ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.23 by root, Wed Oct 31 20:10:17 2007 UTC vs.
Revision 1.59 by root, Sun Nov 4 18:15:16 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33#endif
29 34
30#include <math.h> 35#include <math.h>
31#include <stdlib.h> 36#include <stdlib.h>
32#include <unistd.h> 37#include <unistd.h>
33#include <fcntl.h> 38#include <fcntl.h>
37#include <stdio.h> 42#include <stdio.h>
38 43
39#include <assert.h> 44#include <assert.h>
40#include <errno.h> 45#include <errno.h>
41#include <sys/types.h> 46#include <sys/types.h>
47#ifndef WIN32
42#include <sys/wait.h> 48# include <sys/wait.h>
49#endif
43#include <sys/time.h> 50#include <sys/time.h>
44#include <time.h> 51#include <time.h>
45 52
53/**/
54
46#ifndef HAVE_MONOTONIC 55#ifndef EV_USE_MONOTONIC
56# define EV_USE_MONOTONIC 1
57#endif
58
59#ifndef EV_USE_SELECT
60# define EV_USE_SELECT 1
61#endif
62
63#ifndef EV_USE_POLL
64# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
65#endif
66
67#ifndef EV_USE_EPOLL
68# define EV_USE_EPOLL 0
69#endif
70
71#ifndef EV_USE_KQUEUE
72# define EV_USE_KQUEUE 0
73#endif
74
75#ifndef EV_USE_REALTIME
76# define EV_USE_REALTIME 1
77#endif
78
79/**/
80
47# ifdef CLOCK_MONOTONIC 81#ifndef CLOCK_MONOTONIC
82# undef EV_USE_MONOTONIC
48# define HAVE_MONOTONIC 1 83# define EV_USE_MONOTONIC 0
49# endif 84#endif
50#endif
51 85
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 86#ifndef CLOCK_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 87# undef EV_USE_REALTIME
88# define EV_USE_REALTIME 0
62#endif 89#endif
90
91/**/
63 92
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 93#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 94#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 95#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
96/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
67 97
68#include "ev.h" 98#include "ev.h"
99
100#if __GNUC__ >= 3
101# define expect(expr,value) __builtin_expect ((expr),(value))
102# define inline inline
103#else
104# define expect(expr,value) (expr)
105# define inline static
106#endif
107
108#define expect_false(expr) expect ((expr) != 0, 0)
109#define expect_true(expr) expect ((expr) != 0, 1)
110
111#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
112#define ABSPRI(w) ((w)->priority - EV_MINPRI)
69 113
70typedef struct ev_watcher *W; 114typedef struct ev_watcher *W;
71typedef struct ev_watcher_list *WL; 115typedef struct ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 116typedef struct ev_watcher_time *WT;
73 117
74static ev_tstamp now, diff; /* monotonic clock */ 118static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
75ev_tstamp ev_now;
76int ev_method;
77
78static int have_monotonic; /* runtime */
79
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
81static void (*method_modify)(int fd, int oev, int nev);
82static void (*method_poll)(ev_tstamp timeout);
83 119
84/*****************************************************************************/ 120/*****************************************************************************/
85 121
86ev_tstamp 122typedef struct
123{
124 struct ev_watcher_list *head;
125 unsigned char events;
126 unsigned char reify;
127} ANFD;
128
129typedef struct
130{
131 W w;
132 int events;
133} ANPENDING;
134
135#if EV_MULTIPLICITY
136
137struct ev_loop
138{
139# define VAR(name,decl) decl;
140# include "ev_vars.h"
141};
142# undef VAR
143# include "ev_wrap.h"
144
145#else
146
147# define VAR(name,decl) static decl;
148# include "ev_vars.h"
149# undef VAR
150
151#endif
152
153/*****************************************************************************/
154
155inline ev_tstamp
87ev_time (void) 156ev_time (void)
88{ 157{
89#if HAVE_REALTIME 158#if EV_USE_REALTIME
90 struct timespec ts; 159 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 160 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 161 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 162#else
94 struct timeval tv; 163 struct timeval tv;
95 gettimeofday (&tv, 0); 164 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 165 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 166#endif
98} 167}
99 168
100static ev_tstamp 169inline ev_tstamp
101get_clock (void) 170get_clock (void)
102{ 171{
103#if HAVE_MONOTONIC 172#if EV_USE_MONOTONIC
104 if (have_monotonic) 173 if (expect_true (have_monotonic))
105 { 174 {
106 struct timespec ts; 175 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 176 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 177 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 178 }
110#endif 179#endif
111 180
112 return ev_time (); 181 return ev_time ();
113} 182}
114 183
184ev_tstamp
185ev_now (EV_P)
186{
187 return rt_now;
188}
189
190#define array_roundsize(base,n) ((n) | 4 & ~3)
191
115#define array_needsize(base,cur,cnt,init) \ 192#define array_needsize(base,cur,cnt,init) \
116 if ((cnt) > cur) \ 193 if (expect_false ((cnt) > cur)) \
117 { \ 194 { \
118 int newcnt = cur; \ 195 int newcnt = cur; \
119 do \ 196 do \
120 { \ 197 { \
121 newcnt = (newcnt << 1) | 4 & ~3; \ 198 newcnt = array_roundsize (base, newcnt << 1); \
122 } \ 199 } \
123 while ((cnt) > newcnt); \ 200 while ((cnt) > newcnt); \
124 \ 201 \
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 202 base = realloc (base, sizeof (*base) * (newcnt)); \
126 init (base + cur, newcnt - cur); \ 203 init (base + cur, newcnt - cur); \
127 cur = newcnt; \ 204 cur = newcnt; \
128 } 205 }
129 206
130/*****************************************************************************/ 207/*****************************************************************************/
131 208
132typedef struct
133{
134 struct ev_io *head;
135 unsigned char wev, rev; /* want, received event set */
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140
141static int *fdchanges;
142static int fdchangemax, fdchangecnt;
143
144static void 209static void
145anfds_init (ANFD *base, int count) 210anfds_init (ANFD *base, int count)
146{ 211{
147 while (count--) 212 while (count--)
148 { 213 {
149 base->head = 0; 214 base->head = 0;
150 base->wev = base->rev = EV_NONE; 215 base->events = EV_NONE;
216 base->reify = 0;
217
151 ++base; 218 ++base;
152 } 219 }
153} 220}
154 221
155typedef struct
156{
157 W w;
158 int events;
159} ANPENDING;
160
161static ANPENDING *pendings;
162static int pendingmax, pendingcnt;
163
164static void 222static void
165event (W w, int events) 223event (EV_P_ W w, int events)
166{ 224{
167 if (w->active) 225 if (w->pending)
168 { 226 {
169 w->pending = ++pendingcnt;
170 array_needsize (pendings, pendingmax, pendingcnt, );
171 pendings [pendingcnt - 1].w = w;
172 pendings [pendingcnt - 1].events = events; 227 pendings [ABSPRI (w)][w->pending - 1].events |= events;
228 return;
173 } 229 }
174}
175 230
231 w->pending = ++pendingcnt [ABSPRI (w)];
232 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
233 pendings [ABSPRI (w)][w->pending - 1].w = w;
234 pendings [ABSPRI (w)][w->pending - 1].events = events;
235}
236
176static void 237static void
238queue_events (EV_P_ W *events, int eventcnt, int type)
239{
240 int i;
241
242 for (i = 0; i < eventcnt; ++i)
243 event (EV_A_ events [i], type);
244}
245
246static void
177fd_event (int fd, int events) 247fd_event (EV_P_ int fd, int events)
178{ 248{
179 ANFD *anfd = anfds + fd; 249 ANFD *anfd = anfds + fd;
180 struct ev_io *w; 250 struct ev_io *w;
181 251
182 for (w = anfd->head; w; w = w->next) 252 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
183 { 253 {
184 int ev = w->events & events; 254 int ev = w->events & events;
185 255
186 if (ev) 256 if (ev)
187 event ((W)w, ev); 257 event (EV_A_ (W)w, ev);
188 } 258 }
189} 259}
190 260
261/*****************************************************************************/
262
191static void 263static void
192queue_events (W *events, int eventcnt, int type) 264fd_reify (EV_P)
193{ 265{
194 int i; 266 int i;
195 267
196 for (i = 0; i < eventcnt; ++i) 268 for (i = 0; i < fdchangecnt; ++i)
197 event (events [i], type); 269 {
270 int fd = fdchanges [i];
271 ANFD *anfd = anfds + fd;
272 struct ev_io *w;
273
274 int events = 0;
275
276 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
277 events |= w->events;
278
279 anfd->reify = 0;
280
281 if (anfd->events != events)
282 {
283 method_modify (EV_A_ fd, anfd->events, events);
284 anfd->events = events;
285 }
286 }
287
288 fdchangecnt = 0;
289}
290
291static void
292fd_change (EV_P_ int fd)
293{
294 if (anfds [fd].reify || fdchangecnt < 0)
295 return;
296
297 anfds [fd].reify = 1;
298
299 ++fdchangecnt;
300 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
301 fdchanges [fdchangecnt - 1] = fd;
302}
303
304static void
305fd_kill (EV_P_ int fd)
306{
307 struct ev_io *w;
308
309 while ((w = (struct ev_io *)anfds [fd].head))
310 {
311 ev_io_stop (EV_A_ w);
312 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
313 }
198} 314}
199 315
200/* called on EBADF to verify fds */ 316/* called on EBADF to verify fds */
201static void 317static void
202fd_recheck () 318fd_ebadf (EV_P)
203{ 319{
204 int fd; 320 int fd;
205 321
206 for (fd = 0; fd < anfdmax; ++fd) 322 for (fd = 0; fd < anfdmax; ++fd)
207 if (anfds [fd].wev) 323 if (anfds [fd].events)
208 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 324 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
209 while (anfds [fd].head) 325 fd_kill (EV_A_ fd);
210 evio_stop (anfds [fd].head); 326}
327
328/* called on ENOMEM in select/poll to kill some fds and retry */
329static void
330fd_enomem (EV_P)
331{
332 int fd = anfdmax;
333
334 while (fd--)
335 if (anfds [fd].events)
336 {
337 close (fd);
338 fd_kill (EV_A_ fd);
339 return;
340 }
341}
342
343/* susually called after fork if method needs to re-arm all fds from scratch */
344static void
345fd_rearm_all (EV_P)
346{
347 int fd;
348
349 /* this should be highly optimised to not do anything but set a flag */
350 for (fd = 0; fd < anfdmax; ++fd)
351 if (anfds [fd].events)
352 {
353 anfds [fd].events = 0;
354 fd_change (fd);
355 }
211} 356}
212 357
213/*****************************************************************************/ 358/*****************************************************************************/
214 359
215static struct ev_timer **timers;
216static int timermax, timercnt;
217
218static struct ev_periodic **periodics;
219static int periodicmax, periodiccnt;
220
221static void 360static void
222upheap (WT *timers, int k) 361upheap (WT *heap, int k)
223{ 362{
224 WT w = timers [k]; 363 WT w = heap [k];
225 364
226 while (k && timers [k >> 1]->at > w->at) 365 while (k && heap [k >> 1]->at > w->at)
227 { 366 {
228 timers [k] = timers [k >> 1]; 367 heap [k] = heap [k >> 1];
229 timers [k]->active = k + 1; 368 heap [k]->active = k + 1;
230 k >>= 1; 369 k >>= 1;
231 } 370 }
232 371
233 timers [k] = w; 372 heap [k] = w;
234 timers [k]->active = k + 1; 373 heap [k]->active = k + 1;
235 374
236} 375}
237 376
238static void 377static void
239downheap (WT *timers, int N, int k) 378downheap (WT *heap, int N, int k)
240{ 379{
241 WT w = timers [k]; 380 WT w = heap [k];
242 381
243 while (k < (N >> 1)) 382 while (k < (N >> 1))
244 { 383 {
245 int j = k << 1; 384 int j = k << 1;
246 385
247 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 386 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
248 ++j; 387 ++j;
249 388
250 if (w->at <= timers [j]->at) 389 if (w->at <= heap [j]->at)
251 break; 390 break;
252 391
253 timers [k] = timers [j]; 392 heap [k] = heap [j];
254 timers [k]->active = k + 1; 393 heap [k]->active = k + 1;
255 k = j; 394 k = j;
256 } 395 }
257 396
258 timers [k] = w; 397 heap [k] = w;
259 timers [k]->active = k + 1; 398 heap [k]->active = k + 1;
260} 399}
261 400
262/*****************************************************************************/ 401/*****************************************************************************/
263 402
264typedef struct 403typedef struct
265{ 404{
266 struct ev_signal *head; 405 struct ev_watcher_list *head;
267 sig_atomic_t gotsig; 406 sig_atomic_t volatile gotsig;
268} ANSIG; 407} ANSIG;
269 408
270static ANSIG *signals; 409static ANSIG *signals;
271static int signalmax; 410static int signalmax;
272 411
273static int sigpipe [2]; 412static int sigpipe [2];
274static sig_atomic_t gotsig; 413static sig_atomic_t volatile gotsig;
275static struct ev_io sigev; 414static struct ev_io sigev;
276 415
277static void 416static void
278signals_init (ANSIG *base, int count) 417signals_init (ANSIG *base, int count)
279{ 418{
280 while (count--) 419 while (count--)
281 { 420 {
282 base->head = 0; 421 base->head = 0;
283 base->gotsig = 0; 422 base->gotsig = 0;
423
284 ++base; 424 ++base;
285 } 425 }
286} 426}
287 427
288static void 428static void
290{ 430{
291 signals [signum - 1].gotsig = 1; 431 signals [signum - 1].gotsig = 1;
292 432
293 if (!gotsig) 433 if (!gotsig)
294 { 434 {
435 int old_errno = errno;
295 gotsig = 1; 436 gotsig = 1;
296 write (sigpipe [1], &gotsig, 1); 437 write (sigpipe [1], &signum, 1);
438 errno = old_errno;
297 } 439 }
298} 440}
299 441
300static void 442static void
301sigcb (struct ev_io *iow, int revents) 443sigcb (EV_P_ struct ev_io *iow, int revents)
302{ 444{
303 struct ev_signal *w; 445 struct ev_watcher_list *w;
304 int sig; 446 int signum;
305 447
448 read (sigpipe [0], &revents, 1);
306 gotsig = 0; 449 gotsig = 0;
307 read (sigpipe [0], &revents, 1);
308 450
309 for (sig = signalmax; sig--; ) 451 for (signum = signalmax; signum--; )
310 if (signals [sig].gotsig) 452 if (signals [signum].gotsig)
311 { 453 {
312 signals [sig].gotsig = 0; 454 signals [signum].gotsig = 0;
313 455
314 for (w = signals [sig].head; w; w = w->next) 456 for (w = signals [signum].head; w; w = w->next)
315 event ((W)w, EV_SIGNAL); 457 event (EV_A_ (W)w, EV_SIGNAL);
316 } 458 }
317} 459}
318 460
319static void 461static void
320siginit (void) 462siginit (EV_P)
321{ 463{
464#ifndef WIN32
322 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 465 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
323 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 466 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
324 467
325 /* rather than sort out wether we really need nb, set it */ 468 /* rather than sort out wether we really need nb, set it */
326 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 469 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
327 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 470 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
471#endif
328 472
329 evio_set (&sigev, sigpipe [0], EV_READ); 473 ev_io_set (&sigev, sigpipe [0], EV_READ);
330 evio_start (&sigev); 474 ev_io_start (EV_A_ &sigev);
475 ev_unref (EV_A); /* child watcher should not keep loop alive */
331} 476}
332 477
333/*****************************************************************************/ 478/*****************************************************************************/
334 479
335static struct ev_idle **idles; 480#ifndef WIN32
336static int idlemax, idlecnt;
337
338static struct ev_prepare **prepares;
339static int preparemax, preparecnt;
340
341static struct ev_check **checks;
342static int checkmax, checkcnt;
343
344/*****************************************************************************/
345 481
346static struct ev_child *childs [PID_HASHSIZE]; 482static struct ev_child *childs [PID_HASHSIZE];
347static struct ev_signal childev; 483static struct ev_signal childev;
348 484
349#ifndef WCONTINUED 485#ifndef WCONTINUED
350# define WCONTINUED 0 486# define WCONTINUED 0
351#endif 487#endif
352 488
353static void 489static void
354childcb (struct ev_signal *sw, int revents) 490child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
355{ 491{
356 struct ev_child *w; 492 struct ev_child *w;
493
494 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
495 if (w->pid == pid || !w->pid)
496 {
497 w->priority = sw->priority; /* need to do it *now* */
498 w->rpid = pid;
499 w->rstatus = status;
500 event (EV_A_ (W)w, EV_CHILD);
501 }
502}
503
504static void
505childcb (EV_P_ struct ev_signal *sw, int revents)
506{
357 int pid, status; 507 int pid, status;
358 508
359 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 509 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
360 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 510 {
361 if (w->pid == pid || w->pid == -1) 511 /* make sure we are called again until all childs have been reaped */
362 { 512 event (EV_A_ (W)sw, EV_SIGNAL);
363 w->status = status; 513
364 event ((W)w, EV_CHILD); 514 child_reap (EV_A_ sw, pid, pid, status);
365 } 515 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
516 }
366} 517}
518
519#endif
367 520
368/*****************************************************************************/ 521/*****************************************************************************/
369 522
523#if EV_USE_KQUEUE
524# include "ev_kqueue.c"
525#endif
370#if HAVE_EPOLL 526#if EV_USE_EPOLL
371# include "ev_epoll.c" 527# include "ev_epoll.c"
372#endif 528#endif
529#if EV_USE_POLL
530# include "ev_poll.c"
531#endif
373#if HAVE_SELECT 532#if EV_USE_SELECT
374# include "ev_select.c" 533# include "ev_select.c"
375#endif 534#endif
376 535
377int ev_init (int flags) 536int
537ev_version_major (void)
378{ 538{
539 return EV_VERSION_MAJOR;
540}
541
542int
543ev_version_minor (void)
544{
545 return EV_VERSION_MINOR;
546}
547
548/* return true if we are running with elevated privileges and should ignore env variables */
549static int
550enable_secure (void)
551{
552#ifdef WIN32
553 return 0;
554#else
555 return getuid () != geteuid ()
556 || getgid () != getegid ();
557#endif
558}
559
560int
561ev_method (EV_P)
562{
563 return method;
564}
565
566static void
567loop_init (EV_P_ int methods)
568{
379 if (!ev_method) 569 if (!method)
380 { 570 {
381#if HAVE_MONOTONIC 571#if EV_USE_MONOTONIC
382 { 572 {
383 struct timespec ts; 573 struct timespec ts;
384 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 574 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
385 have_monotonic = 1; 575 have_monotonic = 1;
386 } 576 }
387#endif 577#endif
388 578
389 ev_now = ev_time (); 579 rt_now = ev_time ();
390 now = get_clock (); 580 mn_now = get_clock ();
581 now_floor = mn_now;
391 diff = ev_now - now; 582 rtmn_diff = rt_now - mn_now;
392 583
584 if (methods == EVMETHOD_AUTO)
585 if (!enable_secure () && getenv ("LIBEV_METHODS"))
586 methods = atoi (getenv ("LIBEV_METHODS"));
587 else
588 methods = EVMETHOD_ANY;
589
590 method = 0;
591#if EV_USE_KQUEUE
592 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
593#endif
594#if EV_USE_EPOLL
595 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
596#endif
597#if EV_USE_POLL
598 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
599#endif
600#if EV_USE_SELECT
601 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
602#endif
603 }
604}
605
606void
607loop_destroy (EV_P)
608{
609#if EV_USE_KQUEUE
610 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
611#endif
612#if EV_USE_EPOLL
613 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
614#endif
615#if EV_USE_POLL
616 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
617#endif
618#if EV_USE_SELECT
619 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
620#endif
621
622 method = 0;
623 /*TODO*/
624}
625
626void
627loop_fork (EV_P)
628{
629 /*TODO*/
630#if EV_USE_EPOLL
631 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
632#endif
633#if EV_USE_KQUEUE
634 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
635#endif
636}
637
638#if EV_MULTIPLICITY
639struct ev_loop *
640ev_loop_new (int methods)
641{
642 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
643
644 loop_init (EV_A_ methods);
645
646 if (ev_methods (EV_A))
647 return loop;
648
649 return 0;
650}
651
652void
653ev_loop_destroy (EV_P)
654{
655 loop_destroy (EV_A);
656 free (loop);
657}
658
659void
660ev_loop_fork (EV_P)
661{
662 loop_fork (EV_A);
663}
664
665#endif
666
667#if EV_MULTIPLICITY
668struct ev_loop default_loop_struct;
669static struct ev_loop *default_loop;
670
671struct ev_loop *
672#else
673static int default_loop;
674
675int
676#endif
677ev_default_loop (int methods)
678{
679 if (sigpipe [0] == sigpipe [1])
393 if (pipe (sigpipe)) 680 if (pipe (sigpipe))
394 return 0; 681 return 0;
395 682
396 ev_method = EVMETHOD_NONE; 683 if (!default_loop)
397#if HAVE_EPOLL 684 {
398 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 685#if EV_MULTIPLICITY
686 struct ev_loop *loop = default_loop = &default_loop_struct;
687#else
688 default_loop = 1;
399#endif 689#endif
400#if HAVE_SELECT
401 if (ev_method == EVMETHOD_NONE) select_init (flags);
402#endif
403 690
691 loop_init (EV_A_ methods);
692
404 if (ev_method) 693 if (ev_method (EV_A))
405 { 694 {
406 evw_init (&sigev, sigcb); 695 ev_watcher_init (&sigev, sigcb);
696 ev_set_priority (&sigev, EV_MAXPRI);
407 siginit (); 697 siginit (EV_A);
408 698
699#ifndef WIN32
409 evsignal_init (&childev, childcb, SIGCHLD); 700 ev_signal_init (&childev, childcb, SIGCHLD);
701 ev_set_priority (&childev, EV_MAXPRI);
410 evsignal_start (&childev); 702 ev_signal_start (EV_A_ &childev);
703 ev_unref (EV_A); /* child watcher should not keep loop alive */
704#endif
411 } 705 }
706 else
707 default_loop = 0;
412 } 708 }
413 709
414 return ev_method; 710 return default_loop;
415} 711}
416 712
417/*****************************************************************************/ 713void
418 714ev_default_destroy (void)
419void ev_prefork (void)
420{ 715{
421 /* nop */ 716#if EV_MULTIPLICITY
422} 717 struct ev_loop *loop = default_loop;
423
424void ev_postfork_parent (void)
425{
426 /* nop */
427}
428
429void ev_postfork_child (void)
430{
431#if HAVE_EPOLL
432 if (ev_method == EVMETHOD_EPOLL)
433 epoll_postfork_child ();
434#endif 718#endif
435 719
720 ev_ref (EV_A); /* child watcher */
721 ev_signal_stop (EV_A_ &childev);
722
723 ev_ref (EV_A); /* signal watcher */
436 evio_stop (&sigev); 724 ev_io_stop (EV_A_ &sigev);
725
726 close (sigpipe [0]); sigpipe [0] = 0;
727 close (sigpipe [1]); sigpipe [1] = 0;
728
729 loop_destroy (EV_A);
730}
731
732void
733ev_default_fork (EV_P)
734{
735 loop_fork (EV_A);
736
737 ev_io_stop (EV_A_ &sigev);
437 close (sigpipe [0]); 738 close (sigpipe [0]);
438 close (sigpipe [1]); 739 close (sigpipe [1]);
439 pipe (sigpipe); 740 pipe (sigpipe);
741
742 ev_ref (EV_A); /* signal watcher */
440 siginit (); 743 siginit (EV_A);
441} 744}
442 745
443/*****************************************************************************/ 746/*****************************************************************************/
444 747
445static void 748static void
446fd_reify (void) 749call_pending (EV_P)
447{ 750{
448 int i; 751 int pri;
449 752
450 for (i = 0; i < fdchangecnt; ++i) 753 for (pri = NUMPRI; pri--; )
451 { 754 while (pendingcnt [pri])
452 int fd = fdchanges [i];
453 ANFD *anfd = anfds + fd;
454 struct ev_io *w;
455
456 int wev = 0;
457
458 for (w = anfd->head; w; w = w->next)
459 wev |= w->events;
460
461 if (anfd->wev != wev)
462 { 755 {
463 method_modify (fd, anfd->wev, wev);
464 anfd->wev = wev;
465 }
466 }
467
468 fdchangecnt = 0;
469}
470
471static void
472call_pending ()
473{
474 while (pendingcnt)
475 {
476 ANPENDING *p = pendings + --pendingcnt; 756 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
477 757
478 if (p->w) 758 if (p->w)
479 { 759 {
480 p->w->pending = 0; 760 p->w->pending = 0;
481 p->w->cb (p->w, p->events); 761 p->w->cb (EV_A_ p->w, p->events);
482 } 762 }
483 } 763 }
484} 764}
485 765
486static void 766static void
487timers_reify () 767timers_reify (EV_P)
488{ 768{
489 while (timercnt && timers [0]->at <= now) 769 while (timercnt && timers [0]->at <= mn_now)
490 { 770 {
491 struct ev_timer *w = timers [0]; 771 struct ev_timer *w = timers [0];
492
493 event ((W)w, EV_TIMEOUT);
494 772
495 /* first reschedule or stop timer */ 773 /* first reschedule or stop timer */
496 if (w->repeat) 774 if (w->repeat)
497 { 775 {
776 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
498 w->at = now + w->repeat; 777 w->at = mn_now + w->repeat;
499 assert (("timer timeout in the past, negative repeat?", w->at > now));
500 downheap ((WT *)timers, timercnt, 0); 778 downheap ((WT *)timers, timercnt, 0);
501 } 779 }
502 else 780 else
503 evtimer_stop (w); /* nonrepeating: stop timer */ 781 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
504 }
505}
506 782
783 event (EV_A_ (W)w, EV_TIMEOUT);
784 }
785}
786
507static void 787static void
508periodics_reify () 788periodics_reify (EV_P)
509{ 789{
510 while (periodiccnt && periodics [0]->at <= ev_now) 790 while (periodiccnt && periodics [0]->at <= rt_now)
511 { 791 {
512 struct ev_periodic *w = periodics [0]; 792 struct ev_periodic *w = periodics [0];
513 793
514 /* first reschedule or stop timer */ 794 /* first reschedule or stop timer */
515 if (w->interval) 795 if (w->interval)
516 { 796 {
517 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 797 w->at += floor ((rt_now - w->at) / w->interval + 1.) * w->interval;
518 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 798 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > rt_now));
519 downheap ((WT *)periodics, periodiccnt, 0); 799 downheap ((WT *)periodics, periodiccnt, 0);
520 } 800 }
521 else 801 else
522 evperiodic_stop (w); /* nonrepeating: stop timer */ 802 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
523 803
524 event ((W)w, EV_TIMEOUT); 804 event (EV_A_ (W)w, EV_PERIODIC);
525 } 805 }
526} 806}
527 807
528static void 808static void
529periodics_reschedule (ev_tstamp diff) 809periodics_reschedule (EV_P)
530{ 810{
531 int i; 811 int i;
532 812
533 /* adjust periodics after time jump */ 813 /* adjust periodics after time jump */
534 for (i = 0; i < periodiccnt; ++i) 814 for (i = 0; i < periodiccnt; ++i)
535 { 815 {
536 struct ev_periodic *w = periodics [i]; 816 struct ev_periodic *w = periodics [i];
537 817
538 if (w->interval) 818 if (w->interval)
539 { 819 {
540 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 820 ev_tstamp diff = ceil ((rt_now - w->at) / w->interval) * w->interval;
541 821
542 if (fabs (diff) >= 1e-4) 822 if (fabs (diff) >= 1e-4)
543 { 823 {
544 evperiodic_stop (w); 824 ev_periodic_stop (EV_A_ w);
545 evperiodic_start (w); 825 ev_periodic_start (EV_A_ w);
546 826
547 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 827 i = 0; /* restart loop, inefficient, but time jumps should be rare */
548 } 828 }
549 } 829 }
550 } 830 }
551} 831}
552 832
833inline int
834time_update_monotonic (EV_P)
835{
836 mn_now = get_clock ();
837
838 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
839 {
840 rt_now = rtmn_diff + mn_now;
841 return 0;
842 }
843 else
844 {
845 now_floor = mn_now;
846 rt_now = ev_time ();
847 return 1;
848 }
849}
850
553static void 851static void
554time_update () 852time_update (EV_P)
555{ 853{
556 int i; 854 int i;
557 855
558 ev_now = ev_time (); 856#if EV_USE_MONOTONIC
559
560 if (have_monotonic) 857 if (expect_true (have_monotonic))
561 { 858 {
562 ev_tstamp odiff = diff; 859 if (time_update_monotonic (EV_A))
563
564 for (i = 4; --i; ) /* loop a few times, before making important decisions */
565 { 860 {
566 now = get_clock (); 861 ev_tstamp odiff = rtmn_diff;
862
863 for (i = 4; --i; ) /* loop a few times, before making important decisions */
864 {
567 diff = ev_now - now; 865 rtmn_diff = rt_now - mn_now;
568 866
569 if (fabs (odiff - diff) < MIN_TIMEJUMP) 867 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
570 return; /* all is well */ 868 return; /* all is well */
571 869
572 ev_now = ev_time (); 870 rt_now = ev_time ();
871 mn_now = get_clock ();
872 now_floor = mn_now;
873 }
874
875 periodics_reschedule (EV_A);
876 /* no timer adjustment, as the monotonic clock doesn't jump */
877 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
573 } 878 }
574
575 periodics_reschedule (diff - odiff);
576 /* no timer adjustment, as the monotonic clock doesn't jump */
577 } 879 }
578 else 880 else
881#endif
579 { 882 {
580 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 883 rt_now = ev_time ();
884
885 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
581 { 886 {
582 periodics_reschedule (ev_now - now); 887 periodics_reschedule (EV_A);
583 888
584 /* adjust timers. this is easy, as the offset is the same for all */ 889 /* adjust timers. this is easy, as the offset is the same for all */
585 for (i = 0; i < timercnt; ++i) 890 for (i = 0; i < timercnt; ++i)
586 timers [i]->at += diff; 891 timers [i]->at += rt_now - mn_now;
587 } 892 }
588 893
589 now = ev_now; 894 mn_now = rt_now;
590 } 895 }
591} 896}
592 897
593int ev_loop_done; 898void
899ev_ref (EV_P)
900{
901 ++activecnt;
902}
594 903
904void
905ev_unref (EV_P)
906{
907 --activecnt;
908}
909
910static int loop_done;
911
912void
595void ev_loop (int flags) 913ev_loop (EV_P_ int flags)
596{ 914{
597 double block; 915 double block;
598 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 916 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
599 917
600 do 918 do
601 { 919 {
602 /* queue check watchers (and execute them) */ 920 /* queue check watchers (and execute them) */
603 if (preparecnt) 921 if (expect_false (preparecnt))
604 { 922 {
605 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 923 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
606 call_pending (); 924 call_pending (EV_A);
607 } 925 }
608 926
609 /* update fd-related kernel structures */ 927 /* update fd-related kernel structures */
610 fd_reify (); 928 fd_reify (EV_A);
611 929
612 /* calculate blocking time */ 930 /* calculate blocking time */
613 931
614 /* we only need this for !monotonic clockor timers, but as we basically 932 /* we only need this for !monotonic clockor timers, but as we basically
615 always have timers, we just calculate it always */ 933 always have timers, we just calculate it always */
934#if EV_USE_MONOTONIC
935 if (expect_true (have_monotonic))
936 time_update_monotonic (EV_A);
937 else
938#endif
939 {
616 ev_now = ev_time (); 940 rt_now = ev_time ();
941 mn_now = rt_now;
942 }
617 943
618 if (flags & EVLOOP_NONBLOCK || idlecnt) 944 if (flags & EVLOOP_NONBLOCK || idlecnt)
619 block = 0.; 945 block = 0.;
620 else 946 else
621 { 947 {
622 block = MAX_BLOCKTIME; 948 block = MAX_BLOCKTIME;
623 949
624 if (timercnt) 950 if (timercnt)
625 { 951 {
626 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 952 ev_tstamp to = timers [0]->at - mn_now + method_fudge;
627 if (block > to) block = to; 953 if (block > to) block = to;
628 } 954 }
629 955
630 if (periodiccnt) 956 if (periodiccnt)
631 { 957 {
632 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 958 ev_tstamp to = periodics [0]->at - rt_now + method_fudge;
633 if (block > to) block = to; 959 if (block > to) block = to;
634 } 960 }
635 961
636 if (block < 0.) block = 0.; 962 if (block < 0.) block = 0.;
637 } 963 }
638 964
639 method_poll (block); 965 method_poll (EV_A_ block);
640 966
641 /* update ev_now, do magic */ 967 /* update rt_now, do magic */
642 time_update (); 968 time_update (EV_A);
643 969
644 /* queue pending timers and reschedule them */ 970 /* queue pending timers and reschedule them */
645 timers_reify (); /* relative timers called last */ 971 timers_reify (EV_A); /* relative timers called last */
646 periodics_reify (); /* absolute timers called first */ 972 periodics_reify (EV_A); /* absolute timers called first */
647 973
648 /* queue idle watchers unless io or timers are pending */ 974 /* queue idle watchers unless io or timers are pending */
649 if (!pendingcnt) 975 if (!pendingcnt)
650 queue_events ((W *)idles, idlecnt, EV_IDLE); 976 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
651 977
652 /* queue check watchers, to be executed first */ 978 /* queue check watchers, to be executed first */
653 if (checkcnt) 979 if (checkcnt)
654 queue_events ((W *)checks, checkcnt, EV_CHECK); 980 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
655 981
656 call_pending (); 982 call_pending (EV_A);
657 } 983 }
658 while (!ev_loop_done); 984 while (activecnt && !loop_done);
659 985
660 if (ev_loop_done != 2) 986 if (loop_done != 2)
661 ev_loop_done = 0; 987 loop_done = 0;
988}
989
990void
991ev_unloop (EV_P_ int how)
992{
993 loop_done = how;
662} 994}
663 995
664/*****************************************************************************/ 996/*****************************************************************************/
665 997
666static void 998inline void
667wlist_add (WL *head, WL elem) 999wlist_add (WL *head, WL elem)
668{ 1000{
669 elem->next = *head; 1001 elem->next = *head;
670 *head = elem; 1002 *head = elem;
671} 1003}
672 1004
673static void 1005inline void
674wlist_del (WL *head, WL elem) 1006wlist_del (WL *head, WL elem)
675{ 1007{
676 while (*head) 1008 while (*head)
677 { 1009 {
678 if (*head == elem) 1010 if (*head == elem)
683 1015
684 head = &(*head)->next; 1016 head = &(*head)->next;
685 } 1017 }
686} 1018}
687 1019
688static void 1020inline void
689ev_clear (W w) 1021ev_clear_pending (EV_P_ W w)
690{ 1022{
691 if (w->pending) 1023 if (w->pending)
692 { 1024 {
693 pendings [w->pending - 1].w = 0; 1025 pendings [ABSPRI (w)][w->pending - 1].w = 0;
694 w->pending = 0; 1026 w->pending = 0;
695 } 1027 }
696} 1028}
697 1029
698static void 1030inline void
699ev_start (W w, int active) 1031ev_start (EV_P_ W w, int active)
700{ 1032{
1033 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1034 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1035
701 w->active = active; 1036 w->active = active;
1037 ev_ref (EV_A);
702} 1038}
703 1039
704static void 1040inline void
705ev_stop (W w) 1041ev_stop (EV_P_ W w)
706{ 1042{
1043 ev_unref (EV_A);
707 w->active = 0; 1044 w->active = 0;
708} 1045}
709 1046
710/*****************************************************************************/ 1047/*****************************************************************************/
711 1048
712void 1049void
713evio_start (struct ev_io *w) 1050ev_io_start (EV_P_ struct ev_io *w)
714{ 1051{
1052 int fd = w->fd;
1053
715 if (ev_is_active (w)) 1054 if (ev_is_active (w))
716 return; 1055 return;
717 1056
718 int fd = w->fd; 1057 assert (("ev_io_start called with negative fd", fd >= 0));
719 1058
720 ev_start ((W)w, 1); 1059 ev_start (EV_A_ (W)w, 1);
721 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1060 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
722 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1061 wlist_add ((WL *)&anfds[fd].head, (WL)w);
723 1062
724 ++fdchangecnt; 1063 fd_change (EV_A_ fd);
725 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
726 fdchanges [fdchangecnt - 1] = fd;
727} 1064}
728 1065
729void 1066void
730evio_stop (struct ev_io *w) 1067ev_io_stop (EV_P_ struct ev_io *w)
731{ 1068{
732 ev_clear ((W)w); 1069 ev_clear_pending (EV_A_ (W)w);
733 if (!ev_is_active (w)) 1070 if (!ev_is_active (w))
734 return; 1071 return;
735 1072
736 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1073 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
737 ev_stop ((W)w); 1074 ev_stop (EV_A_ (W)w);
738 1075
739 ++fdchangecnt; 1076 fd_change (EV_A_ w->fd);
740 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
741 fdchanges [fdchangecnt - 1] = w->fd;
742} 1077}
743 1078
744void 1079void
745evtimer_start (struct ev_timer *w) 1080ev_timer_start (EV_P_ struct ev_timer *w)
746{ 1081{
747 if (ev_is_active (w)) 1082 if (ev_is_active (w))
748 return; 1083 return;
749 1084
750 w->at += now; 1085 w->at += mn_now;
751 1086
752 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1087 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
753 1088
754 ev_start ((W)w, ++timercnt); 1089 ev_start (EV_A_ (W)w, ++timercnt);
755 array_needsize (timers, timermax, timercnt, ); 1090 array_needsize (timers, timermax, timercnt, );
756 timers [timercnt - 1] = w; 1091 timers [timercnt - 1] = w;
757 upheap ((WT *)timers, timercnt - 1); 1092 upheap ((WT *)timers, timercnt - 1);
758} 1093}
759 1094
760void 1095void
761evtimer_stop (struct ev_timer *w) 1096ev_timer_stop (EV_P_ struct ev_timer *w)
762{ 1097{
763 ev_clear ((W)w); 1098 ev_clear_pending (EV_A_ (W)w);
764 if (!ev_is_active (w)) 1099 if (!ev_is_active (w))
765 return; 1100 return;
766 1101
767 if (w->active < timercnt--) 1102 if (w->active < timercnt--)
768 { 1103 {
770 downheap ((WT *)timers, timercnt, w->active - 1); 1105 downheap ((WT *)timers, timercnt, w->active - 1);
771 } 1106 }
772 1107
773 w->at = w->repeat; 1108 w->at = w->repeat;
774 1109
775 ev_stop ((W)w); 1110 ev_stop (EV_A_ (W)w);
776} 1111}
777 1112
778void 1113void
779evtimer_again (struct ev_timer *w) 1114ev_timer_again (EV_P_ struct ev_timer *w)
780{ 1115{
781 if (ev_is_active (w)) 1116 if (ev_is_active (w))
782 { 1117 {
783 if (w->repeat) 1118 if (w->repeat)
784 { 1119 {
785 w->at = now + w->repeat; 1120 w->at = mn_now + w->repeat;
786 downheap ((WT *)timers, timercnt, w->active - 1); 1121 downheap ((WT *)timers, timercnt, w->active - 1);
787 } 1122 }
788 else 1123 else
789 evtimer_stop (w); 1124 ev_timer_stop (EV_A_ w);
790 } 1125 }
791 else if (w->repeat) 1126 else if (w->repeat)
792 evtimer_start (w); 1127 ev_timer_start (EV_A_ w);
793} 1128}
794 1129
795void 1130void
796evperiodic_start (struct ev_periodic *w) 1131ev_periodic_start (EV_P_ struct ev_periodic *w)
797{ 1132{
798 if (ev_is_active (w)) 1133 if (ev_is_active (w))
799 return; 1134 return;
800 1135
801 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1136 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
802 1137
803 /* this formula differs from the one in periodic_reify because we do not always round up */ 1138 /* this formula differs from the one in periodic_reify because we do not always round up */
804 if (w->interval) 1139 if (w->interval)
805 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1140 w->at += ceil ((rt_now - w->at) / w->interval) * w->interval;
806 1141
807 ev_start ((W)w, ++periodiccnt); 1142 ev_start (EV_A_ (W)w, ++periodiccnt);
808 array_needsize (periodics, periodicmax, periodiccnt, ); 1143 array_needsize (periodics, periodicmax, periodiccnt, );
809 periodics [periodiccnt - 1] = w; 1144 periodics [periodiccnt - 1] = w;
810 upheap ((WT *)periodics, periodiccnt - 1); 1145 upheap ((WT *)periodics, periodiccnt - 1);
811} 1146}
812 1147
813void 1148void
814evperiodic_stop (struct ev_periodic *w) 1149ev_periodic_stop (EV_P_ struct ev_periodic *w)
815{ 1150{
816 ev_clear ((W)w); 1151 ev_clear_pending (EV_A_ (W)w);
817 if (!ev_is_active (w)) 1152 if (!ev_is_active (w))
818 return; 1153 return;
819 1154
820 if (w->active < periodiccnt--) 1155 if (w->active < periodiccnt--)
821 { 1156 {
822 periodics [w->active - 1] = periodics [periodiccnt]; 1157 periodics [w->active - 1] = periodics [periodiccnt];
823 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1158 downheap ((WT *)periodics, periodiccnt, w->active - 1);
824 } 1159 }
825 1160
826 ev_stop ((W)w); 1161 ev_stop (EV_A_ (W)w);
827} 1162}
828 1163
829void 1164void
830evsignal_start (struct ev_signal *w) 1165ev_idle_start (EV_P_ struct ev_idle *w)
831{ 1166{
832 if (ev_is_active (w)) 1167 if (ev_is_active (w))
833 return; 1168 return;
834 1169
1170 ev_start (EV_A_ (W)w, ++idlecnt);
1171 array_needsize (idles, idlemax, idlecnt, );
1172 idles [idlecnt - 1] = w;
1173}
1174
1175void
1176ev_idle_stop (EV_P_ struct ev_idle *w)
1177{
1178 ev_clear_pending (EV_A_ (W)w);
1179 if (ev_is_active (w))
1180 return;
1181
1182 idles [w->active - 1] = idles [--idlecnt];
1183 ev_stop (EV_A_ (W)w);
1184}
1185
1186void
1187ev_prepare_start (EV_P_ struct ev_prepare *w)
1188{
1189 if (ev_is_active (w))
1190 return;
1191
1192 ev_start (EV_A_ (W)w, ++preparecnt);
1193 array_needsize (prepares, preparemax, preparecnt, );
1194 prepares [preparecnt - 1] = w;
1195}
1196
1197void
1198ev_prepare_stop (EV_P_ struct ev_prepare *w)
1199{
1200 ev_clear_pending (EV_A_ (W)w);
1201 if (ev_is_active (w))
1202 return;
1203
1204 prepares [w->active - 1] = prepares [--preparecnt];
1205 ev_stop (EV_A_ (W)w);
1206}
1207
1208void
1209ev_check_start (EV_P_ struct ev_check *w)
1210{
1211 if (ev_is_active (w))
1212 return;
1213
1214 ev_start (EV_A_ (W)w, ++checkcnt);
1215 array_needsize (checks, checkmax, checkcnt, );
1216 checks [checkcnt - 1] = w;
1217}
1218
1219void
1220ev_check_stop (EV_P_ struct ev_check *w)
1221{
1222 ev_clear_pending (EV_A_ (W)w);
1223 if (ev_is_active (w))
1224 return;
1225
1226 checks [w->active - 1] = checks [--checkcnt];
1227 ev_stop (EV_A_ (W)w);
1228}
1229
1230#ifndef SA_RESTART
1231# define SA_RESTART 0
1232#endif
1233
1234void
1235ev_signal_start (EV_P_ struct ev_signal *w)
1236{
1237#if EV_MULTIPLICITY
1238 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1239#endif
1240 if (ev_is_active (w))
1241 return;
1242
1243 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1244
835 ev_start ((W)w, 1); 1245 ev_start (EV_A_ (W)w, 1);
836 array_needsize (signals, signalmax, w->signum, signals_init); 1246 array_needsize (signals, signalmax, w->signum, signals_init);
837 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1247 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
838 1248
839 if (!w->next) 1249 if (!w->next)
840 { 1250 {
841 struct sigaction sa; 1251 struct sigaction sa;
842 sa.sa_handler = sighandler; 1252 sa.sa_handler = sighandler;
843 sigfillset (&sa.sa_mask); 1253 sigfillset (&sa.sa_mask);
844 sa.sa_flags = 0; 1254 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
845 sigaction (w->signum, &sa, 0); 1255 sigaction (w->signum, &sa, 0);
846 } 1256 }
847} 1257}
848 1258
849void 1259void
850evsignal_stop (struct ev_signal *w) 1260ev_signal_stop (EV_P_ struct ev_signal *w)
851{ 1261{
852 ev_clear ((W)w); 1262 ev_clear_pending (EV_A_ (W)w);
853 if (!ev_is_active (w)) 1263 if (!ev_is_active (w))
854 return; 1264 return;
855 1265
856 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1266 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
857 ev_stop ((W)w); 1267 ev_stop (EV_A_ (W)w);
858 1268
859 if (!signals [w->signum - 1].head) 1269 if (!signals [w->signum - 1].head)
860 signal (w->signum, SIG_DFL); 1270 signal (w->signum, SIG_DFL);
861} 1271}
862 1272
863void evidle_start (struct ev_idle *w) 1273void
1274ev_child_start (EV_P_ struct ev_child *w)
864{ 1275{
1276#if EV_MULTIPLICITY
1277 assert (("child watchers are only supported in the default loop", loop == default_loop));
1278#endif
865 if (ev_is_active (w)) 1279 if (ev_is_active (w))
866 return; 1280 return;
867 1281
868 ev_start ((W)w, ++idlecnt); 1282 ev_start (EV_A_ (W)w, 1);
869 array_needsize (idles, idlemax, idlecnt, ); 1283 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
870 idles [idlecnt - 1] = w;
871} 1284}
872 1285
873void evidle_stop (struct ev_idle *w) 1286void
1287ev_child_stop (EV_P_ struct ev_child *w)
874{ 1288{
875 ev_clear ((W)w); 1289 ev_clear_pending (EV_A_ (W)w);
876 if (ev_is_active (w)) 1290 if (ev_is_active (w))
877 return; 1291 return;
878 1292
879 idles [w->active - 1] = idles [--idlecnt];
880 ev_stop ((W)w);
881}
882
883void evprepare_start (struct ev_prepare *w)
884{
885 if (ev_is_active (w))
886 return;
887
888 ev_start ((W)w, ++preparecnt);
889 array_needsize (prepares, preparemax, preparecnt, );
890 prepares [preparecnt - 1] = w;
891}
892
893void evprepare_stop (struct ev_prepare *w)
894{
895 ev_clear ((W)w);
896 if (ev_is_active (w))
897 return;
898
899 prepares [w->active - 1] = prepares [--preparecnt];
900 ev_stop ((W)w);
901}
902
903void evcheck_start (struct ev_check *w)
904{
905 if (ev_is_active (w))
906 return;
907
908 ev_start ((W)w, ++checkcnt);
909 array_needsize (checks, checkmax, checkcnt, );
910 checks [checkcnt - 1] = w;
911}
912
913void evcheck_stop (struct ev_check *w)
914{
915 ev_clear ((W)w);
916 if (ev_is_active (w))
917 return;
918
919 checks [w->active - 1] = checks [--checkcnt];
920 ev_stop ((W)w);
921}
922
923void evchild_start (struct ev_child *w)
924{
925 if (ev_is_active (w))
926 return;
927
928 ev_start ((W)w, 1);
929 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
930}
931
932void evchild_stop (struct ev_child *w)
933{
934 ev_clear ((W)w);
935 if (ev_is_active (w))
936 return;
937
938 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1293 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
939 ev_stop ((W)w); 1294 ev_stop (EV_A_ (W)w);
940} 1295}
941 1296
942/*****************************************************************************/ 1297/*****************************************************************************/
943 1298
944struct ev_once 1299struct ev_once
948 void (*cb)(int revents, void *arg); 1303 void (*cb)(int revents, void *arg);
949 void *arg; 1304 void *arg;
950}; 1305};
951 1306
952static void 1307static void
953once_cb (struct ev_once *once, int revents) 1308once_cb (EV_P_ struct ev_once *once, int revents)
954{ 1309{
955 void (*cb)(int revents, void *arg) = once->cb; 1310 void (*cb)(int revents, void *arg) = once->cb;
956 void *arg = once->arg; 1311 void *arg = once->arg;
957 1312
958 evio_stop (&once->io); 1313 ev_io_stop (EV_A_ &once->io);
959 evtimer_stop (&once->to); 1314 ev_timer_stop (EV_A_ &once->to);
960 free (once); 1315 free (once);
961 1316
962 cb (revents, arg); 1317 cb (revents, arg);
963} 1318}
964 1319
965static void 1320static void
966once_cb_io (struct ev_io *w, int revents) 1321once_cb_io (EV_P_ struct ev_io *w, int revents)
967{ 1322{
968 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1323 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
969} 1324}
970 1325
971static void 1326static void
972once_cb_to (struct ev_timer *w, int revents) 1327once_cb_to (EV_P_ struct ev_timer *w, int revents)
973{ 1328{
974 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1329 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
975} 1330}
976 1331
977void 1332void
978ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1333ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
979{ 1334{
980 struct ev_once *once = malloc (sizeof (struct ev_once)); 1335 struct ev_once *once = malloc (sizeof (struct ev_once));
981 1336
982 if (!once) 1337 if (!once)
983 cb (EV_ERROR, arg); 1338 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
984 else 1339 else
985 { 1340 {
986 once->cb = cb; 1341 once->cb = cb;
987 once->arg = arg; 1342 once->arg = arg;
988 1343
989 evw_init (&once->io, once_cb_io); 1344 ev_watcher_init (&once->io, once_cb_io);
990
991 if (fd >= 0) 1345 if (fd >= 0)
992 { 1346 {
993 evio_set (&once->io, fd, events); 1347 ev_io_set (&once->io, fd, events);
994 evio_start (&once->io); 1348 ev_io_start (EV_A_ &once->io);
995 } 1349 }
996 1350
997 evw_init (&once->to, once_cb_to); 1351 ev_watcher_init (&once->to, once_cb_to);
998
999 if (timeout >= 0.) 1352 if (timeout >= 0.)
1000 { 1353 {
1001 evtimer_set (&once->to, timeout, 0.); 1354 ev_timer_set (&once->to, timeout, 0.);
1002 evtimer_start (&once->to); 1355 ev_timer_start (EV_A_ &once->to);
1003 } 1356 }
1004 } 1357 }
1005} 1358}
1006 1359
1007/*****************************************************************************/
1008
1009#if 0
1010
1011struct ev_io wio;
1012
1013static void
1014sin_cb (struct ev_io *w, int revents)
1015{
1016 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1017}
1018
1019static void
1020ocb (struct ev_timer *w, int revents)
1021{
1022 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1023 evtimer_stop (w);
1024 evtimer_start (w);
1025}
1026
1027static void
1028scb (struct ev_signal *w, int revents)
1029{
1030 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1031 evio_stop (&wio);
1032 evio_start (&wio);
1033}
1034
1035static void
1036gcb (struct ev_signal *w, int revents)
1037{
1038 fprintf (stderr, "generic %x\n", revents);
1039
1040}
1041
1042int main (void)
1043{
1044 ev_init (0);
1045
1046 evio_init (&wio, sin_cb, 0, EV_READ);
1047 evio_start (&wio);
1048
1049 struct ev_timer t[10000];
1050
1051#if 0
1052 int i;
1053 for (i = 0; i < 10000; ++i)
1054 {
1055 struct ev_timer *w = t + i;
1056 evw_init (w, ocb, i);
1057 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1058 evtimer_start (w);
1059 if (drand48 () < 0.5)
1060 evtimer_stop (w);
1061 }
1062#endif
1063
1064 struct ev_timer t1;
1065 evtimer_init (&t1, ocb, 5, 10);
1066 evtimer_start (&t1);
1067
1068 struct ev_signal sig;
1069 evsignal_init (&sig, scb, SIGQUIT);
1070 evsignal_start (&sig);
1071
1072 struct ev_check cw;
1073 evcheck_init (&cw, gcb);
1074 evcheck_start (&cw);
1075
1076 struct ev_idle iw;
1077 evidle_init (&iw, gcb);
1078 evidle_start (&iw);
1079
1080 ev_loop (0);
1081
1082 return 0;
1083}
1084
1085#endif
1086
1087
1088
1089

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines