ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.23 by root, Wed Oct 31 20:10:17 2007 UTC vs.
Revision 1.67 by root, Mon Nov 5 16:42:15 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h> 59#include <unistd.h>
33#include <fcntl.h> 60#include <fcntl.h>
37#include <stdio.h> 64#include <stdio.h>
38 65
39#include <assert.h> 66#include <assert.h>
40#include <errno.h> 67#include <errno.h>
41#include <sys/types.h> 68#include <sys/types.h>
69#ifndef WIN32
42#include <sys/wait.h> 70# include <sys/wait.h>
71#endif
43#include <sys/time.h> 72#include <sys/time.h>
44#include <time.h> 73#include <time.h>
45 74
75/**/
76
46#ifndef HAVE_MONOTONIC 77#ifndef EV_USE_MONOTONIC
47# ifdef CLOCK_MONOTONIC
48# define HAVE_MONOTONIC 1 78# define EV_USE_MONOTONIC 1
79#endif
80
81#ifndef EV_USE_SELECT
82# define EV_USE_SELECT 1
83#endif
84
85#ifndef EV_USE_POLL
86# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
87#endif
88
89#ifndef EV_USE_EPOLL
90# define EV_USE_EPOLL 0
91#endif
92
93#ifndef EV_USE_KQUEUE
94# define EV_USE_KQUEUE 0
95#endif
96
97#ifndef EV_USE_WIN32
98# ifdef WIN32
99# define EV_USE_WIN32 1
100# else
101# define EV_USE_WIN32 0
49# endif 102# endif
50#endif 103#endif
51 104
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 105#ifndef EV_USE_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 106# define EV_USE_REALTIME 1
62#endif 107#endif
108
109/**/
110
111#ifndef CLOCK_MONOTONIC
112# undef EV_USE_MONOTONIC
113# define EV_USE_MONOTONIC 0
114#endif
115
116#ifndef CLOCK_REALTIME
117# undef EV_USE_REALTIME
118# define EV_USE_REALTIME 0
119#endif
120
121/**/
63 122
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 123#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 124#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 125#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
126/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
67 127
68#include "ev.h" 128#include "ev.h"
129
130#if __GNUC__ >= 3
131# define expect(expr,value) __builtin_expect ((expr),(value))
132# define inline inline
133#else
134# define expect(expr,value) (expr)
135# define inline static
136#endif
137
138#define expect_false(expr) expect ((expr) != 0, 0)
139#define expect_true(expr) expect ((expr) != 0, 1)
140
141#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
142#define ABSPRI(w) ((w)->priority - EV_MINPRI)
69 143
70typedef struct ev_watcher *W; 144typedef struct ev_watcher *W;
71typedef struct ev_watcher_list *WL; 145typedef struct ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 146typedef struct ev_watcher_time *WT;
73 147
74static ev_tstamp now, diff; /* monotonic clock */ 148static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
75ev_tstamp ev_now;
76int ev_method;
77 149
78static int have_monotonic; /* runtime */ 150#if WIN32
79 151/* note: the comment below could not be substantiated, but what would I care */
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 152/* MSDN says this is required to handle SIGFPE */
81static void (*method_modify)(int fd, int oev, int nev); 153volatile double SIGFPE_REQ = 0.0f;
82static void (*method_poll)(ev_tstamp timeout); 154#endif
83 155
84/*****************************************************************************/ 156/*****************************************************************************/
85 157
86ev_tstamp 158typedef struct
159{
160 struct ev_watcher_list *head;
161 unsigned char events;
162 unsigned char reify;
163} ANFD;
164
165typedef struct
166{
167 W w;
168 int events;
169} ANPENDING;
170
171#if EV_MULTIPLICITY
172
173struct ev_loop
174{
175# define VAR(name,decl) decl;
176# include "ev_vars.h"
177};
178# undef VAR
179# include "ev_wrap.h"
180
181#else
182
183# define VAR(name,decl) static decl;
184# include "ev_vars.h"
185# undef VAR
186
187#endif
188
189/*****************************************************************************/
190
191inline ev_tstamp
87ev_time (void) 192ev_time (void)
88{ 193{
89#if HAVE_REALTIME 194#if EV_USE_REALTIME
90 struct timespec ts; 195 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 196 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 197 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 198#else
94 struct timeval tv; 199 struct timeval tv;
95 gettimeofday (&tv, 0); 200 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 201 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 202#endif
98} 203}
99 204
100static ev_tstamp 205inline ev_tstamp
101get_clock (void) 206get_clock (void)
102{ 207{
103#if HAVE_MONOTONIC 208#if EV_USE_MONOTONIC
104 if (have_monotonic) 209 if (expect_true (have_monotonic))
105 { 210 {
106 struct timespec ts; 211 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 212 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 213 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 214 }
110#endif 215#endif
111 216
112 return ev_time (); 217 return ev_time ();
113} 218}
114 219
220ev_tstamp
221ev_now (EV_P)
222{
223 return rt_now;
224}
225
226#define array_roundsize(base,n) ((n) | 4 & ~3)
227
115#define array_needsize(base,cur,cnt,init) \ 228#define array_needsize(base,cur,cnt,init) \
116 if ((cnt) > cur) \ 229 if (expect_false ((cnt) > cur)) \
117 { \ 230 { \
118 int newcnt = cur; \ 231 int newcnt = cur; \
119 do \ 232 do \
120 { \ 233 { \
121 newcnt = (newcnt << 1) | 4 & ~3; \ 234 newcnt = array_roundsize (base, newcnt << 1); \
122 } \ 235 } \
123 while ((cnt) > newcnt); \ 236 while ((cnt) > newcnt); \
124 \ 237 \
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 238 base = realloc (base, sizeof (*base) * (newcnt)); \
126 init (base + cur, newcnt - cur); \ 239 init (base + cur, newcnt - cur); \
127 cur = newcnt; \ 240 cur = newcnt; \
128 } 241 }
129 242
243#define array_slim(stem) \
244 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
245 { \
246 stem ## max = array_roundsize (stem ## cnt >> 1); \
247 base = realloc (base, sizeof (*base) * (stem ## max)); \
248 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
249 }
250
251#define array_free(stem, idx) \
252 free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
253
130/*****************************************************************************/ 254/*****************************************************************************/
131 255
132typedef struct
133{
134 struct ev_io *head;
135 unsigned char wev, rev; /* want, received event set */
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140
141static int *fdchanges;
142static int fdchangemax, fdchangecnt;
143
144static void 256static void
145anfds_init (ANFD *base, int count) 257anfds_init (ANFD *base, int count)
146{ 258{
147 while (count--) 259 while (count--)
148 { 260 {
149 base->head = 0; 261 base->head = 0;
150 base->wev = base->rev = EV_NONE; 262 base->events = EV_NONE;
263 base->reify = 0;
264
151 ++base; 265 ++base;
152 } 266 }
153} 267}
154 268
155typedef struct
156{
157 W w;
158 int events;
159} ANPENDING;
160
161static ANPENDING *pendings;
162static int pendingmax, pendingcnt;
163
164static void 269static void
165event (W w, int events) 270event (EV_P_ W w, int events)
166{ 271{
167 if (w->active) 272 if (w->pending)
168 { 273 {
169 w->pending = ++pendingcnt;
170 array_needsize (pendings, pendingmax, pendingcnt, );
171 pendings [pendingcnt - 1].w = w;
172 pendings [pendingcnt - 1].events = events; 274 pendings [ABSPRI (w)][w->pending - 1].events |= events;
275 return;
173 } 276 }
174}
175 277
278 w->pending = ++pendingcnt [ABSPRI (w)];
279 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
280 pendings [ABSPRI (w)][w->pending - 1].w = w;
281 pendings [ABSPRI (w)][w->pending - 1].events = events;
282}
283
176static void 284static void
285queue_events (EV_P_ W *events, int eventcnt, int type)
286{
287 int i;
288
289 for (i = 0; i < eventcnt; ++i)
290 event (EV_A_ events [i], type);
291}
292
293static void
177fd_event (int fd, int events) 294fd_event (EV_P_ int fd, int events)
178{ 295{
179 ANFD *anfd = anfds + fd; 296 ANFD *anfd = anfds + fd;
180 struct ev_io *w; 297 struct ev_io *w;
181 298
182 for (w = anfd->head; w; w = w->next) 299 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
183 { 300 {
184 int ev = w->events & events; 301 int ev = w->events & events;
185 302
186 if (ev) 303 if (ev)
187 event ((W)w, ev); 304 event (EV_A_ (W)w, ev);
188 } 305 }
189} 306}
190 307
308/*****************************************************************************/
309
191static void 310static void
192queue_events (W *events, int eventcnt, int type) 311fd_reify (EV_P)
193{ 312{
194 int i; 313 int i;
195 314
196 for (i = 0; i < eventcnt; ++i) 315 for (i = 0; i < fdchangecnt; ++i)
197 event (events [i], type); 316 {
317 int fd = fdchanges [i];
318 ANFD *anfd = anfds + fd;
319 struct ev_io *w;
320
321 int events = 0;
322
323 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
324 events |= w->events;
325
326 anfd->reify = 0;
327
328 method_modify (EV_A_ fd, anfd->events, events);
329 anfd->events = events;
330 }
331
332 fdchangecnt = 0;
333}
334
335static void
336fd_change (EV_P_ int fd)
337{
338 if (anfds [fd].reify || fdchangecnt < 0)
339 return;
340
341 anfds [fd].reify = 1;
342
343 ++fdchangecnt;
344 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
345 fdchanges [fdchangecnt - 1] = fd;
346}
347
348static void
349fd_kill (EV_P_ int fd)
350{
351 struct ev_io *w;
352
353 while ((w = (struct ev_io *)anfds [fd].head))
354 {
355 ev_io_stop (EV_A_ w);
356 event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
357 }
198} 358}
199 359
200/* called on EBADF to verify fds */ 360/* called on EBADF to verify fds */
201static void 361static void
202fd_recheck () 362fd_ebadf (EV_P)
203{ 363{
204 int fd; 364 int fd;
205 365
206 for (fd = 0; fd < anfdmax; ++fd) 366 for (fd = 0; fd < anfdmax; ++fd)
207 if (anfds [fd].wev) 367 if (anfds [fd].events)
208 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 368 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF)
209 while (anfds [fd].head) 369 fd_kill (EV_A_ fd);
210 evio_stop (anfds [fd].head); 370}
371
372/* called on ENOMEM in select/poll to kill some fds and retry */
373static void
374fd_enomem (EV_P)
375{
376 int fd;
377
378 for (fd = anfdmax; fd--; )
379 if (anfds [fd].events)
380 {
381 close (fd);
382 fd_kill (EV_A_ fd);
383 return;
384 }
385}
386
387/* susually called after fork if method needs to re-arm all fds from scratch */
388static void
389fd_rearm_all (EV_P)
390{
391 int fd;
392
393 /* this should be highly optimised to not do anything but set a flag */
394 for (fd = 0; fd < anfdmax; ++fd)
395 if (anfds [fd].events)
396 {
397 anfds [fd].events = 0;
398 fd_change (EV_A_ fd);
399 }
211} 400}
212 401
213/*****************************************************************************/ 402/*****************************************************************************/
214 403
215static struct ev_timer **timers;
216static int timermax, timercnt;
217
218static struct ev_periodic **periodics;
219static int periodicmax, periodiccnt;
220
221static void 404static void
222upheap (WT *timers, int k) 405upheap (WT *heap, int k)
223{ 406{
224 WT w = timers [k]; 407 WT w = heap [k];
225 408
226 while (k && timers [k >> 1]->at > w->at) 409 while (k && heap [k >> 1]->at > w->at)
227 { 410 {
228 timers [k] = timers [k >> 1]; 411 heap [k] = heap [k >> 1];
229 timers [k]->active = k + 1; 412 ((W)heap [k])->active = k + 1;
230 k >>= 1; 413 k >>= 1;
231 } 414 }
232 415
233 timers [k] = w; 416 heap [k] = w;
234 timers [k]->active = k + 1; 417 ((W)heap [k])->active = k + 1;
235 418
236} 419}
237 420
238static void 421static void
239downheap (WT *timers, int N, int k) 422downheap (WT *heap, int N, int k)
240{ 423{
241 WT w = timers [k]; 424 WT w = heap [k];
242 425
243 while (k < (N >> 1)) 426 while (k < (N >> 1))
244 { 427 {
245 int j = k << 1; 428 int j = k << 1;
246 429
247 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 430 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
248 ++j; 431 ++j;
249 432
250 if (w->at <= timers [j]->at) 433 if (w->at <= heap [j]->at)
251 break; 434 break;
252 435
253 timers [k] = timers [j]; 436 heap [k] = heap [j];
254 timers [k]->active = k + 1; 437 ((W)heap [k])->active = k + 1;
255 k = j; 438 k = j;
256 } 439 }
257 440
258 timers [k] = w; 441 heap [k] = w;
259 timers [k]->active = k + 1; 442 ((W)heap [k])->active = k + 1;
260} 443}
261 444
262/*****************************************************************************/ 445/*****************************************************************************/
263 446
264typedef struct 447typedef struct
265{ 448{
266 struct ev_signal *head; 449 struct ev_watcher_list *head;
267 sig_atomic_t gotsig; 450 sig_atomic_t volatile gotsig;
268} ANSIG; 451} ANSIG;
269 452
270static ANSIG *signals; 453static ANSIG *signals;
271static int signalmax; 454static int signalmax;
272 455
273static int sigpipe [2]; 456static int sigpipe [2];
274static sig_atomic_t gotsig; 457static sig_atomic_t volatile gotsig;
275static struct ev_io sigev; 458static struct ev_io sigev;
276 459
277static void 460static void
278signals_init (ANSIG *base, int count) 461signals_init (ANSIG *base, int count)
279{ 462{
280 while (count--) 463 while (count--)
281 { 464 {
282 base->head = 0; 465 base->head = 0;
283 base->gotsig = 0; 466 base->gotsig = 0;
467
284 ++base; 468 ++base;
285 } 469 }
286} 470}
287 471
288static void 472static void
289sighandler (int signum) 473sighandler (int signum)
290{ 474{
475#if WIN32
476 signal (signum, sighandler);
477#endif
478
291 signals [signum - 1].gotsig = 1; 479 signals [signum - 1].gotsig = 1;
292 480
293 if (!gotsig) 481 if (!gotsig)
294 { 482 {
483 int old_errno = errno;
295 gotsig = 1; 484 gotsig = 1;
296 write (sigpipe [1], &gotsig, 1); 485 write (sigpipe [1], &signum, 1);
486 errno = old_errno;
297 } 487 }
298} 488}
299 489
300static void 490static void
301sigcb (struct ev_io *iow, int revents) 491sigcb (EV_P_ struct ev_io *iow, int revents)
302{ 492{
303 struct ev_signal *w; 493 struct ev_watcher_list *w;
304 int sig; 494 int signum;
305 495
496 read (sigpipe [0], &revents, 1);
306 gotsig = 0; 497 gotsig = 0;
307 read (sigpipe [0], &revents, 1);
308 498
309 for (sig = signalmax; sig--; ) 499 for (signum = signalmax; signum--; )
310 if (signals [sig].gotsig) 500 if (signals [signum].gotsig)
311 { 501 {
312 signals [sig].gotsig = 0; 502 signals [signum].gotsig = 0;
313 503
314 for (w = signals [sig].head; w; w = w->next) 504 for (w = signals [signum].head; w; w = w->next)
315 event ((W)w, EV_SIGNAL); 505 event (EV_A_ (W)w, EV_SIGNAL);
316 } 506 }
317} 507}
318 508
319static void 509static void
320siginit (void) 510siginit (EV_P)
321{ 511{
512#ifndef WIN32
322 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 513 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
323 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 514 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
324 515
325 /* rather than sort out wether we really need nb, set it */ 516 /* rather than sort out wether we really need nb, set it */
326 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 517 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
327 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 518 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
519#endif
328 520
329 evio_set (&sigev, sigpipe [0], EV_READ); 521 ev_io_set (&sigev, sigpipe [0], EV_READ);
330 evio_start (&sigev); 522 ev_io_start (EV_A_ &sigev);
523 ev_unref (EV_A); /* child watcher should not keep loop alive */
331} 524}
332 525
333/*****************************************************************************/ 526/*****************************************************************************/
334 527
335static struct ev_idle **idles; 528#ifndef WIN32
336static int idlemax, idlecnt;
337
338static struct ev_prepare **prepares;
339static int preparemax, preparecnt;
340
341static struct ev_check **checks;
342static int checkmax, checkcnt;
343
344/*****************************************************************************/
345 529
346static struct ev_child *childs [PID_HASHSIZE]; 530static struct ev_child *childs [PID_HASHSIZE];
347static struct ev_signal childev; 531static struct ev_signal childev;
348 532
349#ifndef WCONTINUED 533#ifndef WCONTINUED
350# define WCONTINUED 0 534# define WCONTINUED 0
351#endif 535#endif
352 536
353static void 537static void
354childcb (struct ev_signal *sw, int revents) 538child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
355{ 539{
356 struct ev_child *w; 540 struct ev_child *w;
541
542 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
543 if (w->pid == pid || !w->pid)
544 {
545 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
546 w->rpid = pid;
547 w->rstatus = status;
548 event (EV_A_ (W)w, EV_CHILD);
549 }
550}
551
552static void
553childcb (EV_P_ struct ev_signal *sw, int revents)
554{
357 int pid, status; 555 int pid, status;
358 556
359 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 557 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
360 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 558 {
361 if (w->pid == pid || w->pid == -1) 559 /* make sure we are called again until all childs have been reaped */
362 { 560 event (EV_A_ (W)sw, EV_SIGNAL);
363 w->status = status; 561
364 event ((W)w, EV_CHILD); 562 child_reap (EV_A_ sw, pid, pid, status);
365 } 563 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
564 }
366} 565}
566
567#endif
367 568
368/*****************************************************************************/ 569/*****************************************************************************/
369 570
571#if EV_USE_KQUEUE
572# include "ev_kqueue.c"
573#endif
370#if HAVE_EPOLL 574#if EV_USE_EPOLL
371# include "ev_epoll.c" 575# include "ev_epoll.c"
372#endif 576#endif
577#if EV_USE_POLL
578# include "ev_poll.c"
579#endif
373#if HAVE_SELECT 580#if EV_USE_SELECT
374# include "ev_select.c" 581# include "ev_select.c"
375#endif 582#endif
376 583
377int ev_init (int flags) 584int
585ev_version_major (void)
378{ 586{
587 return EV_VERSION_MAJOR;
588}
589
590int
591ev_version_minor (void)
592{
593 return EV_VERSION_MINOR;
594}
595
596/* return true if we are running with elevated privileges and should ignore env variables */
597static int
598enable_secure (void)
599{
600#ifdef WIN32
601 return 0;
602#else
603 return getuid () != geteuid ()
604 || getgid () != getegid ();
605#endif
606}
607
608int
609ev_method (EV_P)
610{
611 return method;
612}
613
614static void
615loop_init (EV_P_ int methods)
616{
379 if (!ev_method) 617 if (!method)
380 { 618 {
381#if HAVE_MONOTONIC 619#if EV_USE_MONOTONIC
382 { 620 {
383 struct timespec ts; 621 struct timespec ts;
384 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 622 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
385 have_monotonic = 1; 623 have_monotonic = 1;
386 } 624 }
387#endif 625#endif
388 626
389 ev_now = ev_time (); 627 rt_now = ev_time ();
390 now = get_clock (); 628 mn_now = get_clock ();
629 now_floor = mn_now;
391 diff = ev_now - now; 630 rtmn_diff = rt_now - mn_now;
392 631
632 if (methods == EVMETHOD_AUTO)
633 if (!enable_secure () && getenv ("LIBEV_METHODS"))
634 methods = atoi (getenv ("LIBEV_METHODS"));
635 else
636 methods = EVMETHOD_ANY;
637
638 method = 0;
639#if EV_USE_WIN32
640 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
641#endif
642#if EV_USE_KQUEUE
643 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
644#endif
645#if EV_USE_EPOLL
646 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
647#endif
648#if EV_USE_POLL
649 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
650#endif
651#if EV_USE_SELECT
652 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
653#endif
654 }
655}
656
657void
658loop_destroy (EV_P)
659{
660 int i;
661
662#if EV_USE_WIN32
663 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
664#endif
665#if EV_USE_KQUEUE
666 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
667#endif
668#if EV_USE_EPOLL
669 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
670#endif
671#if EV_USE_POLL
672 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
673#endif
674#if EV_USE_SELECT
675 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
676#endif
677
678 for (i = NUMPRI; i--; )
679 array_free (pending, [i]);
680
681 array_free (fdchange, );
682 array_free (timer, );
683 array_free (periodic, );
684 array_free (idle, );
685 array_free (prepare, );
686 array_free (check, );
687
688 method = 0;
689 /*TODO*/
690}
691
692void
693loop_fork (EV_P)
694{
695 /*TODO*/
696#if EV_USE_EPOLL
697 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
698#endif
699#if EV_USE_KQUEUE
700 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
701#endif
702}
703
704#if EV_MULTIPLICITY
705struct ev_loop *
706ev_loop_new (int methods)
707{
708 struct ev_loop *loop = (struct ev_loop *)calloc (1, sizeof (struct ev_loop));
709
710 loop_init (EV_A_ methods);
711
712 if (ev_method (EV_A))
713 return loop;
714
715 return 0;
716}
717
718void
719ev_loop_destroy (EV_P)
720{
721 loop_destroy (EV_A);
722 free (loop);
723}
724
725void
726ev_loop_fork (EV_P)
727{
728 loop_fork (EV_A);
729}
730
731#endif
732
733#if EV_MULTIPLICITY
734struct ev_loop default_loop_struct;
735static struct ev_loop *default_loop;
736
737struct ev_loop *
738#else
739static int default_loop;
740
741int
742#endif
743ev_default_loop (int methods)
744{
745 if (sigpipe [0] == sigpipe [1])
393 if (pipe (sigpipe)) 746 if (pipe (sigpipe))
394 return 0; 747 return 0;
395 748
396 ev_method = EVMETHOD_NONE; 749 if (!default_loop)
397#if HAVE_EPOLL 750 {
398 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 751#if EV_MULTIPLICITY
752 struct ev_loop *loop = default_loop = &default_loop_struct;
753#else
754 default_loop = 1;
399#endif 755#endif
400#if HAVE_SELECT
401 if (ev_method == EVMETHOD_NONE) select_init (flags);
402#endif
403 756
757 loop_init (EV_A_ methods);
758
404 if (ev_method) 759 if (ev_method (EV_A))
405 { 760 {
406 evw_init (&sigev, sigcb); 761 ev_watcher_init (&sigev, sigcb);
762 ev_set_priority (&sigev, EV_MAXPRI);
407 siginit (); 763 siginit (EV_A);
408 764
765#ifndef WIN32
409 evsignal_init (&childev, childcb, SIGCHLD); 766 ev_signal_init (&childev, childcb, SIGCHLD);
767 ev_set_priority (&childev, EV_MAXPRI);
410 evsignal_start (&childev); 768 ev_signal_start (EV_A_ &childev);
769 ev_unref (EV_A); /* child watcher should not keep loop alive */
770#endif
411 } 771 }
772 else
773 default_loop = 0;
412 } 774 }
413 775
414 return ev_method; 776 return default_loop;
415} 777}
416 778
417/*****************************************************************************/ 779void
418 780ev_default_destroy (void)
419void ev_prefork (void)
420{ 781{
421 /* nop */ 782#if EV_MULTIPLICITY
422} 783 struct ev_loop *loop = default_loop;
423
424void ev_postfork_parent (void)
425{
426 /* nop */
427}
428
429void ev_postfork_child (void)
430{
431#if HAVE_EPOLL
432 if (ev_method == EVMETHOD_EPOLL)
433 epoll_postfork_child ();
434#endif 784#endif
435 785
786 ev_ref (EV_A); /* child watcher */
787 ev_signal_stop (EV_A_ &childev);
788
789 ev_ref (EV_A); /* signal watcher */
436 evio_stop (&sigev); 790 ev_io_stop (EV_A_ &sigev);
791
792 close (sigpipe [0]); sigpipe [0] = 0;
793 close (sigpipe [1]); sigpipe [1] = 0;
794
795 loop_destroy (EV_A);
796}
797
798void
799ev_default_fork (void)
800{
801#if EV_MULTIPLICITY
802 struct ev_loop *loop = default_loop;
803#endif
804
805 loop_fork (EV_A);
806
807 ev_io_stop (EV_A_ &sigev);
437 close (sigpipe [0]); 808 close (sigpipe [0]);
438 close (sigpipe [1]); 809 close (sigpipe [1]);
439 pipe (sigpipe); 810 pipe (sigpipe);
811
812 ev_ref (EV_A); /* signal watcher */
440 siginit (); 813 siginit (EV_A);
441} 814}
442 815
443/*****************************************************************************/ 816/*****************************************************************************/
444 817
445static void 818static void
446fd_reify (void) 819call_pending (EV_P)
447{ 820{
448 int i; 821 int pri;
449 822
450 for (i = 0; i < fdchangecnt; ++i) 823 for (pri = NUMPRI; pri--; )
451 { 824 while (pendingcnt [pri])
452 int fd = fdchanges [i];
453 ANFD *anfd = anfds + fd;
454 struct ev_io *w;
455
456 int wev = 0;
457
458 for (w = anfd->head; w; w = w->next)
459 wev |= w->events;
460
461 if (anfd->wev != wev)
462 { 825 {
463 method_modify (fd, anfd->wev, wev);
464 anfd->wev = wev;
465 }
466 }
467
468 fdchangecnt = 0;
469}
470
471static void
472call_pending ()
473{
474 while (pendingcnt)
475 {
476 ANPENDING *p = pendings + --pendingcnt; 826 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
477 827
478 if (p->w) 828 if (p->w)
479 { 829 {
480 p->w->pending = 0; 830 p->w->pending = 0;
481 p->w->cb (p->w, p->events); 831 p->w->cb (EV_A_ p->w, p->events);
482 } 832 }
483 } 833 }
484} 834}
485 835
486static void 836static void
487timers_reify () 837timers_reify (EV_P)
488{ 838{
489 while (timercnt && timers [0]->at <= now) 839 while (timercnt && ((WT)timers [0])->at <= mn_now)
490 { 840 {
491 struct ev_timer *w = timers [0]; 841 struct ev_timer *w = timers [0];
492 842
493 event ((W)w, EV_TIMEOUT); 843 assert (("inactive timer on timer heap detected", ev_is_active (w)));
494 844
495 /* first reschedule or stop timer */ 845 /* first reschedule or stop timer */
496 if (w->repeat) 846 if (w->repeat)
497 { 847 {
848 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
498 w->at = now + w->repeat; 849 ((WT)w)->at = mn_now + w->repeat;
499 assert (("timer timeout in the past, negative repeat?", w->at > now));
500 downheap ((WT *)timers, timercnt, 0); 850 downheap ((WT *)timers, timercnt, 0);
501 } 851 }
502 else 852 else
503 evtimer_stop (w); /* nonrepeating: stop timer */ 853 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
504 }
505}
506 854
855 event (EV_A_ (W)w, EV_TIMEOUT);
856 }
857}
858
507static void 859static void
508periodics_reify () 860periodics_reify (EV_P)
509{ 861{
510 while (periodiccnt && periodics [0]->at <= ev_now) 862 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
511 { 863 {
512 struct ev_periodic *w = periodics [0]; 864 struct ev_periodic *w = periodics [0];
865
866 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
513 867
514 /* first reschedule or stop timer */ 868 /* first reschedule or stop timer */
515 if (w->interval) 869 if (w->interval)
516 { 870 {
517 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 871 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
518 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 872 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
519 downheap ((WT *)periodics, periodiccnt, 0); 873 downheap ((WT *)periodics, periodiccnt, 0);
520 } 874 }
521 else 875 else
522 evperiodic_stop (w); /* nonrepeating: stop timer */ 876 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
523 877
524 event ((W)w, EV_TIMEOUT); 878 event (EV_A_ (W)w, EV_PERIODIC);
525 } 879 }
526} 880}
527 881
528static void 882static void
529periodics_reschedule (ev_tstamp diff) 883periodics_reschedule (EV_P)
530{ 884{
531 int i; 885 int i;
532 886
533 /* adjust periodics after time jump */ 887 /* adjust periodics after time jump */
534 for (i = 0; i < periodiccnt; ++i) 888 for (i = 0; i < periodiccnt; ++i)
535 { 889 {
536 struct ev_periodic *w = periodics [i]; 890 struct ev_periodic *w = periodics [i];
537 891
538 if (w->interval) 892 if (w->interval)
539 { 893 {
540 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 894 ev_tstamp diff = ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
541 895
542 if (fabs (diff) >= 1e-4) 896 if (fabs (diff) >= 1e-4)
543 { 897 {
544 evperiodic_stop (w); 898 ev_periodic_stop (EV_A_ w);
545 evperiodic_start (w); 899 ev_periodic_start (EV_A_ w);
546 900
547 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 901 i = 0; /* restart loop, inefficient, but time jumps should be rare */
548 } 902 }
549 } 903 }
550 } 904 }
551} 905}
552 906
907inline int
908time_update_monotonic (EV_P)
909{
910 mn_now = get_clock ();
911
912 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
913 {
914 rt_now = rtmn_diff + mn_now;
915 return 0;
916 }
917 else
918 {
919 now_floor = mn_now;
920 rt_now = ev_time ();
921 return 1;
922 }
923}
924
553static void 925static void
554time_update () 926time_update (EV_P)
555{ 927{
556 int i; 928 int i;
557 929
558 ev_now = ev_time (); 930#if EV_USE_MONOTONIC
559
560 if (have_monotonic) 931 if (expect_true (have_monotonic))
561 { 932 {
562 ev_tstamp odiff = diff; 933 if (time_update_monotonic (EV_A))
563
564 for (i = 4; --i; ) /* loop a few times, before making important decisions */
565 { 934 {
566 now = get_clock (); 935 ev_tstamp odiff = rtmn_diff;
936
937 for (i = 4; --i; ) /* loop a few times, before making important decisions */
938 {
567 diff = ev_now - now; 939 rtmn_diff = rt_now - mn_now;
568 940
569 if (fabs (odiff - diff) < MIN_TIMEJUMP) 941 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
570 return; /* all is well */ 942 return; /* all is well */
571 943
572 ev_now = ev_time (); 944 rt_now = ev_time ();
945 mn_now = get_clock ();
946 now_floor = mn_now;
947 }
948
949 periodics_reschedule (EV_A);
950 /* no timer adjustment, as the monotonic clock doesn't jump */
951 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
573 } 952 }
574
575 periodics_reschedule (diff - odiff);
576 /* no timer adjustment, as the monotonic clock doesn't jump */
577 } 953 }
578 else 954 else
955#endif
579 { 956 {
580 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP) 957 rt_now = ev_time ();
958
959 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
581 { 960 {
582 periodics_reschedule (ev_now - now); 961 periodics_reschedule (EV_A);
583 962
584 /* adjust timers. this is easy, as the offset is the same for all */ 963 /* adjust timers. this is easy, as the offset is the same for all */
585 for (i = 0; i < timercnt; ++i) 964 for (i = 0; i < timercnt; ++i)
586 timers [i]->at += diff; 965 ((WT)timers [i])->at += rt_now - mn_now;
587 } 966 }
588 967
589 now = ev_now; 968 mn_now = rt_now;
590 } 969 }
591} 970}
592 971
593int ev_loop_done; 972void
973ev_ref (EV_P)
974{
975 ++activecnt;
976}
594 977
978void
979ev_unref (EV_P)
980{
981 --activecnt;
982}
983
984static int loop_done;
985
986void
595void ev_loop (int flags) 987ev_loop (EV_P_ int flags)
596{ 988{
597 double block; 989 double block;
598 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 990 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
599 991
600 do 992 do
601 { 993 {
602 /* queue check watchers (and execute them) */ 994 /* queue check watchers (and execute them) */
603 if (preparecnt) 995 if (expect_false (preparecnt))
604 { 996 {
605 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 997 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
606 call_pending (); 998 call_pending (EV_A);
607 } 999 }
608 1000
609 /* update fd-related kernel structures */ 1001 /* update fd-related kernel structures */
610 fd_reify (); 1002 fd_reify (EV_A);
611 1003
612 /* calculate blocking time */ 1004 /* calculate blocking time */
613 1005
614 /* we only need this for !monotonic clockor timers, but as we basically 1006 /* we only need this for !monotonic clockor timers, but as we basically
615 always have timers, we just calculate it always */ 1007 always have timers, we just calculate it always */
1008#if EV_USE_MONOTONIC
1009 if (expect_true (have_monotonic))
1010 time_update_monotonic (EV_A);
1011 else
1012#endif
1013 {
616 ev_now = ev_time (); 1014 rt_now = ev_time ();
1015 mn_now = rt_now;
1016 }
617 1017
618 if (flags & EVLOOP_NONBLOCK || idlecnt) 1018 if (flags & EVLOOP_NONBLOCK || idlecnt)
619 block = 0.; 1019 block = 0.;
620 else 1020 else
621 { 1021 {
622 block = MAX_BLOCKTIME; 1022 block = MAX_BLOCKTIME;
623 1023
624 if (timercnt) 1024 if (timercnt)
625 { 1025 {
626 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1026 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
627 if (block > to) block = to; 1027 if (block > to) block = to;
628 } 1028 }
629 1029
630 if (periodiccnt) 1030 if (periodiccnt)
631 { 1031 {
632 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1032 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
633 if (block > to) block = to; 1033 if (block > to) block = to;
634 } 1034 }
635 1035
636 if (block < 0.) block = 0.; 1036 if (block < 0.) block = 0.;
637 } 1037 }
638 1038
639 method_poll (block); 1039 method_poll (EV_A_ block);
640 1040
641 /* update ev_now, do magic */ 1041 /* update rt_now, do magic */
642 time_update (); 1042 time_update (EV_A);
643 1043
644 /* queue pending timers and reschedule them */ 1044 /* queue pending timers and reschedule them */
645 timers_reify (); /* relative timers called last */ 1045 timers_reify (EV_A); /* relative timers called last */
646 periodics_reify (); /* absolute timers called first */ 1046 periodics_reify (EV_A); /* absolute timers called first */
647 1047
648 /* queue idle watchers unless io or timers are pending */ 1048 /* queue idle watchers unless io or timers are pending */
649 if (!pendingcnt) 1049 if (!pendingcnt)
650 queue_events ((W *)idles, idlecnt, EV_IDLE); 1050 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
651 1051
652 /* queue check watchers, to be executed first */ 1052 /* queue check watchers, to be executed first */
653 if (checkcnt) 1053 if (checkcnt)
654 queue_events ((W *)checks, checkcnt, EV_CHECK); 1054 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
655 1055
656 call_pending (); 1056 call_pending (EV_A);
657 } 1057 }
658 while (!ev_loop_done); 1058 while (activecnt && !loop_done);
659 1059
660 if (ev_loop_done != 2) 1060 if (loop_done != 2)
661 ev_loop_done = 0; 1061 loop_done = 0;
1062}
1063
1064void
1065ev_unloop (EV_P_ int how)
1066{
1067 loop_done = how;
662} 1068}
663 1069
664/*****************************************************************************/ 1070/*****************************************************************************/
665 1071
666static void 1072inline void
667wlist_add (WL *head, WL elem) 1073wlist_add (WL *head, WL elem)
668{ 1074{
669 elem->next = *head; 1075 elem->next = *head;
670 *head = elem; 1076 *head = elem;
671} 1077}
672 1078
673static void 1079inline void
674wlist_del (WL *head, WL elem) 1080wlist_del (WL *head, WL elem)
675{ 1081{
676 while (*head) 1082 while (*head)
677 { 1083 {
678 if (*head == elem) 1084 if (*head == elem)
683 1089
684 head = &(*head)->next; 1090 head = &(*head)->next;
685 } 1091 }
686} 1092}
687 1093
688static void 1094inline void
689ev_clear (W w) 1095ev_clear_pending (EV_P_ W w)
690{ 1096{
691 if (w->pending) 1097 if (w->pending)
692 { 1098 {
693 pendings [w->pending - 1].w = 0; 1099 pendings [ABSPRI (w)][w->pending - 1].w = 0;
694 w->pending = 0; 1100 w->pending = 0;
695 } 1101 }
696} 1102}
697 1103
698static void 1104inline void
699ev_start (W w, int active) 1105ev_start (EV_P_ W w, int active)
700{ 1106{
1107 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1108 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1109
701 w->active = active; 1110 w->active = active;
1111 ev_ref (EV_A);
702} 1112}
703 1113
704static void 1114inline void
705ev_stop (W w) 1115ev_stop (EV_P_ W w)
706{ 1116{
1117 ev_unref (EV_A);
707 w->active = 0; 1118 w->active = 0;
708} 1119}
709 1120
710/*****************************************************************************/ 1121/*****************************************************************************/
711 1122
712void 1123void
713evio_start (struct ev_io *w) 1124ev_io_start (EV_P_ struct ev_io *w)
714{ 1125{
1126 int fd = w->fd;
1127
715 if (ev_is_active (w)) 1128 if (ev_is_active (w))
716 return; 1129 return;
717 1130
718 int fd = w->fd; 1131 assert (("ev_io_start called with negative fd", fd >= 0));
719 1132
720 ev_start ((W)w, 1); 1133 ev_start (EV_A_ (W)w, 1);
721 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1134 array_needsize (anfds, anfdmax, fd + 1, anfds_init);
722 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1135 wlist_add ((WL *)&anfds[fd].head, (WL)w);
723 1136
724 ++fdchangecnt; 1137 fd_change (EV_A_ fd);
725 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
726 fdchanges [fdchangecnt - 1] = fd;
727} 1138}
728 1139
729void 1140void
730evio_stop (struct ev_io *w) 1141ev_io_stop (EV_P_ struct ev_io *w)
731{ 1142{
732 ev_clear ((W)w); 1143 ev_clear_pending (EV_A_ (W)w);
733 if (!ev_is_active (w)) 1144 if (!ev_is_active (w))
734 return; 1145 return;
735 1146
736 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1147 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
737 ev_stop ((W)w); 1148 ev_stop (EV_A_ (W)w);
738 1149
739 ++fdchangecnt; 1150 fd_change (EV_A_ w->fd);
740 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
741 fdchanges [fdchangecnt - 1] = w->fd;
742} 1151}
743 1152
744void 1153void
745evtimer_start (struct ev_timer *w) 1154ev_timer_start (EV_P_ struct ev_timer *w)
746{ 1155{
747 if (ev_is_active (w)) 1156 if (ev_is_active (w))
748 return; 1157 return;
749 1158
750 w->at += now; 1159 ((WT)w)->at += mn_now;
751 1160
752 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1161 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
753 1162
754 ev_start ((W)w, ++timercnt); 1163 ev_start (EV_A_ (W)w, ++timercnt);
755 array_needsize (timers, timermax, timercnt, ); 1164 array_needsize (timers, timermax, timercnt, );
756 timers [timercnt - 1] = w; 1165 timers [timercnt - 1] = w;
757 upheap ((WT *)timers, timercnt - 1); 1166 upheap ((WT *)timers, timercnt - 1);
758}
759 1167
1168 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1169}
1170
760void 1171void
761evtimer_stop (struct ev_timer *w) 1172ev_timer_stop (EV_P_ struct ev_timer *w)
762{ 1173{
763 ev_clear ((W)w); 1174 ev_clear_pending (EV_A_ (W)w);
764 if (!ev_is_active (w)) 1175 if (!ev_is_active (w))
765 return; 1176 return;
766 1177
1178 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1179
767 if (w->active < timercnt--) 1180 if (((W)w)->active < timercnt--)
768 { 1181 {
769 timers [w->active - 1] = timers [timercnt]; 1182 timers [((W)w)->active - 1] = timers [timercnt];
770 downheap ((WT *)timers, timercnt, w->active - 1); 1183 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
771 } 1184 }
772 1185
773 w->at = w->repeat; 1186 ((WT)w)->at = w->repeat;
774 1187
775 ev_stop ((W)w); 1188 ev_stop (EV_A_ (W)w);
776} 1189}
777 1190
778void 1191void
779evtimer_again (struct ev_timer *w) 1192ev_timer_again (EV_P_ struct ev_timer *w)
780{ 1193{
781 if (ev_is_active (w)) 1194 if (ev_is_active (w))
782 { 1195 {
783 if (w->repeat) 1196 if (w->repeat)
784 { 1197 {
785 w->at = now + w->repeat; 1198 ((WT)w)->at = mn_now + w->repeat;
786 downheap ((WT *)timers, timercnt, w->active - 1); 1199 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
787 } 1200 }
788 else 1201 else
789 evtimer_stop (w); 1202 ev_timer_stop (EV_A_ w);
790 } 1203 }
791 else if (w->repeat) 1204 else if (w->repeat)
792 evtimer_start (w); 1205 ev_timer_start (EV_A_ w);
793} 1206}
794 1207
795void 1208void
796evperiodic_start (struct ev_periodic *w) 1209ev_periodic_start (EV_P_ struct ev_periodic *w)
797{ 1210{
798 if (ev_is_active (w)) 1211 if (ev_is_active (w))
799 return; 1212 return;
800 1213
801 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1214 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
802 1215
803 /* this formula differs from the one in periodic_reify because we do not always round up */ 1216 /* this formula differs from the one in periodic_reify because we do not always round up */
804 if (w->interval) 1217 if (w->interval)
805 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1218 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
806 1219
807 ev_start ((W)w, ++periodiccnt); 1220 ev_start (EV_A_ (W)w, ++periodiccnt);
808 array_needsize (periodics, periodicmax, periodiccnt, ); 1221 array_needsize (periodics, periodicmax, periodiccnt, );
809 periodics [periodiccnt - 1] = w; 1222 periodics [periodiccnt - 1] = w;
810 upheap ((WT *)periodics, periodiccnt - 1); 1223 upheap ((WT *)periodics, periodiccnt - 1);
811}
812 1224
1225 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1226}
1227
813void 1228void
814evperiodic_stop (struct ev_periodic *w) 1229ev_periodic_stop (EV_P_ struct ev_periodic *w)
815{ 1230{
816 ev_clear ((W)w); 1231 ev_clear_pending (EV_A_ (W)w);
817 if (!ev_is_active (w)) 1232 if (!ev_is_active (w))
818 return; 1233 return;
819 1234
1235 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1236
820 if (w->active < periodiccnt--) 1237 if (((W)w)->active < periodiccnt--)
821 { 1238 {
822 periodics [w->active - 1] = periodics [periodiccnt]; 1239 periodics [((W)w)->active - 1] = periodics [periodiccnt];
823 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1240 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
824 } 1241 }
825 1242
826 ev_stop ((W)w); 1243 ev_stop (EV_A_ (W)w);
827} 1244}
828 1245
829void 1246void
830evsignal_start (struct ev_signal *w) 1247ev_idle_start (EV_P_ struct ev_idle *w)
831{ 1248{
832 if (ev_is_active (w)) 1249 if (ev_is_active (w))
833 return; 1250 return;
834 1251
1252 ev_start (EV_A_ (W)w, ++idlecnt);
1253 array_needsize (idles, idlemax, idlecnt, );
1254 idles [idlecnt - 1] = w;
1255}
1256
1257void
1258ev_idle_stop (EV_P_ struct ev_idle *w)
1259{
1260 ev_clear_pending (EV_A_ (W)w);
1261 if (ev_is_active (w))
1262 return;
1263
1264 idles [((W)w)->active - 1] = idles [--idlecnt];
1265 ev_stop (EV_A_ (W)w);
1266}
1267
1268void
1269ev_prepare_start (EV_P_ struct ev_prepare *w)
1270{
1271 if (ev_is_active (w))
1272 return;
1273
1274 ev_start (EV_A_ (W)w, ++preparecnt);
1275 array_needsize (prepares, preparemax, preparecnt, );
1276 prepares [preparecnt - 1] = w;
1277}
1278
1279void
1280ev_prepare_stop (EV_P_ struct ev_prepare *w)
1281{
1282 ev_clear_pending (EV_A_ (W)w);
1283 if (ev_is_active (w))
1284 return;
1285
1286 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1287 ev_stop (EV_A_ (W)w);
1288}
1289
1290void
1291ev_check_start (EV_P_ struct ev_check *w)
1292{
1293 if (ev_is_active (w))
1294 return;
1295
1296 ev_start (EV_A_ (W)w, ++checkcnt);
1297 array_needsize (checks, checkmax, checkcnt, );
1298 checks [checkcnt - 1] = w;
1299}
1300
1301void
1302ev_check_stop (EV_P_ struct ev_check *w)
1303{
1304 ev_clear_pending (EV_A_ (W)w);
1305 if (ev_is_active (w))
1306 return;
1307
1308 checks [((W)w)->active - 1] = checks [--checkcnt];
1309 ev_stop (EV_A_ (W)w);
1310}
1311
1312#ifndef SA_RESTART
1313# define SA_RESTART 0
1314#endif
1315
1316void
1317ev_signal_start (EV_P_ struct ev_signal *w)
1318{
1319#if EV_MULTIPLICITY
1320 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1321#endif
1322 if (ev_is_active (w))
1323 return;
1324
1325 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1326
835 ev_start ((W)w, 1); 1327 ev_start (EV_A_ (W)w, 1);
836 array_needsize (signals, signalmax, w->signum, signals_init); 1328 array_needsize (signals, signalmax, w->signum, signals_init);
837 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1329 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
838 1330
839 if (!w->next) 1331 if (!((WL)w)->next)
840 { 1332 {
1333#if WIN32
1334 signal (w->signum, sighandler);
1335#else
841 struct sigaction sa; 1336 struct sigaction sa;
842 sa.sa_handler = sighandler; 1337 sa.sa_handler = sighandler;
843 sigfillset (&sa.sa_mask); 1338 sigfillset (&sa.sa_mask);
844 sa.sa_flags = 0; 1339 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
845 sigaction (w->signum, &sa, 0); 1340 sigaction (w->signum, &sa, 0);
1341#endif
846 } 1342 }
847} 1343}
848 1344
849void 1345void
850evsignal_stop (struct ev_signal *w) 1346ev_signal_stop (EV_P_ struct ev_signal *w)
851{ 1347{
852 ev_clear ((W)w); 1348 ev_clear_pending (EV_A_ (W)w);
853 if (!ev_is_active (w)) 1349 if (!ev_is_active (w))
854 return; 1350 return;
855 1351
856 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1352 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
857 ev_stop ((W)w); 1353 ev_stop (EV_A_ (W)w);
858 1354
859 if (!signals [w->signum - 1].head) 1355 if (!signals [w->signum - 1].head)
860 signal (w->signum, SIG_DFL); 1356 signal (w->signum, SIG_DFL);
861} 1357}
862 1358
863void evidle_start (struct ev_idle *w) 1359void
1360ev_child_start (EV_P_ struct ev_child *w)
864{ 1361{
1362#if EV_MULTIPLICITY
1363 assert (("child watchers are only supported in the default loop", loop == default_loop));
1364#endif
865 if (ev_is_active (w)) 1365 if (ev_is_active (w))
866 return; 1366 return;
867 1367
868 ev_start ((W)w, ++idlecnt); 1368 ev_start (EV_A_ (W)w, 1);
869 array_needsize (idles, idlemax, idlecnt, ); 1369 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
870 idles [idlecnt - 1] = w;
871} 1370}
872 1371
873void evidle_stop (struct ev_idle *w) 1372void
1373ev_child_stop (EV_P_ struct ev_child *w)
874{ 1374{
875 ev_clear ((W)w); 1375 ev_clear_pending (EV_A_ (W)w);
876 if (ev_is_active (w)) 1376 if (ev_is_active (w))
877 return; 1377 return;
878 1378
879 idles [w->active - 1] = idles [--idlecnt];
880 ev_stop ((W)w);
881}
882
883void evprepare_start (struct ev_prepare *w)
884{
885 if (ev_is_active (w))
886 return;
887
888 ev_start ((W)w, ++preparecnt);
889 array_needsize (prepares, preparemax, preparecnt, );
890 prepares [preparecnt - 1] = w;
891}
892
893void evprepare_stop (struct ev_prepare *w)
894{
895 ev_clear ((W)w);
896 if (ev_is_active (w))
897 return;
898
899 prepares [w->active - 1] = prepares [--preparecnt];
900 ev_stop ((W)w);
901}
902
903void evcheck_start (struct ev_check *w)
904{
905 if (ev_is_active (w))
906 return;
907
908 ev_start ((W)w, ++checkcnt);
909 array_needsize (checks, checkmax, checkcnt, );
910 checks [checkcnt - 1] = w;
911}
912
913void evcheck_stop (struct ev_check *w)
914{
915 ev_clear ((W)w);
916 if (ev_is_active (w))
917 return;
918
919 checks [w->active - 1] = checks [--checkcnt];
920 ev_stop ((W)w);
921}
922
923void evchild_start (struct ev_child *w)
924{
925 if (ev_is_active (w))
926 return;
927
928 ev_start ((W)w, 1);
929 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
930}
931
932void evchild_stop (struct ev_child *w)
933{
934 ev_clear ((W)w);
935 if (ev_is_active (w))
936 return;
937
938 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1379 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
939 ev_stop ((W)w); 1380 ev_stop (EV_A_ (W)w);
940} 1381}
941 1382
942/*****************************************************************************/ 1383/*****************************************************************************/
943 1384
944struct ev_once 1385struct ev_once
948 void (*cb)(int revents, void *arg); 1389 void (*cb)(int revents, void *arg);
949 void *arg; 1390 void *arg;
950}; 1391};
951 1392
952static void 1393static void
953once_cb (struct ev_once *once, int revents) 1394once_cb (EV_P_ struct ev_once *once, int revents)
954{ 1395{
955 void (*cb)(int revents, void *arg) = once->cb; 1396 void (*cb)(int revents, void *arg) = once->cb;
956 void *arg = once->arg; 1397 void *arg = once->arg;
957 1398
958 evio_stop (&once->io); 1399 ev_io_stop (EV_A_ &once->io);
959 evtimer_stop (&once->to); 1400 ev_timer_stop (EV_A_ &once->to);
960 free (once); 1401 free (once);
961 1402
962 cb (revents, arg); 1403 cb (revents, arg);
963} 1404}
964 1405
965static void 1406static void
966once_cb_io (struct ev_io *w, int revents) 1407once_cb_io (EV_P_ struct ev_io *w, int revents)
967{ 1408{
968 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1409 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
969} 1410}
970 1411
971static void 1412static void
972once_cb_to (struct ev_timer *w, int revents) 1413once_cb_to (EV_P_ struct ev_timer *w, int revents)
973{ 1414{
974 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1415 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
975} 1416}
976 1417
977void 1418void
978ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1419ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
979{ 1420{
980 struct ev_once *once = malloc (sizeof (struct ev_once)); 1421 struct ev_once *once = malloc (sizeof (struct ev_once));
981 1422
982 if (!once) 1423 if (!once)
983 cb (EV_ERROR, arg); 1424 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
984 else 1425 else
985 { 1426 {
986 once->cb = cb; 1427 once->cb = cb;
987 once->arg = arg; 1428 once->arg = arg;
988 1429
989 evw_init (&once->io, once_cb_io); 1430 ev_watcher_init (&once->io, once_cb_io);
990
991 if (fd >= 0) 1431 if (fd >= 0)
992 { 1432 {
993 evio_set (&once->io, fd, events); 1433 ev_io_set (&once->io, fd, events);
994 evio_start (&once->io); 1434 ev_io_start (EV_A_ &once->io);
995 } 1435 }
996 1436
997 evw_init (&once->to, once_cb_to); 1437 ev_watcher_init (&once->to, once_cb_to);
998
999 if (timeout >= 0.) 1438 if (timeout >= 0.)
1000 { 1439 {
1001 evtimer_set (&once->to, timeout, 0.); 1440 ev_timer_set (&once->to, timeout, 0.);
1002 evtimer_start (&once->to); 1441 ev_timer_start (EV_A_ &once->to);
1003 } 1442 }
1004 } 1443 }
1005} 1444}
1006 1445
1007/*****************************************************************************/
1008
1009#if 0
1010
1011struct ev_io wio;
1012
1013static void
1014sin_cb (struct ev_io *w, int revents)
1015{
1016 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1017}
1018
1019static void
1020ocb (struct ev_timer *w, int revents)
1021{
1022 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1023 evtimer_stop (w);
1024 evtimer_start (w);
1025}
1026
1027static void
1028scb (struct ev_signal *w, int revents)
1029{
1030 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1031 evio_stop (&wio);
1032 evio_start (&wio);
1033}
1034
1035static void
1036gcb (struct ev_signal *w, int revents)
1037{
1038 fprintf (stderr, "generic %x\n", revents);
1039
1040}
1041
1042int main (void)
1043{
1044 ev_init (0);
1045
1046 evio_init (&wio, sin_cb, 0, EV_READ);
1047 evio_start (&wio);
1048
1049 struct ev_timer t[10000];
1050
1051#if 0
1052 int i;
1053 for (i = 0; i < 10000; ++i)
1054 {
1055 struct ev_timer *w = t + i;
1056 evw_init (w, ocb, i);
1057 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1058 evtimer_start (w);
1059 if (drand48 () < 0.5)
1060 evtimer_stop (w);
1061 }
1062#endif
1063
1064 struct ev_timer t1;
1065 evtimer_init (&t1, ocb, 5, 10);
1066 evtimer_start (&t1);
1067
1068 struct ev_signal sig;
1069 evsignal_init (&sig, scb, SIGQUIT);
1070 evsignal_start (&sig);
1071
1072 struct ev_check cw;
1073 evcheck_init (&cw, gcb);
1074 evcheck_start (&cw);
1075
1076 struct ev_idle iw;
1077 evidle_init (&iw, gcb);
1078 evidle_start (&iw);
1079
1080 ev_loop (0);
1081
1082 return 0;
1083}
1084
1085#endif
1086
1087
1088
1089

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines