ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.23 by root, Wed Oct 31 20:10:17 2007 UTC vs.
Revision 1.63 by root, Sun Nov 4 22:03:17 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h> 59#include <unistd.h>
33#include <fcntl.h> 60#include <fcntl.h>
37#include <stdio.h> 64#include <stdio.h>
38 65
39#include <assert.h> 66#include <assert.h>
40#include <errno.h> 67#include <errno.h>
41#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
42#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
43#include <sys/time.h> 72#include <sys/time.h>
44#include <time.h> 73#include <time.h>
45 74
75/**/
76
46#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
47# ifdef CLOCK_MONOTONIC
48# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
49# endif 102# endif
50#endif 103#endif
51 104
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
62#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
63 122
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
67 127
68#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
69 143
70typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
71typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
73 147
74static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
75ev_tstamp ev_now;
76int ev_method;
77
78static int have_monotonic; /* runtime */
79
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
81static void (*method_modify)(int fd, int oev, int nev);
82static void (*method_poll)(ev_tstamp timeout);
83 149
84/*****************************************************************************/ 150/*****************************************************************************/
85 151
86ev_tstamp 152typedef struct
153{
154 struct ev_watcher_list *head;
155 unsigned char events;
156 unsigned char reify;
157} ANFD;
158
159typedef struct
160{
161 W w;
162 int events;
163} ANPENDING;
164
165#if EV_MULTIPLICITY
166
167struct ev_loop
168{
169# define VAR(name,decl) decl;
170# include "ev_vars.h"
171};
172# undef VAR
173# include "ev_wrap.h"
174
175#else
176
177# define VAR(name,decl) static decl;
178# include "ev_vars.h"
179# undef VAR
180
181#endif
182
183/*****************************************************************************/
184
185inline ev_tstamp
87ev_time (void) 186ev_time (void)
88{ 187{
89#if HAVE_REALTIME 188#if EV_USE_REALTIME
90 struct timespec ts; 189 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 190 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 191 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 192#else
94 struct timeval tv; 193 struct timeval tv;
95 gettimeofday (&tv, 0); 194 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 195 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 196#endif
98} 197}
99 198
100static ev_tstamp 199inline ev_tstamp
101get_clock (void) 200get_clock (void)
102{ 201{
103#if HAVE_MONOTONIC 202#if EV_USE_MONOTONIC
104 if (have_monotonic) 203 if (expect_true (have_monotonic))
105 { 204 {
106 struct timespec ts; 205 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 206 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 207 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 208 }
110#endif 209#endif
111 210
112 return ev_time (); 211 return ev_time ();
113} 212}
114 213
214ev_tstamp
215ev_now (EV_P)
216{
217 return rt_now;
218}
219
220#define array_roundsize(base,n) ((n) | 4 & ~3)
221
115#define array_needsize(base,cur,cnt,init) \ 222#define array_needsize(base,cur,cnt,init) \
116 if ((cnt) > cur) \ 223 if (expect_false ((cnt) > cur)) \
117 { \ 224 { \
118 int newcnt = cur; \ 225 int newcnt = cur; \
119 do \ 226 do \
120 { \ 227 { \
121 newcnt = (newcnt << 1) | 4 & ~3; \ 228 newcnt = array_roundsize (base, newcnt << 1); \
122 } \ 229 } \
123 while ((cnt) > newcnt); \ 230 while ((cnt) > newcnt); \
124 \ 231 \
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 232 base = realloc (base, sizeof (*base) * (newcnt)); \
126 init (base + cur, newcnt - cur); \ 233 init (base + cur, newcnt - cur); \
127 cur = newcnt; \ 234 cur = newcnt; \
128 } 235 }
129 236
130/*****************************************************************************/ 237/*****************************************************************************/
131 238
132typedef struct
133{
134 struct ev_io *head;
135 unsigned char wev, rev; /* want, received event set */
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140
141static int *fdchanges;
142static int fdchangemax, fdchangecnt;
143
144static void 239static void
145anfds_init (ANFD *base, int count) 240anfds_init (ANFD *base, int count)
146{ 241{
147 while (count--) 242 while (count--)
148 { 243 {
149 base->head = 0; 244 base->head = 0;
150 base->wev = base->rev = EV_NONE; 245 base->events = EV_NONE;
246 base->reify = 0;
247
151 ++base; 248 ++base;
152 } 249 }
153} 250}
154 251
155typedef struct
156{
157 W w;
158 int events;
159} ANPENDING;
160
161static ANPENDING *pendings;
162static int pendingmax, pendingcnt;
163
164static void 252static void
165event (W w, int events) 253event (EV_P_ W w, int events)
166{ 254{
167 if (w->active) 255 if (w->pending)
168 { 256 {
169 w->pending = ++pendingcnt;
170 array_needsize (pendings, pendingmax, pendingcnt, );
171 pendings [pendingcnt - 1].w = w;
172 pendings [pendingcnt - 1].events = events; 257 pendings [ABSPRI (w)][w->pending - 1].events |= events;
258 return;
173 } 259 }
174}
175 260
261 w->pending = ++pendingcnt [ABSPRI (w)];
262 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
263 pendings [ABSPRI (w)][w->pending - 1].w = w;
264 pendings [ABSPRI (w)][w->pending - 1].events = events;
265}
266
176static void 267static void
268queue_events (EV_P_ W *events, int eventcnt, int type)
269{
270 int i;
271
272 for (i = 0; i < eventcnt; ++i)
273 event (EV_A_ events [i], type);
274}
275
276static void
177fd_event (int fd, int events) 277fd_event (EV_P_ int fd, int events)
178{ 278{
179 ANFD *anfd = anfds + fd; 279 ANFD *anfd = anfds + fd;
180 struct ev_io *w; 280 struct ev_io *w;
181 281
182 for (w = anfd->head; w; w = w->next) 282 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
183 { 283 {
184 int ev = w->events & events; 284 int ev = w->events & events;
185 285
186 if (ev) 286 if (ev)
187 event ((W)w, ev); 287 event (EV_A_ (W)w, ev);
188 } 288 }
189} 289}
190 290
291/*****************************************************************************/
292
191static void 293static void
192queue_events (W *events, int eventcnt, int type) 294fd_reify (EV_P)
193{ 295{
194 int i; 296 int i;
195 297
196 for (i = 0; i < eventcnt; ++i) 298 for (i = 0; i < fdchangecnt; ++i)
197 event (events [i], type); 299 {
300 int fd = fdchanges [i];
301 ANFD *anfd = anfds + fd;
302 struct ev_io *w;
303
304 int events = 0;
305
306 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
307 events |= w->events;
308
309 anfd->reify = 0;
310
311 if (anfd->events != events)
312 {
313 method_modify (EV_A_ fd, anfd->events, events);
314 anfd->events = events;
315 }
316 }
317
318 fdchangecnt = 0;
319}
320
321static void
322fd_change (EV_P_ int fd)
323{
324 if (anfds [fd].reify || fdchangecnt < 0)
325 return;
326
327 anfds [fd].reify = 1;
328
329 ++fdchangecnt;
330 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
331 fdchanges [fdchangecnt - 1] = fd;
332}
333
334static void
335fd_kill (EV_P_ int fd)
336{
337 struct ev_io *w;
338
339 while ((w = (struct ev_io *)anfds [fd].head))
340 {
341 ev_io_stop (EV_A_ w);
342 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
343 }
198} 344}
199 345
200/* called on EBADF to verify fds */ 346/* called on EBADF to verify fds */
201static void 347static void
202fd_recheck () 348fd_ebadf (EV_P)
203{ 349{
204 int fd; 350 int fd;
205 351
206 for (fd = 0; fd < anfdmax; ++fd) 352 for (fd = 0; fd < anfdmax; ++fd)
207 if (anfds [fd].wev) 353 if (anfds [fd].events)
208 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 354 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
209 while (anfds [fd].head) 355 fd_kill (EV_A_ fd);
210 evio_stop (anfds [fd].head); 356}
357
358/* called on ENOMEM in select/poll to kill some fds and retry */
359static void
360fd_enomem (EV_P)
361{
362 int fd;
363
364 for (fd = anfdmax; fd--; )
365 if (anfds [fd].events)
366 {
367 close (fd);
368 fd_kill (EV_A_ fd);
369 return;
370 }
371}
372
373/* susually called after fork if method needs to re-arm all fds from scratch */
374static void
375fd_rearm_all (EV_P)
376{
377 int fd;
378
379 /* this should be highly optimised to not do anything but set a flag */
380 for (fd = 0; fd < anfdmax; ++fd)
381 if (anfds [fd].events)
382 {
383 anfds [fd].events = 0;
384 fd_change (EV_A_ fd);
385 }
211} 386}
212 387
213/*****************************************************************************/ 388/*****************************************************************************/
214 389
215static struct ev_timer **timers;
216static int timermax, timercnt;
217
218static struct ev_periodic **periodics;
219static int periodicmax, periodiccnt;
220
221static void 390static void
222upheap (WT *timers, int k) 391upheap (WT *heap, int k)
223{ 392{
224 WT w = timers [k]; 393 WT w = heap [k];
225 394
226 while (k && timers [k >> 1]->at > w->at) 395 while (k && heap [k >> 1]->at > w->at)
227 { 396 {
228 timers [k] = timers [k >> 1]; 397 heap [k] = heap [k >> 1];
229 timers [k]->active = k + 1; 398 ((W)heap [k])->active = k + 1;
230 k >>= 1; 399 k >>= 1;
231 } 400 }
232 401
233 timers [k] = w; 402 heap [k] = w;
234 timers [k]->active = k + 1; 403 ((W)heap [k])->active = k + 1;
235 404
236} 405}
237 406
238static void 407static void
239downheap (WT *timers, int N, int k) 408downheap (WT *heap, int N, int k)
240{ 409{
241 WT w = timers [k]; 410 WT w = heap [k];
242 411
243 while (k < (N >> 1)) 412 while (k < (N >> 1))
244 { 413 {
245 int j = k << 1; 414 int j = k << 1;
246 415
247 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 416 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
248 ++j; 417 ++j;
249 418
250 if (w->at <= timers [j]->at) 419 if (w->at <= heap [j]->at)
251 break; 420 break;
252 421
253 timers [k] = timers [j]; 422 heap [k] = heap [j];
254 timers [k]->active = k + 1; 423 ((W)heap [k])->active = k + 1;
255 k = j; 424 k = j;
256 } 425 }
257 426
258 timers [k] = w; 427 heap [k] = w;
259 timers [k]->active = k + 1; 428 ((W)heap [k])->active = k + 1;
260} 429}
261 430
262/*****************************************************************************/ 431/*****************************************************************************/
263 432
264typedef struct 433typedef struct
265{ 434{
266 struct ev_signal *head; 435 struct ev_watcher_list *head;
267 sig_atomic_t gotsig; 436 sig_atomic_t volatile gotsig;
268} ANSIG; 437} ANSIG;
269 438
270static ANSIG *signals; 439static ANSIG *signals;
271static int signalmax; 440static int signalmax;
272 441
273static int sigpipe [2]; 442static int sigpipe [2];
274static sig_atomic_t gotsig; 443static sig_atomic_t volatile gotsig;
275static struct ev_io sigev; 444static struct ev_io sigev;
276 445
277static void 446static void
278signals_init (ANSIG *base, int count) 447signals_init (ANSIG *base, int count)
279{ 448{
280 while (count--) 449 while (count--)
281 { 450 {
282 base->head = 0; 451 base->head = 0;
283 base->gotsig = 0; 452 base->gotsig = 0;
453
284 ++base; 454 ++base;
285 } 455 }
286} 456}
287 457
288static void 458static void
290{ 460{
291 signals [signum - 1].gotsig = 1; 461 signals [signum - 1].gotsig = 1;
292 462
293 if (!gotsig) 463 if (!gotsig)
294 { 464 {
465 int old_errno = errno;
295 gotsig = 1; 466 gotsig = 1;
296 write (sigpipe [1], &gotsig, 1); 467 write (sigpipe [1], &signum, 1);
468 errno = old_errno;
297 } 469 }
298} 470}
299 471
300static void 472static void
301sigcb (struct ev_io *iow, int revents) 473sigcb (EV_P_ struct ev_io *iow, int revents)
302{ 474{
303 struct ev_signal *w; 475 struct ev_watcher_list *w;
304 int sig; 476 int signum;
305 477
478 read (sigpipe [0], &revents, 1);
306 gotsig = 0; 479 gotsig = 0;
307 read (sigpipe [0], &revents, 1);
308 480
309 for (sig = signalmax; sig--; ) 481 for (signum = signalmax; signum--; )
310 if (signals [sig].gotsig) 482 if (signals [signum].gotsig)
311 { 483 {
312 signals [sig].gotsig = 0; 484 signals [signum].gotsig = 0;
313 485
314 for (w = signals [sig].head; w; w = w->next) 486 for (w = signals [signum].head; w; w = w->next)
315 event ((W)w, EV_SIGNAL); 487 event (EV_A_ (W)w, EV_SIGNAL);
316 } 488 }
317} 489}
318 490
319static void 491static void
320siginit (void) 492siginit (EV_P)
321{ 493{
494#ifndef WIN32
322 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 495 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
323 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 496 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
324 497
325 /* rather than sort out wether we really need nb, set it */ 498 /* rather than sort out wether we really need nb, set it */
326 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 499 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
327 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 500 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
501#endif
328 502
329 evio_set (&sigev, sigpipe [0], EV_READ); 503 ev_io_set (&sigev, sigpipe [0], EV_READ);
330 evio_start (&sigev); 504 ev_io_start (EV_A_ &sigev);
505 ev_unref (EV_A); /* child watcher should not keep loop alive */
331} 506}
332 507
333/*****************************************************************************/ 508/*****************************************************************************/
334 509
335static struct ev_idle **idles; 510#ifndef WIN32
336static int idlemax, idlecnt;
337
338static struct ev_prepare **prepares;
339static int preparemax, preparecnt;
340
341static struct ev_check **checks;
342static int checkmax, checkcnt;
343
344/*****************************************************************************/
345 511
346static struct ev_child *childs [PID_HASHSIZE]; 512static struct ev_child *childs [PID_HASHSIZE];
347static struct ev_signal childev; 513static struct ev_signal childev;
348 514
349#ifndef WCONTINUED 515#ifndef WCONTINUED
350# define WCONTINUED 0 516# define WCONTINUED 0
351#endif 517#endif
352 518
353static void 519static void
354childcb (struct ev_signal *sw, int revents) 520child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
355{ 521{
356 struct ev_child *w; 522 struct ev_child *w;
523
524 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
525 if (w->pid == pid || !w->pid)
526 {
527 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
528 w->rpid = pid;
529 w->rstatus = status;
530 event (EV_A_ (W)w, EV_CHILD);
531 }
532}
533
534static void
535childcb (EV_P_ struct ev_signal *sw, int revents)
536{
357 int pid, status; 537 int pid, status;
358 538
359 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 539 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
360 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 540 {
361 if (w->pid == pid || w->pid == -1) 541 /* make sure we are called again until all childs have been reaped */
362 { 542 event (EV_A_ (W)sw, EV_SIGNAL);
363 w->status = status; 543
364 event ((W)w, EV_CHILD); 544 child_reap (EV_A_ sw, pid, pid, status);
365 } 545 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
546 }
366} 547}
548
549#endif
367 550
368/*****************************************************************************/ 551/*****************************************************************************/
369 552
553#if EV_USE_KQUEUE
554# include "ev_kqueue.c"
555#endif
370#if HAVE_EPOLL 556#if EV_USE_EPOLL
371# include "ev_epoll.c" 557# include "ev_epoll.c"
372#endif 558#endif
559#if EV_USE_POLL
560# include "ev_poll.c"
561#endif
373#if HAVE_SELECT 562#if EV_USE_SELECT
374# include "ev_select.c" 563# include "ev_select.c"
375#endif 564#endif
376 565
377int ev_init (int flags) 566int
567ev_version_major (void)
378{ 568{
569 return EV_VERSION_MAJOR;
570}
571
572int
573ev_version_minor (void)
574{
575 return EV_VERSION_MINOR;
576}
577
578/* return true if we are running with elevated privileges and should ignore env variables */
579static int
580enable_secure (void)
581{
582#ifdef WIN32
583 return 0;
584#else
585 return getuid () != geteuid ()
586 || getgid () != getegid ();
587#endif
588}
589
590int
591ev_method (EV_P)
592{
593 return method;
594}
595
596static void
597loop_init (EV_P_ int methods)
598{
379 if (!ev_method) 599 if (!method)
380 { 600 {
381#if HAVE_MONOTONIC 601#if EV_USE_MONOTONIC
382 { 602 {
383 struct timespec ts; 603 struct timespec ts;
384 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 604 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
385 have_monotonic = 1; 605 have_monotonic = 1;
386 } 606 }
387#endif 607#endif
388 608
389 ev_now = ev_time (); 609 rt_now = ev_time ();
390 now = get_clock (); 610 mn_now = get_clock ();
611 now_floor = mn_now;
391 diff = ev_now - now; 612 rtmn_diff = rt_now - mn_now;
392 613
614 if (methods == EVMETHOD_AUTO)
615 if (!enable_secure () && getenv ("LIBEV_METHODS"))
616 methods = atoi (getenv ("LIBEV_METHODS"));
617 else
618 methods = EVMETHOD_ANY;
619
620 method = 0;
621#if EV_USE_WIN32
622 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
623#endif
624#if EV_USE_KQUEUE
625 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
626#endif
627#if EV_USE_EPOLL
628 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
629#endif
630#if EV_USE_POLL
631 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
632#endif
633#if EV_USE_SELECT
634 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
635#endif
636 }
637}
638
639void
640loop_destroy (EV_P)
641{
642#if EV_USE_WIN32
643 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
644#endif
645#if EV_USE_KQUEUE
646 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
647#endif
648#if EV_USE_EPOLL
649 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
650#endif
651#if EV_USE_POLL
652 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
653#endif
654#if EV_USE_SELECT
655 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
656#endif
657
658 method = 0;
659 /*TODO*/
660}
661
662void
663loop_fork (EV_P)
664{
665 /*TODO*/
666#if EV_USE_EPOLL
667 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
668#endif
669#if EV_USE_KQUEUE
670 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
671#endif
672}
673
674#if EV_MULTIPLICITY
675struct ev_loop *
676ev_loop_new (int methods)
677{
678 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
679
680 loop_init (EV_A_ methods);
681
682 if (ev_method (EV_A))
683 return loop;
684
685 return 0;
686}
687
688void
689ev_loop_destroy (EV_P)
690{
691 loop_destroy (EV_A);
692 free (loop);
693}
694
695void
696ev_loop_fork (EV_P)
697{
698 loop_fork (EV_A);
699}
700
701#endif
702
703#if EV_MULTIPLICITY
704struct ev_loop default_loop_struct;
705static struct ev_loop *default_loop;
706
707struct ev_loop *
708#else
709static int default_loop;
710
711int
712#endif
713ev_default_loop (int methods)
714{
715 if (sigpipe [0] == sigpipe [1])
393 if (pipe (sigpipe)) 716 if (pipe (sigpipe))
394 return 0; 717 return 0;
395 718
396 ev_method = EVMETHOD_NONE; 719 if (!default_loop)
397#if HAVE_EPOLL 720 {
398 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 721#if EV_MULTIPLICITY
722 struct ev_loop *loop = default_loop = &default_loop_struct;
723#else
724 default_loop = 1;
399#endif 725#endif
400#if HAVE_SELECT
401 if (ev_method == EVMETHOD_NONE) select_init (flags);
402#endif
403 726
727 loop_init (EV_A_ methods);
728
404 if (ev_method) 729 if (ev_method (EV_A))
405 { 730 {
406 evw_init (&sigev, sigcb); 731 ev_watcher_init (&sigev, sigcb);
732 ev_set_priority (&sigev, EV_MAXPRI);
407 siginit (); 733 siginit (EV_A);
408 734
735#ifndef WIN32
409 evsignal_init (&childev, childcb, SIGCHLD); 736 ev_signal_init (&childev, childcb, SIGCHLD);
737 ev_set_priority (&childev, EV_MAXPRI);
410 evsignal_start (&childev); 738 ev_signal_start (EV_A_ &childev);
739 ev_unref (EV_A); /* child watcher should not keep loop alive */
740#endif
411 } 741 }
742 else
743 default_loop = 0;
412 } 744 }
413 745
414 return ev_method; 746 return default_loop;
415} 747}
416 748
417/*****************************************************************************/ 749void
418 750ev_default_destroy (void)
419void ev_prefork (void)
420{ 751{
421 /* nop */ 752#if EV_MULTIPLICITY
422} 753 struct ev_loop *loop = default_loop;
423
424void ev_postfork_parent (void)
425{
426 /* nop */
427}
428
429void ev_postfork_child (void)
430{
431#if HAVE_EPOLL
432 if (ev_method == EVMETHOD_EPOLL)
433 epoll_postfork_child ();
434#endif 754#endif
435 755
756 ev_ref (EV_A); /* child watcher */
757 ev_signal_stop (EV_A_ &childev);
758
759 ev_ref (EV_A); /* signal watcher */
436 evio_stop (&sigev); 760 ev_io_stop (EV_A_ &sigev);
761
762 close (sigpipe [0]); sigpipe [0] = 0;
763 close (sigpipe [1]); sigpipe [1] = 0;
764
765 loop_destroy (EV_A);
766}
767
768void
769ev_default_fork (void)
770{
771#if EV_MULTIPLICITY
772 struct ev_loop *loop = default_loop;
773#endif
774
775 loop_fork (EV_A);
776
777 ev_io_stop (EV_A_ &sigev);
437 close (sigpipe [0]); 778 close (sigpipe [0]);
438 close (sigpipe [1]); 779 close (sigpipe [1]);
439 pipe (sigpipe); 780 pipe (sigpipe);
781
782 ev_ref (EV_A); /* signal watcher */
440 siginit (); 783 siginit (EV_A);
441} 784}
442 785
443/*****************************************************************************/ 786/*****************************************************************************/
444 787
445static void 788static void
446fd_reify (void) 789call_pending (EV_P)
447{ 790{
448 int i; 791 int pri;
449 792
450 for (i = 0; i < fdchangecnt; ++i) 793 for (pri = NUMPRI; pri--; )
451 { 794 while (pendingcnt [pri])
452 int fd = fdchanges [i];
453 ANFD *anfd = anfds + fd;
454 struct ev_io *w;
455
456 int wev = 0;
457
458 for (w = anfd->head; w; w = w->next)
459 wev |= w->events;
460
461 if (anfd->wev != wev)
462 { 795 {
463 method_modify (fd, anfd->wev, wev);
464 anfd->wev = wev;
465 }
466 }
467
468 fdchangecnt = 0;
469}
470
471static void
472call_pending ()
473{
474 while (pendingcnt)
475 {
476 ANPENDING *p = pendings + --pendingcnt; 796 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
477 797
478 if (p->w) 798 if (p->w)
479 { 799 {
480 p->w->pending = 0; 800 p->w->pending = 0;
481 p->w->cb (p->w, p->events); 801
802 (*(void (**)(EV_P_ W, int))&p->w->cb) (EV_A_ p->w, p->events);
482 } 803 }
483 } 804 }
484} 805}
485 806
486static void 807static void
487timers_reify () 808timers_reify (EV_P)
488{ 809{
489 while (timercnt && timers [0]->at <= now) 810 while (timercnt && ((WT)timers [0])->at <= mn_now)
490 { 811 {
491 struct ev_timer *w = timers [0]; 812 struct ev_timer *w = timers [0];
492 813
493 event ((W)w, EV_TIMEOUT); 814 assert (("inactive timer on timer heap detected", ev_is_active (w)));
494 815
495 /* first reschedule or stop timer */ 816 /* first reschedule or stop timer */
496 if (w->repeat) 817 if (w->repeat)
497 { 818 {
819 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
498 w->at = now + w->repeat; 820 ((WT)w)->at = mn_now + w->repeat;
499 assert (("timer timeout in the past, negative repeat?", w->at > now));
500 downheap ((WT *)timers, timercnt, 0); 821 downheap ((WT *)timers, timercnt, 0);
501 } 822 }
502 else 823 else
503 evtimer_stop (w); /* nonrepeating: stop timer */ 824 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
504 }
505}
506 825
826 event (EV_A_ (W)w, EV_TIMEOUT);
827 }
828}
829
507static void 830static void
508periodics_reify () 831periodics_reify (EV_P)
509{ 832{
510 while (periodiccnt && periodics [0]->at <= ev_now) 833 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
511 { 834 {
512 struct ev_periodic *w = periodics [0]; 835 struct ev_periodic *w = periodics [0];
836
837 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
513 838
514 /* first reschedule or stop timer */ 839 /* first reschedule or stop timer */
515 if (w->interval) 840 if (w->interval)
516 { 841 {
517 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 842 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
518 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 843 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
519 downheap ((WT *)periodics, periodiccnt, 0); 844 downheap ((WT *)periodics, periodiccnt, 0);
520 } 845 }
521 else 846 else
522 evperiodic_stop (w); /* nonrepeating: stop timer */ 847 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
523 848
524 event ((W)w, EV_TIMEOUT); 849 event (EV_A_ (W)w, EV_PERIODIC);
525 } 850 }
526} 851}
527 852
528static void 853static void
529periodics_reschedule (ev_tstamp diff) 854periodics_reschedule (EV_P)
530{ 855{
531 int i; 856 int i;
532 857
533 /* adjust periodics after time jump */ 858 /* adjust periodics after time jump */
534 for (i = 0; i < periodiccnt; ++i) 859 for (i = 0; i < periodiccnt; ++i)
535 { 860 {
536 struct ev_periodic *w = periodics [i]; 861 struct ev_periodic *w = periodics [i];
537 862
538 if (w->interval) 863 if (w->interval)
539 { 864 {
540 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 865 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
541 866
542 if (fabs (diff) >= 1e-4) 867 if (fabs (diff) >= 1e-4)
543 { 868 {
544 evperiodic_stop (w); 869 ev_periodic_stop (EV_A_ w);
545 evperiodic_start (w); 870 ev_periodic_start (EV_A_ w);
546 871
547 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 872 i = 0; /* restart loop, inefficient, but time jumps should be rare */
548 } 873 }
549 } 874 }
550 } 875 }
551} 876}
552 877
878inline int
879time_update_monotonic (EV_P)
880{
881 mn_now = get_clock ();
882
883 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
884 {
885 rt_now = rtmn_diff + mn_now;
886 return 0;
887 }
888 else
889 {
890 now_floor = mn_now;
891 rt_now = ev_time ();
892 return 1;
893 }
894}
895
553static void 896static void
554time_update () 897time_update (EV_P)
555{ 898{
556 int i; 899 int i;
557 900
558 ev_now = ev_time (); 901#if EV_USE_MONOTONIC
559
560 if (have_monotonic) 902 if (expect_true (have_monotonic))
561 { 903 {
562 ev_tstamp odiff = diff; 904 if (time_update_monotonic (EV_A))
563
564 for (i = 4; --i; ) /* loop a few times, before making important decisions */
565 { 905 {
566 now = get_clock (); 906 ev_tstamp odiff = rtmn_diff;
907
908 for (i = 4; --i; ) /* loop a few times, before making important decisions */
909 {
567 diff = ev_now - now; 910 rtmn_diff = rt_now - mn_now;
568 911
569 if (fabs (odiff - diff) < MIN_TIMEJUMP) 912 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
570 return; /* all is well */ 913 return; /* all is well */
571 914
572 ev_now = ev_time (); 915 rt_now = ev_time ();
916 mn_now = get_clock ();
917 now_floor = mn_now;
918 }
919
920 periodics_reschedule (EV_A);
921 /* no timer adjustment, as the monotonic clock doesn't jump */
922 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
573 } 923 }
574
575 periodics_reschedule (diff - odiff);
576 /* no timer adjustment, as the monotonic clock doesn't jump */
577 } 924 }
578 else 925 else
926#endif
579 { 927 {
580 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 928 rt_now = ev_time ();
929
930 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
581 { 931 {
582 periodics_reschedule (ev_now - now); 932 periodics_reschedule (EV_A);
583 933
584 /* adjust timers. this is easy, as the offset is the same for all */ 934 /* adjust timers. this is easy, as the offset is the same for all */
585 for (i = 0; i < timercnt; ++i) 935 for (i = 0; i < timercnt; ++i)
586 timers [i]->at += diff; 936 ((WT)timers [i])->at += rt_now - mn_now;
587 } 937 }
588 938
589 now = ev_now; 939 mn_now = rt_now;
590 } 940 }
591} 941}
592 942
593int ev_loop_done; 943void
944ev_ref (EV_P)
945{
946 ++activecnt;
947}
594 948
949void
950ev_unref (EV_P)
951{
952 --activecnt;
953}
954
955static int loop_done;
956
957void
595void ev_loop (int flags) 958ev_loop (EV_P_ int flags)
596{ 959{
597 double block; 960 double block;
598 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 961 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
599 962
600 do 963 do
601 { 964 {
602 /* queue check watchers (and execute them) */ 965 /* queue check watchers (and execute them) */
603 if (preparecnt) 966 if (expect_false (preparecnt))
604 { 967 {
605 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 968 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
606 call_pending (); 969 call_pending (EV_A);
607 } 970 }
608 971
609 /* update fd-related kernel structures */ 972 /* update fd-related kernel structures */
610 fd_reify (); 973 fd_reify (EV_A);
611 974
612 /* calculate blocking time */ 975 /* calculate blocking time */
613 976
614 /* we only need this for !monotonic clockor timers, but as we basically 977 /* we only need this for !monotonic clockor timers, but as we basically
615 always have timers, we just calculate it always */ 978 always have timers, we just calculate it always */
979#if EV_USE_MONOTONIC
980 if (expect_true (have_monotonic))
981 time_update_monotonic (EV_A);
982 else
983#endif
984 {
616 ev_now = ev_time (); 985 rt_now = ev_time ();
986 mn_now = rt_now;
987 }
617 988
618 if (flags & EVLOOP_NONBLOCK || idlecnt) 989 if (flags & EVLOOP_NONBLOCK || idlecnt)
619 block = 0.; 990 block = 0.;
620 else 991 else
621 { 992 {
622 block = MAX_BLOCKTIME; 993 block = MAX_BLOCKTIME;
623 994
624 if (timercnt) 995 if (timercnt)
625 { 996 {
626 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 997 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
627 if (block > to) block = to; 998 if (block > to) block = to;
628 } 999 }
629 1000
630 if (periodiccnt) 1001 if (periodiccnt)
631 { 1002 {
632 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1003 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
633 if (block > to) block = to; 1004 if (block > to) block = to;
634 } 1005 }
635 1006
636 if (block < 0.) block = 0.; 1007 if (block < 0.) block = 0.;
637 } 1008 }
638 1009
639 method_poll (block); 1010 method_poll (EV_A_ block);
640 1011
641 /* update ev_now, do magic */ 1012 /* update rt_now, do magic */
642 time_update (); 1013 time_update (EV_A);
643 1014
644 /* queue pending timers and reschedule them */ 1015 /* queue pending timers and reschedule them */
645 timers_reify (); /* relative timers called last */ 1016 timers_reify (EV_A); /* relative timers called last */
646 periodics_reify (); /* absolute timers called first */ 1017 periodics_reify (EV_A); /* absolute timers called first */
647 1018
648 /* queue idle watchers unless io or timers are pending */ 1019 /* queue idle watchers unless io or timers are pending */
649 if (!pendingcnt) 1020 if (!pendingcnt)
650 queue_events ((W *)idles, idlecnt, EV_IDLE); 1021 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
651 1022
652 /* queue check watchers, to be executed first */ 1023 /* queue check watchers, to be executed first */
653 if (checkcnt) 1024 if (checkcnt)
654 queue_events ((W *)checks, checkcnt, EV_CHECK); 1025 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
655 1026
656 call_pending (); 1027 call_pending (EV_A);
657 } 1028 }
658 while (!ev_loop_done); 1029 while (activecnt && !loop_done);
659 1030
660 if (ev_loop_done != 2) 1031 if (loop_done != 2)
661 ev_loop_done = 0; 1032 loop_done = 0;
1033}
1034
1035void
1036ev_unloop (EV_P_ int how)
1037{
1038 loop_done = how;
662} 1039}
663 1040
664/*****************************************************************************/ 1041/*****************************************************************************/
665 1042
666static void 1043inline void
667wlist_add (WL *head, WL elem) 1044wlist_add (WL *head, WL elem)
668{ 1045{
669 elem->next = *head; 1046 elem->next = *head;
670 *head = elem; 1047 *head = elem;
671} 1048}
672 1049
673static void 1050inline void
674wlist_del (WL *head, WL elem) 1051wlist_del (WL *head, WL elem)
675{ 1052{
676 while (*head) 1053 while (*head)
677 { 1054 {
678 if (*head == elem) 1055 if (*head == elem)
683 1060
684 head = &(*head)->next; 1061 head = &(*head)->next;
685 } 1062 }
686} 1063}
687 1064
688static void 1065inline void
689ev_clear (W w) 1066ev_clear_pending (EV_P_ W w)
690{ 1067{
691 if (w->pending) 1068 if (w->pending)
692 { 1069 {
693 pendings [w->pending - 1].w = 0; 1070 pendings [ABSPRI (w)][w->pending - 1].w = 0;
694 w->pending = 0; 1071 w->pending = 0;
695 } 1072 }
696} 1073}
697 1074
698static void 1075inline void
699ev_start (W w, int active) 1076ev_start (EV_P_ W w, int active)
700{ 1077{
1078 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1079 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1080
701 w->active = active; 1081 w->active = active;
1082 ev_ref (EV_A);
702} 1083}
703 1084
704static void 1085inline void
705ev_stop (W w) 1086ev_stop (EV_P_ W w)
706{ 1087{
1088 ev_unref (EV_A);
707 w->active = 0; 1089 w->active = 0;
708} 1090}
709 1091
710/*****************************************************************************/ 1092/*****************************************************************************/
711 1093
712void 1094void
713evio_start (struct ev_io *w) 1095ev_io_start (EV_P_ struct ev_io *w)
714{ 1096{
1097 int fd = w->fd;
1098
715 if (ev_is_active (w)) 1099 if (ev_is_active (w))
716 return; 1100 return;
717 1101
718 int fd = w->fd; 1102 assert (("ev_io_start called with negative fd", fd >= 0));
719 1103
720 ev_start ((W)w, 1); 1104 ev_start (EV_A_ (W)w, 1);
721 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1105 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
722 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1106 wlist_add ((WL *)&anfds[fd].head, (WL)w);
723 1107
724 ++fdchangecnt; 1108 fd_change (EV_A_ fd);
725 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
726 fdchanges [fdchangecnt - 1] = fd;
727} 1109}
728 1110
729void 1111void
730evio_stop (struct ev_io *w) 1112ev_io_stop (EV_P_ struct ev_io *w)
731{ 1113{
732 ev_clear ((W)w); 1114 ev_clear_pending (EV_A_ (W)w);
733 if (!ev_is_active (w)) 1115 if (!ev_is_active (w))
734 return; 1116 return;
735 1117
736 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1118 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
737 ev_stop ((W)w); 1119 ev_stop (EV_A_ (W)w);
738 1120
739 ++fdchangecnt; 1121 fd_change (EV_A_ w->fd);
740 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
741 fdchanges [fdchangecnt - 1] = w->fd;
742} 1122}
743 1123
744void 1124void
745evtimer_start (struct ev_timer *w) 1125ev_timer_start (EV_P_ struct ev_timer *w)
746{ 1126{
747 if (ev_is_active (w)) 1127 if (ev_is_active (w))
748 return; 1128 return;
749 1129
750 w->at += now; 1130 ((WT)w)->at += mn_now;
751 1131
752 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1132 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
753 1133
754 ev_start ((W)w, ++timercnt); 1134 ev_start (EV_A_ (W)w, ++timercnt);
755 array_needsize (timers, timermax, timercnt, ); 1135 array_needsize (timers, timermax, timercnt, );
756 timers [timercnt - 1] = w; 1136 timers [timercnt - 1] = w;
757 upheap ((WT *)timers, timercnt - 1); 1137 upheap ((WT *)timers, timercnt - 1);
758}
759 1138
1139 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1140}
1141
760void 1142void
761evtimer_stop (struct ev_timer *w) 1143ev_timer_stop (EV_P_ struct ev_timer *w)
762{ 1144{
763 ev_clear ((W)w); 1145 ev_clear_pending (EV_A_ (W)w);
764 if (!ev_is_active (w)) 1146 if (!ev_is_active (w))
765 return; 1147 return;
766 1148
1149 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1150
767 if (w->active < timercnt--) 1151 if (((W)w)->active < timercnt--)
768 { 1152 {
769 timers [w->active - 1] = timers [timercnt]; 1153 timers [((W)w)->active - 1] = timers [timercnt];
770 downheap ((WT *)timers, timercnt, w->active - 1); 1154 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
771 } 1155 }
772 1156
773 w->at = w->repeat; 1157 ((WT)w)->at = w->repeat;
774 1158
775 ev_stop ((W)w); 1159 ev_stop (EV_A_ (W)w);
776} 1160}
777 1161
778void 1162void
779evtimer_again (struct ev_timer *w) 1163ev_timer_again (EV_P_ struct ev_timer *w)
780{ 1164{
781 if (ev_is_active (w)) 1165 if (ev_is_active (w))
782 { 1166 {
783 if (w->repeat) 1167 if (w->repeat)
784 { 1168 {
785 w->at = now + w->repeat; 1169 ((WT)w)->at = mn_now + w->repeat;
786 downheap ((WT *)timers, timercnt, w->active - 1); 1170 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
787 } 1171 }
788 else 1172 else
789 evtimer_stop (w); 1173 ev_timer_stop (EV_A_ w);
790 } 1174 }
791 else if (w->repeat) 1175 else if (w->repeat)
792 evtimer_start (w); 1176 ev_timer_start (EV_A_ w);
793} 1177}
794 1178
795void 1179void
796evperiodic_start (struct ev_periodic *w) 1180ev_periodic_start (EV_P_ struct ev_periodic *w)
797{ 1181{
798 if (ev_is_active (w)) 1182 if (ev_is_active (w))
799 return; 1183 return;
800 1184
801 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1185 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
802 1186
803 /* this formula differs from the one in periodic_reify because we do not always round up */ 1187 /* this formula differs from the one in periodic_reify because we do not always round up */
804 if (w->interval) 1188 if (w->interval)
805 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1189 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
806 1190
807 ev_start ((W)w, ++periodiccnt); 1191 ev_start (EV_A_ (W)w, ++periodiccnt);
808 array_needsize (periodics, periodicmax, periodiccnt, ); 1192 array_needsize (periodics, periodicmax, periodiccnt, );
809 periodics [periodiccnt - 1] = w; 1193 periodics [periodiccnt - 1] = w;
810 upheap ((WT *)periodics, periodiccnt - 1); 1194 upheap ((WT *)periodics, periodiccnt - 1);
811}
812 1195
1196 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1197}
1198
813void 1199void
814evperiodic_stop (struct ev_periodic *w) 1200ev_periodic_stop (EV_P_ struct ev_periodic *w)
815{ 1201{
816 ev_clear ((W)w); 1202 ev_clear_pending (EV_A_ (W)w);
817 if (!ev_is_active (w)) 1203 if (!ev_is_active (w))
818 return; 1204 return;
819 1205
1206 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1207
820 if (w->active < periodiccnt--) 1208 if (((W)w)->active < periodiccnt--)
821 { 1209 {
822 periodics [w->active - 1] = periodics [periodiccnt]; 1210 periodics [((W)w)->active - 1] = periodics [periodiccnt];
823 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1211 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
824 } 1212 }
825 1213
826 ev_stop ((W)w); 1214 ev_stop (EV_A_ (W)w);
827} 1215}
828 1216
829void 1217void
830evsignal_start (struct ev_signal *w) 1218ev_idle_start (EV_P_ struct ev_idle *w)
831{ 1219{
832 if (ev_is_active (w)) 1220 if (ev_is_active (w))
833 return; 1221 return;
834 1222
1223 ev_start (EV_A_ (W)w, ++idlecnt);
1224 array_needsize (idles, idlemax, idlecnt, );
1225 idles [idlecnt - 1] = w;
1226}
1227
1228void
1229ev_idle_stop (EV_P_ struct ev_idle *w)
1230{
1231 ev_clear_pending (EV_A_ (W)w);
1232 if (ev_is_active (w))
1233 return;
1234
1235 idles [((W)w)->active - 1] = idles [--idlecnt];
1236 ev_stop (EV_A_ (W)w);
1237}
1238
1239void
1240ev_prepare_start (EV_P_ struct ev_prepare *w)
1241{
1242 if (ev_is_active (w))
1243 return;
1244
1245 ev_start (EV_A_ (W)w, ++preparecnt);
1246 array_needsize (prepares, preparemax, preparecnt, );
1247 prepares [preparecnt - 1] = w;
1248}
1249
1250void
1251ev_prepare_stop (EV_P_ struct ev_prepare *w)
1252{
1253 ev_clear_pending (EV_A_ (W)w);
1254 if (ev_is_active (w))
1255 return;
1256
1257 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1258 ev_stop (EV_A_ (W)w);
1259}
1260
1261void
1262ev_check_start (EV_P_ struct ev_check *w)
1263{
1264 if (ev_is_active (w))
1265 return;
1266
1267 ev_start (EV_A_ (W)w, ++checkcnt);
1268 array_needsize (checks, checkmax, checkcnt, );
1269 checks [checkcnt - 1] = w;
1270}
1271
1272void
1273ev_check_stop (EV_P_ struct ev_check *w)
1274{
1275 ev_clear_pending (EV_A_ (W)w);
1276 if (ev_is_active (w))
1277 return;
1278
1279 checks [((W)w)->active - 1] = checks [--checkcnt];
1280 ev_stop (EV_A_ (W)w);
1281}
1282
1283#ifndef SA_RESTART
1284# define SA_RESTART 0
1285#endif
1286
1287void
1288ev_signal_start (EV_P_ struct ev_signal *w)
1289{
1290#if EV_MULTIPLICITY
1291 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1292#endif
1293 if (ev_is_active (w))
1294 return;
1295
1296 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1297
835 ev_start ((W)w, 1); 1298 ev_start (EV_A_ (W)w, 1);
836 array_needsize (signals, signalmax, w->signum, signals_init); 1299 array_needsize (signals, signalmax, w->signum, signals_init);
837 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1300 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
838 1301
839 if (!w->next) 1302 if (!((WL)w)->next)
840 { 1303 {
841 struct sigaction sa; 1304 struct sigaction sa;
842 sa.sa_handler = sighandler; 1305 sa.sa_handler = sighandler;
843 sigfillset (&sa.sa_mask); 1306 sigfillset (&sa.sa_mask);
844 sa.sa_flags = 0; 1307 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
845 sigaction (w->signum, &sa, 0); 1308 sigaction (w->signum, &sa, 0);
846 } 1309 }
847} 1310}
848 1311
849void 1312void
850evsignal_stop (struct ev_signal *w) 1313ev_signal_stop (EV_P_ struct ev_signal *w)
851{ 1314{
852 ev_clear ((W)w); 1315 ev_clear_pending (EV_A_ (W)w);
853 if (!ev_is_active (w)) 1316 if (!ev_is_active (w))
854 return; 1317 return;
855 1318
856 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1319 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
857 ev_stop ((W)w); 1320 ev_stop (EV_A_ (W)w);
858 1321
859 if (!signals [w->signum - 1].head) 1322 if (!signals [w->signum - 1].head)
860 signal (w->signum, SIG_DFL); 1323 signal (w->signum, SIG_DFL);
861} 1324}
862 1325
863void evidle_start (struct ev_idle *w) 1326void
1327ev_child_start (EV_P_ struct ev_child *w)
864{ 1328{
1329#if EV_MULTIPLICITY
1330 assert (("child watchers are only supported in the default loop", loop == default_loop));
1331#endif
865 if (ev_is_active (w)) 1332 if (ev_is_active (w))
866 return; 1333 return;
867 1334
868 ev_start ((W)w, ++idlecnt); 1335 ev_start (EV_A_ (W)w, 1);
869 array_needsize (idles, idlemax, idlecnt, ); 1336 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
870 idles [idlecnt - 1] = w;
871} 1337}
872 1338
873void evidle_stop (struct ev_idle *w) 1339void
1340ev_child_stop (EV_P_ struct ev_child *w)
874{ 1341{
875 ev_clear ((W)w); 1342 ev_clear_pending (EV_A_ (W)w);
876 if (ev_is_active (w)) 1343 if (ev_is_active (w))
877 return; 1344 return;
878 1345
879 idles [w->active - 1] = idles [--idlecnt];
880 ev_stop ((W)w);
881}
882
883void evprepare_start (struct ev_prepare *w)
884{
885 if (ev_is_active (w))
886 return;
887
888 ev_start ((W)w, ++preparecnt);
889 array_needsize (prepares, preparemax, preparecnt, );
890 prepares [preparecnt - 1] = w;
891}
892
893void evprepare_stop (struct ev_prepare *w)
894{
895 ev_clear ((W)w);
896 if (ev_is_active (w))
897 return;
898
899 prepares [w->active - 1] = prepares [--preparecnt];
900 ev_stop ((W)w);
901}
902
903void evcheck_start (struct ev_check *w)
904{
905 if (ev_is_active (w))
906 return;
907
908 ev_start ((W)w, ++checkcnt);
909 array_needsize (checks, checkmax, checkcnt, );
910 checks [checkcnt - 1] = w;
911}
912
913void evcheck_stop (struct ev_check *w)
914{
915 ev_clear ((W)w);
916 if (ev_is_active (w))
917 return;
918
919 checks [w->active - 1] = checks [--checkcnt];
920 ev_stop ((W)w);
921}
922
923void evchild_start (struct ev_child *w)
924{
925 if (ev_is_active (w))
926 return;
927
928 ev_start ((W)w, 1);
929 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
930}
931
932void evchild_stop (struct ev_child *w)
933{
934 ev_clear ((W)w);
935 if (ev_is_active (w))
936 return;
937
938 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1346 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
939 ev_stop ((W)w); 1347 ev_stop (EV_A_ (W)w);
940} 1348}
941 1349
942/*****************************************************************************/ 1350/*****************************************************************************/
943 1351
944struct ev_once 1352struct ev_once
948 void (*cb)(int revents, void *arg); 1356 void (*cb)(int revents, void *arg);
949 void *arg; 1357 void *arg;
950}; 1358};
951 1359
952static void 1360static void
953once_cb (struct ev_once *once, int revents) 1361once_cb (EV_P_ struct ev_once *once, int revents)
954{ 1362{
955 void (*cb)(int revents, void *arg) = once->cb; 1363 void (*cb)(int revents, void *arg) = once->cb;
956 void *arg = once->arg; 1364 void *arg = once->arg;
957 1365
958 evio_stop (&once->io); 1366 ev_io_stop (EV_A_ &once->io);
959 evtimer_stop (&once->to); 1367 ev_timer_stop (EV_A_ &once->to);
960 free (once); 1368 free (once);
961 1369
962 cb (revents, arg); 1370 cb (revents, arg);
963} 1371}
964 1372
965static void 1373static void
966once_cb_io (struct ev_io *w, int revents) 1374once_cb_io (EV_P_ struct ev_io *w, int revents)
967{ 1375{
968 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1376 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
969} 1377}
970 1378
971static void 1379static void
972once_cb_to (struct ev_timer *w, int revents) 1380once_cb_to (EV_P_ struct ev_timer *w, int revents)
973{ 1381{
974 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1382 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
975} 1383}
976 1384
977void 1385void
978ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1386ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
979{ 1387{
980 struct ev_once *once = malloc (sizeof (struct ev_once)); 1388 struct ev_once *once = malloc (sizeof (struct ev_once));
981 1389
982 if (!once) 1390 if (!once)
983 cb (EV_ERROR, arg); 1391 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
984 else 1392 else
985 { 1393 {
986 once->cb = cb; 1394 once->cb = cb;
987 once->arg = arg; 1395 once->arg = arg;
988 1396
989 evw_init (&once->io, once_cb_io); 1397 ev_watcher_init (&once->io, once_cb_io);
990
991 if (fd >= 0) 1398 if (fd >= 0)
992 { 1399 {
993 evio_set (&once->io, fd, events); 1400 ev_io_set (&once->io, fd, events);
994 evio_start (&once->io); 1401 ev_io_start (EV_A_ &once->io);
995 } 1402 }
996 1403
997 evw_init (&once->to, once_cb_to); 1404 ev_watcher_init (&once->to, once_cb_to);
998
999 if (timeout >= 0.) 1405 if (timeout >= 0.)
1000 { 1406 {
1001 evtimer_set (&once->to, timeout, 0.); 1407 ev_timer_set (&once->to, timeout, 0.);
1002 evtimer_start (&once->to); 1408 ev_timer_start (EV_A_ &once->to);
1003 } 1409 }
1004 } 1410 }
1005} 1411}
1006 1412
1007/*****************************************************************************/
1008
1009#if 0
1010
1011struct ev_io wio;
1012
1013static void
1014sin_cb (struct ev_io *w, int revents)
1015{
1016 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1017}
1018
1019static void
1020ocb (struct ev_timer *w, int revents)
1021{
1022 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1023 evtimer_stop (w);
1024 evtimer_start (w);
1025}
1026
1027static void
1028scb (struct ev_signal *w, int revents)
1029{
1030 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1031 evio_stop (&wio);
1032 evio_start (&wio);
1033}
1034
1035static void
1036gcb (struct ev_signal *w, int revents)
1037{
1038 fprintf (stderr, "generic %x\n", revents);
1039
1040}
1041
1042int main (void)
1043{
1044 ev_init (0);
1045
1046 evio_init (&wio, sin_cb, 0, EV_READ);
1047 evio_start (&wio);
1048
1049 struct ev_timer t[10000];
1050
1051#if 0
1052 int i;
1053 for (i = 0; i < 10000; ++i)
1054 {
1055 struct ev_timer *w = t + i;
1056 evw_init (w, ocb, i);
1057 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1058 evtimer_start (w);
1059 if (drand48 () < 0.5)
1060 evtimer_stop (w);
1061 }
1062#endif
1063
1064 struct ev_timer t1;
1065 evtimer_init (&t1, ocb, 5, 10);
1066 evtimer_start (&t1);
1067
1068 struct ev_signal sig;
1069 evsignal_init (&sig, scb, SIGQUIT);
1070 evsignal_start (&sig);
1071
1072 struct ev_check cw;
1073 evcheck_init (&cw, gcb);
1074 evcheck_start (&cw);
1075
1076 struct ev_idle iw;
1077 evidle_init (&iw, gcb);
1078 evidle_start (&iw);
1079
1080 ev_loop (0);
1081
1082 return 0;
1083}
1084
1085#endif
1086
1087
1088
1089

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines