ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.23 by root, Wed Oct 31 20:10:17 2007 UTC vs.
Revision 1.79 by root, Fri Nov 9 15:15:20 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h>
33#include <fcntl.h> 59#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 60#include <stddef.h>
36 61
37#include <stdio.h> 62#include <stdio.h>
38 63
39#include <assert.h> 64#include <assert.h>
40#include <errno.h> 65#include <errno.h>
41#include <sys/types.h> 66#include <sys/types.h>
42#include <sys/wait.h>
43#include <sys/time.h>
44#include <time.h> 67#include <time.h>
45 68
69#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
46#ifndef HAVE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
47# ifdef CLOCK_MONOTONIC
48# define HAVE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
49# endif 105# endif
50#endif 106#endif
51 107
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 108#ifndef EV_USE_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 109# define EV_USE_REALTIME 1
62#endif 110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0
122#endif
123
124/**/
63 125
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
67 130
68#include "ev.h" 131#include "ev.h"
132
133#if __GNUC__ >= 3
134# define expect(expr,value) __builtin_expect ((expr),(value))
135# define inline inline
136#else
137# define expect(expr,value) (expr)
138# define inline static
139#endif
140
141#define expect_false(expr) expect ((expr) != 0, 0)
142#define expect_true(expr) expect ((expr) != 0, 1)
143
144#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
145#define ABSPRI(w) ((w)->priority - EV_MINPRI)
69 146
70typedef struct ev_watcher *W; 147typedef struct ev_watcher *W;
71typedef struct ev_watcher_list *WL; 148typedef struct ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 149typedef struct ev_watcher_time *WT;
73 150
74static ev_tstamp now, diff; /* monotonic clock */ 151static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
75ev_tstamp ev_now;
76int ev_method;
77 152
78static int have_monotonic; /* runtime */ 153#include "ev_win32.c"
79
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
81static void (*method_modify)(int fd, int oev, int nev);
82static void (*method_poll)(ev_tstamp timeout);
83 154
84/*****************************************************************************/ 155/*****************************************************************************/
85 156
86ev_tstamp 157static void (*syserr_cb)(const char *msg);
158
159void ev_set_syserr_cb (void (*cb)(const char *msg))
160{
161 syserr_cb = cb;
162}
163
164static void
165syserr (const char *msg)
166{
167 if (!msg)
168 msg = "(libev) system error";
169
170 if (syserr_cb)
171 syserr_cb (msg);
172 else
173 {
174 perror (msg);
175 abort ();
176 }
177}
178
179static void *(*alloc)(void *ptr, long size);
180
181void ev_set_allocator (void *(*cb)(void *ptr, long size))
182{
183 alloc = cb;
184}
185
186static void *
187ev_realloc (void *ptr, long size)
188{
189 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
190
191 if (!ptr && size)
192 {
193 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
194 abort ();
195 }
196
197 return ptr;
198}
199
200#define ev_malloc(size) ev_realloc (0, (size))
201#define ev_free(ptr) ev_realloc ((ptr), 0)
202
203/*****************************************************************************/
204
205typedef struct
206{
207 WL head;
208 unsigned char events;
209 unsigned char reify;
210} ANFD;
211
212typedef struct
213{
214 W w;
215 int events;
216} ANPENDING;
217
218#if EV_MULTIPLICITY
219
220struct ev_loop
221{
222# define VAR(name,decl) decl;
223# include "ev_vars.h"
224};
225# undef VAR
226# include "ev_wrap.h"
227
228#else
229
230# define VAR(name,decl) static decl;
231# include "ev_vars.h"
232# undef VAR
233
234#endif
235
236/*****************************************************************************/
237
238inline ev_tstamp
87ev_time (void) 239ev_time (void)
88{ 240{
89#if HAVE_REALTIME 241#if EV_USE_REALTIME
90 struct timespec ts; 242 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 243 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 244 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 245#else
94 struct timeval tv; 246 struct timeval tv;
95 gettimeofday (&tv, 0); 247 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 248 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 249#endif
98} 250}
99 251
100static ev_tstamp 252inline ev_tstamp
101get_clock (void) 253get_clock (void)
102{ 254{
103#if HAVE_MONOTONIC 255#if EV_USE_MONOTONIC
104 if (have_monotonic) 256 if (expect_true (have_monotonic))
105 { 257 {
106 struct timespec ts; 258 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 259 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 260 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 261 }
110#endif 262#endif
111 263
112 return ev_time (); 264 return ev_time ();
113} 265}
114 266
267ev_tstamp
268ev_now (EV_P)
269{
270 return rt_now;
271}
272
273#define array_roundsize(type,n) ((n) | 4 & ~3)
274
115#define array_needsize(base,cur,cnt,init) \ 275#define array_needsize(type,base,cur,cnt,init) \
116 if ((cnt) > cur) \ 276 if (expect_false ((cnt) > cur)) \
117 { \ 277 { \
118 int newcnt = cur; \ 278 int newcnt = cur; \
119 do \ 279 do \
120 { \ 280 { \
121 newcnt = (newcnt << 1) | 4 & ~3; \ 281 newcnt = array_roundsize (type, newcnt << 1); \
122 } \ 282 } \
123 while ((cnt) > newcnt); \ 283 while ((cnt) > newcnt); \
124 \ 284 \
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 285 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
126 init (base + cur, newcnt - cur); \ 286 init (base + cur, newcnt - cur); \
127 cur = newcnt; \ 287 cur = newcnt; \
128 } 288 }
289
290#define array_slim(type,stem) \
291 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
292 { \
293 stem ## max = array_roundsize (stem ## cnt >> 1); \
294 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
295 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
296 }
297
298/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
299/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
300#define array_free_microshit(stem) \
301 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
302
303#define array_free(stem, idx) \
304 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
129 305
130/*****************************************************************************/ 306/*****************************************************************************/
131 307
132typedef struct
133{
134 struct ev_io *head;
135 unsigned char wev, rev; /* want, received event set */
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140
141static int *fdchanges;
142static int fdchangemax, fdchangecnt;
143
144static void 308static void
145anfds_init (ANFD *base, int count) 309anfds_init (ANFD *base, int count)
146{ 310{
147 while (count--) 311 while (count--)
148 { 312 {
149 base->head = 0; 313 base->head = 0;
150 base->wev = base->rev = EV_NONE; 314 base->events = EV_NONE;
315 base->reify = 0;
316
151 ++base; 317 ++base;
152 } 318 }
153} 319}
154 320
155typedef struct 321void
322ev_feed_event (EV_P_ void *w, int revents)
156{ 323{
157 W w; 324 W w_ = (W)w;
158 int events;
159} ANPENDING;
160 325
161static ANPENDING *pendings; 326 if (w_->pending)
162static int pendingmax, pendingcnt;
163
164static void
165event (W w, int events)
166{
167 if (w->active)
168 { 327 {
169 w->pending = ++pendingcnt;
170 array_needsize (pendings, pendingmax, pendingcnt, );
171 pendings [pendingcnt - 1].w = w;
172 pendings [pendingcnt - 1].events = events; 328 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
329 return;
173 } 330 }
174}
175 331
332 w_->pending = ++pendingcnt [ABSPRI (w_)];
333 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
334 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
335 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
336}
337
176static void 338static void
339queue_events (EV_P_ W *events, int eventcnt, int type)
340{
341 int i;
342
343 for (i = 0; i < eventcnt; ++i)
344 ev_feed_event (EV_A_ events [i], type);
345}
346
347inline void
177fd_event (int fd, int events) 348fd_event (EV_P_ int fd, int revents)
178{ 349{
179 ANFD *anfd = anfds + fd; 350 ANFD *anfd = anfds + fd;
180 struct ev_io *w; 351 struct ev_io *w;
181 352
182 for (w = anfd->head; w; w = w->next) 353 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
183 { 354 {
184 int ev = w->events & events; 355 int ev = w->events & revents;
185 356
186 if (ev) 357 if (ev)
187 event ((W)w, ev); 358 ev_feed_event (EV_A_ (W)w, ev);
188 } 359 }
189} 360}
190 361
362void
363ev_feed_fd_event (EV_P_ int fd, int revents)
364{
365 fd_event (EV_A_ fd, revents);
366}
367
368/*****************************************************************************/
369
191static void 370static void
192queue_events (W *events, int eventcnt, int type) 371fd_reify (EV_P)
193{ 372{
194 int i; 373 int i;
195 374
196 for (i = 0; i < eventcnt; ++i) 375 for (i = 0; i < fdchangecnt; ++i)
197 event (events [i], type); 376 {
377 int fd = fdchanges [i];
378 ANFD *anfd = anfds + fd;
379 struct ev_io *w;
380
381 int events = 0;
382
383 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
384 events |= w->events;
385
386 anfd->reify = 0;
387
388 method_modify (EV_A_ fd, anfd->events, events);
389 anfd->events = events;
390 }
391
392 fdchangecnt = 0;
393}
394
395static void
396fd_change (EV_P_ int fd)
397{
398 if (anfds [fd].reify)
399 return;
400
401 anfds [fd].reify = 1;
402
403 ++fdchangecnt;
404 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
405 fdchanges [fdchangecnt - 1] = fd;
406}
407
408static void
409fd_kill (EV_P_ int fd)
410{
411 struct ev_io *w;
412
413 while ((w = (struct ev_io *)anfds [fd].head))
414 {
415 ev_io_stop (EV_A_ w);
416 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
417 }
418}
419
420static int
421fd_valid (int fd)
422{
423#ifdef WIN32
424 return !!win32_get_osfhandle (fd);
425#else
426 return fcntl (fd, F_GETFD) != -1;
427#endif
198} 428}
199 429
200/* called on EBADF to verify fds */ 430/* called on EBADF to verify fds */
201static void 431static void
202fd_recheck () 432fd_ebadf (EV_P)
203{ 433{
204 int fd; 434 int fd;
205 435
206 for (fd = 0; fd < anfdmax; ++fd) 436 for (fd = 0; fd < anfdmax; ++fd)
207 if (anfds [fd].wev) 437 if (anfds [fd].events)
208 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 438 if (!fd_valid (fd) == -1 && errno == EBADF)
209 while (anfds [fd].head) 439 fd_kill (EV_A_ fd);
210 evio_stop (anfds [fd].head); 440}
441
442/* called on ENOMEM in select/poll to kill some fds and retry */
443static void
444fd_enomem (EV_P)
445{
446 int fd;
447
448 for (fd = anfdmax; fd--; )
449 if (anfds [fd].events)
450 {
451 fd_kill (EV_A_ fd);
452 return;
453 }
454}
455
456/* usually called after fork if method needs to re-arm all fds from scratch */
457static void
458fd_rearm_all (EV_P)
459{
460 int fd;
461
462 /* this should be highly optimised to not do anything but set a flag */
463 for (fd = 0; fd < anfdmax; ++fd)
464 if (anfds [fd].events)
465 {
466 anfds [fd].events = 0;
467 fd_change (EV_A_ fd);
468 }
211} 469}
212 470
213/*****************************************************************************/ 471/*****************************************************************************/
214 472
215static struct ev_timer **timers;
216static int timermax, timercnt;
217
218static struct ev_periodic **periodics;
219static int periodicmax, periodiccnt;
220
221static void 473static void
222upheap (WT *timers, int k) 474upheap (WT *heap, int k)
223{ 475{
224 WT w = timers [k]; 476 WT w = heap [k];
225 477
226 while (k && timers [k >> 1]->at > w->at) 478 while (k && heap [k >> 1]->at > w->at)
227 { 479 {
228 timers [k] = timers [k >> 1]; 480 heap [k] = heap [k >> 1];
229 timers [k]->active = k + 1; 481 ((W)heap [k])->active = k + 1;
230 k >>= 1; 482 k >>= 1;
231 } 483 }
232 484
233 timers [k] = w; 485 heap [k] = w;
234 timers [k]->active = k + 1; 486 ((W)heap [k])->active = k + 1;
235 487
236} 488}
237 489
238static void 490static void
239downheap (WT *timers, int N, int k) 491downheap (WT *heap, int N, int k)
240{ 492{
241 WT w = timers [k]; 493 WT w = heap [k];
242 494
243 while (k < (N >> 1)) 495 while (k < (N >> 1))
244 { 496 {
245 int j = k << 1; 497 int j = k << 1;
246 498
247 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 499 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
248 ++j; 500 ++j;
249 501
250 if (w->at <= timers [j]->at) 502 if (w->at <= heap [j]->at)
251 break; 503 break;
252 504
253 timers [k] = timers [j]; 505 heap [k] = heap [j];
254 timers [k]->active = k + 1; 506 ((W)heap [k])->active = k + 1;
255 k = j; 507 k = j;
256 } 508 }
257 509
258 timers [k] = w; 510 heap [k] = w;
259 timers [k]->active = k + 1; 511 ((W)heap [k])->active = k + 1;
260} 512}
261 513
262/*****************************************************************************/ 514/*****************************************************************************/
263 515
264typedef struct 516typedef struct
265{ 517{
266 struct ev_signal *head; 518 WL head;
267 sig_atomic_t gotsig; 519 sig_atomic_t volatile gotsig;
268} ANSIG; 520} ANSIG;
269 521
270static ANSIG *signals; 522static ANSIG *signals;
271static int signalmax; 523static int signalmax;
272 524
273static int sigpipe [2]; 525static int sigpipe [2];
274static sig_atomic_t gotsig; 526static sig_atomic_t volatile gotsig;
275static struct ev_io sigev; 527static struct ev_io sigev;
276 528
277static void 529static void
278signals_init (ANSIG *base, int count) 530signals_init (ANSIG *base, int count)
279{ 531{
280 while (count--) 532 while (count--)
281 { 533 {
282 base->head = 0; 534 base->head = 0;
283 base->gotsig = 0; 535 base->gotsig = 0;
536
284 ++base; 537 ++base;
285 } 538 }
286} 539}
287 540
288static void 541static void
289sighandler (int signum) 542sighandler (int signum)
290{ 543{
544#if WIN32
545 signal (signum, sighandler);
546#endif
547
291 signals [signum - 1].gotsig = 1; 548 signals [signum - 1].gotsig = 1;
292 549
293 if (!gotsig) 550 if (!gotsig)
294 { 551 {
552 int old_errno = errno;
295 gotsig = 1; 553 gotsig = 1;
554#ifdef WIN32
555 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
556#else
296 write (sigpipe [1], &gotsig, 1); 557 write (sigpipe [1], &signum, 1);
558#endif
559 errno = old_errno;
297 } 560 }
298} 561}
299 562
563void
564ev_feed_signal_event (EV_P_ int signum)
565{
566#if EV_MULTIPLICITY
567 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
568#endif
569
570 --signum;
571
572 if (signum < 0 || signum >= signalmax)
573 return;
574
575 signals [signum].gotsig = 0;
576
577 for (w = signals [signum].head; w; w = w->next)
578 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
579}
580
300static void 581static void
301sigcb (struct ev_io *iow, int revents) 582sigcb (EV_P_ struct ev_io *iow, int revents)
302{ 583{
303 struct ev_signal *w; 584 WL w;
304 int sig; 585 int signum;
305 586
587#ifdef WIN32
588 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
589#else
590 read (sigpipe [0], &revents, 1);
591#endif
306 gotsig = 0; 592 gotsig = 0;
307 read (sigpipe [0], &revents, 1);
308 593
309 for (sig = signalmax; sig--; ) 594 for (signum = signalmax; signum--; )
310 if (signals [sig].gotsig) 595 if (signals [signum].gotsig)
311 { 596 sigevent (EV_A_ signum + 1);
312 signals [sig].gotsig = 0;
313
314 for (w = signals [sig].head; w; w = w->next)
315 event ((W)w, EV_SIGNAL);
316 }
317} 597}
318 598
319static void 599static void
320siginit (void) 600siginit (EV_P)
321{ 601{
602#ifndef WIN32
322 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 603 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
323 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 604 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
324 605
325 /* rather than sort out wether we really need nb, set it */ 606 /* rather than sort out wether we really need nb, set it */
326 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 607 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
327 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 608 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
609#endif
328 610
329 evio_set (&sigev, sigpipe [0], EV_READ); 611 ev_io_set (&sigev, sigpipe [0], EV_READ);
330 evio_start (&sigev); 612 ev_io_start (EV_A_ &sigev);
613 ev_unref (EV_A); /* child watcher should not keep loop alive */
331} 614}
332 615
333/*****************************************************************************/ 616/*****************************************************************************/
334 617
335static struct ev_idle **idles;
336static int idlemax, idlecnt;
337
338static struct ev_prepare **prepares;
339static int preparemax, preparecnt;
340
341static struct ev_check **checks;
342static int checkmax, checkcnt;
343
344/*****************************************************************************/
345
346static struct ev_child *childs [PID_HASHSIZE]; 618static struct ev_child *childs [PID_HASHSIZE];
619
620#ifndef WIN32
621
347static struct ev_signal childev; 622static struct ev_signal childev;
348 623
349#ifndef WCONTINUED 624#ifndef WCONTINUED
350# define WCONTINUED 0 625# define WCONTINUED 0
351#endif 626#endif
352 627
353static void 628static void
354childcb (struct ev_signal *sw, int revents) 629child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
355{ 630{
356 struct ev_child *w; 631 struct ev_child *w;
632
633 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
634 if (w->pid == pid || !w->pid)
635 {
636 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
637 w->rpid = pid;
638 w->rstatus = status;
639 ev_feed_event (EV_A_ (W)w, EV_CHILD);
640 }
641}
642
643static void
644childcb (EV_P_ struct ev_signal *sw, int revents)
645{
357 int pid, status; 646 int pid, status;
358 647
359 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 648 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
360 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 649 {
361 if (w->pid == pid || w->pid == -1) 650 /* make sure we are called again until all childs have been reaped */
362 { 651 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
363 w->status = status; 652
364 event ((W)w, EV_CHILD); 653 child_reap (EV_A_ sw, pid, pid, status);
365 } 654 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
655 }
366} 656}
657
658#endif
367 659
368/*****************************************************************************/ 660/*****************************************************************************/
369 661
662#if EV_USE_KQUEUE
663# include "ev_kqueue.c"
664#endif
370#if HAVE_EPOLL 665#if EV_USE_EPOLL
371# include "ev_epoll.c" 666# include "ev_epoll.c"
372#endif 667#endif
668#if EV_USE_POLL
669# include "ev_poll.c"
670#endif
373#if HAVE_SELECT 671#if EV_USE_SELECT
374# include "ev_select.c" 672# include "ev_select.c"
375#endif 673#endif
376 674
377int ev_init (int flags) 675int
676ev_version_major (void)
378{ 677{
678 return EV_VERSION_MAJOR;
679}
680
681int
682ev_version_minor (void)
683{
684 return EV_VERSION_MINOR;
685}
686
687/* return true if we are running with elevated privileges and should ignore env variables */
688static int
689enable_secure (void)
690{
691#ifdef WIN32
692 return 0;
693#else
694 return getuid () != geteuid ()
695 || getgid () != getegid ();
696#endif
697}
698
699int
700ev_method (EV_P)
701{
702 return method;
703}
704
705static void
706loop_init (EV_P_ int methods)
707{
379 if (!ev_method) 708 if (!method)
380 { 709 {
381#if HAVE_MONOTONIC 710#if EV_USE_MONOTONIC
382 { 711 {
383 struct timespec ts; 712 struct timespec ts;
384 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 713 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
385 have_monotonic = 1; 714 have_monotonic = 1;
386 } 715 }
387#endif 716#endif
388 717
389 ev_now = ev_time (); 718 rt_now = ev_time ();
390 now = get_clock (); 719 mn_now = get_clock ();
720 now_floor = mn_now;
391 diff = ev_now - now; 721 rtmn_diff = rt_now - mn_now;
392 722
723 if (methods == EVMETHOD_AUTO)
724 if (!enable_secure () && getenv ("LIBEV_METHODS"))
725 methods = atoi (getenv ("LIBEV_METHODS"));
726 else
727 methods = EVMETHOD_ANY;
728
729 method = 0;
730#if EV_USE_WIN32
731 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
732#endif
733#if EV_USE_KQUEUE
734 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
735#endif
736#if EV_USE_EPOLL
737 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
738#endif
739#if EV_USE_POLL
740 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
741#endif
742#if EV_USE_SELECT
743 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
744#endif
745
746 ev_watcher_init (&sigev, sigcb);
747 ev_set_priority (&sigev, EV_MAXPRI);
748 }
749}
750
751void
752loop_destroy (EV_P)
753{
754 int i;
755
756#if EV_USE_WIN32
757 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
758#endif
759#if EV_USE_KQUEUE
760 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
761#endif
762#if EV_USE_EPOLL
763 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
764#endif
765#if EV_USE_POLL
766 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
767#endif
768#if EV_USE_SELECT
769 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
770#endif
771
772 for (i = NUMPRI; i--; )
773 array_free (pending, [i]);
774
775 /* have to use the microsoft-never-gets-it-right macro */
776 array_free_microshit (fdchange);
777 array_free_microshit (timer);
778 array_free_microshit (periodic);
779 array_free_microshit (idle);
780 array_free_microshit (prepare);
781 array_free_microshit (check);
782
783 method = 0;
784}
785
786static void
787loop_fork (EV_P)
788{
789#if EV_USE_EPOLL
790 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
791#endif
792#if EV_USE_KQUEUE
793 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
794#endif
795
796 if (ev_is_active (&sigev))
797 {
798 /* default loop */
799
800 ev_ref (EV_A);
801 ev_io_stop (EV_A_ &sigev);
802 close (sigpipe [0]);
803 close (sigpipe [1]);
804
805 while (pipe (sigpipe))
806 syserr ("(libev) error creating pipe");
807
808 siginit (EV_A);
809 }
810
811 postfork = 0;
812}
813
814#if EV_MULTIPLICITY
815struct ev_loop *
816ev_loop_new (int methods)
817{
818 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
819
820 memset (loop, 0, sizeof (struct ev_loop));
821
822 loop_init (EV_A_ methods);
823
824 if (ev_method (EV_A))
825 return loop;
826
827 return 0;
828}
829
830void
831ev_loop_destroy (EV_P)
832{
833 loop_destroy (EV_A);
834 ev_free (loop);
835}
836
837void
838ev_loop_fork (EV_P)
839{
840 postfork = 1;
841}
842
843#endif
844
845#if EV_MULTIPLICITY
846struct ev_loop default_loop_struct;
847static struct ev_loop *default_loop;
848
849struct ev_loop *
850#else
851static int default_loop;
852
853int
854#endif
855ev_default_loop (int methods)
856{
857 if (sigpipe [0] == sigpipe [1])
393 if (pipe (sigpipe)) 858 if (pipe (sigpipe))
394 return 0; 859 return 0;
395 860
396 ev_method = EVMETHOD_NONE; 861 if (!default_loop)
397#if HAVE_EPOLL 862 {
398 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 863#if EV_MULTIPLICITY
864 struct ev_loop *loop = default_loop = &default_loop_struct;
865#else
866 default_loop = 1;
399#endif 867#endif
400#if HAVE_SELECT
401 if (ev_method == EVMETHOD_NONE) select_init (flags);
402#endif
403 868
869 loop_init (EV_A_ methods);
870
404 if (ev_method) 871 if (ev_method (EV_A))
405 { 872 {
406 evw_init (&sigev, sigcb);
407 siginit (); 873 siginit (EV_A);
408 874
875#ifndef WIN32
409 evsignal_init (&childev, childcb, SIGCHLD); 876 ev_signal_init (&childev, childcb, SIGCHLD);
877 ev_set_priority (&childev, EV_MAXPRI);
410 evsignal_start (&childev); 878 ev_signal_start (EV_A_ &childev);
879 ev_unref (EV_A); /* child watcher should not keep loop alive */
880#endif
411 } 881 }
882 else
883 default_loop = 0;
412 } 884 }
413 885
414 return ev_method; 886 return default_loop;
887}
888
889void
890ev_default_destroy (void)
891{
892#if EV_MULTIPLICITY
893 struct ev_loop *loop = default_loop;
894#endif
895
896#ifndef WIN32
897 ev_ref (EV_A); /* child watcher */
898 ev_signal_stop (EV_A_ &childev);
899#endif
900
901 ev_ref (EV_A); /* signal watcher */
902 ev_io_stop (EV_A_ &sigev);
903
904 close (sigpipe [0]); sigpipe [0] = 0;
905 close (sigpipe [1]); sigpipe [1] = 0;
906
907 loop_destroy (EV_A);
908}
909
910void
911ev_default_fork (void)
912{
913#if EV_MULTIPLICITY
914 struct ev_loop *loop = default_loop;
915#endif
916
917 if (method)
918 postfork = 1;
415} 919}
416 920
417/*****************************************************************************/ 921/*****************************************************************************/
418 922
419void ev_prefork (void)
420{
421 /* nop */
422}
423
424void ev_postfork_parent (void)
425{
426 /* nop */
427}
428
429void ev_postfork_child (void)
430{
431#if HAVE_EPOLL
432 if (ev_method == EVMETHOD_EPOLL)
433 epoll_postfork_child ();
434#endif
435
436 evio_stop (&sigev);
437 close (sigpipe [0]);
438 close (sigpipe [1]);
439 pipe (sigpipe);
440 siginit ();
441}
442
443/*****************************************************************************/
444
445static void 923static int
446fd_reify (void) 924any_pending (EV_P)
447{ 925{
448 int i; 926 int pri;
449 927
450 for (i = 0; i < fdchangecnt; ++i) 928 for (pri = NUMPRI; pri--; )
451 { 929 if (pendingcnt [pri])
452 int fd = fdchanges [i]; 930 return 1;
453 ANFD *anfd = anfds + fd;
454 struct ev_io *w;
455 931
456 int wev = 0; 932 return 0;
457
458 for (w = anfd->head; w; w = w->next)
459 wev |= w->events;
460
461 if (anfd->wev != wev)
462 {
463 method_modify (fd, anfd->wev, wev);
464 anfd->wev = wev;
465 }
466 }
467
468 fdchangecnt = 0;
469} 933}
470 934
471static void 935static void
472call_pending () 936call_pending (EV_P)
473{ 937{
938 int pri;
939
940 for (pri = NUMPRI; pri--; )
474 while (pendingcnt) 941 while (pendingcnt [pri])
475 { 942 {
476 ANPENDING *p = pendings + --pendingcnt; 943 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
477 944
478 if (p->w) 945 if (p->w)
479 { 946 {
480 p->w->pending = 0; 947 p->w->pending = 0;
481 p->w->cb (p->w, p->events); 948 p->w->cb (EV_A_ p->w, p->events);
482 } 949 }
483 } 950 }
484} 951}
485 952
486static void 953static void
487timers_reify () 954timers_reify (EV_P)
488{ 955{
489 while (timercnt && timers [0]->at <= now) 956 while (timercnt && ((WT)timers [0])->at <= mn_now)
490 { 957 {
491 struct ev_timer *w = timers [0]; 958 struct ev_timer *w = timers [0];
492 959
493 event ((W)w, EV_TIMEOUT); 960 assert (("inactive timer on timer heap detected", ev_is_active (w)));
494 961
495 /* first reschedule or stop timer */ 962 /* first reschedule or stop timer */
496 if (w->repeat) 963 if (w->repeat)
497 { 964 {
965 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
498 w->at = now + w->repeat; 966 ((WT)w)->at = mn_now + w->repeat;
499 assert (("timer timeout in the past, negative repeat?", w->at > now));
500 downheap ((WT *)timers, timercnt, 0); 967 downheap ((WT *)timers, timercnt, 0);
501 } 968 }
502 else 969 else
503 evtimer_stop (w); /* nonrepeating: stop timer */ 970 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
504 }
505}
506 971
972 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
973 }
974}
975
507static void 976static void
508periodics_reify () 977periodics_reify (EV_P)
509{ 978{
510 while (periodiccnt && periodics [0]->at <= ev_now) 979 while (periodiccnt && ((WT)periodics [0])->at <= rt_now)
511 { 980 {
512 struct ev_periodic *w = periodics [0]; 981 struct ev_periodic *w = periodics [0];
513 982
983 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
984
514 /* first reschedule or stop timer */ 985 /* first reschedule or stop timer */
515 if (w->interval) 986 if (w->reschedule_cb)
516 { 987 {
988 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, rt_now + 0.0001);
989
990 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > rt_now));
991 downheap ((WT *)periodics, periodiccnt, 0);
992 }
993 else if (w->interval)
994 {
517 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 995 ((WT)w)->at += floor ((rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
518 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 996 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > rt_now));
519 downheap ((WT *)periodics, periodiccnt, 0); 997 downheap ((WT *)periodics, periodiccnt, 0);
520 } 998 }
521 else 999 else
522 evperiodic_stop (w); /* nonrepeating: stop timer */ 1000 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
523 1001
524 event ((W)w, EV_TIMEOUT); 1002 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
525 } 1003 }
526} 1004}
527 1005
528static void 1006static void
529periodics_reschedule (ev_tstamp diff) 1007periodics_reschedule (EV_P)
530{ 1008{
531 int i; 1009 int i;
532 1010
533 /* adjust periodics after time jump */ 1011 /* adjust periodics after time jump */
534 for (i = 0; i < periodiccnt; ++i) 1012 for (i = 0; i < periodiccnt; ++i)
535 { 1013 {
536 struct ev_periodic *w = periodics [i]; 1014 struct ev_periodic *w = periodics [i];
537 1015
1016 if (w->reschedule_cb)
1017 ((WT)w)->at = w->reschedule_cb (w, rt_now);
538 if (w->interval) 1018 else if (w->interval)
1019 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1020 }
1021
1022 /* now rebuild the heap */
1023 for (i = periodiccnt >> 1; i--; )
1024 downheap ((WT *)periodics, periodiccnt, i);
1025}
1026
1027inline int
1028time_update_monotonic (EV_P)
1029{
1030 mn_now = get_clock ();
1031
1032 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1033 {
1034 rt_now = rtmn_diff + mn_now;
1035 return 0;
1036 }
1037 else
1038 {
1039 now_floor = mn_now;
1040 rt_now = ev_time ();
1041 return 1;
1042 }
1043}
1044
1045static void
1046time_update (EV_P)
1047{
1048 int i;
1049
1050#if EV_USE_MONOTONIC
1051 if (expect_true (have_monotonic))
1052 {
1053 if (time_update_monotonic (EV_A))
539 { 1054 {
540 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1055 ev_tstamp odiff = rtmn_diff;
541 1056
542 if (fabs (diff) >= 1e-4) 1057 for (i = 4; --i; ) /* loop a few times, before making important decisions */
543 { 1058 {
544 evperiodic_stop (w); 1059 rtmn_diff = rt_now - mn_now;
545 evperiodic_start (w);
546 1060
547 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 1061 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1062 return; /* all is well */
1063
1064 rt_now = ev_time ();
1065 mn_now = get_clock ();
1066 now_floor = mn_now;
548 } 1067 }
1068
1069 periodics_reschedule (EV_A);
1070 /* no timer adjustment, as the monotonic clock doesn't jump */
1071 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
549 } 1072 }
550 } 1073 }
551} 1074 else
552 1075#endif
553static void 1076 {
554time_update ()
555{
556 int i;
557
558 ev_now = ev_time (); 1077 rt_now = ev_time ();
559 1078
560 if (have_monotonic) 1079 if (expect_false (mn_now > rt_now || mn_now < rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
561 {
562 ev_tstamp odiff = diff;
563
564 for (i = 4; --i; ) /* loop a few times, before making important decisions */
565 { 1080 {
566 now = get_clock ();
567 diff = ev_now - now;
568
569 if (fabs (odiff - diff) < MIN_TIMEJUMP)
570 return; /* all is well */
571
572 ev_now = ev_time ();
573 }
574
575 periodics_reschedule (diff - odiff);
576 /* no timer adjustment, as the monotonic clock doesn't jump */
577 }
578 else
579 {
580 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
581 {
582 periodics_reschedule (ev_now - now); 1081 periodics_reschedule (EV_A);
583 1082
584 /* adjust timers. this is easy, as the offset is the same for all */ 1083 /* adjust timers. this is easy, as the offset is the same for all */
585 for (i = 0; i < timercnt; ++i) 1084 for (i = 0; i < timercnt; ++i)
586 timers [i]->at += diff; 1085 ((WT)timers [i])->at += rt_now - mn_now;
587 } 1086 }
588 1087
589 now = ev_now; 1088 mn_now = rt_now;
590 } 1089 }
591} 1090}
592 1091
593int ev_loop_done; 1092void
1093ev_ref (EV_P)
1094{
1095 ++activecnt;
1096}
594 1097
1098void
1099ev_unref (EV_P)
1100{
1101 --activecnt;
1102}
1103
1104static int loop_done;
1105
1106void
595void ev_loop (int flags) 1107ev_loop (EV_P_ int flags)
596{ 1108{
597 double block; 1109 double block;
598 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 1110 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
599 1111
600 do 1112 do
601 { 1113 {
602 /* queue check watchers (and execute them) */ 1114 /* queue check watchers (and execute them) */
603 if (preparecnt) 1115 if (expect_false (preparecnt))
604 { 1116 {
605 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1117 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
606 call_pending (); 1118 call_pending (EV_A);
607 } 1119 }
608 1120
1121 /* we might have forked, so reify kernel state if necessary */
1122 if (expect_false (postfork))
1123 loop_fork (EV_A);
1124
609 /* update fd-related kernel structures */ 1125 /* update fd-related kernel structures */
610 fd_reify (); 1126 fd_reify (EV_A);
611 1127
612 /* calculate blocking time */ 1128 /* calculate blocking time */
613 1129
614 /* we only need this for !monotonic clockor timers, but as we basically 1130 /* we only need this for !monotonic clock or timers, but as we basically
615 always have timers, we just calculate it always */ 1131 always have timers, we just calculate it always */
1132#if EV_USE_MONOTONIC
1133 if (expect_true (have_monotonic))
1134 time_update_monotonic (EV_A);
1135 else
1136#endif
1137 {
616 ev_now = ev_time (); 1138 rt_now = ev_time ();
1139 mn_now = rt_now;
1140 }
617 1141
618 if (flags & EVLOOP_NONBLOCK || idlecnt) 1142 if (flags & EVLOOP_NONBLOCK || idlecnt)
619 block = 0.; 1143 block = 0.;
620 else 1144 else
621 { 1145 {
622 block = MAX_BLOCKTIME; 1146 block = MAX_BLOCKTIME;
623 1147
624 if (timercnt) 1148 if (timercnt)
625 { 1149 {
626 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1150 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
627 if (block > to) block = to; 1151 if (block > to) block = to;
628 } 1152 }
629 1153
630 if (periodiccnt) 1154 if (periodiccnt)
631 { 1155 {
632 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1156 ev_tstamp to = ((WT)periodics [0])->at - rt_now + method_fudge;
633 if (block > to) block = to; 1157 if (block > to) block = to;
634 } 1158 }
635 1159
636 if (block < 0.) block = 0.; 1160 if (block < 0.) block = 0.;
637 } 1161 }
638 1162
639 method_poll (block); 1163 method_poll (EV_A_ block);
640 1164
641 /* update ev_now, do magic */ 1165 /* update rt_now, do magic */
642 time_update (); 1166 time_update (EV_A);
643 1167
644 /* queue pending timers and reschedule them */ 1168 /* queue pending timers and reschedule them */
645 timers_reify (); /* relative timers called last */ 1169 timers_reify (EV_A); /* relative timers called last */
646 periodics_reify (); /* absolute timers called first */ 1170 periodics_reify (EV_A); /* absolute timers called first */
647 1171
648 /* queue idle watchers unless io or timers are pending */ 1172 /* queue idle watchers unless io or timers are pending */
649 if (!pendingcnt) 1173 if (idlecnt && !any_pending (EV_A))
650 queue_events ((W *)idles, idlecnt, EV_IDLE); 1174 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
651 1175
652 /* queue check watchers, to be executed first */ 1176 /* queue check watchers, to be executed first */
653 if (checkcnt) 1177 if (checkcnt)
654 queue_events ((W *)checks, checkcnt, EV_CHECK); 1178 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
655 1179
656 call_pending (); 1180 call_pending (EV_A);
657 } 1181 }
658 while (!ev_loop_done); 1182 while (activecnt && !loop_done);
659 1183
660 if (ev_loop_done != 2) 1184 if (loop_done != 2)
661 ev_loop_done = 0; 1185 loop_done = 0;
1186}
1187
1188void
1189ev_unloop (EV_P_ int how)
1190{
1191 loop_done = how;
662} 1192}
663 1193
664/*****************************************************************************/ 1194/*****************************************************************************/
665 1195
666static void 1196inline void
667wlist_add (WL *head, WL elem) 1197wlist_add (WL *head, WL elem)
668{ 1198{
669 elem->next = *head; 1199 elem->next = *head;
670 *head = elem; 1200 *head = elem;
671} 1201}
672 1202
673static void 1203inline void
674wlist_del (WL *head, WL elem) 1204wlist_del (WL *head, WL elem)
675{ 1205{
676 while (*head) 1206 while (*head)
677 { 1207 {
678 if (*head == elem) 1208 if (*head == elem)
683 1213
684 head = &(*head)->next; 1214 head = &(*head)->next;
685 } 1215 }
686} 1216}
687 1217
688static void 1218inline void
689ev_clear (W w) 1219ev_clear_pending (EV_P_ W w)
690{ 1220{
691 if (w->pending) 1221 if (w->pending)
692 { 1222 {
693 pendings [w->pending - 1].w = 0; 1223 pendings [ABSPRI (w)][w->pending - 1].w = 0;
694 w->pending = 0; 1224 w->pending = 0;
695 } 1225 }
696} 1226}
697 1227
698static void 1228inline void
699ev_start (W w, int active) 1229ev_start (EV_P_ W w, int active)
700{ 1230{
1231 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1232 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1233
701 w->active = active; 1234 w->active = active;
1235 ev_ref (EV_A);
702} 1236}
703 1237
704static void 1238inline void
705ev_stop (W w) 1239ev_stop (EV_P_ W w)
706{ 1240{
1241 ev_unref (EV_A);
707 w->active = 0; 1242 w->active = 0;
708} 1243}
709 1244
710/*****************************************************************************/ 1245/*****************************************************************************/
711 1246
712void 1247void
713evio_start (struct ev_io *w) 1248ev_io_start (EV_P_ struct ev_io *w)
714{ 1249{
1250 int fd = w->fd;
1251
715 if (ev_is_active (w)) 1252 if (ev_is_active (w))
716 return; 1253 return;
717 1254
718 int fd = w->fd; 1255 assert (("ev_io_start called with negative fd", fd >= 0));
719 1256
720 ev_start ((W)w, 1); 1257 ev_start (EV_A_ (W)w, 1);
721 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1258 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
722 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1259 wlist_add ((WL *)&anfds[fd].head, (WL)w);
723 1260
724 ++fdchangecnt; 1261 fd_change (EV_A_ fd);
725 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
726 fdchanges [fdchangecnt - 1] = fd;
727} 1262}
728 1263
729void 1264void
730evio_stop (struct ev_io *w) 1265ev_io_stop (EV_P_ struct ev_io *w)
731{ 1266{
732 ev_clear ((W)w); 1267 ev_clear_pending (EV_A_ (W)w);
733 if (!ev_is_active (w)) 1268 if (!ev_is_active (w))
734 return; 1269 return;
735 1270
736 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1271 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
737 ev_stop ((W)w); 1272 ev_stop (EV_A_ (W)w);
738 1273
739 ++fdchangecnt; 1274 fd_change (EV_A_ w->fd);
740 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
741 fdchanges [fdchangecnt - 1] = w->fd;
742} 1275}
743 1276
744void 1277void
745evtimer_start (struct ev_timer *w) 1278ev_timer_start (EV_P_ struct ev_timer *w)
746{ 1279{
747 if (ev_is_active (w)) 1280 if (ev_is_active (w))
748 return; 1281 return;
749 1282
750 w->at += now; 1283 ((WT)w)->at += mn_now;
751 1284
752 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1285 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
753 1286
754 ev_start ((W)w, ++timercnt); 1287 ev_start (EV_A_ (W)w, ++timercnt);
755 array_needsize (timers, timermax, timercnt, ); 1288 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
756 timers [timercnt - 1] = w; 1289 timers [timercnt - 1] = w;
757 upheap ((WT *)timers, timercnt - 1); 1290 upheap ((WT *)timers, timercnt - 1);
758}
759 1291
1292 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1293}
1294
760void 1295void
761evtimer_stop (struct ev_timer *w) 1296ev_timer_stop (EV_P_ struct ev_timer *w)
762{ 1297{
763 ev_clear ((W)w); 1298 ev_clear_pending (EV_A_ (W)w);
764 if (!ev_is_active (w)) 1299 if (!ev_is_active (w))
765 return; 1300 return;
766 1301
1302 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1303
767 if (w->active < timercnt--) 1304 if (((W)w)->active < timercnt--)
768 { 1305 {
769 timers [w->active - 1] = timers [timercnt]; 1306 timers [((W)w)->active - 1] = timers [timercnt];
770 downheap ((WT *)timers, timercnt, w->active - 1); 1307 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
771 } 1308 }
772 1309
773 w->at = w->repeat; 1310 ((WT)w)->at = w->repeat;
774 1311
775 ev_stop ((W)w); 1312 ev_stop (EV_A_ (W)w);
776} 1313}
777 1314
778void 1315void
779evtimer_again (struct ev_timer *w) 1316ev_timer_again (EV_P_ struct ev_timer *w)
780{ 1317{
781 if (ev_is_active (w)) 1318 if (ev_is_active (w))
782 { 1319 {
783 if (w->repeat) 1320 if (w->repeat)
784 { 1321 {
785 w->at = now + w->repeat; 1322 ((WT)w)->at = mn_now + w->repeat;
786 downheap ((WT *)timers, timercnt, w->active - 1); 1323 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
787 } 1324 }
788 else 1325 else
789 evtimer_stop (w); 1326 ev_timer_stop (EV_A_ w);
790 } 1327 }
791 else if (w->repeat) 1328 else if (w->repeat)
792 evtimer_start (w); 1329 ev_timer_start (EV_A_ w);
793} 1330}
794 1331
795void 1332void
796evperiodic_start (struct ev_periodic *w) 1333ev_periodic_start (EV_P_ struct ev_periodic *w)
797{ 1334{
798 if (ev_is_active (w)) 1335 if (ev_is_active (w))
799 return; 1336 return;
800 1337
801 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1338 if (w->reschedule_cb)
802 1339 ((WT)w)->at = w->reschedule_cb (w, rt_now);
1340 else if (w->interval)
1341 {
1342 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
803 /* this formula differs from the one in periodic_reify because we do not always round up */ 1343 /* this formula differs from the one in periodic_reify because we do not always round up */
804 if (w->interval)
805 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1344 ((WT)w)->at += ceil ((rt_now - ((WT)w)->at) / w->interval) * w->interval;
1345 }
806 1346
807 ev_start ((W)w, ++periodiccnt); 1347 ev_start (EV_A_ (W)w, ++periodiccnt);
808 array_needsize (periodics, periodicmax, periodiccnt, ); 1348 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
809 periodics [periodiccnt - 1] = w; 1349 periodics [periodiccnt - 1] = w;
810 upheap ((WT *)periodics, periodiccnt - 1); 1350 upheap ((WT *)periodics, periodiccnt - 1);
811}
812 1351
1352 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1353}
1354
813void 1355void
814evperiodic_stop (struct ev_periodic *w) 1356ev_periodic_stop (EV_P_ struct ev_periodic *w)
815{ 1357{
816 ev_clear ((W)w); 1358 ev_clear_pending (EV_A_ (W)w);
817 if (!ev_is_active (w)) 1359 if (!ev_is_active (w))
818 return; 1360 return;
819 1361
1362 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1363
820 if (w->active < periodiccnt--) 1364 if (((W)w)->active < periodiccnt--)
821 { 1365 {
822 periodics [w->active - 1] = periodics [periodiccnt]; 1366 periodics [((W)w)->active - 1] = periodics [periodiccnt];
823 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1367 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
824 } 1368 }
825 1369
826 ev_stop ((W)w); 1370 ev_stop (EV_A_ (W)w);
827} 1371}
828 1372
829void 1373void
830evsignal_start (struct ev_signal *w) 1374ev_periodic_again (EV_P_ struct ev_periodic *w)
1375{
1376 ev_periodic_stop (EV_A_ w);
1377 ev_periodic_start (EV_A_ w);
1378}
1379
1380void
1381ev_idle_start (EV_P_ struct ev_idle *w)
831{ 1382{
832 if (ev_is_active (w)) 1383 if (ev_is_active (w))
833 return; 1384 return;
834 1385
1386 ev_start (EV_A_ (W)w, ++idlecnt);
1387 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1388 idles [idlecnt - 1] = w;
1389}
1390
1391void
1392ev_idle_stop (EV_P_ struct ev_idle *w)
1393{
1394 ev_clear_pending (EV_A_ (W)w);
1395 if (ev_is_active (w))
1396 return;
1397
1398 idles [((W)w)->active - 1] = idles [--idlecnt];
1399 ev_stop (EV_A_ (W)w);
1400}
1401
1402void
1403ev_prepare_start (EV_P_ struct ev_prepare *w)
1404{
1405 if (ev_is_active (w))
1406 return;
1407
1408 ev_start (EV_A_ (W)w, ++preparecnt);
1409 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1410 prepares [preparecnt - 1] = w;
1411}
1412
1413void
1414ev_prepare_stop (EV_P_ struct ev_prepare *w)
1415{
1416 ev_clear_pending (EV_A_ (W)w);
1417 if (ev_is_active (w))
1418 return;
1419
1420 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1421 ev_stop (EV_A_ (W)w);
1422}
1423
1424void
1425ev_check_start (EV_P_ struct ev_check *w)
1426{
1427 if (ev_is_active (w))
1428 return;
1429
1430 ev_start (EV_A_ (W)w, ++checkcnt);
1431 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1432 checks [checkcnt - 1] = w;
1433}
1434
1435void
1436ev_check_stop (EV_P_ struct ev_check *w)
1437{
1438 ev_clear_pending (EV_A_ (W)w);
1439 if (ev_is_active (w))
1440 return;
1441
1442 checks [((W)w)->active - 1] = checks [--checkcnt];
1443 ev_stop (EV_A_ (W)w);
1444}
1445
1446#ifndef SA_RESTART
1447# define SA_RESTART 0
1448#endif
1449
1450void
1451ev_signal_start (EV_P_ struct ev_signal *w)
1452{
1453#if EV_MULTIPLICITY
1454 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1455#endif
1456 if (ev_is_active (w))
1457 return;
1458
1459 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1460
835 ev_start ((W)w, 1); 1461 ev_start (EV_A_ (W)w, 1);
836 array_needsize (signals, signalmax, w->signum, signals_init); 1462 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
837 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1463 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
838 1464
839 if (!w->next) 1465 if (!((WL)w)->next)
840 { 1466 {
1467#if WIN32
1468 signal (w->signum, sighandler);
1469#else
841 struct sigaction sa; 1470 struct sigaction sa;
842 sa.sa_handler = sighandler; 1471 sa.sa_handler = sighandler;
843 sigfillset (&sa.sa_mask); 1472 sigfillset (&sa.sa_mask);
844 sa.sa_flags = 0; 1473 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
845 sigaction (w->signum, &sa, 0); 1474 sigaction (w->signum, &sa, 0);
1475#endif
846 } 1476 }
847} 1477}
848 1478
849void 1479void
850evsignal_stop (struct ev_signal *w) 1480ev_signal_stop (EV_P_ struct ev_signal *w)
851{ 1481{
852 ev_clear ((W)w); 1482 ev_clear_pending (EV_A_ (W)w);
853 if (!ev_is_active (w)) 1483 if (!ev_is_active (w))
854 return; 1484 return;
855 1485
856 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1486 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
857 ev_stop ((W)w); 1487 ev_stop (EV_A_ (W)w);
858 1488
859 if (!signals [w->signum - 1].head) 1489 if (!signals [w->signum - 1].head)
860 signal (w->signum, SIG_DFL); 1490 signal (w->signum, SIG_DFL);
861} 1491}
862 1492
863void evidle_start (struct ev_idle *w) 1493void
1494ev_child_start (EV_P_ struct ev_child *w)
864{ 1495{
1496#if EV_MULTIPLICITY
1497 assert (("child watchers are only supported in the default loop", loop == default_loop));
1498#endif
865 if (ev_is_active (w)) 1499 if (ev_is_active (w))
866 return; 1500 return;
867 1501
868 ev_start ((W)w, ++idlecnt); 1502 ev_start (EV_A_ (W)w, 1);
869 array_needsize (idles, idlemax, idlecnt, ); 1503 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
870 idles [idlecnt - 1] = w;
871} 1504}
872 1505
873void evidle_stop (struct ev_idle *w) 1506void
1507ev_child_stop (EV_P_ struct ev_child *w)
874{ 1508{
875 ev_clear ((W)w); 1509 ev_clear_pending (EV_A_ (W)w);
876 if (ev_is_active (w)) 1510 if (ev_is_active (w))
877 return; 1511 return;
878 1512
879 idles [w->active - 1] = idles [--idlecnt];
880 ev_stop ((W)w);
881}
882
883void evprepare_start (struct ev_prepare *w)
884{
885 if (ev_is_active (w))
886 return;
887
888 ev_start ((W)w, ++preparecnt);
889 array_needsize (prepares, preparemax, preparecnt, );
890 prepares [preparecnt - 1] = w;
891}
892
893void evprepare_stop (struct ev_prepare *w)
894{
895 ev_clear ((W)w);
896 if (ev_is_active (w))
897 return;
898
899 prepares [w->active - 1] = prepares [--preparecnt];
900 ev_stop ((W)w);
901}
902
903void evcheck_start (struct ev_check *w)
904{
905 if (ev_is_active (w))
906 return;
907
908 ev_start ((W)w, ++checkcnt);
909 array_needsize (checks, checkmax, checkcnt, );
910 checks [checkcnt - 1] = w;
911}
912
913void evcheck_stop (struct ev_check *w)
914{
915 ev_clear ((W)w);
916 if (ev_is_active (w))
917 return;
918
919 checks [w->active - 1] = checks [--checkcnt];
920 ev_stop ((W)w);
921}
922
923void evchild_start (struct ev_child *w)
924{
925 if (ev_is_active (w))
926 return;
927
928 ev_start ((W)w, 1);
929 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
930}
931
932void evchild_stop (struct ev_child *w)
933{
934 ev_clear ((W)w);
935 if (ev_is_active (w))
936 return;
937
938 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1513 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
939 ev_stop ((W)w); 1514 ev_stop (EV_A_ (W)w);
940} 1515}
941 1516
942/*****************************************************************************/ 1517/*****************************************************************************/
943 1518
944struct ev_once 1519struct ev_once
948 void (*cb)(int revents, void *arg); 1523 void (*cb)(int revents, void *arg);
949 void *arg; 1524 void *arg;
950}; 1525};
951 1526
952static void 1527static void
953once_cb (struct ev_once *once, int revents) 1528once_cb (EV_P_ struct ev_once *once, int revents)
954{ 1529{
955 void (*cb)(int revents, void *arg) = once->cb; 1530 void (*cb)(int revents, void *arg) = once->cb;
956 void *arg = once->arg; 1531 void *arg = once->arg;
957 1532
958 evio_stop (&once->io); 1533 ev_io_stop (EV_A_ &once->io);
959 evtimer_stop (&once->to); 1534 ev_timer_stop (EV_A_ &once->to);
960 free (once); 1535 ev_free (once);
961 1536
962 cb (revents, arg); 1537 cb (revents, arg);
963} 1538}
964 1539
965static void 1540static void
966once_cb_io (struct ev_io *w, int revents) 1541once_cb_io (EV_P_ struct ev_io *w, int revents)
967{ 1542{
968 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1543 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
969} 1544}
970 1545
971static void 1546static void
972once_cb_to (struct ev_timer *w, int revents) 1547once_cb_to (EV_P_ struct ev_timer *w, int revents)
973{ 1548{
974 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1549 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
975} 1550}
976 1551
977void 1552void
978ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1553ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
979{ 1554{
980 struct ev_once *once = malloc (sizeof (struct ev_once)); 1555 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
981 1556
982 if (!once) 1557 if (!once)
983 cb (EV_ERROR, arg); 1558 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
984 else 1559 else
985 { 1560 {
986 once->cb = cb; 1561 once->cb = cb;
987 once->arg = arg; 1562 once->arg = arg;
988 1563
989 evw_init (&once->io, once_cb_io); 1564 ev_watcher_init (&once->io, once_cb_io);
990
991 if (fd >= 0) 1565 if (fd >= 0)
992 { 1566 {
993 evio_set (&once->io, fd, events); 1567 ev_io_set (&once->io, fd, events);
994 evio_start (&once->io); 1568 ev_io_start (EV_A_ &once->io);
995 } 1569 }
996 1570
997 evw_init (&once->to, once_cb_to); 1571 ev_watcher_init (&once->to, once_cb_to);
998
999 if (timeout >= 0.) 1572 if (timeout >= 0.)
1000 { 1573 {
1001 evtimer_set (&once->to, timeout, 0.); 1574 ev_timer_set (&once->to, timeout, 0.);
1002 evtimer_start (&once->to); 1575 ev_timer_start (EV_A_ &once->to);
1003 } 1576 }
1004 } 1577 }
1005} 1578}
1006 1579
1007/*****************************************************************************/
1008
1009#if 0
1010
1011struct ev_io wio;
1012
1013static void
1014sin_cb (struct ev_io *w, int revents)
1015{
1016 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1017}
1018
1019static void
1020ocb (struct ev_timer *w, int revents)
1021{
1022 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1023 evtimer_stop (w);
1024 evtimer_start (w);
1025}
1026
1027static void
1028scb (struct ev_signal *w, int revents)
1029{
1030 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1031 evio_stop (&wio);
1032 evio_start (&wio);
1033}
1034
1035static void
1036gcb (struct ev_signal *w, int revents)
1037{
1038 fprintf (stderr, "generic %x\n", revents);
1039
1040}
1041
1042int main (void)
1043{
1044 ev_init (0);
1045
1046 evio_init (&wio, sin_cb, 0, EV_READ);
1047 evio_start (&wio);
1048
1049 struct ev_timer t[10000];
1050
1051#if 0
1052 int i;
1053 for (i = 0; i < 10000; ++i)
1054 {
1055 struct ev_timer *w = t + i;
1056 evw_init (w, ocb, i);
1057 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1058 evtimer_start (w);
1059 if (drand48 () < 0.5)
1060 evtimer_stop (w);
1061 }
1062#endif
1063
1064 struct ev_timer t1;
1065 evtimer_init (&t1, ocb, 5, 10);
1066 evtimer_start (&t1);
1067
1068 struct ev_signal sig;
1069 evsignal_init (&sig, scb, SIGQUIT);
1070 evsignal_start (&sig);
1071
1072 struct ev_check cw;
1073 evcheck_init (&cw, gcb);
1074 evcheck_start (&cw);
1075
1076 struct ev_idle iw;
1077 evidle_init (&iw, gcb);
1078 evidle_start (&iw);
1079
1080 ev_loop (0);
1081
1082 return 0;
1083}
1084
1085#endif
1086
1087
1088
1089

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines