programs even slower. might work on other unices, too. */
380#if EV_USE_CLOCK_SYSCALL
381# include <sys/syscall.h>
382# ifdef SYS_clock_gettime
383# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
384# undef EV_USE_MONOTONIC
385# define EV_USE_MONOTONIC 1
386# else
387# undef EV_USE_CLOCK_SYSCALL
388# define EV_USE_CLOCK_SYSCALL 0
389# endif
390#endif
391
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 392/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 393
242#ifndef CLOCK_MONOTONIC 394#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 395# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 396# define EV_USE_MONOTONIC 0
253# undef EV_USE_INOTIFY 405# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0 406# define EV_USE_INOTIFY 0
255#endif 407#endif
256 408
257#if !EV_USE_NANOSLEEP 409#if !EV_USE_NANOSLEEP
258# ifndef _WIN32 410/* hp-ux has it in sys/time.h, which we unconditionally include above */
411# if !defined _WIN32 && !defined __hpux
259# include <sys/select.h> 412# include <sys/select.h>
260# endif 413# endif
261#endif 414#endif
262 415
263#if EV_USE_INOTIFY 416#if EV_USE_INOTIFY
417# include <sys/statfs.h>
264# include <sys/inotify.h> 418# include <sys/inotify.h>
419/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
420# ifndef IN_DONT_FOLLOW
421# undef EV_USE_INOTIFY
422# define EV_USE_INOTIFY 0
265#endif 423# endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif 424#endif
270 425
271#if EV_USE_EVENTFD 426#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 427/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 428# include <stdint.h>
274# ifdef __cplusplus 429# ifndef EFD_NONBLOCK
275extern "C" { 430# define EFD_NONBLOCK O_NONBLOCK
276# endif 431# endif
277int eventfd (unsigned int initval, int flags); 432# ifndef EFD_CLOEXEC
278# ifdef __cplusplus 433# ifdef O_CLOEXEC
279} 434# define EFD_CLOEXEC O_CLOEXEC
435# else
436# define EFD_CLOEXEC 02000000
437# endif
280# endif 438# endif
439EV_CPP(extern "C") int (eventfd) (unsigned int initval, int flags);
440#endif
441
442#if EV_USE_SIGNALFD
443/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
444# include <stdint.h>
445# ifndef SFD_NONBLOCK
446# define SFD_NONBLOCK O_NONBLOCK
447# endif
448# ifndef SFD_CLOEXEC
449# ifdef O_CLOEXEC
450# define SFD_CLOEXEC O_CLOEXEC
451# else
452# define SFD_CLOEXEC 02000000
453# endif
454# endif
455EV_CPP (extern "C") int signalfd (int fd, const sigset_t *mask, int flags);
456
457struct signalfd_siginfo
458{
459 uint32_t ssi_signo;
460 char pad[128 - sizeof (uint32_t)];
461};
281#endif 462#endif
282 463
283/**/ 464/**/
284 465
466#if EV_VERIFY >= 3
467# define EV_FREQUENT_CHECK ev_verify (EV_A)
468#else
469# define EV_FREQUENT_CHECK do { } while (0)
470#endif
471
285/* 472/*
286 * This is used to avoid floating point rounding problems. 473 * This is used to work around floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000. 474 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */ 475 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */ 476#define MIN_INTERVAL 0.0001220703125 /* 1/2**13, good till 4000 */
477/*#define MIN_INTERVAL 0.00000095367431640625 /* 1/2**20, good till 2200 */
294 478
295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 479#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 480#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
298 481
482#define EV_TV_SET(tv,t) do { tv.tv_sec = (long)t; tv.tv_usec = (long)((t - tv.tv_sec) * 1e6); } while (0)
483#define EV_TS_SET(ts,t) do { ts.tv_sec = (long)t; ts.tv_nsec = (long)((t - ts.tv_sec) * 1e9); } while (0)
484
485/* the following is ecb.h embedded into libev - use update_ev_c to update from an external copy */
486/* ECB.H BEGIN */
487/*
488 * libecb - http://software.schmorp.de/pkg/libecb
489 *
490 * Copyright (©) 2009-2012 Marc Alexander Lehmann <libecb@schmorp.de>
491 * Copyright (©) 2011 Emanuele Giaquinta
492 * All rights reserved.
493 *
494 * Redistribution and use in source and binary forms, with or without modifica-
495 * tion, are permitted provided that the following conditions are met:
496 *
497 * 1. Redistributions of source code must retain the above copyright notice,
498 * this list of conditions and the following disclaimer.
499 *
500 * 2. Redistributions in binary form must reproduce the above copyright
501 * notice, this list of conditions and the following disclaimer in the
502 * documentation and/or other materials provided with the distribution.
503 *
504 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
505 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
506 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
507 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
508 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
509 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
510 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
511 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
512 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
513 * OF THE POSSIBILITY OF SUCH DAMAGE.
514 */
515
516#ifndef ECB_H
517#define ECB_H
518
519/* 16 bits major, 16 bits minor */
520#define ECB_VERSION 0x00010002
521
522#ifdef _WIN32
523 typedef signed char int8_t;
524 typedef unsigned char uint8_t;
525 typedef signed short int16_t;
526 typedef unsigned short uint16_t;
527 typedef signed int int32_t;
528 typedef unsigned int uint32_t;
299#if __GNUC__ >= 4 529 #if __GNUC__
300# define expect(expr,value) __builtin_expect ((expr),(value)) 530 typedef signed long long int64_t;
301# define noinline __attribute__ ((noinline)) 531 typedef unsigned long long uint64_t;
532 #else /* _MSC_VER || __BORLANDC__ */
533 typedef signed __int64 int64_t;
534 typedef unsigned __int64 uint64_t;
535 #endif
536 #ifdef _WIN64
537 #define ECB_PTRSIZE 8
538 typedef uint64_t uintptr_t;
539 typedef int64_t intptr_t;
540 #else
541 #define ECB_PTRSIZE 4
542 typedef uint32_t uintptr_t;
543 typedef int32_t intptr_t;
544 #endif
302#else 545#else
303# define expect(expr,value) (expr) 546 #include <inttypes.h>
304# define noinline 547 #if UINTMAX_MAX > 0xffffffffU
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2 548 #define ECB_PTRSIZE 8
306# define inline 549 #else
550 #define ECB_PTRSIZE 4
551 #endif
307# endif 552#endif
553
554/* many compilers define _GNUC_ to some versions but then only implement
555 * what their idiot authors think are the "more important" extensions,
556 * causing enormous grief in return for some better fake benchmark numbers.
557 * or so.
558 * we try to detect these and simply assume they are not gcc - if they have
559 * an issue with that they should have done it right in the first place.
560 */
561#ifndef ECB_GCC_VERSION
562 #if !defined __GNUC_MINOR__ || defined __INTEL_COMPILER || defined __SUNPRO_C || defined __SUNPRO_CC || defined __llvm__ || defined __clang__
563 #define ECB_GCC_VERSION(major,minor) 0
564 #else
565 #define ECB_GCC_VERSION(major,minor) (__GNUC__ > (major) || (__GNUC__ == (major) && __GNUC_MINOR__ >= (minor)))
308#endif 566 #endif
567#endif
309 568
569#define ECB_C (__STDC__+0) /* this assumes that __STDC__ is either empty or a number */
570#define ECB_C99 (__STDC_VERSION__ >= 199901L)
571#define ECB_C11 (__STDC_VERSION__ >= 201112L)
572#define ECB_CPP (__cplusplus+0)
573#define ECB_CPP11 (__cplusplus >= 201103L)
574
575#if ECB_CPP
576 #define ECB_EXTERN_C extern "C"
577 #define ECB_EXTERN_C_BEG ECB_EXTERN_C {
578 #define ECB_EXTERN_C_END }
579#else
580 #define ECB_EXTERN_C extern
581 #define ECB_EXTERN_C_BEG
582 #define ECB_EXTERN_C_END
583#endif
584
585/*****************************************************************************/
586
587/* ECB_NO_THREADS - ecb is not used by multiple threads, ever */
588/* ECB_NO_SMP - ecb might be used in multiple threads, but only on a single cpu */
589
590#if ECB_NO_THREADS
591 #define ECB_NO_SMP 1
592#endif
593
594#if ECB_NO_SMP
595 #define ECB_MEMORY_FENCE do { } while (0)
596#endif
597
598#ifndef ECB_MEMORY_FENCE
599 #if ECB_GCC_VERSION(2,5) || defined __INTEL_COMPILER || (__llvm__ && __GNUC__) || __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
600 #if __i386 || __i386__
601 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("lock; orb $0, -1(%%esp)" : : : "memory")
602 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
603 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
604 #elif __amd64 || __amd64__ || __x86_64 || __x86_64__
605 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mfence" : : : "memory")
606 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("" : : : "memory")
607 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
608 #elif __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__
609 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
610 #elif defined __ARM_ARCH_6__ || defined __ARM_ARCH_6J__ \
611 || defined __ARM_ARCH_6K__ || defined __ARM_ARCH_6ZK__
612 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mcr p15,0,%0,c7,c10,5" : : "r" (0) : "memory")
613 #elif defined __ARM_ARCH_7__ || defined __ARM_ARCH_7A__ \
614 || defined __ARM_ARCH_7M__ || defined __ARM_ARCH_7R__
615 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("dmb" : : : "memory")
616 #elif __sparc || __sparc__
617 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad | #StoreStore | #StoreLoad" : : : "memory")
618 #define ECB_MEMORY_FENCE_ACQUIRE __asm__ __volatile__ ("membar #LoadStore | #LoadLoad" : : : "memory")
619 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("membar #LoadStore | #StoreStore")
620 #elif defined __s390__ || defined __s390x__
621 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("bcr 15,0" : : : "memory")
622 #elif defined __mips__
623 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("sync" : : : "memory")
624 #elif defined __alpha__
625 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mb" : : : "memory")
626 #elif defined __hppa__
627 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("" : : : "memory")
628 #define ECB_MEMORY_FENCE_RELEASE __asm__ __volatile__ ("")
629 #elif defined __ia64__
630 #define ECB_MEMORY_FENCE __asm__ __volatile__ ("mf" : : : "memory")
631 #endif
632 #endif
633#endif
634
635#ifndef ECB_MEMORY_FENCE
636 #if ECB_GCC_VERSION(4,7)
637 /* see comment below (stdatomic.h) about the C11 memory model. */
638 #define ECB_MEMORY_FENCE __atomic_thread_fence (__ATOMIC_SEQ_CST)
639
640 /* The __has_feature syntax from clang is so misdesigned that we cannot use it
641 * without risking compile time errors with other compilers. We *could*
642 * define our own ecb_clang_has_feature, but I just can't be bothered to work
643 * around this shit time and again.
644 * #elif defined __clang && __has_feature (cxx_atomic)
645 * // see comment below (stdatomic.h) about the C11 memory model.
646 * #define ECB_MEMORY_FENCE __c11_atomic_thread_fence (__ATOMIC_SEQ_CST)
647 */
648
649 #elif ECB_GCC_VERSION(4,4) || defined __INTEL_COMPILER || defined __clang__
650 #define ECB_MEMORY_FENCE __sync_synchronize ()
651 #elif _MSC_VER >= 1400 /* VC++ 2005 */
652 #pragma intrinsic(_ReadBarrier,_WriteBarrier,_ReadWriteBarrier)
653 #define ECB_MEMORY_FENCE _ReadWriteBarrier ()
654 #define ECB_MEMORY_FENCE_ACQUIRE _ReadWriteBarrier () /* according to msdn, _ReadBarrier is not a load fence */
655 #define ECB_MEMORY_FENCE_RELEASE _WriteBarrier ()
656 #elif defined _WIN32
657 #include <WinNT.h>
658 #define ECB_MEMORY_FENCE MemoryBarrier () /* actually just xchg on x86... scary */
659 #elif __SUNPRO_C >= 0x5110 || __SUNPRO_CC >= 0x5110
660 #include <mbarrier.h>
661 #define ECB_MEMORY_FENCE __machine_rw_barrier ()
662 #define ECB_MEMORY_FENCE_ACQUIRE __machine_r_barrier ()
663 #define ECB_MEMORY_FENCE_RELEASE __machine_w_barrier ()
664 #elif __xlC__
665 #define ECB_MEMORY_FENCE __sync ()
666 #endif
667#endif
668
669#ifndef ECB_MEMORY_FENCE
670 #if ECB_C11 && !defined __STDC_NO_ATOMICS__
671 /* we assume that these memory fences work on all variables/all memory accesses, */
672 /* not just C11 atomics and atomic accesses */
673 #include <stdatomic.h>
674 /* Unfortunately, neither gcc 4.7 nor clang 3.1 generate any instructions for */
675 /* any fence other than seq_cst, which isn't very efficient for us. */
676 /* Why that is, we don't know - either the C11 memory model is quite useless */
677 /* for most usages, or gcc and clang have a bug */
678 /* I *currently* lean towards the latter, and inefficiently implement */
679 /* all three of ecb's fences as a seq_cst fence */
680 #define ECB_MEMORY_FENCE atomic_thread_fence (memory_order_seq_cst)
681 #endif
682#endif
683
684#ifndef ECB_MEMORY_FENCE
685 #if !ECB_AVOID_PTHREADS
686 /*
687 * if you get undefined symbol references to pthread_mutex_lock,
688 * or failure to find pthread.h, then you should implement
689 * the ECB_MEMORY_FENCE operations for your cpu/compiler
690 * OR provide pthread.h and link against the posix thread library
691 * of your system.
692 */
693 #include <pthread.h>
694 #define ECB_NEEDS_PTHREADS 1
695 #define ECB_MEMORY_FENCE_NEEDS_PTHREADS 1
696
697 static pthread_mutex_t ecb_mf_lock = PTHREAD_MUTEX_INITIALIZER;
698 #define ECB_MEMORY_FENCE do { pthread_mutex_lock (&ecb_mf_lock); pthread_mutex_unlock (&ecb_mf_lock); } while (0)
699 #endif
700#endif
701
702#if !defined ECB_MEMORY_FENCE_ACQUIRE && defined ECB_MEMORY_FENCE
703 #define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
704#endif
705
706#if !defined ECB_MEMORY_FENCE_RELEASE && defined ECB_MEMORY_FENCE
707 #define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
708#endif
709
710/*****************************************************************************/
711
712#if __cplusplus
713 #define ecb_inline static inline
714#elif ECB_GCC_VERSION(2,5)
715 #define ecb_inline static __inline__
716#elif ECB_C99
717 #define ecb_inline static inline
718#else
719 #define ecb_inline static
720#endif
721
722#if ECB_GCC_VERSION(3,3)
723 #define ecb_restrict __restrict__
724#elif ECB_C99
725 #define ecb_restrict restrict
726#else
727 #define ecb_restrict
728#endif
729
730typedef int ecb_bool;
731
732#define ECB_CONCAT_(a, b) a ## b
733#define ECB_CONCAT(a, b) ECB_CONCAT_(a, b)
734#define ECB_STRINGIFY_(a) # a
735#define ECB_STRINGIFY(a) ECB_STRINGIFY_(a)
736
737#define ecb_function_ ecb_inline
738
739#if ECB_GCC_VERSION(3,1)
740 #define ecb_attribute(attrlist) __attribute__(attrlist)
741 #define ecb_is_constant(expr) __builtin_constant_p (expr)
742 #define ecb_expect(expr,value) __builtin_expect ((expr),(value))
743 #define ecb_prefetch(addr,rw,locality) __builtin_prefetch (addr, rw, locality)
744#else
745 #define ecb_attribute(attrlist)
746 #define ecb_is_constant(expr) 0
747 #define ecb_expect(expr,value) (expr)
748 #define ecb_prefetch(addr,rw,locality)
749#endif
750
751/* no emulation for ecb_decltype */
752#if ECB_GCC_VERSION(4,5)
753 #define ecb_decltype(x) __decltype(x)
754#elif ECB_GCC_VERSION(3,0)
755 #define ecb_decltype(x) __typeof(x)
756#endif
757
758#define ecb_noinline ecb_attribute ((__noinline__))
759#define ecb_unused ecb_attribute ((__unused__))
760#define ecb_const ecb_attribute ((__const__))
761#define ecb_pure ecb_attribute ((__pure__))
762
763#if ECB_C11
764 #define ecb_noreturn _Noreturn
765#else
766 #define ecb_noreturn ecb_attribute ((__noreturn__))
767#endif
768
769#if ECB_GCC_VERSION(4,3)
770 #define ecb_artificial ecb_attribute ((__artificial__))
771 #define ecb_hot ecb_attribute ((__hot__))
772 #define ecb_cold ecb_attribute ((__cold__))
773#else
774 #define ecb_artificial
775 #define ecb_hot
776 #define ecb_cold
777#endif
778
779/* put around conditional expressions if you are very sure that the */
780/* expression is mostly true or mostly false. note that these return */
781/* booleans, not the expression. */
310#define expect_false(expr) expect ((expr) != 0, 0) 782#define ecb_expect_false(expr) ecb_expect (!!(expr), 0)
311#define expect_true(expr) expect ((expr) != 0, 1) 783#define ecb_expect_true(expr) ecb_expect (!!(expr), 1)
784/* for compatibility to the rest of the world */
785#define ecb_likely(expr) ecb_expect_true (expr)
786#define ecb_unlikely(expr) ecb_expect_false (expr)
787
788/* count trailing zero bits and count # of one bits */
789#if ECB_GCC_VERSION(3,4)
790 /* we assume int == 32 bit, long == 32 or 64 bit and long long == 64 bit */
791 #define ecb_ld32(x) (__builtin_clz (x) ^ 31)
792 #define ecb_ld64(x) (__builtin_clzll (x) ^ 63)
793 #define ecb_ctz32(x) __builtin_ctz (x)
794 #define ecb_ctz64(x) __builtin_ctzll (x)
795 #define ecb_popcount32(x) __builtin_popcount (x)
796 /* no popcountll */
797#else
798 ecb_function_ int ecb_ctz32 (uint32_t x) ecb_const;
799 ecb_function_ int
800 ecb_ctz32 (uint32_t x)
801 {
802 int r = 0;
803
804 x &= ~x + 1; /* this isolates the lowest bit */
805
806#if ECB_branchless_on_i386
807 r += !!(x & 0xaaaaaaaa) << 0;
808 r += !!(x & 0xcccccccc) << 1;
809 r += !!(x & 0xf0f0f0f0) << 2;
810 r += !!(x & 0xff00ff00) << 3;
811 r += !!(x & 0xffff0000) << 4;
812#else
813 if (x & 0xaaaaaaaa) r += 1;
814 if (x & 0xcccccccc) r += 2;
815 if (x & 0xf0f0f0f0) r += 4;
816 if (x & 0xff00ff00) r += 8;
817 if (x & 0xffff0000) r += 16;
818#endif
819
820 return r;
821 }
822
823 ecb_function_ int ecb_ctz64 (uint64_t x) ecb_const;
824 ecb_function_ int
825 ecb_ctz64 (uint64_t x)
826 {
827 int shift = x & 0xffffffffU ? 0 : 32;
828 return ecb_ctz32 (x >> shift) + shift;
829 }
830
831 ecb_function_ int ecb_popcount32 (uint32_t x) ecb_const;
832 ecb_function_ int
833 ecb_popcount32 (uint32_t x)
834 {
835 x -= (x >> 1) & 0x55555555;
836 x = ((x >> 2) & 0x33333333) + (x & 0x33333333);
837 x = ((x >> 4) + x) & 0x0f0f0f0f;
838 x *= 0x01010101;
839
840 return x >> 24;
841 }
842
843 ecb_function_ int ecb_ld32 (uint32_t x) ecb_const;
844 ecb_function_ int ecb_ld32 (uint32_t x)
845 {
846 int r = 0;
847
848 if (x >> 16) { x >>= 16; r += 16; }
849 if (x >> 8) { x >>= 8; r += 8; }
850 if (x >> 4) { x >>= 4; r += 4; }
851 if (x >> 2) { x >>= 2; r += 2; }
852 if (x >> 1) { r += 1; }
853
854 return r;
855 }
856
857 ecb_function_ int ecb_ld64 (uint64_t x) ecb_const;
858 ecb_function_ int ecb_ld64 (uint64_t x)
859 {
860 int r = 0;
861
862 if (x >> 32) { x >>= 32; r += 32; }
863
864 return r + ecb_ld32 (x);
865 }
866#endif
867
868ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) ecb_const;
869ecb_function_ ecb_bool ecb_is_pot32 (uint32_t x) { return !(x & (x - 1)); }
870ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) ecb_const;
871ecb_function_ ecb_bool ecb_is_pot64 (uint64_t x) { return !(x & (x - 1)); }
872
873ecb_function_ uint8_t ecb_bitrev8 (uint8_t x) ecb_const;
874ecb_function_ uint8_t ecb_bitrev8 (uint8_t x)
875{
876 return ( (x * 0x0802U & 0x22110U)
877 | (x * 0x8020U & 0x88440U)) * 0x10101U >> 16;
878}
879
880ecb_function_ uint16_t ecb_bitrev16 (uint16_t x) ecb_const;
881ecb_function_ uint16_t ecb_bitrev16 (uint16_t x)
882{
883 x = ((x >> 1) & 0x5555) | ((x & 0x5555) << 1);
884 x = ((x >> 2) & 0x3333) | ((x & 0x3333) << 2);
885 x = ((x >> 4) & 0x0f0f) | ((x & 0x0f0f) << 4);
886 x = ( x >> 8 ) | ( x << 8);
887
888 return x;
889}
890
891ecb_function_ uint32_t ecb_bitrev32 (uint32_t x) ecb_const;
892ecb_function_ uint32_t ecb_bitrev32 (uint32_t x)
893{
894 x = ((x >> 1) & 0x55555555) | ((x & 0x55555555) << 1);
895 x = ((x >> 2) & 0x33333333) | ((x & 0x33333333) << 2);
896 x = ((x >> 4) & 0x0f0f0f0f) | ((x & 0x0f0f0f0f) << 4);
897 x = ((x >> 8) & 0x00ff00ff) | ((x & 0x00ff00ff) << 8);
898 x = ( x >> 16 ) | ( x << 16);
899
900 return x;
901}
902
903/* popcount64 is only available on 64 bit cpus as gcc builtin */
904/* so for this version we are lazy */
905ecb_function_ int ecb_popcount64 (uint64_t x) ecb_const;
906ecb_function_ int
907ecb_popcount64 (uint64_t x)
908{
909 return ecb_popcount32 (x) + ecb_popcount32 (x >> 32);
910}
911
912ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) ecb_const;
913ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) ecb_const;
914ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) ecb_const;
915ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) ecb_const;
916ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) ecb_const;
917ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) ecb_const;
918ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) ecb_const;
919ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) ecb_const;
920
921ecb_inline uint8_t ecb_rotl8 (uint8_t x, unsigned int count) { return (x >> ( 8 - count)) | (x << count); }
922ecb_inline uint8_t ecb_rotr8 (uint8_t x, unsigned int count) { return (x << ( 8 - count)) | (x >> count); }
923ecb_inline uint16_t ecb_rotl16 (uint16_t x, unsigned int count) { return (x >> (16 - count)) | (x << count); }
924ecb_inline uint16_t ecb_rotr16 (uint16_t x, unsigned int count) { return (x << (16 - count)) | (x >> count); }
925ecb_inline uint32_t ecb_rotl32 (uint32_t x, unsigned int count) { return (x >> (32 - count)) | (x << count); }
926ecb_inline uint32_t ecb_rotr32 (uint32_t x, unsigned int count) { return (x << (32 - count)) | (x >> count); }
927ecb_inline uint64_t ecb_rotl64 (uint64_t x, unsigned int count) { return (x >> (64 - count)) | (x << count); }
928ecb_inline uint64_t ecb_rotr64 (uint64_t x, unsigned int count) { return (x << (64 - count)) | (x >> count); }
929
930#if ECB_GCC_VERSION(4,3)
931 #define ecb_bswap16(x) (__builtin_bswap32 (x) >> 16)
932 #define ecb_bswap32(x) __builtin_bswap32 (x)
933 #define ecb_bswap64(x) __builtin_bswap64 (x)
934#else
935 ecb_function_ uint16_t ecb_bswap16 (uint16_t x) ecb_const;
936 ecb_function_ uint16_t
937 ecb_bswap16 (uint16_t x)
938 {
939 return ecb_rotl16 (x, 8);
940 }
941
942 ecb_function_ uint32_t ecb_bswap32 (uint32_t x) ecb_const;
943 ecb_function_ uint32_t
944 ecb_bswap32 (uint32_t x)
945 {
946 return (((uint32_t)ecb_bswap16 (x)) << 16) | ecb_bswap16 (x >> 16);
947 }
948
949 ecb_function_ uint64_t ecb_bswap64 (uint64_t x) ecb_const;
950 ecb_function_ uint64_t
951 ecb_bswap64 (uint64_t x)
952 {
953 return (((uint64_t)ecb_bswap32 (x)) << 32) | ecb_bswap32 (x >> 32);
954 }
955#endif
956
957#if ECB_GCC_VERSION(4,5)
958 #define ecb_unreachable() __builtin_unreachable ()
959#else
960 /* this seems to work fine, but gcc always emits a warning for it :/ */
961 ecb_inline void ecb_unreachable (void) ecb_noreturn;
962 ecb_inline void ecb_unreachable (void) { }
963#endif
964
965/* try to tell the compiler that some condition is definitely true */
966#define ecb_assume(cond) if (!(cond)) ecb_unreachable (); else 0
967
968ecb_inline unsigned char ecb_byteorder_helper (void) ecb_const;
969ecb_inline unsigned char
970ecb_byteorder_helper (void)
971{
972 /* the union code still generates code under pressure in gcc, */
973 /* but less than using pointers, and always seems to */
974 /* successfully return a constant. */
975 /* the reason why we have this horrible preprocessor mess */
976 /* is to avoid it in all cases, at least on common architectures */
977 /* or when using a recent enough gcc version (>= 4.6) */
978#if __i386 || __i386__ || _M_X86 || __amd64 || __amd64__ || _M_X64
979 return 0x44;
980#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
981 return 0x44;
982#elif __BYTE_ORDER__ && __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
983 return 0x11;
984#else
985 union
986 {
987 uint32_t i;
988 uint8_t c;
989 } u = { 0x11223344 };
990 return u.c;
991#endif
992}
993
994ecb_inline ecb_bool ecb_big_endian (void) ecb_const;
995ecb_inline ecb_bool ecb_big_endian (void) { return ecb_byteorder_helper () == 0x11; }
996ecb_inline ecb_bool ecb_little_endian (void) ecb_const;
997ecb_inline ecb_bool ecb_little_endian (void) { return ecb_byteorder_helper () == 0x44; }
998
999#if ECB_GCC_VERSION(3,0) || ECB_C99
1000 #define ecb_mod(m,n) ((m) % (n) + ((m) % (n) < 0 ? (n) : 0))
1001#else
1002 #define ecb_mod(m,n) ((m) < 0 ? ((n) - 1 - ((-1 - (m)) % (n))) : ((m) % (n)))
1003#endif
1004
1005#if __cplusplus
1006 template<typename T>
1007 static inline T ecb_div_rd (T val, T div)
1008 {
1009 return val < 0 ? - ((-val + div - 1) / div) : (val ) / div;
1010 }
1011 template<typename T>
1012 static inline T ecb_div_ru (T val, T div)
1013 {
1014 return val < 0 ? - ((-val ) / div) : (val + div - 1) / div;
1015 }
1016#else
1017 #define ecb_div_rd(val,div) ((val) < 0 ? - ((-(val) + (div) - 1) / (div)) : ((val) ) / (div))
1018 #define ecb_div_ru(val,div) ((val) < 0 ? - ((-(val) ) / (div)) : ((val) + (div) - 1) / (div))
1019#endif
1020
1021#if ecb_cplusplus_does_not_suck
1022 /* does not work for local types (http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm) */
1023 template<typename T, int N>
1024 static inline int ecb_array_length (const T (&arr)[N])
1025 {
1026 return N;
1027 }
1028#else
1029 #define ecb_array_length(name) (sizeof (name) / sizeof (name [0]))
1030#endif
1031
1032/*******************************************************************************/
1033/* floating point stuff, can be disabled by defining ECB_NO_LIBM */
1034
1035/* basically, everything uses "ieee pure-endian" floating point numbers */
1036/* the only noteworthy exception is ancient armle, which uses order 43218765 */
1037#if 0 \
1038 || __i386 || __i386__ \
1039 || __amd64 || __amd64__ || __x86_64 || __x86_64__ \
1040 || __powerpc__ || __ppc__ || __powerpc64__ || __ppc64__ \
1041 || defined __arm__ && defined __ARM_EABI__ \
1042 || defined __s390__ || defined __s390x__ \
1043 || defined __mips__ \
1044 || defined __alpha__ \
1045 || defined __hppa__ \
1046 || defined __ia64__ \
1047 || defined _M_IX86 || defined _M_AMD64 || defined _M_IA64
1048 #define ECB_STDFP 1
1049 #include <string.h> /* for memcpy */
1050#else
1051 #define ECB_STDFP 0
1052 #include <math.h> /* for frexp*, ldexp* */
1053#endif
1054
1055#ifndef ECB_NO_LIBM
1056
1057 /* convert a float to ieee single/binary32 */
1058 ecb_function_ uint32_t ecb_float_to_binary32 (float x) ecb_const;
1059 ecb_function_ uint32_t
1060 ecb_float_to_binary32 (float x)
1061 {
1062 uint32_t r;
1063
1064 #if ECB_STDFP
1065 memcpy (&r, &x, 4);
1066 #else
1067 /* slow emulation, works for anything but -0 */
1068 uint32_t m;
1069 int e;
1070
1071 if (x == 0e0f ) return 0x00000000U;
1072 if (x > +3.40282346638528860e+38f) return 0x7f800000U;
1073 if (x < -3.40282346638528860e+38f) return 0xff800000U;
1074 if (x != x ) return 0x7fbfffffU;
1075
1076 m = frexpf (x, &e) * 0x1000000U;
1077
1078 r = m & 0x80000000U;
1079
1080 if (r)
1081 m = -m;
1082
1083 if (e <= -126)
1084 {
1085 m &= 0xffffffU;
1086 m >>= (-125 - e);
1087 e = -126;
1088 }
1089
1090 r |= (e + 126) << 23;
1091 r |= m & 0x7fffffU;
1092 #endif
1093
1094 return r;
1095 }
1096
1097 /* converts an ieee single/binary32 to a float */
1098 ecb_function_ float ecb_binary32_to_float (uint32_t x) ecb_const;
1099 ecb_function_ float
1100 ecb_binary32_to_float (uint32_t x)
1101 {
1102 float r;
1103
1104 #if ECB_STDFP
1105 memcpy (&r, &x, 4);
1106 #else
1107 /* emulation, only works for normals and subnormals and +0 */
1108 int neg = x >> 31;
1109 int e = (x >> 23) & 0xffU;
1110
1111 x &= 0x7fffffU;
1112
1113 if (e)
1114 x |= 0x800000U;
1115 else
1116 e = 1;
1117
1118 /* we distrust ldexpf a bit and do the 2**-24 scaling by an extra multiply */
1119 r = ldexpf (x * (0.5f / 0x800000U), e - 126);
1120
1121 r = neg ? -r : r;
1122 #endif
1123
1124 return r;
1125 }
1126
1127 /* convert a double to ieee double/binary64 */
1128 ecb_function_ uint64_t ecb_double_to_binary64 (double x) ecb_const;
1129 ecb_function_ uint64_t
1130 ecb_double_to_binary64 (double x)
1131 {
1132 uint64_t r;
1133
1134 #if ECB_STDFP
1135 memcpy (&r, &x, 8);
1136 #else
1137 /* slow emulation, works for anything but -0 */
1138 uint64_t m;
1139 int e;
1140
1141 if (x == 0e0 ) return 0x0000000000000000U;
1142 if (x > +1.79769313486231470e+308) return 0x7ff0000000000000U;
1143 if (x < -1.79769313486231470e+308) return 0xfff0000000000000U;
1144 if (x != x ) return 0X7ff7ffffffffffffU;
1145
1146 m = frexp (x, &e) * 0x20000000000000U;
1147
1148 r = m & 0x8000000000000000;;
1149
1150 if (r)
1151 m = -m;
1152
1153 if (e <= -1022)
1154 {
1155 m &= 0x1fffffffffffffU;
1156 m >>= (-1021 - e);
1157 e = -1022;
1158 }
1159
1160 r |= ((uint64_t)(e + 1022)) << 52;
1161 r |= m & 0xfffffffffffffU;
1162 #endif
1163
1164 return r;
1165 }
1166
1167 /* converts an ieee double/binary64 to a double */
1168 ecb_function_ double ecb_binary64_to_double (uint64_t x) ecb_const;
1169 ecb_function_ double
1170 ecb_binary64_to_double (uint64_t x)
1171 {
1172 double r;
1173
1174 #if ECB_STDFP
1175 memcpy (&r, &x, 8);
1176 #else
1177 /* emulation, only works for normals and subnormals and +0 */
1178 int neg = x >> 63;
1179 int e = (x >> 52) & 0x7ffU;
1180
1181 x &= 0xfffffffffffffU;
1182
1183 if (e)
1184 x |= 0x10000000000000U;
1185 else
1186 e = 1;
1187
1188 /* we distrust ldexp a bit and do the 2**-53 scaling by an extra multiply */
1189 r = ldexp (x * (0.5 / 0x10000000000000U), e - 1022);
1190
1191 r = neg ? -r : r;
1192 #endif
1193
1194 return r;
1195 }
1196
1197#endif
1198
1199#endif
1200
1201/* ECB.H END */
1202
1203#if ECB_MEMORY_FENCE_NEEDS_PTHREADS
1204/* if your architecture doesn't need memory fences, e.g. because it is
1205 * single-cpu/core, or if you use libev in a project that doesn't use libev
1206 * from multiple threads, then you can define ECB_AVOID_PTHREADS when compiling
1207 * libev, in which cases the memory fences become nops.
1208 * alternatively, you can remove this #error and link against libpthread,
1209 * which will then provide the memory fences.
1210 */
1211# error "memory fences not defined for your architecture, please report"
1212#endif
1213
1214#ifndef ECB_MEMORY_FENCE
1215# define ECB_MEMORY_FENCE do { } while (0)
1216# define ECB_MEMORY_FENCE_ACQUIRE ECB_MEMORY_FENCE
1217# define ECB_MEMORY_FENCE_RELEASE ECB_MEMORY_FENCE
1218#endif
1219
1220#define expect_false(cond) ecb_expect_false (cond)
1221#define expect_true(cond) ecb_expect_true (cond)
1222#define noinline ecb_noinline
1223
312#define inline_size static inline 1224#define inline_size ecb_inline
313 1225
314#if EV_MINIMAL 1226#if EV_FEATURE_CODE
1227# define inline_speed ecb_inline
1228#else
315# define inline_speed static noinline 1229# define inline_speed static noinline
1230#endif
1231
1232#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
1233
1234#if EV_MINPRI == EV_MAXPRI
1235# define ABSPRI(w) (((W)w), 0)
316#else 1236#else
317# define inline_speed static inline
318#endif
319
320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI) 1237# define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
1238#endif
322 1239
323#define EMPTY /* required for microsofts broken pseudo-c compiler */ 1240#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */ 1241#define EMPTY2(a,b) /* used to suppress some warnings */
325 1242
326typedef ev_watcher *W; 1243typedef ev_watcher *W;
328typedef ev_watcher_time *WT; 1245typedef ev_watcher_time *WT;
329 1246
330#define ev_active(w) ((W)(w))->active 1247#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 1248#define ev_at(w) ((WT)(w))->at
332 1249
1250#if EV_USE_REALTIME
1251/* sig_atomic_t is used to avoid per-thread variables or locking but still */
1252/* giving it a reasonably high chance of working on typical architectures */
1253static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
1254#endif
1255
333#if EV_USE_MONOTONIC 1256#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 1257static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
1258#endif
1259
1260#ifndef EV_FD_TO_WIN32_HANDLE
1261# define EV_FD_TO_WIN32_HANDLE(fd) _get_osfhandle (fd)
1262#endif
1263#ifndef EV_WIN32_HANDLE_TO_FD
1264# define EV_WIN32_HANDLE_TO_FD(handle) _open_osfhandle (handle, 0)
1265#endif
1266#ifndef EV_WIN32_CLOSE_FD
1267# define EV_WIN32_CLOSE_FD(fd) close (fd)
337#endif 1268#endif
338 1269
339#ifdef _WIN32 1270#ifdef _WIN32
340# include "ev_win32.c" 1271# include "ev_win32.c"
341#endif 1272#endif
342 1273
343/*****************************************************************************/ 1274/*****************************************************************************/
344 1275
1276/* define a suitable floor function (only used by periodics atm) */
1277
1278#if EV_USE_FLOOR
1279# include <math.h>
1280# define ev_floor(v) floor (v)
1281#else
1282
1283#include <float.h>
1284
1285/* a floor() replacement function, should be independent of ev_tstamp type */
1286static ev_tstamp noinline
1287ev_floor (ev_tstamp v)
1288{
1289 /* the choice of shift factor is not terribly important */
1290#if FLT_RADIX != 2 /* assume FLT_RADIX == 10 */
1291 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 10000000000000000000. : 1000000000.;
1292#else
1293 const ev_tstamp shift = sizeof (unsigned long) >= 8 ? 18446744073709551616. : 4294967296.;
1294#endif
1295
1296 /* argument too large for an unsigned long? */
1297 if (expect_false (v >= shift))
1298 {
1299 ev_tstamp f;
1300
1301 if (v == v - 1.)
1302 return v; /* very large number */
1303
1304 f = shift * ev_floor (v * (1. / shift));
1305 return f + ev_floor (v - f);
1306 }
1307
1308 /* special treatment for negative args? */
1309 if (expect_false (v < 0.))
1310 {
1311 ev_tstamp f = -ev_floor (-v);
1312
1313 return f - (f == v ? 0 : 1);
1314 }
1315
1316 /* fits into an unsigned long */
1317 return (unsigned long)v;
1318}
1319
1320#endif
1321
1322/*****************************************************************************/
1323
1324#ifdef __linux
1325# include <sys/utsname.h>
1326#endif
1327
1328static unsigned int noinline ecb_cold
1329ev_linux_version (void)
1330{
1331#ifdef __linux
1332 unsigned int v = 0;
1333 struct utsname buf;
1334 int i;
1335 char *p = buf.release;
1336
1337 if (uname (&buf))
1338 return 0;
1339
1340 for (i = 3+1; --i; )
1341 {
1342 unsigned int c = 0;
1343
1344 for (;;)
1345 {
1346 if (*p >= '0' && *p <= '9')
1347 c = c * 10 + *p++ - '0';
1348 else
1349 {
1350 p += *p == '.';
1351 break;
1352 }
1353 }
1354
1355 v = (v << 8) | c;
1356 }
1357
1358 return v;
1359#else
1360 return 0;
1361#endif
1362}
1363
1364/*****************************************************************************/
1365
1366#if EV_AVOID_STDIO
1367static void noinline ecb_cold
1368ev_printerr (const char *msg)
1369{
1370 write (STDERR_FILENO, msg, strlen (msg));
1371}
1372#endif
1373
345static void (*syserr_cb)(const char *msg); 1374static void (*syserr_cb)(const char *msg) EV_THROW;
346 1375
347void 1376void ecb_cold
348ev_set_syserr_cb (void (*cb)(const char *msg)) 1377ev_set_syserr_cb (void (*cb)(const char *msg) EV_THROW) EV_THROW
349{ 1378{
350 syserr_cb = cb; 1379 syserr_cb = cb;
351} 1380}
352 1381
353static void noinline 1382static void noinline ecb_cold
354syserr (const char *msg) 1383ev_syserr (const char *msg)
355{ 1384{
356 if (!msg) 1385 if (!msg)
357 msg = "(libev) system error"; 1386 msg = "(libev) system error";
358 1387
359 if (syserr_cb) 1388 if (syserr_cb)
360 syserr_cb (msg); 1389 syserr_cb (msg);
361 else 1390 else
362 { 1391 {
1392#if EV_AVOID_STDIO
1393 ev_printerr (msg);
1394 ev_printerr (": ");
1395 ev_printerr (strerror (errno));
1396 ev_printerr ("\n");
1397#else
363 perror (msg); 1398 perror (msg);
1399#endif
364 abort (); 1400 abort ();
365 } 1401 }
366} 1402}
367 1403
368static void * 1404static void *
369ev_realloc_emul (void *ptr, long size) 1405ev_realloc_emul (void *ptr, long size) EV_THROW
370{ 1406{
371 /* some systems, notably openbsd and darwin, fail to properly 1407 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and 1408 * implement realloc (x, 0) (as required by both ansi c-89 and
373 * the single unix specification, so work around them here. 1409 * the single unix specification, so work around them here.
1410 * recently, also (at least) fedora and debian started breaking it,
1411 * despite documenting it otherwise.
374 */ 1412 */
375 1413
376 if (size) 1414 if (size)
377 return realloc (ptr, size); 1415 return realloc (ptr, size);
378 1416
379 free (ptr); 1417 free (ptr);
380 return 0; 1418 return 0;
381} 1419}
382 1420
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul; 1421static void *(*alloc)(void *ptr, long size) EV_THROW = ev_realloc_emul;
384 1422
385void 1423void ecb_cold
386ev_set_allocator (void *(*cb)(void *ptr, long size)) 1424ev_set_allocator (void *(*cb)(void *ptr, long size) EV_THROW) EV_THROW
387{ 1425{
388 alloc = cb; 1426 alloc = cb;
389} 1427}
390 1428
391inline_speed void * 1429inline_speed void *
393{ 1431{
394 ptr = alloc (ptr, size); 1432 ptr = alloc (ptr, size);
395 1433
396 if (!ptr && size) 1434 if (!ptr && size)
397 { 1435 {
1436#if EV_AVOID_STDIO
1437 ev_printerr ("(libev) memory allocation failed, aborting.\n");
1438#else
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 1439 fprintf (stderr, "(libev) cannot allocate %ld bytes, aborting.", size);
1440#endif
399 abort (); 1441 abort ();
400 } 1442 }
401 1443
402 return ptr; 1444 return ptr;
403} 1445}
405#define ev_malloc(size) ev_realloc (0, (size)) 1447#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 1448#define ev_free(ptr) ev_realloc ((ptr), 0)
407 1449
408/*****************************************************************************/ 1450/*****************************************************************************/
409 1451
1452/* set in reify when reification needed */
1453#define EV_ANFD_REIFY 1
1454
1455/* file descriptor info structure */
410typedef struct 1456typedef struct
411{ 1457{
412 WL head; 1458 WL head;
413 unsigned char events; 1459 unsigned char events; /* the events watched for */
1460 unsigned char reify; /* flag set when this ANFD needs reification (EV_ANFD_REIFY, EV__IOFDSET) */
1461 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 1462 unsigned char unused;
1463#if EV_USE_EPOLL
1464 unsigned int egen; /* generation counter to counter epoll bugs */
1465#endif
415#if EV_SELECT_IS_WINSOCKET 1466#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
416 SOCKET handle; 1467 SOCKET handle;
417#endif 1468#endif
1469#if EV_USE_IOCP
1470 OVERLAPPED or, ow;
1471#endif
418} ANFD; 1472} ANFD;
419 1473
1474/* stores the pending event set for a given watcher */
420typedef struct 1475typedef struct
421{ 1476{
422 W w; 1477 W w;
423 int events; 1478 int events; /* the pending event set for the given watcher */
424} ANPENDING; 1479} ANPENDING;
425 1480
426#if EV_USE_INOTIFY 1481#if EV_USE_INOTIFY
1482/* hash table entry per inotify-id */
427typedef struct 1483typedef struct
428{ 1484{
429 WL head; 1485 WL head;
430} ANFS; 1486} ANFS;
1487#endif
1488
1489/* Heap Entry */
1490#if EV_HEAP_CACHE_AT
1491 /* a heap element */
1492 typedef struct {
1493 ev_tstamp at;
1494 WT w;
1495 } ANHE;
1496
1497 #define ANHE_w(he) (he).w /* access watcher, read-write */
1498 #define ANHE_at(he) (he).at /* access cached at, read-only */
1499 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
1500#else
1501 /* a heap element */
1502 typedef WT ANHE;
1503
1504 #define ANHE_w(he) (he)
1505 #define ANHE_at(he) (he)->at
1506 #define ANHE_at_cache(he)
431#endif 1507#endif
432 1508
433#if EV_MULTIPLICITY 1509#if EV_MULTIPLICITY
434 1510
435 struct ev_loop 1511 struct ev_loop
441 #undef VAR 1517 #undef VAR
442 }; 1518 };
443 #include "ev_wrap.h" 1519 #include "ev_wrap.h"
444 1520
445 static struct ev_loop default_loop_struct; 1521 static struct ev_loop default_loop_struct;
446 struct ev_loop *ev_default_loop_ptr; 1522 EV_API_DECL struct ev_loop *ev_default_loop_ptr = 0; /* needs to be initialised to make it a definition despite extern */
447 1523
448#else 1524#else
449 1525
450 ev_tstamp ev_rt_now; 1526 EV_API_DECL ev_tstamp ev_rt_now = 0; /* needs to be initialised to make it a definition despite extern */
451 #define VAR(name,decl) static decl; 1527 #define VAR(name,decl) static decl;
452 #include "ev_vars.h" 1528 #include "ev_vars.h"
453 #undef VAR 1529 #undef VAR
454 1530
455 static int ev_default_loop_ptr; 1531 static int ev_default_loop_ptr;
456 1532
457#endif 1533#endif
458 1534
1535#if EV_FEATURE_API
1536# define EV_RELEASE_CB if (expect_false (release_cb)) release_cb (EV_A)
1537# define EV_ACQUIRE_CB if (expect_false (acquire_cb)) acquire_cb (EV_A)
1538# define EV_INVOKE_PENDING invoke_cb (EV_A)
1539#else
1540# define EV_RELEASE_CB (void)0
1541# define EV_ACQUIRE_CB (void)0
1542# define EV_INVOKE_PENDING ev_invoke_pending (EV_A)
1543#endif
1544
1545#define EVBREAK_RECURSE 0x80
1546
459/*****************************************************************************/ 1547/*****************************************************************************/
460 1548
1549#ifndef EV_HAVE_EV_TIME
461ev_tstamp 1550ev_tstamp
462ev_time (void) 1551ev_time (void) EV_THROW
463{ 1552{
464#if EV_USE_REALTIME 1553#if EV_USE_REALTIME
1554 if (expect_true (have_realtime))
1555 {
465 struct timespec ts; 1556 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 1557 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 1558 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 1559 }
1560#endif
1561
469 struct timeval tv; 1562 struct timeval tv;
470 gettimeofday (&tv, 0); 1563 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 1564 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 1565}
1566#endif
474 1567
475ev_tstamp inline_size 1568inline_size ev_tstamp
476get_clock (void) 1569get_clock (void)
477{ 1570{
478#if EV_USE_MONOTONIC 1571#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 1572 if (expect_true (have_monotonic))
480 { 1573 {
487 return ev_time (); 1580 return ev_time ();
488} 1581}
489 1582
490#if EV_MULTIPLICITY 1583#if EV_MULTIPLICITY
491ev_tstamp 1584ev_tstamp
492ev_now (EV_P) 1585ev_now (EV_P) EV_THROW
493{ 1586{
494 return ev_rt_now; 1587 return ev_rt_now;
495} 1588}
496#endif 1589#endif
497 1590
498void 1591void
499ev_sleep (ev_tstamp delay) 1592ev_sleep (ev_tstamp delay) EV_THROW
500{ 1593{
501 if (delay > 0.) 1594 if (delay > 0.)
502 { 1595 {
503#if EV_USE_NANOSLEEP 1596#if EV_USE_NANOSLEEP
504 struct timespec ts; 1597 struct timespec ts;
505 1598
506 ts.tv_sec = (time_t)delay; 1599 EV_TS_SET (ts, delay);
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0); 1600 nanosleep (&ts, 0);
510#elif defined(_WIN32) 1601#elif defined _WIN32
511 Sleep ((unsigned long)(delay * 1e3)); 1602 Sleep ((unsigned long)(delay * 1e3));
512#else 1603#else
513 struct timeval tv; 1604 struct timeval tv;
514 1605
515 tv.tv_sec = (time_t)delay; 1606 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 1607 /* something not guaranteed by newer posix versions, but guaranteed */
517 1608 /* by older ones */
1609 EV_TV_SET (tv, delay);
518 select (0, 0, 0, 0, &tv); 1610 select (0, 0, 0, 0, &tv);
519#endif 1611#endif
520 } 1612 }
521} 1613}
522 1614
523/*****************************************************************************/ 1615/*****************************************************************************/
524 1616
525int inline_size 1617#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
1618
1619/* find a suitable new size for the given array, */
1620/* hopefully by rounding to a nice-to-malloc size */
1621inline_size int
526array_nextsize (int elem, int cur, int cnt) 1622array_nextsize (int elem, int cur, int cnt)
527{ 1623{
528 int ncur = cur + 1; 1624 int ncur = cur + 1;
529 1625
530 do 1626 do
531 ncur <<= 1; 1627 ncur <<= 1;
532 while (cnt > ncur); 1628 while (cnt > ncur);
533 1629
534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 1630 /* if size is large, round to MALLOC_ROUND - 4 * longs to accommodate malloc overhead */
535 if (elem * ncur > 4096) 1631 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
536 { 1632 {
537 ncur *= elem; 1633 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 1634 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
539 ncur = ncur - sizeof (void *) * 4; 1635 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem; 1636 ncur /= elem;
541 } 1637 }
542 1638
543 return ncur; 1639 return ncur;
544} 1640}
545 1641
546static noinline void * 1642static void * noinline ecb_cold
547array_realloc (int elem, void *base, int *cur, int cnt) 1643array_realloc (int elem, void *base, int *cur, int cnt)
548{ 1644{
549 *cur = array_nextsize (elem, *cur, cnt); 1645 *cur = array_nextsize (elem, *cur, cnt);
550 return ev_realloc (base, elem * *cur); 1646 return ev_realloc (base, elem * *cur);
551} 1647}
1648
1649#define array_init_zero(base,count) \
1650 memset ((void *)(base), 0, sizeof (*(base)) * (count))
552 1651
553#define array_needsize(type,base,cur,cnt,init) \ 1652#define array_needsize(type,base,cur,cnt,init) \
554 if (expect_false ((cnt) > (cur))) \ 1653 if (expect_false ((cnt) > (cur))) \
555 { \ 1654 { \
556 int ocur_ = (cur); \ 1655 int ecb_unused ocur_ = (cur); \
557 (base) = (type *)array_realloc \ 1656 (base) = (type *)array_realloc \
558 (sizeof (type), (base), &(cur), (cnt)); \ 1657 (sizeof (type), (base), &(cur), (cnt)); \
559 init ((base) + (ocur_), (cur) - ocur_); \ 1658 init ((base) + (ocur_), (cur) - ocur_); \
560 } 1659 }
561 1660
568 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 1667 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
569 } 1668 }
570#endif 1669#endif
571 1670
572#define array_free(stem, idx) \ 1671#define array_free(stem, idx) \
573 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 1672 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
574 1673
575/*****************************************************************************/ 1674/*****************************************************************************/
576 1675
1676/* dummy callback for pending events */
1677static void noinline
1678pendingcb (EV_P_ ev_prepare *w, int revents)
1679{
1680}
1681
577void noinline 1682void noinline
578ev_feed_event (EV_P_ void *w, int revents) 1683ev_feed_event (EV_P_ void *w, int revents) EV_THROW
579{ 1684{
580 W w_ = (W)w; 1685 W w_ = (W)w;
581 int pri = ABSPRI (w_); 1686 int pri = ABSPRI (w_);
582 1687
583 if (expect_false (w_->pending)) 1688 if (expect_false (w_->pending))
587 w_->pending = ++pendingcnt [pri]; 1692 w_->pending = ++pendingcnt [pri];
588 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2); 1693 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
589 pendings [pri][w_->pending - 1].w = w_; 1694 pendings [pri][w_->pending - 1].w = w_;
590 pendings [pri][w_->pending - 1].events = revents; 1695 pendings [pri][w_->pending - 1].events = revents;
591 } 1696 }
592}
593 1697
594void inline_speed 1698 pendingpri = NUMPRI - 1;
1699}
1700
1701inline_speed void
1702feed_reverse (EV_P_ W w)
1703{
1704 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
1705 rfeeds [rfeedcnt++] = w;
1706}
1707
1708inline_size void
1709feed_reverse_done (EV_P_ int revents)
1710{
1711 do
1712 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
1713 while (rfeedcnt);
1714}
1715
1716inline_speed void
595queue_events (EV_P_ W *events, int eventcnt, int type) 1717queue_events (EV_P_ W *events, int eventcnt, int type)
596{ 1718{
597 int i; 1719 int i;
598 1720
599 for (i = 0; i < eventcnt; ++i) 1721 for (i = 0; i < eventcnt; ++i)
600 ev_feed_event (EV_A_ events [i], type); 1722 ev_feed_event (EV_A_ events [i], type);
601} 1723}
602 1724
603/*****************************************************************************/ 1725/*****************************************************************************/
604 1726
605void inline_size 1727inline_speed void
606anfds_init (ANFD *base, int count)
607{
608 while (count--)
609 {
610 base->head = 0;
611 base->events = EV_NONE;
612 base->reify = 0;
613
614 ++base;
615 }
616}
617
618void inline_speed
619fd_event (EV_P_ int fd, int revents) 1728fd_event_nocheck (EV_P_ int fd, int revents)
620{ 1729{
621 ANFD *anfd = anfds + fd; 1730 ANFD *anfd = anfds + fd;
622 ev_io *w; 1731 ev_io *w;
623 1732
624 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1733 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
628 if (ev) 1737 if (ev)
629 ev_feed_event (EV_A_ (W)w, ev); 1738 ev_feed_event (EV_A_ (W)w, ev);
630 } 1739 }
631} 1740}
632 1741
1742/* do not submit kernel events for fds that have reify set */
1743/* because that means they changed while we were polling for new events */
1744inline_speed void
1745fd_event (EV_P_ int fd, int revents)
1746{
1747 ANFD *anfd = anfds + fd;
1748
1749 if (expect_true (!anfd->reify))
1750 fd_event_nocheck (EV_A_ fd, revents);
1751}
1752
633void 1753void
634ev_feed_fd_event (EV_P_ int fd, int revents) 1754ev_feed_fd_event (EV_P_ int fd, int revents) EV_THROW
635{ 1755{
636 if (fd >= 0 && fd < anfdmax) 1756 if (fd >= 0 && fd < anfdmax)
637 fd_event (EV_A_ fd, revents); 1757 fd_event_nocheck (EV_A_ fd, revents);
638} 1758}
639 1759
640void inline_size 1760/* make sure the external fd watch events are in-sync */
1761/* with the kernel/libev internal state */
1762inline_size void
641fd_reify (EV_P) 1763fd_reify (EV_P)
642{ 1764{
643 int i; 1765 int i;
1766
1767#if EV_SELECT_IS_WINSOCKET || EV_USE_IOCP
1768 for (i = 0; i < fdchangecnt; ++i)
1769 {
1770 int fd = fdchanges [i];
1771 ANFD *anfd = anfds + fd;
1772
1773 if (anfd->reify & EV__IOFDSET && anfd->head)
1774 {
1775 SOCKET handle = EV_FD_TO_WIN32_HANDLE (fd);
1776
1777 if (handle != anfd->handle)
1778 {
1779 unsigned long arg;
1780
1781 assert (("libev: only socket fds supported in this configuration", ioctlsocket (handle, FIONREAD, &arg) == 0));
1782
1783 /* handle changed, but fd didn't - we need to do it in two steps */
1784 backend_modify (EV_A_ fd, anfd->events, 0);
1785 anfd->events = 0;
1786 anfd->handle = handle;
1787 }
1788 }
1789 }
1790#endif
644 1791
645 for (i = 0; i < fdchangecnt; ++i) 1792 for (i = 0; i < fdchangecnt; ++i)
646 { 1793 {
647 int fd = fdchanges [i]; 1794 int fd = fdchanges [i];
648 ANFD *anfd = anfds + fd; 1795 ANFD *anfd = anfds + fd;
649 ev_io *w; 1796 ev_io *w;
650 1797
651 unsigned char events = 0; 1798 unsigned char o_events = anfd->events;
1799 unsigned char o_reify = anfd->reify;
652 1800
653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 1801 anfd->reify = 0;
654 events |= (unsigned char)w->events;
655 1802
656#if EV_SELECT_IS_WINSOCKET 1803 /*if (expect_true (o_reify & EV_ANFD_REIFY)) probably a deoptimisation */
657 if (events)
658 { 1804 {
659 unsigned long argp; 1805 anfd->events = 0;
660 #ifdef EV_FD_TO_WIN32_HANDLE 1806
661 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 1807 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
662 #else 1808 anfd->events |= (unsigned char)w->events;
663 anfd->handle = _get_osfhandle (fd); 1809
664 #endif 1810 if (o_events != anfd->events)
665 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 1811 o_reify = EV__IOFDSET; /* actually |= */
666 } 1812 }
667#endif
668 1813
669 { 1814 if (o_reify & EV__IOFDSET)
670 unsigned char o_events = anfd->events;
671 unsigned char o_reify = anfd->reify;
672
673 anfd->reify = 0;
674 anfd->events = events;
675
676 if (o_events != events || o_reify & EV_IOFDSET)
677 backend_modify (EV_A_ fd, o_events, events); 1815 backend_modify (EV_A_ fd, o_events, anfd->events);
678 }
679 } 1816 }
680 1817
681 fdchangecnt = 0; 1818 fdchangecnt = 0;
682} 1819}
683 1820
684void inline_size 1821/* something about the given fd changed */
1822inline_size void
685fd_change (EV_P_ int fd, int flags) 1823fd_change (EV_P_ int fd, int flags)
686{ 1824{
687 unsigned char reify = anfds [fd].reify; 1825 unsigned char reify = anfds [fd].reify;
688 anfds [fd].reify |= flags; 1826 anfds [fd].reify |= flags;
689 1827
693 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 1831 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
694 fdchanges [fdchangecnt - 1] = fd; 1832 fdchanges [fdchangecnt - 1] = fd;
695 } 1833 }
696} 1834}
697 1835
698void inline_speed 1836/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
1837inline_speed void ecb_cold
699fd_kill (EV_P_ int fd) 1838fd_kill (EV_P_ int fd)
700{ 1839{
701 ev_io *w; 1840 ev_io *w;
702 1841
703 while ((w = (ev_io *)anfds [fd].head)) 1842 while ((w = (ev_io *)anfds [fd].head))
705 ev_io_stop (EV_A_ w); 1844 ev_io_stop (EV_A_ w);
706 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 1845 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
707 } 1846 }
708} 1847}
709 1848
710int inline_size 1849/* check whether the given fd is actually valid, for error recovery */
1850inline_size int ecb_cold
711fd_valid (int fd) 1851fd_valid (int fd)
712{ 1852{
713#ifdef _WIN32 1853#ifdef _WIN32
714 return _get_osfhandle (fd) != -1; 1854 return EV_FD_TO_WIN32_HANDLE (fd) != -1;
715#else 1855#else
716 return fcntl (fd, F_GETFD) != -1; 1856 return fcntl (fd, F_GETFD) != -1;
717#endif 1857#endif
718} 1858}
719 1859
720/* called on EBADF to verify fds */ 1860/* called on EBADF to verify fds */
721static void noinline 1861static void noinline ecb_cold
722fd_ebadf (EV_P) 1862fd_ebadf (EV_P)
723{ 1863{
724 int fd; 1864 int fd;
725 1865
726 for (fd = 0; fd < anfdmax; ++fd) 1866 for (fd = 0; fd < anfdmax; ++fd)
727 if (anfds [fd].events) 1867 if (anfds [fd].events)
728 if (!fd_valid (fd) == -1 && errno == EBADF) 1868 if (!fd_valid (fd) && errno == EBADF)
729 fd_kill (EV_A_ fd); 1869 fd_kill (EV_A_ fd);
730} 1870}
731 1871
732/* called on ENOMEM in select/poll to kill some fds and retry */ 1872/* called on ENOMEM in select/poll to kill some fds and retry */
733static void noinline 1873static void noinline ecb_cold
734fd_enomem (EV_P) 1874fd_enomem (EV_P)
735{ 1875{
736 int fd; 1876 int fd;
737 1877
738 for (fd = anfdmax; fd--; ) 1878 for (fd = anfdmax; fd--; )
739 if (anfds [fd].events) 1879 if (anfds [fd].events)
740 { 1880 {
741 fd_kill (EV_A_ fd); 1881 fd_kill (EV_A_ fd);
742 return; 1882 break;
743 } 1883 }
744} 1884}
745 1885
746/* usually called after fork if backend needs to re-arm all fds from scratch */ 1886/* usually called after fork if backend needs to re-arm all fds from scratch */
747static void noinline 1887static void noinline
751 1891
752 for (fd = 0; fd < anfdmax; ++fd) 1892 for (fd = 0; fd < anfdmax; ++fd)
753 if (anfds [fd].events) 1893 if (anfds [fd].events)
754 { 1894 {
755 anfds [fd].events = 0; 1895 anfds [fd].events = 0;
1896 anfds [fd].emask = 0;
756 fd_change (EV_A_ fd, EV_IOFDSET | 1); 1897 fd_change (EV_A_ fd, EV__IOFDSET | EV_ANFD_REIFY);
757 } 1898 }
758} 1899}
759 1900
760/*****************************************************************************/ 1901/* used to prepare libev internal fd's */
761 1902/* this is not fork-safe */
762/* towards the root */ 1903inline_speed void
763void inline_speed
764upheap (WT *heap, int k)
765{
766 WT w = heap [k];
767
768 for (;;)
769 {
770 int p = k >> 1;
771
772 /* maybe we could use a dummy element at heap [0]? */
773 if (!p || heap [p]->at <= w->at)
774 break;
775
776 heap [k] = heap [p];
777 ((W)heap [k])->active = k;
778 k = p;
779 }
780
781 heap [k] = w;
782 ((W)heap [k])->active = k;
783}
784
785/* away from the root */
786void inline_speed
787downheap (WT *heap, int N, int k)
788{
789 WT w = heap [k];
790
791 for (;;)
792 {
793 int c = k << 1;
794
795 if (c > N)
796 break;
797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
804 heap [k] = heap [c];
805 ((W)heap [k])->active = k;
806
807 k = c;
808 }
809
810 heap [k] = w;
811 ((W)heap [k])->active = k;
812}
813
814void inline_size
815adjustheap (WT *heap, int N, int k)
816{
817 upheap (heap, k);
818 downheap (heap, N, k);
819}
820
821/*****************************************************************************/
822
823typedef struct
824{
825 WL head;
826 EV_ATOMIC_T gotsig;
827} ANSIG;
828
829static ANSIG *signals;
830static int signalmax;
831
832static EV_ATOMIC_T gotsig;
833
834void inline_size
835signals_init (ANSIG *base, int count)
836{
837 while (count--)
838 {
839 base->head = 0;
840 base->gotsig = 0;
841
842 ++base;
843 }
844}
845
846/*****************************************************************************/
847
848void inline_speed
849fd_intern (int fd) 1904fd_intern (int fd)
850{ 1905{
851#ifdef _WIN32 1906#ifdef _WIN32
852 int arg = 1; 1907 unsigned long arg = 1;
853 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1908 ioctlsocket (EV_FD_TO_WIN32_HANDLE (fd), FIONBIO, &arg);
854#else 1909#else
855 fcntl (fd, F_SETFD, FD_CLOEXEC); 1910 fcntl (fd, F_SETFD, FD_CLOEXEC);
856 fcntl (fd, F_SETFL, O_NONBLOCK); 1911 fcntl (fd, F_SETFL, O_NONBLOCK);
857#endif 1912#endif
858} 1913}
859 1914
860static void noinline 1915/*****************************************************************************/
861evpipe_init (EV_P) 1916
1917/*
1918 * the heap functions want a real array index. array index 0 is guaranteed to not
1919 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
1920 * the branching factor of the d-tree.
1921 */
1922
1923/*
1924 * at the moment we allow libev the luxury of two heaps,
1925 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
1926 * which is more cache-efficient.
1927 * the difference is about 5% with 50000+ watchers.
1928 */
1929#if EV_USE_4HEAP
1930
1931#define DHEAP 4
1932#define HEAP0 (DHEAP - 1) /* index of first element in heap */
1933#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
1934#define UPHEAP_DONE(p,k) ((p) == (k))
1935
1936/* away from the root */
1937inline_speed void
1938downheap (ANHE *heap, int N, int k)
862{ 1939{
863 if (!ev_is_active (&pipeev)) 1940 ANHE he = heap [k];
1941 ANHE *E = heap + N + HEAP0;
1942
1943 for (;;)
864 { 1944 {
865#if EV_USE_EVENTFD 1945 ev_tstamp minat;
866 if ((evfd = eventfd (0, 0)) >= 0) 1946 ANHE *minpos;
1947 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
1948
1949 /* find minimum child */
1950 if (expect_true (pos + DHEAP - 1 < E))
867 { 1951 {
868 evpipe [0] = -1; 1952 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
869 fd_intern (evfd); 1953 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
870 ev_io_set (&pipeev, evfd, EV_READ); 1954 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1955 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
1956 }
1957 else if (pos < E)
1958 {
1959 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
1960 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
1961 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
1962 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
871 } 1963 }
872 else 1964 else
1965 break;
1966
1967 if (ANHE_at (he) <= minat)
1968 break;
1969
1970 heap [k] = *minpos;
1971 ev_active (ANHE_w (*minpos)) = k;
1972
1973 k = minpos - heap;
1974 }
1975
1976 heap [k] = he;
1977 ev_active (ANHE_w (he)) = k;
1978}
1979
1980#else /* 4HEAP */
1981
1982#define HEAP0 1
1983#define HPARENT(k) ((k) >> 1)
1984#define UPHEAP_DONE(p,k) (!(p))
1985
1986/* away from the root */
1987inline_speed void
1988downheap (ANHE *heap, int N, int k)
1989{
1990 ANHE he = heap [k];
1991
1992 for (;;)
1993 {
1994 int c = k << 1;
1995
1996 if (c >= N + HEAP0)
1997 break;
1998
1999 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
2000 ? 1 : 0;
2001
2002 if (ANHE_at (he) <= ANHE_at (heap [c]))
2003 break;
2004
2005 heap [k] = heap [c];
2006 ev_active (ANHE_w (heap [k])) = k;
2007
2008 k = c;
2009 }
2010
2011 heap [k] = he;
2012 ev_active (ANHE_w (he)) = k;
2013}
2014#endif
2015
2016/* towards the root */
2017inline_speed void
2018upheap (ANHE *heap, int k)
2019{
2020 ANHE he = heap [k];
2021
2022 for (;;)
2023 {
2024 int p = HPARENT (k);
2025
2026 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
2027 break;
2028
2029 heap [k] = heap [p];
2030 ev_active (ANHE_w (heap [k])) = k;
2031 k = p;
2032 }
2033
2034 heap [k] = he;
2035 ev_active (ANHE_w (he)) = k;
2036}
2037
2038/* move an element suitably so it is in a correct place */
2039inline_size void
2040adjustheap (ANHE *heap, int N, int k)
2041{
2042 if (k > HEAP0 && ANHE_at (heap [k]) <= ANHE_at (heap [HPARENT (k)]))
2043 upheap (heap, k);
2044 else
2045 downheap (heap, N, k);
2046}
2047
2048/* rebuild the heap: this function is used only once and executed rarely */
2049inline_size void
2050reheap (ANHE *heap, int N)
2051{
2052 int i;
2053
2054 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
2055 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
2056 for (i = 0; i < N; ++i)
2057 upheap (heap, i + HEAP0);
2058}
2059
2060/*****************************************************************************/
2061
2062/* associate signal watchers to a signal signal */
2063typedef struct
2064{
2065 EV_ATOMIC_T pending;
2066#if EV_MULTIPLICITY
2067 EV_P;
2068#endif
2069 WL head;
2070} ANSIG;
2071
2072static ANSIG signals [EV_NSIG - 1];
2073
2074/*****************************************************************************/
2075
2076#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
2077
2078static void noinline ecb_cold
2079evpipe_init (EV_P)
2080{
2081 if (!ev_is_active (&pipe_w))
2082 {
2083 int fds [2];
2084
2085# if EV_USE_EVENTFD
2086 fds [0] = -1;
2087 fds [1] = eventfd (0, EFD_NONBLOCK | EFD_CLOEXEC);
2088 if (fds [1] < 0 && errno == EINVAL)
2089 fds [1] = eventfd (0, 0);
2090
2091 if (fds [1] < 0)
873#endif 2092# endif
874 { 2093 {
875 while (pipe (evpipe)) 2094 while (pipe (fds))
876 syserr ("(libev) error creating signal/async pipe"); 2095 ev_syserr ("(libev) error creating signal/async pipe");
877 2096
878 fd_intern (evpipe [0]); 2097 fd_intern (fds [0]);
879 fd_intern (evpipe [1]);
880 ev_io_set (&pipeev, evpipe [0], EV_READ);
881 } 2098 }
882 2099
2100 fd_intern (fds [1]);
2101
2102 evpipe [0] = fds [0];
2103
2104 if (evpipe [1] < 0)
2105 evpipe [1] = fds [1]; /* first call, set write fd */
2106 else
2107 {
2108 /* on subsequent calls, do not change evpipe [1] */
2109 /* so that evpipe_write can always rely on its value. */
2110 /* this branch does not do anything sensible on windows, */
2111 /* so must not be executed on windows */
2112
2113 dup2 (fds [1], evpipe [1]);
2114 close (fds [1]);
2115 }
2116
2117 ev_io_set (&pipe_w, evpipe [0] < 0 ? evpipe [1] : evpipe [0], EV_READ);
883 ev_io_start (EV_A_ &pipeev); 2118 ev_io_start (EV_A_ &pipe_w);
884 ev_unref (EV_A); /* watcher should not keep loop alive */ 2119 ev_unref (EV_A); /* watcher should not keep loop alive */
885 } 2120 }
886} 2121}
887 2122
888void inline_size 2123inline_speed void
889evpipe_write (EV_P_ EV_ATOMIC_T *flag) 2124evpipe_write (EV_P_ EV_ATOMIC_T *flag)
890{ 2125{
891 if (!*flag) 2126 ECB_MEMORY_FENCE; /* push out the write before this function was called, acquire flag */
2127
2128 if (expect_true (*flag))
2129 return;
2130
2131 *flag = 1;
2132 ECB_MEMORY_FENCE_RELEASE; /* make sure flag is visible before the wakeup */
2133
2134 pipe_write_skipped = 1;
2135
2136 ECB_MEMORY_FENCE; /* make sure pipe_write_skipped is visible before we check pipe_write_wanted */
2137
2138 if (pipe_write_wanted)
892 { 2139 {
2140 int old_errno;
2141
2142 pipe_write_skipped = 0;
2143 ECB_MEMORY_FENCE_RELEASE;
2144
893 int old_errno = errno; /* save errno because write might clobber it */ 2145 old_errno = errno; /* save errno because write will clobber it */
894
895 *flag = 1;
896 2146
897#if EV_USE_EVENTFD 2147#if EV_USE_EVENTFD
898 if (evfd >= 0) 2148 if (evpipe [0] < 0)
899 { 2149 {
900 uint64_t counter = 1; 2150 uint64_t counter = 1;
901 write (evfd, &counter, sizeof (uint64_t)); 2151 write (evpipe [1], &counter, sizeof (uint64_t));
902 } 2152 }
903 else 2153 else
904#endif 2154#endif
2155 {
2156#ifdef _WIN32
2157 WSABUF buf;
2158 DWORD sent;
2159 buf.buf = &buf;
2160 buf.len = 1;
2161 WSASend (EV_FD_TO_WIN32_HANDLE (evpipe [1]), &buf, 1, &sent, 0, 0, 0);
2162#else
905 write (evpipe [1], &old_errno, 1); 2163 write (evpipe [1], &(evpipe [1]), 1);
2164#endif
2165 }
906 2166
907 errno = old_errno; 2167 errno = old_errno;
908 } 2168 }
909} 2169}
910 2170
2171/* called whenever the libev signal pipe */
2172/* got some events (signal, async) */
911static void 2173static void
912pipecb (EV_P_ ev_io *iow, int revents) 2174pipecb (EV_P_ ev_io *iow, int revents)
913{ 2175{
2176 int i;
2177
2178 if (revents & EV_READ)
2179 {
914#if EV_USE_EVENTFD 2180#if EV_USE_EVENTFD
915 if (evfd >= 0) 2181 if (evpipe [0] < 0)
916 { 2182 {
917 uint64_t counter = 1; 2183 uint64_t counter;
918 read (evfd, &counter, sizeof (uint64_t)); 2184 read (evpipe [1], &counter, sizeof (uint64_t));
919 } 2185 }
920 else 2186 else
921#endif 2187#endif
922 { 2188 {
923 char dummy; 2189 char dummy[4];
2190#ifdef _WIN32
2191 WSABUF buf;
2192 DWORD recvd;
2193 DWORD flags = 0;
2194 buf.buf = dummy;
2195 buf.len = sizeof (dummy);
2196 WSARecv (EV_FD_TO_WIN32_HANDLE (evpipe [0]), &buf, 1, &recvd, &flags, 0, 0);
2197#else
924 read (evpipe [0], &dummy, 1); 2198 read (evpipe [0], &dummy, sizeof (dummy));
2199#endif
2200 }
2201 }
2202
2203 pipe_write_skipped = 0;
2204
2205 ECB_MEMORY_FENCE; /* push out skipped, acquire flags */
2206
2207#if EV_SIGNAL_ENABLE
2208 if (sig_pending)
925 } 2209 {
2210 sig_pending = 0;
926 2211
927 if (gotsig && ev_is_default_loop (EV_A)) 2212 ECB_MEMORY_FENCE;
928 {
929 int signum;
930 gotsig = 0;
931 2213
932 for (signum = signalmax; signum--; ) 2214 for (i = EV_NSIG - 1; i--; )
933 if (signals [signum].gotsig) 2215 if (expect_false (signals [i].pending))
934 ev_feed_signal_event (EV_A_ signum + 1); 2216 ev_feed_signal_event (EV_A_ i + 1);
935 } 2217 }
2218#endif
936 2219
937#if EV_ASYNC_ENABLE 2220#if EV_ASYNC_ENABLE
938 if (gotasync) 2221 if (async_pending)
939 { 2222 {
940 int i; 2223 async_pending = 0;
941 gotasync = 0; 2224
2225 ECB_MEMORY_FENCE;
942 2226
943 for (i = asynccnt; i--; ) 2227 for (i = asynccnt; i--; )
944 if (asyncs [i]->sent) 2228 if (asyncs [i]->sent)
945 { 2229 {
946 asyncs [i]->sent = 0; 2230 asyncs [i]->sent = 0;
2231 ECB_MEMORY_FENCE_RELEASE;
947 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC); 2232 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
948 } 2233 }
949 } 2234 }
950#endif 2235#endif
951} 2236}
952 2237
953/*****************************************************************************/ 2238/*****************************************************************************/
954 2239
2240void
2241ev_feed_signal (int signum) EV_THROW
2242{
2243#if EV_MULTIPLICITY
2244 ECB_MEMORY_FENCE_ACQUIRE;
2245 EV_P = signals [signum - 1].loop;
2246
2247 if (!EV_A)
2248 return;
2249#endif
2250
2251 signals [signum - 1].pending = 1;
2252 evpipe_write (EV_A_ &sig_pending);
2253}
2254
955static void 2255static void
956ev_sighandler (int signum) 2256ev_sighandler (int signum)
957{ 2257{
2258#ifdef _WIN32
2259 signal (signum, ev_sighandler);
2260#endif
2261
2262 ev_feed_signal (signum);
2263}
2264
2265void noinline
2266ev_feed_signal_event (EV_P_ int signum) EV_THROW
2267{
2268 WL w;
2269
2270 if (expect_false (signum <= 0 || signum >= EV_NSIG))
2271 return;
2272
2273 --signum;
2274
958#if EV_MULTIPLICITY 2275#if EV_MULTIPLICITY
959 struct ev_loop *loop = &default_loop_struct; 2276 /* it is permissible to try to feed a signal to the wrong loop */
960#endif 2277 /* or, likely more useful, feeding a signal nobody is waiting for */
961 2278
962#if _WIN32 2279 if (expect_false (signals [signum].loop != EV_A))
963 signal (signum, ev_sighandler);
964#endif
965
966 signals [signum - 1].gotsig = 1;
967 evpipe_write (EV_A_ &gotsig);
968}
969
970void noinline
971ev_feed_signal_event (EV_P_ int signum)
972{
973 WL w;
974
975#if EV_MULTIPLICITY
976 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
977#endif
978
979 --signum;
980
981 if (signum < 0 || signum >= signalmax)
982 return; 2280 return;
2281#endif
983 2282
984 signals [signum].gotsig = 0; 2283 signals [signum].pending = 0;
2284 ECB_MEMORY_FENCE_RELEASE;
985 2285
986 for (w = signals [signum].head; w; w = w->next) 2286 for (w = signals [signum].head; w; w = w->next)
987 ev_feed_event (EV_A_ (W)w, EV_SIGNAL); 2287 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
988} 2288}
989 2289
2290#if EV_USE_SIGNALFD
2291static void
2292sigfdcb (EV_P_ ev_io *iow, int revents)
2293{
2294 struct signalfd_siginfo si[2], *sip; /* these structs are big */
2295
2296 for (;;)
2297 {
2298 ssize_t res = read (sigfd, si, sizeof (si));
2299
2300 /* not ISO-C, as res might be -1, but works with SuS */
2301 for (sip = si; (char *)sip < (char *)si + res; ++sip)
2302 ev_feed_signal_event (EV_A_ sip->ssi_signo);
2303
2304 if (res < (ssize_t)sizeof (si))
2305 break;
2306 }
2307}
2308#endif
2309
2310#endif
2311
990/*****************************************************************************/ 2312/*****************************************************************************/
991 2313
2314#if EV_CHILD_ENABLE
992static WL childs [EV_PID_HASHSIZE]; 2315static WL childs [EV_PID_HASHSIZE];
993
994#ifndef _WIN32
995 2316
996static ev_signal childev; 2317static ev_signal childev;
997 2318
998#ifndef WIFCONTINUED 2319#ifndef WIFCONTINUED
999# define WIFCONTINUED(status) 0 2320# define WIFCONTINUED(status) 0
1000#endif 2321#endif
1001 2322
1002void inline_speed 2323/* handle a single child status event */
2324inline_speed void
1003child_reap (EV_P_ int chain, int pid, int status) 2325child_reap (EV_P_ int chain, int pid, int status)
1004{ 2326{
1005 ev_child *w; 2327 ev_child *w;
1006 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 2328 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1007 2329
1008 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 2330 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
1009 { 2331 {
1010 if ((w->pid == pid || !w->pid) 2332 if ((w->pid == pid || !w->pid)
1011 && (!traced || (w->flags & 1))) 2333 && (!traced || (w->flags & 1)))
1012 { 2334 {
1013 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */ 2335 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1020 2342
1021#ifndef WCONTINUED 2343#ifndef WCONTINUED
1022# define WCONTINUED 0 2344# define WCONTINUED 0
1023#endif 2345#endif
1024 2346
2347/* called on sigchld etc., calls waitpid */
1025static void 2348static void
1026childcb (EV_P_ ev_signal *sw, int revents) 2349childcb (EV_P_ ev_signal *sw, int revents)
1027{ 2350{
1028 int pid, status; 2351 int pid, status;
1029 2352
1037 /* make sure we are called again until all children have been reaped */ 2360 /* make sure we are called again until all children have been reaped */
1038 /* we need to do it this way so that the callback gets called before we continue */ 2361 /* we need to do it this way so that the callback gets called before we continue */
1039 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 2362 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1040 2363
1041 child_reap (EV_A_ pid, pid, status); 2364 child_reap (EV_A_ pid, pid, status);
1042 if (EV_PID_HASHSIZE > 1) 2365 if ((EV_PID_HASHSIZE) > 1)
1043 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 2366 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
1044} 2367}
1045 2368
1046#endif 2369#endif
1047 2370
1048/*****************************************************************************/ 2371/*****************************************************************************/
1049 2372
2373#if EV_USE_IOCP
2374# include "ev_iocp.c"
2375#endif
1050#if EV_USE_PORT 2376#if EV_USE_PORT
1051# include "ev_port.c" 2377# include "ev_port.c"
1052#endif 2378#endif
1053#if EV_USE_KQUEUE 2379#if EV_USE_KQUEUE
1054# include "ev_kqueue.c" 2380# include "ev_kqueue.c"
1061#endif 2387#endif
1062#if EV_USE_SELECT 2388#if EV_USE_SELECT
1063# include "ev_select.c" 2389# include "ev_select.c"
1064#endif 2390#endif
1065 2391
1066int 2392int ecb_cold
1067ev_version_major (void) 2393ev_version_major (void) EV_THROW
1068{ 2394{
1069 return EV_VERSION_MAJOR; 2395 return EV_VERSION_MAJOR;
1070} 2396}
1071 2397
1072int 2398int ecb_cold
1073ev_version_minor (void) 2399ev_version_minor (void) EV_THROW
1074{ 2400{
1075 return EV_VERSION_MINOR; 2401 return EV_VERSION_MINOR;
1076} 2402}
1077 2403
1078/* return true if we are running with elevated privileges and should ignore env variables */ 2404/* return true if we are running with elevated privileges and should ignore env variables */
1079int inline_size 2405int inline_size ecb_cold
1080enable_secure (void) 2406enable_secure (void)
1081{ 2407{
1082#ifdef _WIN32 2408#ifdef _WIN32
1083 return 0; 2409 return 0;
1084#else 2410#else
1085 return getuid () != geteuid () 2411 return getuid () != geteuid ()
1086 || getgid () != getegid (); 2412 || getgid () != getegid ();
1087#endif 2413#endif
1088} 2414}
1089 2415
1090unsigned int 2416unsigned int ecb_cold
1091ev_supported_backends (void) 2417ev_supported_backends (void) EV_THROW
1092{ 2418{
1093 unsigned int flags = 0; 2419 unsigned int flags = 0;
1094 2420
1095 if (EV_USE_PORT ) flags |= EVBACKEND_PORT; 2421 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1096 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE; 2422 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1099 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT; 2425 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1100 2426
1101 return flags; 2427 return flags;
1102} 2428}
1103 2429
1104unsigned int 2430unsigned int ecb_cold
1105ev_recommended_backends (void) 2431ev_recommended_backends (void) EV_THROW
1106{ 2432{
1107 unsigned int flags = ev_supported_backends (); 2433 unsigned int flags = ev_supported_backends ();
1108 2434
1109#ifndef __NetBSD__ 2435#ifndef __NetBSD__
1110 /* kqueue is borked on everything but netbsd apparently */ 2436 /* kqueue is borked on everything but netbsd apparently */
1111 /* it usually doesn't work correctly on anything but sockets and pipes */ 2437 /* it usually doesn't work correctly on anything but sockets and pipes */
1112 flags &= ~EVBACKEND_KQUEUE; 2438 flags &= ~EVBACKEND_KQUEUE;
1113#endif 2439#endif
1114#ifdef __APPLE__ 2440#ifdef __APPLE__
1115 // flags &= ~EVBACKEND_KQUEUE; for documentation 2441 /* only select works correctly on that "unix-certified" platform */
1116 flags &= ~EVBACKEND_POLL; 2442 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
2443 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
2444#endif
2445#ifdef __FreeBSD__
2446 flags &= ~EVBACKEND_POLL; /* poll return value is unusable (http://forums.freebsd.org/archive/index.php/t-10270.html) */
1117#endif 2447#endif
1118 2448
1119 return flags; 2449 return flags;
1120} 2450}
1121 2451
2452unsigned int ecb_cold
2453ev_embeddable_backends (void) EV_THROW
2454{
2455 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
2456
2457 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
2458 if (ev_linux_version () < 0x020620) /* disable it on linux < 2.6.32 */
2459 flags &= ~EVBACKEND_EPOLL;
2460
2461 return flags;
2462}
2463
1122unsigned int 2464unsigned int
1123ev_embeddable_backends (void) 2465ev_backend (EV_P) EV_THROW
1124{ 2466{
1125 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT; 2467 return backend;
1126
1127 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1128 /* please fix it and tell me how to detect the fix */
1129 flags &= ~EVBACKEND_EPOLL;
1130
1131 return flags;
1132} 2468}
1133 2469
2470#if EV_FEATURE_API
1134unsigned int 2471unsigned int
1135ev_backend (EV_P) 2472ev_iteration (EV_P) EV_THROW
1136{ 2473{
1137 return backend; 2474 return loop_count;
1138} 2475}
1139 2476
1140unsigned int 2477unsigned int
1141ev_loop_count (EV_P) 2478ev_depth (EV_P) EV_THROW
1142{ 2479{
1143 return loop_count; 2480 return loop_depth;
1144} 2481}
1145 2482
1146void 2483void
1147ev_set_io_collect_interval (EV_P_ ev_tstamp interval) 2484ev_set_io_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1148{ 2485{
1149 io_blocktime = interval; 2486 io_blocktime = interval;
1150} 2487}
1151 2488
1152void 2489void
1153ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 2490ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) EV_THROW
1154{ 2491{
1155 timeout_blocktime = interval; 2492 timeout_blocktime = interval;
1156} 2493}
1157 2494
2495void
2496ev_set_userdata (EV_P_ void *data) EV_THROW
2497{
2498 userdata = data;
2499}
2500
2501void *
2502ev_userdata (EV_P) EV_THROW
2503{
2504 return userdata;
2505}
2506
2507void
2508ev_set_invoke_pending_cb (EV_P_ void (*invoke_pending_cb)(EV_P)) EV_THROW
2509{
2510 invoke_cb = invoke_pending_cb;
2511}
2512
2513void
2514ev_set_loop_release_cb (EV_P_ void (*release)(EV_P) EV_THROW, void (*acquire)(EV_P) EV_THROW) EV_THROW
2515{
2516 release_cb = release;
2517 acquire_cb = acquire;
2518}
2519#endif
2520
2521/* initialise a loop structure, must be zero-initialised */
1158static void noinline 2522static void noinline ecb_cold
1159loop_init (EV_P_ unsigned int flags) 2523loop_init (EV_P_ unsigned int flags) EV_THROW
1160{ 2524{
1161 if (!backend) 2525 if (!backend)
1162 { 2526 {
2527 origflags = flags;
2528
2529#if EV_USE_REALTIME
2530 if (!have_realtime)
2531 {
2532 struct timespec ts;
2533
2534 if (!clock_gettime (CLOCK_REALTIME, &ts))
2535 have_realtime = 1;
2536 }
2537#endif
2538
1163#if EV_USE_MONOTONIC 2539#if EV_USE_MONOTONIC
2540 if (!have_monotonic)
1164 { 2541 {
1165 struct timespec ts; 2542 struct timespec ts;
2543
1166 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 2544 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1167 have_monotonic = 1; 2545 have_monotonic = 1;
1168 } 2546 }
1169#endif
1170
1171 ev_rt_now = ev_time ();
1172 mn_now = get_clock ();
1173 now_floor = mn_now;
1174 rtmn_diff = ev_rt_now - mn_now;
1175
1176 io_blocktime = 0.;
1177 timeout_blocktime = 0.;
1178 backend = 0;
1179 backend_fd = -1;
1180 gotasync = 0;
1181#if EV_USE_INOTIFY
1182 fs_fd = -2;
1183#endif 2547#endif
1184 2548
1185 /* pid check not overridable via env */ 2549 /* pid check not overridable via env */
1186#ifndef _WIN32 2550#ifndef _WIN32
1187 if (flags & EVFLAG_FORKCHECK) 2551 if (flags & EVFLAG_FORKCHECK)
1191 if (!(flags & EVFLAG_NOENV) 2555 if (!(flags & EVFLAG_NOENV)
1192 && !enable_secure () 2556 && !enable_secure ()
1193 && getenv ("LIBEV_FLAGS")) 2557 && getenv ("LIBEV_FLAGS"))
1194 flags = atoi (getenv ("LIBEV_FLAGS")); 2558 flags = atoi (getenv ("LIBEV_FLAGS"));
1195 2559
1196 if (!(flags & 0x0000ffffU)) 2560 ev_rt_now = ev_time ();
2561 mn_now = get_clock ();
2562 now_floor = mn_now;
2563 rtmn_diff = ev_rt_now - mn_now;
2564#if EV_FEATURE_API
2565 invoke_cb = ev_invoke_pending;
2566#endif
2567
2568 io_blocktime = 0.;
2569 timeout_blocktime = 0.;
2570 backend = 0;
2571 backend_fd = -1;
2572 sig_pending = 0;
2573#if EV_ASYNC_ENABLE
2574 async_pending = 0;
2575#endif
2576 pipe_write_skipped = 0;
2577 pipe_write_wanted = 0;
2578 evpipe [0] = -1;
2579 evpipe [1] = -1;
2580#if EV_USE_INOTIFY
2581 fs_fd = flags & EVFLAG_NOINOTIFY ? -1 : -2;
2582#endif
2583#if EV_USE_SIGNALFD
2584 sigfd = flags & EVFLAG_SIGNALFD ? -2 : -1;
2585#endif
2586
2587 if (!(flags & EVBACKEND_MASK))
1197 flags |= ev_recommended_backends (); 2588 flags |= ev_recommended_backends ();
1198 2589
2590#if EV_USE_IOCP
2591 if (!backend && (flags & EVBACKEND_IOCP )) backend = iocp_init (EV_A_ flags);
2592#endif
1199#if EV_USE_PORT 2593#if EV_USE_PORT
1200 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 2594 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1201#endif 2595#endif
1202#if EV_USE_KQUEUE 2596#if EV_USE_KQUEUE
1203 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 2597 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1210#endif 2604#endif
1211#if EV_USE_SELECT 2605#if EV_USE_SELECT
1212 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 2606 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1213#endif 2607#endif
1214 2608
2609 ev_prepare_init (&pending_w, pendingcb);
2610
2611#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1215 ev_init (&pipeev, pipecb); 2612 ev_init (&pipe_w, pipecb);
1216 ev_set_priority (&pipeev, EV_MAXPRI); 2613 ev_set_priority (&pipe_w, EV_MAXPRI);
2614#endif
1217 } 2615 }
1218} 2616}
1219 2617
1220static void noinline 2618/* free up a loop structure */
2619void ecb_cold
1221loop_destroy (EV_P) 2620ev_loop_destroy (EV_P)
1222{ 2621{
1223 int i; 2622 int i;
1224 2623
2624#if EV_MULTIPLICITY
2625 /* mimic free (0) */
2626 if (!EV_A)
2627 return;
2628#endif
2629
2630#if EV_CLEANUP_ENABLE
2631 /* queue cleanup watchers (and execute them) */
2632 if (expect_false (cleanupcnt))
2633 {
2634 queue_events (EV_A_ (W *)cleanups, cleanupcnt, EV_CLEANUP);
2635 EV_INVOKE_PENDING;
2636 }
2637#endif
2638
2639#if EV_CHILD_ENABLE
2640 if (ev_is_default_loop (EV_A) && ev_is_active (&childev))
2641 {
2642 ev_ref (EV_A); /* child watcher */
2643 ev_signal_stop (EV_A_ &childev);
2644 }
2645#endif
2646
1225 if (ev_is_active (&pipeev)) 2647 if (ev_is_active (&pipe_w))
1226 { 2648 {
1227 ev_ref (EV_A); /* signal watcher */ 2649 /*ev_ref (EV_A);*/
1228 ev_io_stop (EV_A_ &pipeev); 2650 /*ev_io_stop (EV_A_ &pipe_w);*/
1229 2651
2652 if (evpipe [0] >= 0) EV_WIN32_CLOSE_FD (evpipe [0]);
2653 if (evpipe [1] >= 0) EV_WIN32_CLOSE_FD (evpipe [1]);
2654 }
2655
1230#if EV_USE_EVENTFD 2656#if EV_USE_SIGNALFD
1231 if (evfd >= 0) 2657 if (ev_is_active (&sigfd_w))
1232 close (evfd); 2658 close (sigfd);
1233#endif 2659#endif
1234
1235 if (evpipe [0] >= 0)
1236 {
1237 close (evpipe [0]);
1238 close (evpipe [1]);
1239 }
1240 }
1241 2660
1242#if EV_USE_INOTIFY 2661#if EV_USE_INOTIFY
1243 if (fs_fd >= 0) 2662 if (fs_fd >= 0)
1244 close (fs_fd); 2663 close (fs_fd);
1245#endif 2664#endif
1246 2665
1247 if (backend_fd >= 0) 2666 if (backend_fd >= 0)
1248 close (backend_fd); 2667 close (backend_fd);
1249 2668
2669#if EV_USE_IOCP
2670 if (backend == EVBACKEND_IOCP ) iocp_destroy (EV_A);
2671#endif
1250#if EV_USE_PORT 2672#if EV_USE_PORT
1251 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 2673 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1252#endif 2674#endif
1253#if EV_USE_KQUEUE 2675#if EV_USE_KQUEUE
1254 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 2676 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1269#if EV_IDLE_ENABLE 2691#if EV_IDLE_ENABLE
1270 array_free (idle, [i]); 2692 array_free (idle, [i]);
1271#endif 2693#endif
1272 } 2694 }
1273 2695
1274 ev_free (anfds); anfdmax = 0; 2696 ev_free (anfds); anfds = 0; anfdmax = 0;
1275 2697
1276 /* have to use the microsoft-never-gets-it-right macro */ 2698 /* have to use the microsoft-never-gets-it-right macro */
2699 array_free (rfeed, EMPTY);
1277 array_free (fdchange, EMPTY); 2700 array_free (fdchange, EMPTY);
1278 array_free (timer, EMPTY); 2701 array_free (timer, EMPTY);
1279#if EV_PERIODIC_ENABLE 2702#if EV_PERIODIC_ENABLE
1280 array_free (periodic, EMPTY); 2703 array_free (periodic, EMPTY);
1281#endif 2704#endif
1282#if EV_FORK_ENABLE 2705#if EV_FORK_ENABLE
1283 array_free (fork, EMPTY); 2706 array_free (fork, EMPTY);
1284#endif 2707#endif
2708#if EV_CLEANUP_ENABLE
2709 array_free (cleanup, EMPTY);
2710#endif
1285 array_free (prepare, EMPTY); 2711 array_free (prepare, EMPTY);
1286 array_free (check, EMPTY); 2712 array_free (check, EMPTY);
1287#if EV_ASYNC_ENABLE 2713#if EV_ASYNC_ENABLE
1288 array_free (async, EMPTY); 2714 array_free (async, EMPTY);
1289#endif 2715#endif
1290 2716
1291 backend = 0; 2717 backend = 0;
2718
2719#if EV_MULTIPLICITY
2720 if (ev_is_default_loop (EV_A))
2721#endif
2722 ev_default_loop_ptr = 0;
2723#if EV_MULTIPLICITY
2724 else
2725 ev_free (EV_A);
2726#endif
1292} 2727}
1293 2728
1294#if EV_USE_INOTIFY 2729#if EV_USE_INOTIFY
1295void inline_size infy_fork (EV_P); 2730inline_size void infy_fork (EV_P);
1296#endif 2731#endif
1297 2732
1298void inline_size 2733inline_size void
1299loop_fork (EV_P) 2734loop_fork (EV_P)
1300{ 2735{
1301#if EV_USE_PORT 2736#if EV_USE_PORT
1302 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 2737 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1303#endif 2738#endif
1309#endif 2744#endif
1310#if EV_USE_INOTIFY 2745#if EV_USE_INOTIFY
1311 infy_fork (EV_A); 2746 infy_fork (EV_A);
1312#endif 2747#endif
1313 2748
2749#if EV_SIGNAL_ENABLE || EV_ASYNC_ENABLE
1314 if (ev_is_active (&pipeev)) 2750 if (ev_is_active (&pipe_w))
2751 {
2752 /* pipe_write_wanted must be false now, so modifying fd vars should be safe */
2753
2754 ev_ref (EV_A);
2755 ev_io_stop (EV_A_ &pipe_w);
2756
2757 if (evpipe [0] >= 0)
2758 EV_WIN32_CLOSE_FD (evpipe [0]);
2759
2760 evpipe_init (EV_A);
2761 /* iterate over everything, in case we missed something before */
2762 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
1315 { 2763 }
1316 /* this "locks" the handlers against writing to the pipe */ 2764#endif
1317 /* while we modify the fd vars */ 2765
1318 gotsig = 1; 2766 postfork = 0;
2767}
2768
2769#if EV_MULTIPLICITY
2770
2771struct ev_loop * ecb_cold
2772ev_loop_new (unsigned int flags) EV_THROW
2773{
2774 EV_P = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
2775
2776 memset (EV_A, 0, sizeof (struct ev_loop));
2777 loop_init (EV_A_ flags);
2778
2779 if (ev_backend (EV_A))
2780 return EV_A;
2781
2782 ev_free (EV_A);
2783 return 0;
2784}
2785
2786#endif /* multiplicity */
2787
2788#if EV_VERIFY
2789static void noinline ecb_cold
2790verify_watcher (EV_P_ W w)
2791{
2792 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
2793
2794 if (w->pending)
2795 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
2796}
2797
2798static void noinline ecb_cold
2799verify_heap (EV_P_ ANHE *heap, int N)
2800{
2801 int i;
2802
2803 for (i = HEAP0; i < N + HEAP0; ++i)
2804 {
2805 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
2806 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
2807 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
2808
2809 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
2810 }
2811}
2812
2813static void noinline ecb_cold
2814array_verify (EV_P_ W *ws, int cnt)
2815{
2816 while (cnt--)
2817 {
2818 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
2819 verify_watcher (EV_A_ ws [cnt]);
2820 }
2821}
2822#endif
2823
2824#if EV_FEATURE_API
2825void ecb_cold
2826ev_verify (EV_P) EV_THROW
2827{
2828#if EV_VERIFY
2829 int i;
2830 WL w, w2;
2831
2832 assert (activecnt >= -1);
2833
2834 assert (fdchangemax >= fdchangecnt);
2835 for (i = 0; i < fdchangecnt; ++i)
2836 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
2837
2838 assert (anfdmax >= 0);
2839 for (i = 0; i < anfdmax; ++i)
2840 {
2841 int j = 0;
2842
2843 for (w = w2 = anfds [i].head; w; w = w->next)
2844 {
2845 verify_watcher (EV_A_ (W)w);
2846
2847 if (j++ & 1)
2848 {
2849 assert (("libev: io watcher list contains a loop", w != w2));
2850 w2 = w2->next;
2851 }
2852
2853 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
2854 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
2855 }
2856 }
2857
2858 assert (timermax >= timercnt);
2859 verify_heap (EV_A_ timers, timercnt);
2860
2861#if EV_PERIODIC_ENABLE
2862 assert (periodicmax >= periodiccnt);
2863 verify_heap (EV_A_ periodics, periodiccnt);
2864#endif
2865
2866 for (i = NUMPRI; i--; )
2867 {
2868 assert (pendingmax [i] >= pendingcnt [i]);
2869#if EV_IDLE_ENABLE
2870 assert (idleall >= 0);
2871 assert (idlemax [i] >= idlecnt [i]);
2872 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
2873#endif
2874 }
2875
2876#if EV_FORK_ENABLE
2877 assert (forkmax >= forkcnt);
2878 array_verify (EV_A_ (W *)forks, forkcnt);
2879#endif
2880
2881#if EV_CLEANUP_ENABLE
2882 assert (cleanupmax >= cleanupcnt);
2883 array_verify (EV_A_ (W *)cleanups, cleanupcnt);
2884#endif
2885
1319#if EV_ASYNC_ENABLE 2886#if EV_ASYNC_ENABLE
1320 gotasync = 1; 2887 assert (asyncmax >= asynccnt);
2888 array_verify (EV_A_ (W *)asyncs, asynccnt);
2889#endif
2890
2891#if EV_PREPARE_ENABLE
2892 assert (preparemax >= preparecnt);
2893 array_verify (EV_A_ (W *)prepares, preparecnt);
2894#endif
2895
2896#if EV_CHECK_ENABLE
2897 assert (checkmax >= checkcnt);
2898 array_verify (EV_A_ (W *)checks, checkcnt);
2899#endif
2900
2901# if 0
2902#if EV_CHILD_ENABLE
2903 for (w = (ev_child *)childs [chain & ((EV_PID_HASHSIZE) - 1)]; w; w = (ev_child *)((WL)w)->next)
2904 for (signum = EV_NSIG; signum--; ) if (signals [signum].pending)
2905#endif
1321#endif 2906# endif
1322
1323 ev_ref (EV_A);
1324 ev_io_stop (EV_A_ &pipeev);
1325
1326#if EV_USE_EVENTFD
1327 if (evfd >= 0)
1328 close (evfd);
1329#endif 2907#endif
1330
1331 if (evpipe [0] >= 0)
1332 {
1333 close (evpipe [0]);
1334 close (evpipe [1]);
1335 }
1336
1337 evpipe_init (EV_A);
1338 /* now iterate over everything, in case we missed something */
1339 pipecb (EV_A_ &pipeev, EV_READ);
1340 }
1341
1342 postfork = 0;
1343} 2908}
2909#endif
1344 2910
1345#if EV_MULTIPLICITY 2911#if EV_MULTIPLICITY
1346struct ev_loop * 2912struct ev_loop * ecb_cold
1347ev_loop_new (unsigned int flags)
1348{
1349 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1350
1351 memset (loop, 0, sizeof (struct ev_loop));
1352
1353 loop_init (EV_A_ flags);
1354
1355 if (ev_backend (EV_A))
1356 return loop;
1357
1358 return 0;
1359}
1360
1361void
1362ev_loop_destroy (EV_P)
1363{
1364 loop_destroy (EV_A);
1365 ev_free (loop);
1366}
1367
1368void
1369ev_loop_fork (EV_P)
1370{
1371 postfork = 1; /* must be in line with ev_default_fork */
1372}
1373
1374#endif
1375
1376#if EV_MULTIPLICITY
1377struct ev_loop *
1378ev_default_loop_init (unsigned int flags)
1379#else 2913#else
1380int 2914int
2915#endif
1381ev_default_loop (unsigned int flags) 2916ev_default_loop (unsigned int flags) EV_THROW
1382#endif
1383{ 2917{
1384 if (!ev_default_loop_ptr) 2918 if (!ev_default_loop_ptr)
1385 { 2919 {
1386#if EV_MULTIPLICITY 2920#if EV_MULTIPLICITY
1387 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 2921 EV_P = ev_default_loop_ptr = &default_loop_struct;
1388#else 2922#else
1389 ev_default_loop_ptr = 1; 2923 ev_default_loop_ptr = 1;
1390#endif 2924#endif
1391 2925
1392 loop_init (EV_A_ flags); 2926 loop_init (EV_A_ flags);
1393 2927
1394 if (ev_backend (EV_A)) 2928 if (ev_backend (EV_A))
1395 { 2929 {
1396#ifndef _WIN32 2930#if EV_CHILD_ENABLE
1397 ev_signal_init (&childev, childcb, SIGCHLD); 2931 ev_signal_init (&childev, childcb, SIGCHLD);
1398 ev_set_priority (&childev, EV_MAXPRI); 2932 ev_set_priority (&childev, EV_MAXPRI);
1399 ev_signal_start (EV_A_ &childev); 2933 ev_signal_start (EV_A_ &childev);
1400 ev_unref (EV_A); /* child watcher should not keep loop alive */ 2934 ev_unref (EV_A); /* child watcher should not keep loop alive */
1401#endif 2935#endif
1406 2940
1407 return ev_default_loop_ptr; 2941 return ev_default_loop_ptr;
1408} 2942}
1409 2943
1410void 2944void
1411ev_default_destroy (void) 2945ev_loop_fork (EV_P) EV_THROW
1412{ 2946{
1413#if EV_MULTIPLICITY 2947 postfork = 1;
1414 struct ev_loop *loop = ev_default_loop_ptr;
1415#endif
1416
1417#ifndef _WIN32
1418 ev_ref (EV_A); /* child watcher */
1419 ev_signal_stop (EV_A_ &childev);
1420#endif
1421
1422 loop_destroy (EV_A);
1423}
1424
1425void
1426ev_default_fork (void)
1427{
1428#if EV_MULTIPLICITY
1429 struct ev_loop *loop = ev_default_loop_ptr;
1430#endif
1431
1432 if (backend)
1433 postfork = 1; /* must be in line with ev_loop_fork */
1434} 2948}
1435 2949
1436/*****************************************************************************/ 2950/*****************************************************************************/
1437 2951
1438void 2952void
1439ev_invoke (EV_P_ void *w, int revents) 2953ev_invoke (EV_P_ void *w, int revents)
1440{ 2954{
1441 EV_CB_INVOKE ((W)w, revents); 2955 EV_CB_INVOKE ((W)w, revents);
1442} 2956}
1443 2957
1444void inline_speed 2958unsigned int
1445call_pending (EV_P) 2959ev_pending_count (EV_P) EV_THROW
1446{ 2960{
1447 int pri; 2961 int pri;
2962 unsigned int count = 0;
1448 2963
1449 for (pri = NUMPRI; pri--; ) 2964 for (pri = NUMPRI; pri--; )
2965 count += pendingcnt [pri];
2966
2967 return count;
2968}
2969
2970void noinline
2971ev_invoke_pending (EV_P)
2972{
2973 pendingpri = NUMPRI;
2974
2975 while (pendingpri) /* pendingpri possibly gets modified in the inner loop */
2976 {
2977 --pendingpri;
2978
1450 while (pendingcnt [pri]) 2979 while (pendingcnt [pendingpri])
1451 {
1452 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1453
1454 if (expect_true (p->w))
1455 {
1456 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1457
1458 p->w->pending = 0;
1459 EV_CB_INVOKE (p->w, p->events);
1460 }
1461 }
1462}
1463
1464void inline_size
1465timers_reify (EV_P)
1466{
1467 while (timercnt && ev_at (timers [1]) <= mn_now)
1468 {
1469 ev_timer *w = (ev_timer *)timers [1];
1470
1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1472
1473 /* first reschedule or stop timer */
1474 if (w->repeat)
1475 { 2980 {
1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 2981 ANPENDING *p = pendings [pendingpri] + --pendingcnt [pendingpri];
1477 2982
1478 ev_at (w) += w->repeat; 2983 p->w->pending = 0;
1479 if (ev_at (w) < mn_now) 2984 EV_CB_INVOKE (p->w, p->events);
1480 ev_at (w) = mn_now; 2985 EV_FREQUENT_CHECK;
1481
1482 downheap (timers, timercnt, 1);
1483 } 2986 }
1484 else
1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1486
1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1488 }
1489}
1490
1491#if EV_PERIODIC_ENABLE
1492void inline_size
1493periodics_reify (EV_P)
1494{
1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1496 { 2987 }
1497 ev_periodic *w = (ev_periodic *)periodics [1];
1498
1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1500
1501 /* first reschedule or stop timer */
1502 if (w->reschedule_cb)
1503 {
1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1506 downheap (periodics, periodiccnt, 1);
1507 }
1508 else if (w->interval)
1509 {
1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1513 downheap (periodics, periodiccnt, 1);
1514 }
1515 else
1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1517
1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1519 }
1520} 2988}
1521
1522static void noinline
1523periodics_reschedule (EV_P)
1524{
1525 int i;
1526
1527 /* adjust periodics after time jump */
1528 for (i = 0; i < periodiccnt; ++i)
1529 {
1530 ev_periodic *w = (ev_periodic *)periodics [i];
1531
1532 if (w->reschedule_cb)
1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1534 else if (w->interval)
1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1536 }
1537
1538 /* now rebuild the heap */
1539 for (i = periodiccnt >> 1; i--; )
1540 downheap (periodics, periodiccnt, i);
1541}
1542#endif
1543 2989
1544#if EV_IDLE_ENABLE 2990#if EV_IDLE_ENABLE
1545void inline_size 2991/* make idle watchers pending. this handles the "call-idle */
2992/* only when higher priorities are idle" logic */
2993inline_size void
1546idle_reify (EV_P) 2994idle_reify (EV_P)
1547{ 2995{
1548 if (expect_false (idleall)) 2996 if (expect_false (idleall))
1549 { 2997 {
1550 int pri; 2998 int pri;
1562 } 3010 }
1563 } 3011 }
1564} 3012}
1565#endif 3013#endif
1566 3014
1567void inline_speed 3015/* make timers pending */
3016inline_size void
3017timers_reify (EV_P)
3018{
3019 EV_FREQUENT_CHECK;
3020
3021 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
3022 {
3023 do
3024 {
3025 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
3026
3027 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
3028
3029 /* first reschedule or stop timer */
3030 if (w->repeat)
3031 {
3032 ev_at (w) += w->repeat;
3033 if (ev_at (w) < mn_now)
3034 ev_at (w) = mn_now;
3035
3036 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
3037
3038 ANHE_at_cache (timers [HEAP0]);
3039 downheap (timers, timercnt, HEAP0);
3040 }
3041 else
3042 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
3043
3044 EV_FREQUENT_CHECK;
3045 feed_reverse (EV_A_ (W)w);
3046 }
3047 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
3048
3049 feed_reverse_done (EV_A_ EV_TIMER);
3050 }
3051}
3052
3053#if EV_PERIODIC_ENABLE
3054
3055static void noinline
3056periodic_recalc (EV_P_ ev_periodic *w)
3057{
3058 ev_tstamp interval = w->interval > MIN_INTERVAL ? w->interval : MIN_INTERVAL;
3059 ev_tstamp at = w->offset + interval * ev_floor ((ev_rt_now - w->offset) / interval);
3060
3061 /* the above almost always errs on the low side */
3062 while (at <= ev_rt_now)
3063 {
3064 ev_tstamp nat = at + w->interval;
3065
3066 /* when resolution fails us, we use ev_rt_now */
3067 if (expect_false (nat == at))
3068 {
3069 at = ev_rt_now;
3070 break;
3071 }
3072
3073 at = nat;
3074 }
3075
3076 ev_at (w) = at;
3077}
3078
3079/* make periodics pending */
3080inline_size void
3081periodics_reify (EV_P)
3082{
3083 EV_FREQUENT_CHECK;
3084
3085 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
3086 {
3087 do
3088 {
3089 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
3090
3091 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
3092
3093 /* first reschedule or stop timer */
3094 if (w->reschedule_cb)
3095 {
3096 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3097
3098 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
3099
3100 ANHE_at_cache (periodics [HEAP0]);
3101 downheap (periodics, periodiccnt, HEAP0);
3102 }
3103 else if (w->interval)
3104 {
3105 periodic_recalc (EV_A_ w);
3106 ANHE_at_cache (periodics [HEAP0]);
3107 downheap (periodics, periodiccnt, HEAP0);
3108 }
3109 else
3110 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
3111
3112 EV_FREQUENT_CHECK;
3113 feed_reverse (EV_A_ (W)w);
3114 }
3115 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
3116
3117 feed_reverse_done (EV_A_ EV_PERIODIC);
3118 }
3119}
3120
3121/* simply recalculate all periodics */
3122/* TODO: maybe ensure that at least one event happens when jumping forward? */
3123static void noinline ecb_cold
3124periodics_reschedule (EV_P)
3125{
3126 int i;
3127
3128 /* adjust periodics after time jump */
3129 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
3130 {
3131 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
3132
3133 if (w->reschedule_cb)
3134 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
3135 else if (w->interval)
3136 periodic_recalc (EV_A_ w);
3137
3138 ANHE_at_cache (periodics [i]);
3139 }
3140
3141 reheap (periodics, periodiccnt);
3142}
3143#endif
3144
3145/* adjust all timers by a given offset */
3146static void noinline ecb_cold
3147timers_reschedule (EV_P_ ev_tstamp adjust)
3148{
3149 int i;
3150
3151 for (i = 0; i < timercnt; ++i)
3152 {
3153 ANHE *he = timers + i + HEAP0;
3154 ANHE_w (*he)->at += adjust;
3155 ANHE_at_cache (*he);
3156 }
3157}
3158
3159/* fetch new monotonic and realtime times from the kernel */
3160/* also detect if there was a timejump, and act accordingly */
3161inline_speed void
1568time_update (EV_P_ ev_tstamp max_block) 3162time_update (EV_P_ ev_tstamp max_block)
1569{ 3163{
1570 int i;
1571
1572#if EV_USE_MONOTONIC 3164#if EV_USE_MONOTONIC
1573 if (expect_true (have_monotonic)) 3165 if (expect_true (have_monotonic))
1574 { 3166 {
3167 int i;
1575 ev_tstamp odiff = rtmn_diff; 3168 ev_tstamp odiff = rtmn_diff;
1576 3169
1577 mn_now = get_clock (); 3170 mn_now = get_clock ();
1578 3171
1579 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */ 3172 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1595 * doesn't hurt either as we only do this on time-jumps or 3188 * doesn't hurt either as we only do this on time-jumps or
1596 * in the unlikely event of having been preempted here. 3189 * in the unlikely event of having been preempted here.
1597 */ 3190 */
1598 for (i = 4; --i; ) 3191 for (i = 4; --i; )
1599 { 3192 {
3193 ev_tstamp diff;
1600 rtmn_diff = ev_rt_now - mn_now; 3194 rtmn_diff = ev_rt_now - mn_now;
1601 3195
1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 3196 diff = odiff - rtmn_diff;
3197
3198 if (expect_true ((diff < 0. ? -diff : diff) < MIN_TIMEJUMP))
1603 return; /* all is well */ 3199 return; /* all is well */
1604 3200
1605 ev_rt_now = ev_time (); 3201 ev_rt_now = ev_time ();
1606 mn_now = get_clock (); 3202 mn_now = get_clock ();
1607 now_floor = mn_now; 3203 now_floor = mn_now;
1608 } 3204 }
1609 3205
3206 /* no timer adjustment, as the monotonic clock doesn't jump */
3207 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1610# if EV_PERIODIC_ENABLE 3208# if EV_PERIODIC_ENABLE
1611 periodics_reschedule (EV_A); 3209 periodics_reschedule (EV_A);
1612# endif 3210# endif
1613 /* no timer adjustment, as the monotonic clock doesn't jump */
1614 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1615 } 3211 }
1616 else 3212 else
1617#endif 3213#endif
1618 { 3214 {
1619 ev_rt_now = ev_time (); 3215 ev_rt_now = ev_time ();
1620 3216
1621 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 3217 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1622 { 3218 {
3219 /* adjust timers. this is easy, as the offset is the same for all of them */
3220 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1623#if EV_PERIODIC_ENABLE 3221#if EV_PERIODIC_ENABLE
1624 periodics_reschedule (EV_A); 3222 periodics_reschedule (EV_A);
1625#endif 3223#endif
1626 /* adjust timers. this is easy, as the offset is the same for all of them */
1627 for (i = 1; i <= timercnt; ++i)
1628 ev_at (timers [i]) += ev_rt_now - mn_now;
1629 } 3224 }
1630 3225
1631 mn_now = ev_rt_now; 3226 mn_now = ev_rt_now;
1632 } 3227 }
1633} 3228}
1634 3229
1635void 3230int
1636ev_ref (EV_P)
1637{
1638 ++activecnt;
1639}
1640
1641void
1642ev_unref (EV_P)
1643{
1644 --activecnt;
1645}
1646
1647static int loop_done;
1648
1649void
1650ev_loop (EV_P_ int flags) 3231ev_run (EV_P_ int flags)
1651{ 3232{
3233#if EV_FEATURE_API
3234 ++loop_depth;
3235#endif
3236
3237 assert (("libev: ev_loop recursion during release detected", loop_done != EVBREAK_RECURSE));
3238
1652 loop_done = EVUNLOOP_CANCEL; 3239 loop_done = EVBREAK_CANCEL;
1653 3240
1654 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 3241 EV_INVOKE_PENDING; /* in case we recurse, ensure ordering stays nice and clean */
1655 3242
1656 do 3243 do
1657 { 3244 {
3245#if EV_VERIFY >= 2
3246 ev_verify (EV_A);
3247#endif
3248
1658#ifndef _WIN32 3249#ifndef _WIN32
1659 if (expect_false (curpid)) /* penalise the forking check even more */ 3250 if (expect_false (curpid)) /* penalise the forking check even more */
1660 if (expect_false (getpid () != curpid)) 3251 if (expect_false (getpid () != curpid))
1661 { 3252 {
1662 curpid = getpid (); 3253 curpid = getpid ();
1668 /* we might have forked, so queue fork handlers */ 3259 /* we might have forked, so queue fork handlers */
1669 if (expect_false (postfork)) 3260 if (expect_false (postfork))
1670 if (forkcnt) 3261 if (forkcnt)
1671 { 3262 {
1672 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 3263 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1673 call_pending (EV_A); 3264 EV_INVOKE_PENDING;
1674 } 3265 }
1675#endif 3266#endif
1676 3267
3268#if EV_PREPARE_ENABLE
1677 /* queue prepare watchers (and execute them) */ 3269 /* queue prepare watchers (and execute them) */
1678 if (expect_false (preparecnt)) 3270 if (expect_false (preparecnt))
1679 { 3271 {
1680 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 3272 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1681 call_pending (EV_A); 3273 EV_INVOKE_PENDING;
1682 } 3274 }
3275#endif
1683 3276
1684 if (expect_false (!activecnt)) 3277 if (expect_false (loop_done))
1685 break; 3278 break;
1686 3279
1687 /* we might have forked, so reify kernel state if necessary */ 3280 /* we might have forked, so reify kernel state if necessary */
1688 if (expect_false (postfork)) 3281 if (expect_false (postfork))
1689 loop_fork (EV_A); 3282 loop_fork (EV_A);
1694 /* calculate blocking time */ 3287 /* calculate blocking time */
1695 { 3288 {
1696 ev_tstamp waittime = 0.; 3289 ev_tstamp waittime = 0.;
1697 ev_tstamp sleeptime = 0.; 3290 ev_tstamp sleeptime = 0.;
1698 3291
3292 /* remember old timestamp for io_blocktime calculation */
3293 ev_tstamp prev_mn_now = mn_now;
3294
3295 /* update time to cancel out callback processing overhead */
3296 time_update (EV_A_ 1e100);
3297
3298 /* from now on, we want a pipe-wake-up */
3299 pipe_write_wanted = 1;
3300
3301 ECB_MEMORY_FENCE; /* make sure pipe_write_wanted is visible before we check for potential skips */
3302
1699 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt))) 3303 if (expect_true (!(flags & EVRUN_NOWAIT || idleall || !activecnt || pipe_write_skipped)))
1700 { 3304 {
1701 /* update time to cancel out callback processing overhead */
1702 time_update (EV_A_ 1e100);
1703
1704 waittime = MAX_BLOCKTIME; 3305 waittime = MAX_BLOCKTIME;
1705 3306
1706 if (timercnt) 3307 if (timercnt)
1707 { 3308 {
1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 3309 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now;
1709 if (waittime > to) waittime = to; 3310 if (waittime > to) waittime = to;
1710 } 3311 }
1711 3312
1712#if EV_PERIODIC_ENABLE 3313#if EV_PERIODIC_ENABLE
1713 if (periodiccnt) 3314 if (periodiccnt)
1714 { 3315 {
1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 3316 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now;
1716 if (waittime > to) waittime = to; 3317 if (waittime > to) waittime = to;
1717 } 3318 }
1718#endif 3319#endif
1719 3320
3321 /* don't let timeouts decrease the waittime below timeout_blocktime */
1720 if (expect_false (waittime < timeout_blocktime)) 3322 if (expect_false (waittime < timeout_blocktime))
1721 waittime = timeout_blocktime; 3323 waittime = timeout_blocktime;
1722 3324
1723 sleeptime = waittime - backend_fudge; 3325 /* at this point, we NEED to wait, so we have to ensure */
3326 /* to pass a minimum nonzero value to the backend */
3327 if (expect_false (waittime < backend_mintime))
3328 waittime = backend_mintime;
1724 3329
3330 /* extra check because io_blocktime is commonly 0 */
1725 if (expect_true (sleeptime > io_blocktime)) 3331 if (expect_false (io_blocktime))
1726 sleeptime = io_blocktime;
1727
1728 if (sleeptime)
1729 { 3332 {
3333 sleeptime = io_blocktime - (mn_now - prev_mn_now);
3334
3335 if (sleeptime > waittime - backend_mintime)
3336 sleeptime = waittime - backend_mintime;
3337
3338 if (expect_true (sleeptime > 0.))
3339 {
1730 ev_sleep (sleeptime); 3340 ev_sleep (sleeptime);
1731 waittime -= sleeptime; 3341 waittime -= sleeptime;
3342 }
1732 } 3343 }
1733 } 3344 }
1734 3345
3346#if EV_FEATURE_API
1735 ++loop_count; 3347 ++loop_count;
3348#endif
3349 assert ((loop_done = EVBREAK_RECURSE, 1)); /* assert for side effect */
1736 backend_poll (EV_A_ waittime); 3350 backend_poll (EV_A_ waittime);
3351 assert ((loop_done = EVBREAK_CANCEL, 1)); /* assert for side effect */
3352
3353 pipe_write_wanted = 0; /* just an optimisation, no fence needed */
3354
3355 ECB_MEMORY_FENCE_ACQUIRE;
3356 if (pipe_write_skipped)
3357 {
3358 assert (("libev: pipe_w not active, but pipe not written", ev_is_active (&pipe_w)));
3359 ev_feed_event (EV_A_ &pipe_w, EV_CUSTOM);
3360 }
3361
1737 3362
1738 /* update ev_rt_now, do magic */ 3363 /* update ev_rt_now, do magic */
1739 time_update (EV_A_ waittime + sleeptime); 3364 time_update (EV_A_ waittime + sleeptime);
1740 } 3365 }
1741 3366
1748#if EV_IDLE_ENABLE 3373#if EV_IDLE_ENABLE
1749 /* queue idle watchers unless other events are pending */ 3374 /* queue idle watchers unless other events are pending */
1750 idle_reify (EV_A); 3375 idle_reify (EV_A);
1751#endif 3376#endif
1752 3377
3378#if EV_CHECK_ENABLE
1753 /* queue check watchers, to be executed first */ 3379 /* queue check watchers, to be executed first */
1754 if (expect_false (checkcnt)) 3380 if (expect_false (checkcnt))
1755 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 3381 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
3382#endif
1756 3383
1757 call_pending (EV_A); 3384 EV_INVOKE_PENDING;
1758 } 3385 }
1759 while (expect_true ( 3386 while (expect_true (
1760 activecnt 3387 activecnt
1761 && !loop_done 3388 && !loop_done
1762 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK)) 3389 && !(flags & (EVRUN_ONCE | EVRUN_NOWAIT))
1763 )); 3390 ));
1764 3391
1765 if (loop_done == EVUNLOOP_ONE) 3392 if (loop_done == EVBREAK_ONE)
1766 loop_done = EVUNLOOP_CANCEL; 3393 loop_done = EVBREAK_CANCEL;
3394
3395#if EV_FEATURE_API
3396 --loop_depth;
3397#endif
3398
3399 return activecnt;
1767} 3400}
1768 3401
1769void 3402void
1770ev_unloop (EV_P_ int how) 3403ev_break (EV_P_ int how) EV_THROW
1771{ 3404{
1772 loop_done = how; 3405 loop_done = how;
1773} 3406}
1774 3407
3408void
3409ev_ref (EV_P) EV_THROW
3410{
3411 ++activecnt;
3412}
3413
3414void
3415ev_unref (EV_P) EV_THROW
3416{
3417 --activecnt;
3418}
3419
3420void
3421ev_now_update (EV_P) EV_THROW
3422{
3423 time_update (EV_A_ 1e100);
3424}
3425
3426void
3427ev_suspend (EV_P) EV_THROW
3428{
3429 ev_now_update (EV_A);
3430}
3431
3432void
3433ev_resume (EV_P) EV_THROW
3434{
3435 ev_tstamp mn_prev = mn_now;
3436
3437 ev_now_update (EV_A);
3438 timers_reschedule (EV_A_ mn_now - mn_prev);
3439#if EV_PERIODIC_ENABLE
3440 /* TODO: really do this? */
3441 periodics_reschedule (EV_A);
3442#endif
3443}
3444
1775/*****************************************************************************/ 3445/*****************************************************************************/
3446/* singly-linked list management, used when the expected list length is short */
1776 3447
1777void inline_size 3448inline_size void
1778wlist_add (WL *head, WL elem) 3449wlist_add (WL *head, WL elem)
1779{ 3450{
1780 elem->next = *head; 3451 elem->next = *head;
1781 *head = elem; 3452 *head = elem;
1782} 3453}
1783 3454
1784void inline_size 3455inline_size void
1785wlist_del (WL *head, WL elem) 3456wlist_del (WL *head, WL elem)
1786{ 3457{
1787 while (*head) 3458 while (*head)
1788 { 3459 {
1789 if (*head == elem) 3460 if (expect_true (*head == elem))
1790 { 3461 {
1791 *head = elem->next; 3462 *head = elem->next;
1792 return; 3463 break;
1793 } 3464 }
1794 3465
1795 head = &(*head)->next; 3466 head = &(*head)->next;
1796 } 3467 }
1797} 3468}
1798 3469
1799void inline_speed 3470/* internal, faster, version of ev_clear_pending */
3471inline_speed void
1800clear_pending (EV_P_ W w) 3472clear_pending (EV_P_ W w)
1801{ 3473{
1802 if (w->pending) 3474 if (w->pending)
1803 { 3475 {
1804 pendings [ABSPRI (w)][w->pending - 1].w = 0; 3476 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1805 w->pending = 0; 3477 w->pending = 0;
1806 } 3478 }
1807} 3479}
1808 3480
1809int 3481int
1810ev_clear_pending (EV_P_ void *w) 3482ev_clear_pending (EV_P_ void *w) EV_THROW
1811{ 3483{
1812 W w_ = (W)w; 3484 W w_ = (W)w;
1813 int pending = w_->pending; 3485 int pending = w_->pending;
1814 3486
1815 if (expect_true (pending)) 3487 if (expect_true (pending))
1816 { 3488 {
1817 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 3489 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
3490 p->w = (W)&pending_w;
1818 w_->pending = 0; 3491 w_->pending = 0;
1819 p->w = 0;
1820 return p->events; 3492 return p->events;
1821 } 3493 }
1822 else 3494 else
1823 return 0; 3495 return 0;
1824} 3496}
1825 3497
1826void inline_size 3498inline_size void
1827pri_adjust (EV_P_ W w) 3499pri_adjust (EV_P_ W w)
1828{ 3500{
1829 int pri = w->priority; 3501 int pri = ev_priority (w);
1830 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 3502 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1831 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 3503 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1832 w->priority = pri; 3504 ev_set_priority (w, pri);
1833} 3505}
1834 3506
1835void inline_speed 3507inline_speed void
1836ev_start (EV_P_ W w, int active) 3508ev_start (EV_P_ W w, int active)
1837{ 3509{
1838 pri_adjust (EV_A_ w); 3510 pri_adjust (EV_A_ w);
1839 w->active = active; 3511 w->active = active;
1840 ev_ref (EV_A); 3512 ev_ref (EV_A);
1841} 3513}
1842 3514
1843void inline_size 3515inline_size void
1844ev_stop (EV_P_ W w) 3516ev_stop (EV_P_ W w)
1845{ 3517{
1846 ev_unref (EV_A); 3518 ev_unref (EV_A);
1847 w->active = 0; 3519 w->active = 0;
1848} 3520}
1849 3521
1850/*****************************************************************************/ 3522/*****************************************************************************/
1851 3523
1852void noinline 3524void noinline
1853ev_io_start (EV_P_ ev_io *w) 3525ev_io_start (EV_P_ ev_io *w) EV_THROW
1854{ 3526{
1855 int fd = w->fd; 3527 int fd = w->fd;
1856 3528
1857 if (expect_false (ev_is_active (w))) 3529 if (expect_false (ev_is_active (w)))
1858 return; 3530 return;
1859 3531
1860 assert (("ev_io_start called with negative fd", fd >= 0)); 3532 assert (("libev: ev_io_start called with negative fd", fd >= 0));
3533 assert (("libev: ev_io_start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
3534
3535 EV_FREQUENT_CHECK;
1861 3536
1862 ev_start (EV_A_ (W)w, 1); 3537 ev_start (EV_A_ (W)w, 1);
1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 3538 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1864 wlist_add (&anfds[fd].head, (WL)w); 3539 wlist_add (&anfds[fd].head, (WL)w);
1865 3540
3541 /* common bug, apparently */
3542 assert (("libev: ev_io_start called with corrupted watcher", ((WL)w)->next != (WL)w));
3543
1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 3544 fd_change (EV_A_ fd, w->events & EV__IOFDSET | EV_ANFD_REIFY);
1867 w->events &= ~EV_IOFDSET; 3545 w->events &= ~EV__IOFDSET;
3546
3547 EV_FREQUENT_CHECK;
1868} 3548}
1869 3549
1870void noinline 3550void noinline
1871ev_io_stop (EV_P_ ev_io *w) 3551ev_io_stop (EV_P_ ev_io *w) EV_THROW
1872{ 3552{
1873 clear_pending (EV_A_ (W)w); 3553 clear_pending (EV_A_ (W)w);
1874 if (expect_false (!ev_is_active (w))) 3554 if (expect_false (!ev_is_active (w)))
1875 return; 3555 return;
1876 3556
1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 3557 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
3558
3559 EV_FREQUENT_CHECK;
1878 3560
1879 wlist_del (&anfds[w->fd].head, (WL)w); 3561 wlist_del (&anfds[w->fd].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 3562 ev_stop (EV_A_ (W)w);
1881 3563
1882 fd_change (EV_A_ w->fd, 1); 3564 fd_change (EV_A_ w->fd, EV_ANFD_REIFY);
3565
3566 EV_FREQUENT_CHECK;
1883} 3567}
1884 3568
1885void noinline 3569void noinline
1886ev_timer_start (EV_P_ ev_timer *w) 3570ev_timer_start (EV_P_ ev_timer *w) EV_THROW
1887{ 3571{
1888 if (expect_false (ev_is_active (w))) 3572 if (expect_false (ev_is_active (w)))
1889 return; 3573 return;
1890 3574
1891 ev_at (w) += mn_now; 3575 ev_at (w) += mn_now;
1892 3576
1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 3577 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1894 3578
3579 EV_FREQUENT_CHECK;
3580
3581 ++timercnt;
1895 ev_start (EV_A_ (W)w, ++timercnt); 3582 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 3583 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1897 timers [timercnt] = (WT)w; 3584 ANHE_w (timers [ev_active (w)]) = (WT)w;
3585 ANHE_at_cache (timers [ev_active (w)]);
1898 upheap (timers, timercnt); 3586 upheap (timers, ev_active (w));
1899 3587
3588 EV_FREQUENT_CHECK;
3589
1900 /*assert (("internal timer heap corruption", timers [((W)w)->active] == w));*/ 3590 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1901} 3591}
1902 3592
1903void noinline 3593void noinline
1904ev_timer_stop (EV_P_ ev_timer *w) 3594ev_timer_stop (EV_P_ ev_timer *w) EV_THROW
1905{ 3595{
1906 clear_pending (EV_A_ (W)w); 3596 clear_pending (EV_A_ (W)w);
1907 if (expect_false (!ev_is_active (w))) 3597 if (expect_false (!ev_is_active (w)))
1908 return; 3598 return;
1909 3599
1910 assert (("internal timer heap corruption", timers [((W)w)->active] == (WT)w)); 3600 EV_FREQUENT_CHECK;
1911 3601
1912 { 3602 {
1913 int active = ((W)w)->active; 3603 int active = ev_active (w);
1914 3604
3605 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
3606
3607 --timercnt;
3608
1915 if (expect_true (active < timercnt)) 3609 if (expect_true (active < timercnt + HEAP0))
1916 { 3610 {
1917 timers [active] = timers [timercnt]; 3611 timers [active] = timers [timercnt + HEAP0];
1918 adjustheap (timers, timercnt, active); 3612 adjustheap (timers, timercnt, active);
1919 } 3613 }
1920
1921 --timercnt;
1922 } 3614 }
1923 3615
1924 ev_at (w) -= mn_now; 3616 ev_at (w) -= mn_now;
1925 3617
1926 ev_stop (EV_A_ (W)w); 3618 ev_stop (EV_A_ (W)w);
3619
3620 EV_FREQUENT_CHECK;
1927} 3621}
1928 3622
1929void noinline 3623void noinline
1930ev_timer_again (EV_P_ ev_timer *w) 3624ev_timer_again (EV_P_ ev_timer *w) EV_THROW
1931{ 3625{
3626 EV_FREQUENT_CHECK;
3627
3628 clear_pending (EV_A_ (W)w);
3629
1932 if (ev_is_active (w)) 3630 if (ev_is_active (w))
1933 { 3631 {
1934 if (w->repeat) 3632 if (w->repeat)
1935 { 3633 {
1936 ev_at (w) = mn_now + w->repeat; 3634 ev_at (w) = mn_now + w->repeat;
3635 ANHE_at_cache (timers [ev_active (w)]);
1937 adjustheap (timers, timercnt, ((W)w)->active); 3636 adjustheap (timers, timercnt, ev_active (w));
1938 } 3637 }
1939 else 3638 else
1940 ev_timer_stop (EV_A_ w); 3639 ev_timer_stop (EV_A_ w);
1941 } 3640 }
1942 else if (w->repeat) 3641 else if (w->repeat)
1943 { 3642 {
1944 ev_at (w) = w->repeat; 3643 ev_at (w) = w->repeat;
1945 ev_timer_start (EV_A_ w); 3644 ev_timer_start (EV_A_ w);
1946 } 3645 }
3646
3647 EV_FREQUENT_CHECK;
3648}
3649
3650ev_tstamp
3651ev_timer_remaining (EV_P_ ev_timer *w) EV_THROW
3652{
3653 return ev_at (w) - (ev_is_active (w) ? mn_now : 0.);
1947} 3654}
1948 3655
1949#if EV_PERIODIC_ENABLE 3656#if EV_PERIODIC_ENABLE
1950void noinline 3657void noinline
1951ev_periodic_start (EV_P_ ev_periodic *w) 3658ev_periodic_start (EV_P_ ev_periodic *w) EV_THROW
1952{ 3659{
1953 if (expect_false (ev_is_active (w))) 3660 if (expect_false (ev_is_active (w)))
1954 return; 3661 return;
1955 3662
1956 if (w->reschedule_cb) 3663 if (w->reschedule_cb)
1957 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 3664 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1958 else if (w->interval) 3665 else if (w->interval)
1959 { 3666 {
1960 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 3667 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1961 /* this formula differs from the one in periodic_reify because we do not always round up */ 3668 periodic_recalc (EV_A_ w);
1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1963 } 3669 }
1964 else 3670 else
1965 ev_at (w) = w->offset; 3671 ev_at (w) = w->offset;
1966 3672
3673 EV_FREQUENT_CHECK;
3674
3675 ++periodiccnt;
1967 ev_start (EV_A_ (W)w, ++periodiccnt); 3676 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 3677 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1969 periodics [periodiccnt] = (WT)w; 3678 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1970 upheap (periodics, periodiccnt); 3679 ANHE_at_cache (periodics [ev_active (w)]);
3680 upheap (periodics, ev_active (w));
1971 3681
3682 EV_FREQUENT_CHECK;
3683
1972 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 3684 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1973} 3685}
1974 3686
1975void noinline 3687void noinline
1976ev_periodic_stop (EV_P_ ev_periodic *w) 3688ev_periodic_stop (EV_P_ ev_periodic *w) EV_THROW
1977{ 3689{
1978 clear_pending (EV_A_ (W)w); 3690 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 3691 if (expect_false (!ev_is_active (w)))
1980 return; 3692 return;
1981 3693
1982 assert (("internal periodic heap corruption", periodics [((W)w)->active] == (WT)w)); 3694 EV_FREQUENT_CHECK;
1983 3695
1984 { 3696 {
1985 int active = ((W)w)->active; 3697 int active = ev_active (w);
1986 3698
3699 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
3700
3701 --periodiccnt;
3702
1987 if (expect_true (active < periodiccnt)) 3703 if (expect_true (active < periodiccnt + HEAP0))
1988 { 3704 {
1989 periodics [active] = periodics [periodiccnt]; 3705 periodics [active] = periodics [periodiccnt + HEAP0];
1990 adjustheap (periodics, periodiccnt, active); 3706 adjustheap (periodics, periodiccnt, active);
1991 } 3707 }
1992
1993 --periodiccnt;
1994 } 3708 }
1995 3709
1996 ev_stop (EV_A_ (W)w); 3710 ev_stop (EV_A_ (W)w);
3711
3712 EV_FREQUENT_CHECK;
1997} 3713}
1998 3714
1999void noinline 3715void noinline
2000ev_periodic_again (EV_P_ ev_periodic *w) 3716ev_periodic_again (EV_P_ ev_periodic *w) EV_THROW
2001{ 3717{
2002 /* TODO: use adjustheap and recalculation */ 3718 /* TODO: use adjustheap and recalculation */
2003 ev_periodic_stop (EV_A_ w); 3719 ev_periodic_stop (EV_A_ w);
2004 ev_periodic_start (EV_A_ w); 3720 ev_periodic_start (EV_A_ w);
2005} 3721}
2007 3723
2008#ifndef SA_RESTART 3724#ifndef SA_RESTART
2009# define SA_RESTART 0 3725# define SA_RESTART 0
2010#endif 3726#endif
2011 3727
3728#if EV_SIGNAL_ENABLE
3729
2012void noinline 3730void noinline
2013ev_signal_start (EV_P_ ev_signal *w) 3731ev_signal_start (EV_P_ ev_signal *w) EV_THROW
2014{ 3732{
2015#if EV_MULTIPLICITY
2016 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2017#endif
2018 if (expect_false (ev_is_active (w))) 3733 if (expect_false (ev_is_active (w)))
2019 return; 3734 return;
2020 3735
2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 3736 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0 && w->signum < EV_NSIG));
2022 3737
2023 evpipe_init (EV_A); 3738#if EV_MULTIPLICITY
3739 assert (("libev: a signal must not be attached to two different loops",
3740 !signals [w->signum - 1].loop || signals [w->signum - 1].loop == loop));
2024 3741
3742 signals [w->signum - 1].loop = EV_A;
3743 ECB_MEMORY_FENCE_RELEASE;
3744#endif
3745
3746 EV_FREQUENT_CHECK;
3747
3748#if EV_USE_SIGNALFD
3749 if (sigfd == -2)
2025 { 3750 {
2026#ifndef _WIN32 3751 sigfd = signalfd (-1, &sigfd_set, SFD_NONBLOCK | SFD_CLOEXEC);
2027 sigset_t full, prev; 3752 if (sigfd < 0 && errno == EINVAL)
2028 sigfillset (&full); 3753 sigfd = signalfd (-1, &sigfd_set, 0); /* retry without flags */
2029 sigprocmask (SIG_SETMASK, &full, &prev);
2030#endif
2031 3754
2032 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 3755 if (sigfd >= 0)
3756 {
3757 fd_intern (sigfd); /* doing it twice will not hurt */
2033 3758
2034#ifndef _WIN32 3759 sigemptyset (&sigfd_set);
2035 sigprocmask (SIG_SETMASK, &prev, 0); 3760
2036#endif 3761 ev_io_init (&sigfd_w, sigfdcb, sigfd, EV_READ);
3762 ev_set_priority (&sigfd_w, EV_MAXPRI);
3763 ev_io_start (EV_A_ &sigfd_w);
3764 ev_unref (EV_A); /* signalfd watcher should not keep loop alive */
3765 }
2037 } 3766 }
3767
3768 if (sigfd >= 0)
3769 {
3770 /* TODO: check .head */
3771 sigaddset (&sigfd_set, w->signum);
3772 sigprocmask (SIG_BLOCK, &sigfd_set, 0);
3773
3774 signalfd (sigfd, &sigfd_set, 0);
3775 }
3776#endif
2038 3777
2039 ev_start (EV_A_ (W)w, 1); 3778 ev_start (EV_A_ (W)w, 1);
2040 wlist_add (&signals [w->signum - 1].head, (WL)w); 3779 wlist_add (&signals [w->signum - 1].head, (WL)w);
2041 3780
2042 if (!((WL)w)->next) 3781 if (!((WL)w)->next)
3782# if EV_USE_SIGNALFD
3783 if (sigfd < 0) /*TODO*/
3784# endif
2043 { 3785 {
2044#if _WIN32 3786# ifdef _WIN32
3787 evpipe_init (EV_A);
3788
2045 signal (w->signum, ev_sighandler); 3789 signal (w->signum, ev_sighandler);
2046#else 3790# else
2047 struct sigaction sa; 3791 struct sigaction sa;
3792
3793 evpipe_init (EV_A);
3794
2048 sa.sa_handler = ev_sighandler; 3795 sa.sa_handler = ev_sighandler;
2049 sigfillset (&sa.sa_mask); 3796 sigfillset (&sa.sa_mask);
2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 3797 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2051 sigaction (w->signum, &sa, 0); 3798 sigaction (w->signum, &sa, 0);
3799
3800 if (origflags & EVFLAG_NOSIGMASK)
3801 {
3802 sigemptyset (&sa.sa_mask);
3803 sigaddset (&sa.sa_mask, w->signum);
3804 sigprocmask (SIG_UNBLOCK, &sa.sa_mask, 0);
3805 }
2052#endif 3806#endif
2053 } 3807 }
3808
3809 EV_FREQUENT_CHECK;
2054} 3810}
2055 3811
2056void noinline 3812void noinline
2057ev_signal_stop (EV_P_ ev_signal *w) 3813ev_signal_stop (EV_P_ ev_signal *w) EV_THROW
2058{ 3814{
2059 clear_pending (EV_A_ (W)w); 3815 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 3816 if (expect_false (!ev_is_active (w)))
2061 return; 3817 return;
2062 3818
3819 EV_FREQUENT_CHECK;
3820
2063 wlist_del (&signals [w->signum - 1].head, (WL)w); 3821 wlist_del (&signals [w->signum - 1].head, (WL)w);
2064 ev_stop (EV_A_ (W)w); 3822 ev_stop (EV_A_ (W)w);
2065 3823
2066 if (!signals [w->signum - 1].head) 3824 if (!signals [w->signum - 1].head)
3825 {
3826#if EV_MULTIPLICITY
3827 signals [w->signum - 1].loop = 0; /* unattach from signal */
3828#endif
3829#if EV_USE_SIGNALFD
3830 if (sigfd >= 0)
3831 {
3832 sigset_t ss;
3833
3834 sigemptyset (&ss);
3835 sigaddset (&ss, w->signum);
3836 sigdelset (&sigfd_set, w->signum);
3837
3838 signalfd (sigfd, &sigfd_set, 0);
3839 sigprocmask (SIG_UNBLOCK, &ss, 0);
3840 }
3841 else
3842#endif
2067 signal (w->signum, SIG_DFL); 3843 signal (w->signum, SIG_DFL);
3844 }
3845
3846 EV_FREQUENT_CHECK;
2068} 3847}
3848
3849#endif
3850
3851#if EV_CHILD_ENABLE
2069 3852
2070void 3853void
2071ev_child_start (EV_P_ ev_child *w) 3854ev_child_start (EV_P_ ev_child *w) EV_THROW
2072{ 3855{
2073#if EV_MULTIPLICITY 3856#if EV_MULTIPLICITY
2074 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 3857 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2075#endif 3858#endif
2076 if (expect_false (ev_is_active (w))) 3859 if (expect_false (ev_is_active (w)))
2077 return; 3860 return;
2078 3861
3862 EV_FREQUENT_CHECK;
3863
2079 ev_start (EV_A_ (W)w, 1); 3864 ev_start (EV_A_ (W)w, 1);
2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3865 wlist_add (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
3866
3867 EV_FREQUENT_CHECK;
2081} 3868}
2082 3869
2083void 3870void
2084ev_child_stop (EV_P_ ev_child *w) 3871ev_child_stop (EV_P_ ev_child *w) EV_THROW
2085{ 3872{
2086 clear_pending (EV_A_ (W)w); 3873 clear_pending (EV_A_ (W)w);
2087 if (expect_false (!ev_is_active (w))) 3874 if (expect_false (!ev_is_active (w)))
2088 return; 3875 return;
2089 3876
3877 EV_FREQUENT_CHECK;
3878
2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 3879 wlist_del (&childs [w->pid & ((EV_PID_HASHSIZE) - 1)], (WL)w);
2091 ev_stop (EV_A_ (W)w); 3880 ev_stop (EV_A_ (W)w);
3881
3882 EV_FREQUENT_CHECK;
2092} 3883}
3884
3885#endif
2093 3886
2094#if EV_STAT_ENABLE 3887#if EV_STAT_ENABLE
2095 3888
2096# ifdef _WIN32 3889# ifdef _WIN32
2097# undef lstat 3890# undef lstat
2098# define lstat(a,b) _stati64 (a,b) 3891# define lstat(a,b) _stati64 (a,b)
2099# endif 3892# endif
2100 3893
2101#define DEF_STAT_INTERVAL 5.0074891 3894#define DEF_STAT_INTERVAL 5.0074891
3895#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2102#define MIN_STAT_INTERVAL 0.1074891 3896#define MIN_STAT_INTERVAL 0.1074891
2103 3897
2104static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 3898static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2105 3899
2106#if EV_USE_INOTIFY 3900#if EV_USE_INOTIFY
2107# define EV_INOTIFY_BUFSIZE 8192 3901
3902/* the * 2 is to allow for alignment padding, which for some reason is >> 8 */
3903# define EV_INOTIFY_BUFSIZE (sizeof (struct inotify_event) * 2 + NAME_MAX)
2108 3904
2109static void noinline 3905static void noinline
2110infy_add (EV_P_ ev_stat *w) 3906infy_add (EV_P_ ev_stat *w)
2111{ 3907{
2112 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 3908 w->wd = inotify_add_watch (fs_fd, w->path,
3909 IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY
3910 | IN_CREATE | IN_DELETE | IN_MOVED_FROM | IN_MOVED_TO
3911 | IN_DONT_FOLLOW | IN_MASK_ADD);
2113 3912
2114 if (w->wd < 0) 3913 if (w->wd >= 0)
3914 {
3915 struct statfs sfs;
3916
3917 /* now local changes will be tracked by inotify, but remote changes won't */
3918 /* unless the filesystem is known to be local, we therefore still poll */
3919 /* also do poll on <2.6.25, but with normal frequency */
3920
3921 if (!fs_2625)
3922 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
3923 else if (!statfs (w->path, &sfs)
3924 && (sfs.f_type == 0x1373 /* devfs */
3925 || sfs.f_type == 0x4006 /* fat */
3926 || sfs.f_type == 0x4d44 /* msdos */
3927 || sfs.f_type == 0xEF53 /* ext2/3 */
3928 || sfs.f_type == 0x72b6 /* jffs2 */
3929 || sfs.f_type == 0x858458f6 /* ramfs */
3930 || sfs.f_type == 0x5346544e /* ntfs */
3931 || sfs.f_type == 0x3153464a /* jfs */
3932 || sfs.f_type == 0x9123683e /* btrfs */
3933 || sfs.f_type == 0x52654973 /* reiser3 */
3934 || sfs.f_type == 0x01021994 /* tmpfs */
3935 || sfs.f_type == 0x58465342 /* xfs */))
3936 w->timer.repeat = 0.; /* filesystem is local, kernel new enough */
3937 else
3938 w->timer.repeat = w->interval ? w->interval : NFS_STAT_INTERVAL; /* remote, use reduced frequency */
2115 { 3939 }
2116 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 3940 else
3941 {
3942 /* can't use inotify, continue to stat */
3943 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2117 3944
2118 /* monitor some parent directory for speedup hints */ 3945 /* if path is not there, monitor some parent directory for speedup hints */
3946 /* note that exceeding the hardcoded path limit is not a correctness issue, */
3947 /* but an efficiency issue only */
2119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 3948 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2120 { 3949 {
2121 char path [4096]; 3950 char path [4096];
2122 strcpy (path, w->path); 3951 strcpy (path, w->path);
2123 3952
2126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 3955 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 3956 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2128 3957
2129 char *pend = strrchr (path, '/'); 3958 char *pend = strrchr (path, '/');
2130 3959
2131 if (!pend) 3960 if (!pend || pend == path)
2132 break; /* whoops, no '/', complain to your admin */ 3961 break;
2133 3962
2134 *pend = 0; 3963 *pend = 0;
2135 w->wd = inotify_add_watch (fs_fd, path, mask); 3964 w->wd = inotify_add_watch (fs_fd, path, mask);
2136 } 3965 }
2137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 3966 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2138 } 3967 }
2139 } 3968 }
2140 else
2141 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2142 3969
2143 if (w->wd >= 0) 3970 if (w->wd >= 0)
2144 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 3971 wlist_add (&fs_hash [w->wd & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
3972
3973 /* now re-arm timer, if required */
3974 if (ev_is_active (&w->timer)) ev_ref (EV_A);
3975 ev_timer_again (EV_A_ &w->timer);
3976 if (ev_is_active (&w->timer)) ev_unref (EV_A);
2145} 3977}
2146 3978
2147static void noinline 3979static void noinline
2148infy_del (EV_P_ ev_stat *w) 3980infy_del (EV_P_ ev_stat *w)
2149{ 3981{
2152 3984
2153 if (wd < 0) 3985 if (wd < 0)
2154 return; 3986 return;
2155 3987
2156 w->wd = -2; 3988 w->wd = -2;
2157 slot = wd & (EV_INOTIFY_HASHSIZE - 1); 3989 slot = wd & ((EV_INOTIFY_HASHSIZE) - 1);
2158 wlist_del (&fs_hash [slot].head, (WL)w); 3990 wlist_del (&fs_hash [slot].head, (WL)w);
2159 3991
2160 /* remove this watcher, if others are watching it, they will rearm */ 3992 /* remove this watcher, if others are watching it, they will rearm */
2161 inotify_rm_watch (fs_fd, wd); 3993 inotify_rm_watch (fs_fd, wd);
2162} 3994}
2163 3995
2164static void noinline 3996static void noinline
2165infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 3997infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2166{ 3998{
2167 if (slot < 0) 3999 if (slot < 0)
2168 /* overflow, need to check for all hahs slots */ 4000 /* overflow, need to check for all hash slots */
2169 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4001 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2170 infy_wd (EV_A_ slot, wd, ev); 4002 infy_wd (EV_A_ slot, wd, ev);
2171 else 4003 else
2172 { 4004 {
2173 WL w_; 4005 WL w_;
2174 4006
2175 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; ) 4007 for (w_ = fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head; w_; )
2176 { 4008 {
2177 ev_stat *w = (ev_stat *)w_; 4009 ev_stat *w = (ev_stat *)w_;
2178 w_ = w_->next; /* lets us remove this watcher and all before it */ 4010 w_ = w_->next; /* lets us remove this watcher and all before it */
2179 4011
2180 if (w->wd == wd || wd == -1) 4012 if (w->wd == wd || wd == -1)
2181 { 4013 {
2182 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 4014 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2183 { 4015 {
4016 wlist_del (&fs_hash [slot & ((EV_INOTIFY_HASHSIZE) - 1)].head, (WL)w);
2184 w->wd = -1; 4017 w->wd = -1;
2185 infy_add (EV_A_ w); /* re-add, no matter what */ 4018 infy_add (EV_A_ w); /* re-add, no matter what */
2186 } 4019 }
2187 4020
2188 stat_timer_cb (EV_A_ &w->timer, 0); 4021 stat_timer_cb (EV_A_ &w->timer, 0);
2193 4026
2194static void 4027static void
2195infy_cb (EV_P_ ev_io *w, int revents) 4028infy_cb (EV_P_ ev_io *w, int revents)
2196{ 4029{
2197 char buf [EV_INOTIFY_BUFSIZE]; 4030 char buf [EV_INOTIFY_BUFSIZE];
2198 struct inotify_event *ev = (struct inotify_event *)buf;
2199 int ofs; 4031 int ofs;
2200 int len = read (fs_fd, buf, sizeof (buf)); 4032 int len = read (fs_fd, buf, sizeof (buf));
2201 4033
2202 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 4034 for (ofs = 0; ofs < len; )
4035 {
4036 struct inotify_event *ev = (struct inotify_event *)(buf + ofs);
2203 infy_wd (EV_A_ ev->wd, ev->wd, ev); 4037 infy_wd (EV_A_ ev->wd, ev->wd, ev);
4038 ofs += sizeof (struct inotify_event) + ev->len;
4039 }
2204} 4040}
2205 4041
2206void inline_size 4042inline_size void ecb_cold
4043ev_check_2625 (EV_P)
4044{
4045 /* kernels < 2.6.25 are borked
4046 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
4047 */
4048 if (ev_linux_version () < 0x020619)
4049 return;
4050
4051 fs_2625 = 1;
4052}
4053
4054inline_size int
4055infy_newfd (void)
4056{
4057#if defined IN_CLOEXEC && defined IN_NONBLOCK
4058 int fd = inotify_init1 (IN_CLOEXEC | IN_NONBLOCK);
4059 if (fd >= 0)
4060 return fd;
4061#endif
4062 return inotify_init ();
4063}
4064
4065inline_size void
2207infy_init (EV_P) 4066infy_init (EV_P)
2208{ 4067{
2209 if (fs_fd != -2) 4068 if (fs_fd != -2)
2210 return; 4069 return;
2211 4070
4071 fs_fd = -1;
4072
4073 ev_check_2625 (EV_A);
4074
2212 fs_fd = inotify_init (); 4075 fs_fd = infy_newfd ();
2213 4076
2214 if (fs_fd >= 0) 4077 if (fs_fd >= 0)
2215 { 4078 {
4079 fd_intern (fs_fd);
2216 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ); 4080 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2217 ev_set_priority (&fs_w, EV_MAXPRI); 4081 ev_set_priority (&fs_w, EV_MAXPRI);
2218 ev_io_start (EV_A_ &fs_w); 4082 ev_io_start (EV_A_ &fs_w);
4083 ev_unref (EV_A);
2219 } 4084 }
2220} 4085}
2221 4086
2222void inline_size 4087inline_size void
2223infy_fork (EV_P) 4088infy_fork (EV_P)
2224{ 4089{
2225 int slot; 4090 int slot;
2226 4091
2227 if (fs_fd < 0) 4092 if (fs_fd < 0)
2228 return; 4093 return;
2229 4094
4095 ev_ref (EV_A);
4096 ev_io_stop (EV_A_ &fs_w);
2230 close (fs_fd); 4097 close (fs_fd);
2231 fs_fd = inotify_init (); 4098 fs_fd = infy_newfd ();
2232 4099
4100 if (fs_fd >= 0)
4101 {
4102 fd_intern (fs_fd);
4103 ev_io_set (&fs_w, fs_fd, EV_READ);
4104 ev_io_start (EV_A_ &fs_w);
4105 ev_unref (EV_A);
4106 }
4107
2233 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 4108 for (slot = 0; slot < (EV_INOTIFY_HASHSIZE); ++slot)
2234 { 4109 {
2235 WL w_ = fs_hash [slot].head; 4110 WL w_ = fs_hash [slot].head;
2236 fs_hash [slot].head = 0; 4111 fs_hash [slot].head = 0;
2237 4112
2238 while (w_) 4113 while (w_)
2243 w->wd = -1; 4118 w->wd = -1;
2244 4119
2245 if (fs_fd >= 0) 4120 if (fs_fd >= 0)
2246 infy_add (EV_A_ w); /* re-add, no matter what */ 4121 infy_add (EV_A_ w); /* re-add, no matter what */
2247 else 4122 else
4123 {
4124 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
4125 if (ev_is_active (&w->timer)) ev_ref (EV_A);
2248 ev_timer_start (EV_A_ &w->timer); 4126 ev_timer_again (EV_A_ &w->timer);
4127 if (ev_is_active (&w->timer)) ev_unref (EV_A);
4128 }
2249 } 4129 }
2250
2251 } 4130 }
2252} 4131}
2253 4132
4133#endif
4134
4135#ifdef _WIN32
4136# define EV_LSTAT(p,b) _stati64 (p, b)
4137#else
4138# define EV_LSTAT(p,b) lstat (p, b)
2254#endif 4139#endif
2255 4140
2256void 4141void
2257ev_stat_stat (EV_P_ ev_stat *w) 4142ev_stat_stat (EV_P_ ev_stat *w) EV_THROW
2258{ 4143{
2259 if (lstat (w->path, &w->attr) < 0) 4144 if (lstat (w->path, &w->attr) < 0)
2260 w->attr.st_nlink = 0; 4145 w->attr.st_nlink = 0;
2261 else if (!w->attr.st_nlink) 4146 else if (!w->attr.st_nlink)
2262 w->attr.st_nlink = 1; 4147 w->attr.st_nlink = 1;
2265static void noinline 4150static void noinline
2266stat_timer_cb (EV_P_ ev_timer *w_, int revents) 4151stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2267{ 4152{
2268 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 4153 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2269 4154
2270 /* we copy this here each the time so that */ 4155 ev_statdata prev = w->attr;
2271 /* prev has the old value when the callback gets invoked */
2272 w->prev = w->attr;
2273 ev_stat_stat (EV_A_ w); 4156 ev_stat_stat (EV_A_ w);
2274 4157
2275 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */ 4158 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2276 if ( 4159 if (
2277 w->prev.st_dev != w->attr.st_dev 4160 prev.st_dev != w->attr.st_dev
2278 || w->prev.st_ino != w->attr.st_ino 4161 || prev.st_ino != w->attr.st_ino
2279 || w->prev.st_mode != w->attr.st_mode 4162 || prev.st_mode != w->attr.st_mode
2280 || w->prev.st_nlink != w->attr.st_nlink 4163 || prev.st_nlink != w->attr.st_nlink
2281 || w->prev.st_uid != w->attr.st_uid 4164 || prev.st_uid != w->attr.st_uid
2282 || w->prev.st_gid != w->attr.st_gid 4165 || prev.st_gid != w->attr.st_gid
2283 || w->prev.st_rdev != w->attr.st_rdev 4166 || prev.st_rdev != w->attr.st_rdev
2284 || w->prev.st_size != w->attr.st_size 4167 || prev.st_size != w->attr.st_size
2285 || w->prev.st_atime != w->attr.st_atime 4168 || prev.st_atime != w->attr.st_atime
2286 || w->prev.st_mtime != w->attr.st_mtime 4169 || prev.st_mtime != w->attr.st_mtime
2287 || w->prev.st_ctime != w->attr.st_ctime 4170 || prev.st_ctime != w->attr.st_ctime
2288 ) { 4171 ) {
4172 /* we only update w->prev on actual differences */
4173 /* in case we test more often than invoke the callback, */
4174 /* to ensure that prev is always different to attr */
4175 w->prev = prev;
4176
2289 #if EV_USE_INOTIFY 4177 #if EV_USE_INOTIFY
4178 if (fs_fd >= 0)
4179 {
2290 infy_del (EV_A_ w); 4180 infy_del (EV_A_ w);
2291 infy_add (EV_A_ w); 4181 infy_add (EV_A_ w);
2292 ev_stat_stat (EV_A_ w); /* avoid race... */ 4182 ev_stat_stat (EV_A_ w); /* avoid race... */
4183 }
2293 #endif 4184 #endif
2294 4185
2295 ev_feed_event (EV_A_ w, EV_STAT); 4186 ev_feed_event (EV_A_ w, EV_STAT);
2296 } 4187 }
2297} 4188}
2298 4189
2299void 4190void
2300ev_stat_start (EV_P_ ev_stat *w) 4191ev_stat_start (EV_P_ ev_stat *w) EV_THROW
2301{ 4192{
2302 if (expect_false (ev_is_active (w))) 4193 if (expect_false (ev_is_active (w)))
2303 return; 4194 return;
2304 4195
2305 /* since we use memcmp, we need to clear any padding data etc. */
2306 memset (&w->prev, 0, sizeof (ev_statdata));
2307 memset (&w->attr, 0, sizeof (ev_statdata));
2308
2309 ev_stat_stat (EV_A_ w); 4196 ev_stat_stat (EV_A_ w);
2310 4197
4198 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2311 if (w->interval < MIN_STAT_INTERVAL) 4199 w->interval = MIN_STAT_INTERVAL;
2312 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2313 4200
2314 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 4201 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2315 ev_set_priority (&w->timer, ev_priority (w)); 4202 ev_set_priority (&w->timer, ev_priority (w));
2316 4203
2317#if EV_USE_INOTIFY 4204#if EV_USE_INOTIFY
2318 infy_init (EV_A); 4205 infy_init (EV_A);
2319 4206
2320 if (fs_fd >= 0) 4207 if (fs_fd >= 0)
2321 infy_add (EV_A_ w); 4208 infy_add (EV_A_ w);
2322 else 4209 else
2323#endif 4210#endif
4211 {
2324 ev_timer_start (EV_A_ &w->timer); 4212 ev_timer_again (EV_A_ &w->timer);
4213 ev_unref (EV_A);
4214 }
2325 4215
2326 ev_start (EV_A_ (W)w, 1); 4216 ev_start (EV_A_ (W)w, 1);
4217
4218 EV_FREQUENT_CHECK;
2327} 4219}
2328 4220
2329void 4221void
2330ev_stat_stop (EV_P_ ev_stat *w) 4222ev_stat_stop (EV_P_ ev_stat *w) EV_THROW
2331{ 4223{
2332 clear_pending (EV_A_ (W)w); 4224 clear_pending (EV_A_ (W)w);
2333 if (expect_false (!ev_is_active (w))) 4225 if (expect_false (!ev_is_active (w)))
2334 return; 4226 return;
2335 4227
4228 EV_FREQUENT_CHECK;
4229
2336#if EV_USE_INOTIFY 4230#if EV_USE_INOTIFY
2337 infy_del (EV_A_ w); 4231 infy_del (EV_A_ w);
2338#endif 4232#endif
4233
4234 if (ev_is_active (&w->timer))
4235 {
4236 ev_ref (EV_A);
2339 ev_timer_stop (EV_A_ &w->timer); 4237 ev_timer_stop (EV_A_ &w->timer);
4238 }
2340 4239
2341 ev_stop (EV_A_ (W)w); 4240 ev_stop (EV_A_ (W)w);
4241
4242 EV_FREQUENT_CHECK;
2342} 4243}
2343#endif 4244#endif
2344 4245
2345#if EV_IDLE_ENABLE 4246#if EV_IDLE_ENABLE
2346void 4247void
2347ev_idle_start (EV_P_ ev_idle *w) 4248ev_idle_start (EV_P_ ev_idle *w) EV_THROW
2348{ 4249{
2349 if (expect_false (ev_is_active (w))) 4250 if (expect_false (ev_is_active (w)))
2350 return; 4251 return;
2351 4252
2352 pri_adjust (EV_A_ (W)w); 4253 pri_adjust (EV_A_ (W)w);
4254
4255 EV_FREQUENT_CHECK;
2353 4256
2354 { 4257 {
2355 int active = ++idlecnt [ABSPRI (w)]; 4258 int active = ++idlecnt [ABSPRI (w)];
2356 4259
2357 ++idleall; 4260 ++idleall;
2358 ev_start (EV_A_ (W)w, active); 4261 ev_start (EV_A_ (W)w, active);
2359 4262
2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 4263 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2361 idles [ABSPRI (w)][active - 1] = w; 4264 idles [ABSPRI (w)][active - 1] = w;
2362 } 4265 }
4266
4267 EV_FREQUENT_CHECK;
2363} 4268}
2364 4269
2365void 4270void
2366ev_idle_stop (EV_P_ ev_idle *w) 4271ev_idle_stop (EV_P_ ev_idle *w) EV_THROW
2367{ 4272{
2368 clear_pending (EV_A_ (W)w); 4273 clear_pending (EV_A_ (W)w);
2369 if (expect_false (!ev_is_active (w))) 4274 if (expect_false (!ev_is_active (w)))
2370 return; 4275 return;
2371 4276
4277 EV_FREQUENT_CHECK;
4278
2372 { 4279 {
2373 int active = ((W)w)->active; 4280 int active = ev_active (w);
2374 4281
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 4282 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2376 ((W)idles [ABSPRI (w)][active - 1])->active = active; 4283 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2377 4284
2378 ev_stop (EV_A_ (W)w); 4285 ev_stop (EV_A_ (W)w);
2379 --idleall; 4286 --idleall;
2380 } 4287 }
2381}
2382#endif
2383 4288
4289 EV_FREQUENT_CHECK;
4290}
4291#endif
4292
4293#if EV_PREPARE_ENABLE
2384void 4294void
2385ev_prepare_start (EV_P_ ev_prepare *w) 4295ev_prepare_start (EV_P_ ev_prepare *w) EV_THROW
2386{ 4296{
2387 if (expect_false (ev_is_active (w))) 4297 if (expect_false (ev_is_active (w)))
2388 return; 4298 return;
4299
4300 EV_FREQUENT_CHECK;
2389 4301
2390 ev_start (EV_A_ (W)w, ++preparecnt); 4302 ev_start (EV_A_ (W)w, ++preparecnt);
2391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 4303 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2392 prepares [preparecnt - 1] = w; 4304 prepares [preparecnt - 1] = w;
4305
4306 EV_FREQUENT_CHECK;
2393} 4307}
2394 4308
2395void 4309void
2396ev_prepare_stop (EV_P_ ev_prepare *w) 4310ev_prepare_stop (EV_P_ ev_prepare *w) EV_THROW
2397{ 4311{
2398 clear_pending (EV_A_ (W)w); 4312 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 4313 if (expect_false (!ev_is_active (w)))
2400 return; 4314 return;
2401 4315
4316 EV_FREQUENT_CHECK;
4317
2402 { 4318 {
2403 int active = ((W)w)->active; 4319 int active = ev_active (w);
4320
2404 prepares [active - 1] = prepares [--preparecnt]; 4321 prepares [active - 1] = prepares [--preparecnt];
2405 ((W)prepares [active - 1])->active = active; 4322 ev_active (prepares [active - 1]) = active;
2406 } 4323 }
2407 4324
2408 ev_stop (EV_A_ (W)w); 4325 ev_stop (EV_A_ (W)w);
2409}
2410 4326
4327 EV_FREQUENT_CHECK;
4328}
4329#endif
4330
4331#if EV_CHECK_ENABLE
2411void 4332void
2412ev_check_start (EV_P_ ev_check *w) 4333ev_check_start (EV_P_ ev_check *w) EV_THROW
2413{ 4334{
2414 if (expect_false (ev_is_active (w))) 4335 if (expect_false (ev_is_active (w)))
2415 return; 4336 return;
4337
4338 EV_FREQUENT_CHECK;
2416 4339
2417 ev_start (EV_A_ (W)w, ++checkcnt); 4340 ev_start (EV_A_ (W)w, ++checkcnt);
2418 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 4341 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2419 checks [checkcnt - 1] = w; 4342 checks [checkcnt - 1] = w;
4343
4344 EV_FREQUENT_CHECK;
2420} 4345}
2421 4346
2422void 4347void
2423ev_check_stop (EV_P_ ev_check *w) 4348ev_check_stop (EV_P_ ev_check *w) EV_THROW
2424{ 4349{
2425 clear_pending (EV_A_ (W)w); 4350 clear_pending (EV_A_ (W)w);
2426 if (expect_false (!ev_is_active (w))) 4351 if (expect_false (!ev_is_active (w)))
2427 return; 4352 return;
2428 4353
4354 EV_FREQUENT_CHECK;
4355
2429 { 4356 {
2430 int active = ((W)w)->active; 4357 int active = ev_active (w);
4358
2431 checks [active - 1] = checks [--checkcnt]; 4359 checks [active - 1] = checks [--checkcnt];
2432 ((W)checks [active - 1])->active = active; 4360 ev_active (checks [active - 1]) = active;
2433 } 4361 }
2434 4362
2435 ev_stop (EV_A_ (W)w); 4363 ev_stop (EV_A_ (W)w);
4364
4365 EV_FREQUENT_CHECK;
2436} 4366}
4367#endif
2437 4368
2438#if EV_EMBED_ENABLE 4369#if EV_EMBED_ENABLE
2439void noinline 4370void noinline
2440ev_embed_sweep (EV_P_ ev_embed *w) 4371ev_embed_sweep (EV_P_ ev_embed *w) EV_THROW
2441{ 4372{
2442 ev_loop (w->other, EVLOOP_NONBLOCK); 4373 ev_run (w->other, EVRUN_NOWAIT);
2443} 4374}
2444 4375
2445static void 4376static void
2446embed_io_cb (EV_P_ ev_io *io, int revents) 4377embed_io_cb (EV_P_ ev_io *io, int revents)
2447{ 4378{
2448 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 4379 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2449 4380
2450 if (ev_cb (w)) 4381 if (ev_cb (w))
2451 ev_feed_event (EV_A_ (W)w, EV_EMBED); 4382 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2452 else 4383 else
2453 ev_loop (w->other, EVLOOP_NONBLOCK); 4384 ev_run (w->other, EVRUN_NOWAIT);
2454} 4385}
2455 4386
2456static void 4387static void
2457embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents) 4388embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2458{ 4389{
2459 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare)); 4390 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2460 4391
2461 { 4392 {
2462 struct ev_loop *loop = w->other; 4393 EV_P = w->other;
2463 4394
2464 while (fdchangecnt) 4395 while (fdchangecnt)
2465 { 4396 {
2466 fd_reify (EV_A); 4397 fd_reify (EV_A);
2467 ev_loop (EV_A_ EVLOOP_NONBLOCK); 4398 ev_run (EV_A_ EVRUN_NOWAIT);
2468 } 4399 }
2469 } 4400 }
4401}
4402
4403static void
4404embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
4405{
4406 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
4407
4408 ev_embed_stop (EV_A_ w);
4409
4410 {
4411 EV_P = w->other;
4412
4413 ev_loop_fork (EV_A);
4414 ev_run (EV_A_ EVRUN_NOWAIT);
4415 }
4416
4417 ev_embed_start (EV_A_ w);
2470} 4418}
2471 4419
2472#if 0 4420#if 0
2473static void 4421static void
2474embed_idle_cb (EV_P_ ev_idle *idle, int revents) 4422embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2476 ev_idle_stop (EV_A_ idle); 4424 ev_idle_stop (EV_A_ idle);
2477} 4425}
2478#endif 4426#endif
2479 4427
2480void 4428void
2481ev_embed_start (EV_P_ ev_embed *w) 4429ev_embed_start (EV_P_ ev_embed *w) EV_THROW
2482{ 4430{
2483 if (expect_false (ev_is_active (w))) 4431 if (expect_false (ev_is_active (w)))
2484 return; 4432 return;
2485 4433
2486 { 4434 {
2487 struct ev_loop *loop = w->other; 4435 EV_P = w->other;
2488 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 4436 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2489 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 4437 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2490 } 4438 }
4439
4440 EV_FREQUENT_CHECK;
2491 4441
2492 ev_set_priority (&w->io, ev_priority (w)); 4442 ev_set_priority (&w->io, ev_priority (w));
2493 ev_io_start (EV_A_ &w->io); 4443 ev_io_start (EV_A_ &w->io);
2494 4444
2495 ev_prepare_init (&w->prepare, embed_prepare_cb); 4445 ev_prepare_init (&w->prepare, embed_prepare_cb);
2496 ev_set_priority (&w->prepare, EV_MINPRI); 4446 ev_set_priority (&w->prepare, EV_MINPRI);
2497 ev_prepare_start (EV_A_ &w->prepare); 4447 ev_prepare_start (EV_A_ &w->prepare);
2498 4448
4449 ev_fork_init (&w->fork, embed_fork_cb);
4450 ev_fork_start (EV_A_ &w->fork);
4451
2499 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 4452 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2500 4453
2501 ev_start (EV_A_ (W)w, 1); 4454 ev_start (EV_A_ (W)w, 1);
4455
4456 EV_FREQUENT_CHECK;
2502} 4457}
2503 4458
2504void 4459void
2505ev_embed_stop (EV_P_ ev_embed *w) 4460ev_embed_stop (EV_P_ ev_embed *w) EV_THROW
2506{ 4461{
2507 clear_pending (EV_A_ (W)w); 4462 clear_pending (EV_A_ (W)w);
2508 if (expect_false (!ev_is_active (w))) 4463 if (expect_false (!ev_is_active (w)))
2509 return; 4464 return;
2510 4465
4466 EV_FREQUENT_CHECK;
4467
2511 ev_io_stop (EV_A_ &w->io); 4468 ev_io_stop (EV_A_ &w->io);
2512 ev_prepare_stop (EV_A_ &w->prepare); 4469 ev_prepare_stop (EV_A_ &w->prepare);
4470 ev_fork_stop (EV_A_ &w->fork);
2513 4471
2514 ev_stop (EV_A_ (W)w); 4472 ev_stop (EV_A_ (W)w);
4473
4474 EV_FREQUENT_CHECK;
2515} 4475}
2516#endif 4476#endif
2517 4477
2518#if EV_FORK_ENABLE 4478#if EV_FORK_ENABLE
2519void 4479void
2520ev_fork_start (EV_P_ ev_fork *w) 4480ev_fork_start (EV_P_ ev_fork *w) EV_THROW
2521{ 4481{
2522 if (expect_false (ev_is_active (w))) 4482 if (expect_false (ev_is_active (w)))
2523 return; 4483 return;
4484
4485 EV_FREQUENT_CHECK;
2524 4486
2525 ev_start (EV_A_ (W)w, ++forkcnt); 4487 ev_start (EV_A_ (W)w, ++forkcnt);
2526 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 4488 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2527 forks [forkcnt - 1] = w; 4489 forks [forkcnt - 1] = w;
4490
4491 EV_FREQUENT_CHECK;
2528} 4492}
2529 4493
2530void 4494void
2531ev_fork_stop (EV_P_ ev_fork *w) 4495ev_fork_stop (EV_P_ ev_fork *w) EV_THROW
2532{ 4496{
2533 clear_pending (EV_A_ (W)w); 4497 clear_pending (EV_A_ (W)w);
2534 if (expect_false (!ev_is_active (w))) 4498 if (expect_false (!ev_is_active (w)))
2535 return; 4499 return;
2536 4500
4501 EV_FREQUENT_CHECK;
4502
2537 { 4503 {
2538 int active = ((W)w)->active; 4504 int active = ev_active (w);
4505
2539 forks [active - 1] = forks [--forkcnt]; 4506 forks [active - 1] = forks [--forkcnt];
2540 ((W)forks [active - 1])->active = active; 4507 ev_active (forks [active - 1]) = active;
2541 } 4508 }
2542 4509
2543 ev_stop (EV_A_ (W)w); 4510 ev_stop (EV_A_ (W)w);
4511
4512 EV_FREQUENT_CHECK;
4513}
4514#endif
4515
4516#if EV_CLEANUP_ENABLE
4517void
4518ev_cleanup_start (EV_P_ ev_cleanup *w) EV_THROW
4519{
4520 if (expect_false (ev_is_active (w)))
4521 return;
4522
4523 EV_FREQUENT_CHECK;
4524
4525 ev_start (EV_A_ (W)w, ++cleanupcnt);
4526 array_needsize (ev_cleanup *, cleanups, cleanupmax, cleanupcnt, EMPTY2);
4527 cleanups [cleanupcnt - 1] = w;
4528
4529 /* cleanup watchers should never keep a refcount on the loop */
4530 ev_unref (EV_A);
4531 EV_FREQUENT_CHECK;
4532}
4533
4534void
4535ev_cleanup_stop (EV_P_ ev_cleanup *w) EV_THROW
4536{
4537 clear_pending (EV_A_ (W)w);
4538 if (expect_false (!ev_is_active (w)))
4539 return;
4540
4541 EV_FREQUENT_CHECK;
4542 ev_ref (EV_A);
4543
4544 {
4545 int active = ev_active (w);
4546
4547 cleanups [active - 1] = cleanups [--cleanupcnt];
4548 ev_active (cleanups [active - 1]) = active;
4549 }
4550
4551 ev_stop (EV_A_ (W)w);
4552
4553 EV_FREQUENT_CHECK;
2544} 4554}
2545#endif 4555#endif
2546 4556
2547#if EV_ASYNC_ENABLE 4557#if EV_ASYNC_ENABLE
2548void 4558void
2549ev_async_start (EV_P_ ev_async *w) 4559ev_async_start (EV_P_ ev_async *w) EV_THROW
2550{ 4560{
2551 if (expect_false (ev_is_active (w))) 4561 if (expect_false (ev_is_active (w)))
2552 return; 4562 return;
2553 4563
4564 w->sent = 0;
4565
2554 evpipe_init (EV_A); 4566 evpipe_init (EV_A);
4567
4568 EV_FREQUENT_CHECK;
2555 4569
2556 ev_start (EV_A_ (W)w, ++asynccnt); 4570 ev_start (EV_A_ (W)w, ++asynccnt);
2557 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 4571 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2558 asyncs [asynccnt - 1] = w; 4572 asyncs [asynccnt - 1] = w;
4573
4574 EV_FREQUENT_CHECK;
2559} 4575}
2560 4576
2561void 4577void
2562ev_async_stop (EV_P_ ev_async *w) 4578ev_async_stop (EV_P_ ev_async *w) EV_THROW
2563{ 4579{
2564 clear_pending (EV_A_ (W)w); 4580 clear_pending (EV_A_ (W)w);
2565 if (expect_false (!ev_is_active (w))) 4581 if (expect_false (!ev_is_active (w)))
2566 return; 4582 return;
2567 4583
4584 EV_FREQUENT_CHECK;
4585
2568 { 4586 {
2569 int active = ((W)w)->active; 4587 int active = ev_active (w);
4588
2570 asyncs [active - 1] = asyncs [--asynccnt]; 4589 asyncs [active - 1] = asyncs [--asynccnt];
2571 ((W)asyncs [active - 1])->active = active; 4590 ev_active (asyncs [active - 1]) = active;
2572 } 4591 }
2573 4592
2574 ev_stop (EV_A_ (W)w); 4593 ev_stop (EV_A_ (W)w);
4594
4595 EV_FREQUENT_CHECK;
2575} 4596}
2576 4597
2577void 4598void
2578ev_async_send (EV_P_ ev_async *w) 4599ev_async_send (EV_P_ ev_async *w) EV_THROW
2579{ 4600{
2580 w->sent = 1; 4601 w->sent = 1;
2581 evpipe_write (EV_A_ &gotasync); 4602 evpipe_write (EV_A_ &async_pending);
2582} 4603}
2583#endif 4604#endif
2584 4605
2585/*****************************************************************************/ 4606/*****************************************************************************/
2586 4607
2596once_cb (EV_P_ struct ev_once *once, int revents) 4617once_cb (EV_P_ struct ev_once *once, int revents)
2597{ 4618{
2598 void (*cb)(int revents, void *arg) = once->cb; 4619 void (*cb)(int revents, void *arg) = once->cb;
2599 void *arg = once->arg; 4620 void *arg = once->arg;
2600 4621
2601 ev_io_stop (EV_A_ &once->io); 4622 ev_io_stop (EV_A_ &once->io);
2602 ev_timer_stop (EV_A_ &once->to); 4623 ev_timer_stop (EV_A_ &once->to);
2603 ev_free (once); 4624 ev_free (once);
2604 4625
2605 cb (revents, arg); 4626 cb (revents, arg);
2606} 4627}
2607 4628
2608static void 4629static void
2609once_cb_io (EV_P_ ev_io *w, int revents) 4630once_cb_io (EV_P_ ev_io *w, int revents)
2610{ 4631{
2611 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 4632 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
4633
4634 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2612} 4635}
2613 4636
2614static void 4637static void
2615once_cb_to (EV_P_ ev_timer *w, int revents) 4638once_cb_to (EV_P_ ev_timer *w, int revents)
2616{ 4639{
2617 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 4640 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
4641
4642 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2618} 4643}
2619 4644
2620void 4645void
2621ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 4646ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) EV_THROW
2622{ 4647{
2623 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 4648 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
2624 4649
2625 if (expect_false (!once)) 4650 if (expect_false (!once))
2626 { 4651 {
2627 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 4652 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMER, arg);
2628 return; 4653 return;
2629 } 4654 }
2630 4655
2631 once->cb = cb; 4656 once->cb = cb;
2632 once->arg = arg; 4657 once->arg = arg;
2644 ev_timer_set (&once->to, timeout, 0.); 4669 ev_timer_set (&once->to, timeout, 0.);
2645 ev_timer_start (EV_A_ &once->to); 4670 ev_timer_start (EV_A_ &once->to);
2646 } 4671 }
2647} 4672}
2648 4673
4674/*****************************************************************************/
4675
4676#if EV_WALK_ENABLE
4677void ecb_cold
4678ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w)) EV_THROW
4679{
4680 int i, j;
4681 ev_watcher_list *wl, *wn;
4682
4683 if (types & (EV_IO | EV_EMBED))
4684 for (i = 0; i < anfdmax; ++i)
4685 for (wl = anfds [i].head; wl; )
4686 {
4687 wn = wl->next;
4688
4689#if EV_EMBED_ENABLE
4690 if (ev_cb ((ev_io *)wl) == embed_io_cb)
4691 {
4692 if (types & EV_EMBED)
4693 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
4694 }
4695 else
4696#endif
4697#if EV_USE_INOTIFY
4698 if (ev_cb ((ev_io *)wl) == infy_cb)
4699 ;
4700 else
4701#endif
4702 if ((ev_io *)wl != &pipe_w)
4703 if (types & EV_IO)
4704 cb (EV_A_ EV_IO, wl);
4705
4706 wl = wn;
4707 }
4708
4709 if (types & (EV_TIMER | EV_STAT))
4710 for (i = timercnt + HEAP0; i-- > HEAP0; )
4711#if EV_STAT_ENABLE
4712 /*TODO: timer is not always active*/
4713 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
4714 {
4715 if (types & EV_STAT)
4716 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
4717 }
4718 else
4719#endif
4720 if (types & EV_TIMER)
4721 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
4722
4723#if EV_PERIODIC_ENABLE
4724 if (types & EV_PERIODIC)
4725 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
4726 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
4727#endif
4728
4729#if EV_IDLE_ENABLE
4730 if (types & EV_IDLE)
4731 for (j = NUMPRI; j--; )
4732 for (i = idlecnt [j]; i--; )
4733 cb (EV_A_ EV_IDLE, idles [j][i]);
4734#endif
4735
4736#if EV_FORK_ENABLE
4737 if (types & EV_FORK)
4738 for (i = forkcnt; i--; )
4739 if (ev_cb (forks [i]) != embed_fork_cb)
4740 cb (EV_A_ EV_FORK, forks [i]);
4741#endif
4742
4743#if EV_ASYNC_ENABLE
4744 if (types & EV_ASYNC)
4745 for (i = asynccnt; i--; )
4746 cb (EV_A_ EV_ASYNC, asyncs [i]);
4747#endif
4748
4749#if EV_PREPARE_ENABLE
4750 if (types & EV_PREPARE)
4751 for (i = preparecnt; i--; )
4752# if EV_EMBED_ENABLE
4753 if (ev_cb (prepares [i]) != embed_prepare_cb)
4754# endif
4755 cb (EV_A_ EV_PREPARE, prepares [i]);
4756#endif
4757
4758#if EV_CHECK_ENABLE
4759 if (types & EV_CHECK)
4760 for (i = checkcnt; i--; )
4761 cb (EV_A_ EV_CHECK, checks [i]);
4762#endif
4763
4764#if EV_SIGNAL_ENABLE
4765 if (types & EV_SIGNAL)
4766 for (i = 0; i < EV_NSIG - 1; ++i)
4767 for (wl = signals [i].head; wl; )
4768 {
4769 wn = wl->next;
4770 cb (EV_A_ EV_SIGNAL, wl);
4771 wl = wn;
4772 }
4773#endif
4774
4775#if EV_CHILD_ENABLE
4776 if (types & EV_CHILD)
4777 for (i = (EV_PID_HASHSIZE); i--; )
4778 for (wl = childs [i]; wl; )
4779 {
4780 wn = wl->next;
4781 cb (EV_A_ EV_CHILD, wl);
4782 wl = wn;
4783 }
4784#endif
4785/* EV_STAT 0x00001000 /* stat data changed */
4786/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
4787}
4788#endif
4789
2649#if EV_MULTIPLICITY 4790#if EV_MULTIPLICITY
2650 #include "ev_wrap.h" 4791 #include "ev_wrap.h"
2651#endif 4792#endif
2652 4793
2653#ifdef __cplusplus
2654}
2655#endif
2656

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines