ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.23 by root, Wed Oct 31 20:10:17 2007 UTC vs.
Revision 1.86 by root, Sat Nov 10 03:19:21 2007 UTC

1/* 1/*
2 * libev event processing core, watcher management
3 *
2 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de>
3 * All rights reserved. 5 * All rights reserved.
4 * 6 *
5 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are 8 * modification, are permitted provided that the following conditions are
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
27 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */ 30 */
31#ifndef EV_STANDALONE
32# include "config.h"
33
34# if HAVE_CLOCK_GETTIME
35# define EV_USE_MONOTONIC 1
36# define EV_USE_REALTIME 1
37# endif
38
39# if HAVE_SELECT && HAVE_SYS_SELECT_H
40# define EV_USE_SELECT 1
41# endif
42
43# if HAVE_POLL && HAVE_POLL_H
44# define EV_USE_POLL 1
45# endif
46
47# if HAVE_EPOLL && HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
48# define EV_USE_EPOLL 1
49# endif
50
51# if HAVE_KQUEUE && HAVE_WORKING_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
52# define EV_USE_KQUEUE 1
53# endif
54
55#endif
29 56
30#include <math.h> 57#include <math.h>
31#include <stdlib.h> 58#include <stdlib.h>
32#include <unistd.h>
33#include <fcntl.h> 59#include <fcntl.h>
34#include <signal.h>
35#include <stddef.h> 60#include <stddef.h>
36 61
37#include <stdio.h> 62#include <stdio.h>
38 63
39#include <assert.h> 64#include <assert.h>
40#include <errno.h> 65#include <errno.h>
41#include <sys/types.h> 66#include <sys/types.h>
42#include <sys/wait.h>
43#include <sys/time.h>
44#include <time.h> 67#include <time.h>
45 68
69#include <signal.h>
70
71#ifndef WIN32
72# include <unistd.h>
73# include <sys/time.h>
74# include <sys/wait.h>
75#endif
76/**/
77
46#ifndef HAVE_MONOTONIC 78#ifndef EV_USE_MONOTONIC
47# ifdef CLOCK_MONOTONIC
48# define HAVE_MONOTONIC 1 79# define EV_USE_MONOTONIC 1
80#endif
81
82#ifndef EV_USE_SELECT
83# define EV_USE_SELECT 1
84#endif
85
86#ifndef EV_USE_POLL
87# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */
88#endif
89
90#ifndef EV_USE_EPOLL
91# define EV_USE_EPOLL 0
92#endif
93
94#ifndef EV_USE_KQUEUE
95# define EV_USE_KQUEUE 0
96#endif
97
98#ifndef EV_USE_WIN32
99# ifdef WIN32
100# define EV_USE_WIN32 0 /* it does not exist, use select */
101# undef EV_USE_SELECT
102# define EV_USE_SELECT 1
103# else
104# define EV_USE_WIN32 0
49# endif 105# endif
50#endif 106#endif
51 107
52#ifndef HAVE_SELECT
53# define HAVE_SELECT 1
54#endif
55
56#ifndef HAVE_EPOLL
57# define HAVE_EPOLL 0
58#endif
59
60#ifndef HAVE_REALTIME 108#ifndef EV_USE_REALTIME
61# define HAVE_REALTIME 1 /* posix requirement, but might be slower */ 109# define EV_USE_REALTIME 1
62#endif 110#endif
111
112/**/
113
114#ifndef CLOCK_MONOTONIC
115# undef EV_USE_MONOTONIC
116# define EV_USE_MONOTONIC 0
117#endif
118
119#ifndef CLOCK_REALTIME
120# undef EV_USE_REALTIME
121# define EV_USE_REALTIME 0
122#endif
123
124/**/
63 125
64#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 126#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
65#define MAX_BLOCKTIME 60. 127#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */
66#define PID_HASHSIZE 16 /* size of pid hahs table, must be power of two */ 128#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
129/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */
67 130
131#ifdef EV_H
132# include EV_H
133#else
68#include "ev.h" 134# include "ev.h"
135#endif
136
137#if __GNUC__ >= 3
138# define expect(expr,value) __builtin_expect ((expr),(value))
139# define inline inline
140#else
141# define expect(expr,value) (expr)
142# define inline static
143#endif
144
145#define expect_false(expr) expect ((expr) != 0, 0)
146#define expect_true(expr) expect ((expr) != 0, 1)
147
148#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
149#define ABSPRI(w) ((w)->priority - EV_MINPRI)
69 150
70typedef struct ev_watcher *W; 151typedef struct ev_watcher *W;
71typedef struct ev_watcher_list *WL; 152typedef struct ev_watcher_list *WL;
72typedef struct ev_watcher_time *WT; 153typedef struct ev_watcher_time *WT;
73 154
74static ev_tstamp now, diff; /* monotonic clock */ 155static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
75ev_tstamp ev_now;
76int ev_method;
77 156
78static int have_monotonic; /* runtime */ 157#include "ev_win32.c"
79
80static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */
81static void (*method_modify)(int fd, int oev, int nev);
82static void (*method_poll)(ev_tstamp timeout);
83 158
84/*****************************************************************************/ 159/*****************************************************************************/
85 160
86ev_tstamp 161static void (*syserr_cb)(const char *msg);
162
163void ev_set_syserr_cb (void (*cb)(const char *msg))
164{
165 syserr_cb = cb;
166}
167
168static void
169syserr (const char *msg)
170{
171 if (!msg)
172 msg = "(libev) system error";
173
174 if (syserr_cb)
175 syserr_cb (msg);
176 else
177 {
178 perror (msg);
179 abort ();
180 }
181}
182
183static void *(*alloc)(void *ptr, long size);
184
185void ev_set_allocator (void *(*cb)(void *ptr, long size))
186{
187 alloc = cb;
188}
189
190static void *
191ev_realloc (void *ptr, long size)
192{
193 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size);
194
195 if (!ptr && size)
196 {
197 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
198 abort ();
199 }
200
201 return ptr;
202}
203
204#define ev_malloc(size) ev_realloc (0, (size))
205#define ev_free(ptr) ev_realloc ((ptr), 0)
206
207/*****************************************************************************/
208
209typedef struct
210{
211 WL head;
212 unsigned char events;
213 unsigned char reify;
214} ANFD;
215
216typedef struct
217{
218 W w;
219 int events;
220} ANPENDING;
221
222#if EV_MULTIPLICITY
223
224 struct ev_loop
225 {
226 ev_tstamp ev_rt_now;
227 #define VAR(name,decl) decl;
228 #include "ev_vars.h"
229 #undef VAR
230 };
231 #include "ev_wrap.h"
232
233 struct ev_loop default_loop_struct;
234 static struct ev_loop *default_loop;
235
236#else
237
238 ev_tstamp ev_rt_now;
239 #define VAR(name,decl) static decl;
240 #include "ev_vars.h"
241 #undef VAR
242
243 static int default_loop;
244
245#endif
246
247/*****************************************************************************/
248
249inline ev_tstamp
87ev_time (void) 250ev_time (void)
88{ 251{
89#if HAVE_REALTIME 252#if EV_USE_REALTIME
90 struct timespec ts; 253 struct timespec ts;
91 clock_gettime (CLOCK_REALTIME, &ts); 254 clock_gettime (CLOCK_REALTIME, &ts);
92 return ts.tv_sec + ts.tv_nsec * 1e-9; 255 return ts.tv_sec + ts.tv_nsec * 1e-9;
93#else 256#else
94 struct timeval tv; 257 struct timeval tv;
95 gettimeofday (&tv, 0); 258 gettimeofday (&tv, 0);
96 return tv.tv_sec + tv.tv_usec * 1e-6; 259 return tv.tv_sec + tv.tv_usec * 1e-6;
97#endif 260#endif
98} 261}
99 262
100static ev_tstamp 263inline ev_tstamp
101get_clock (void) 264get_clock (void)
102{ 265{
103#if HAVE_MONOTONIC 266#if EV_USE_MONOTONIC
104 if (have_monotonic) 267 if (expect_true (have_monotonic))
105 { 268 {
106 struct timespec ts; 269 struct timespec ts;
107 clock_gettime (CLOCK_MONOTONIC, &ts); 270 clock_gettime (CLOCK_MONOTONIC, &ts);
108 return ts.tv_sec + ts.tv_nsec * 1e-9; 271 return ts.tv_sec + ts.tv_nsec * 1e-9;
109 } 272 }
110#endif 273#endif
111 274
112 return ev_time (); 275 return ev_time ();
113} 276}
114 277
278#if EV_MULTIPLICITY
279ev_tstamp
280ev_now (EV_P)
281{
282 return ev_rt_now;
283}
284#endif
285
286#define array_roundsize(type,n) ((n) | 4 & ~3)
287
115#define array_needsize(base,cur,cnt,init) \ 288#define array_needsize(type,base,cur,cnt,init) \
116 if ((cnt) > cur) \ 289 if (expect_false ((cnt) > cur)) \
117 { \ 290 { \
118 int newcnt = cur; \ 291 int newcnt = cur; \
119 do \ 292 do \
120 { \ 293 { \
121 newcnt = (newcnt << 1) | 4 & ~3; \ 294 newcnt = array_roundsize (type, newcnt << 1); \
122 } \ 295 } \
123 while ((cnt) > newcnt); \ 296 while ((cnt) > newcnt); \
124 \ 297 \
125 base = realloc (base, sizeof (*base) * (newcnt)); \ 298 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
126 init (base + cur, newcnt - cur); \ 299 init (base + cur, newcnt - cur); \
127 cur = newcnt; \ 300 cur = newcnt; \
128 } 301 }
302
303#define array_slim(type,stem) \
304 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
305 { \
306 stem ## max = array_roundsize (stem ## cnt >> 1); \
307 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
308 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
309 }
310
311/* microsoft's pseudo-c is quite far from C as the rest of the world and the standard knows it */
312/* bringing us everlasting joy in form of stupid extra macros that are not required in C */
313#define array_free_microshit(stem) \
314 ev_free (stem ## s); stem ## cnt = stem ## max = 0;
315
316#define array_free(stem, idx) \
317 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
129 318
130/*****************************************************************************/ 319/*****************************************************************************/
131 320
132typedef struct
133{
134 struct ev_io *head;
135 unsigned char wev, rev; /* want, received event set */
136} ANFD;
137
138static ANFD *anfds;
139static int anfdmax;
140
141static int *fdchanges;
142static int fdchangemax, fdchangecnt;
143
144static void 321static void
145anfds_init (ANFD *base, int count) 322anfds_init (ANFD *base, int count)
146{ 323{
147 while (count--) 324 while (count--)
148 { 325 {
149 base->head = 0; 326 base->head = 0;
150 base->wev = base->rev = EV_NONE; 327 base->events = EV_NONE;
328 base->reify = 0;
329
151 ++base; 330 ++base;
152 } 331 }
153} 332}
154 333
155typedef struct 334void
335ev_feed_event (EV_P_ void *w, int revents)
156{ 336{
157 W w; 337 W w_ = (W)w;
158 int events;
159} ANPENDING;
160 338
161static ANPENDING *pendings; 339 if (w_->pending)
162static int pendingmax, pendingcnt;
163
164static void
165event (W w, int events)
166{
167 if (w->active)
168 { 340 {
169 w->pending = ++pendingcnt;
170 array_needsize (pendings, pendingmax, pendingcnt, );
171 pendings [pendingcnt - 1].w = w;
172 pendings [pendingcnt - 1].events = events; 341 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
342 return;
173 } 343 }
174}
175 344
345 w_->pending = ++pendingcnt [ABSPRI (w_)];
346 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], (void));
347 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
348 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
349}
350
176static void 351static void
352queue_events (EV_P_ W *events, int eventcnt, int type)
353{
354 int i;
355
356 for (i = 0; i < eventcnt; ++i)
357 ev_feed_event (EV_A_ events [i], type);
358}
359
360inline void
177fd_event (int fd, int events) 361fd_event (EV_P_ int fd, int revents)
178{ 362{
179 ANFD *anfd = anfds + fd; 363 ANFD *anfd = anfds + fd;
180 struct ev_io *w; 364 struct ev_io *w;
181 365
182 for (w = anfd->head; w; w = w->next) 366 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
183 { 367 {
184 int ev = w->events & events; 368 int ev = w->events & revents;
185 369
186 if (ev) 370 if (ev)
187 event ((W)w, ev); 371 ev_feed_event (EV_A_ (W)w, ev);
188 } 372 }
189} 373}
190 374
375void
376ev_feed_fd_event (EV_P_ int fd, int revents)
377{
378 fd_event (EV_A_ fd, revents);
379}
380
381/*****************************************************************************/
382
191static void 383static void
192queue_events (W *events, int eventcnt, int type) 384fd_reify (EV_P)
193{ 385{
194 int i; 386 int i;
195 387
196 for (i = 0; i < eventcnt; ++i) 388 for (i = 0; i < fdchangecnt; ++i)
197 event (events [i], type); 389 {
390 int fd = fdchanges [i];
391 ANFD *anfd = anfds + fd;
392 struct ev_io *w;
393
394 int events = 0;
395
396 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next)
397 events |= w->events;
398
399 anfd->reify = 0;
400
401 method_modify (EV_A_ fd, anfd->events, events);
402 anfd->events = events;
403 }
404
405 fdchangecnt = 0;
406}
407
408static void
409fd_change (EV_P_ int fd)
410{
411 if (anfds [fd].reify)
412 return;
413
414 anfds [fd].reify = 1;
415
416 ++fdchangecnt;
417 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, (void));
418 fdchanges [fdchangecnt - 1] = fd;
419}
420
421static void
422fd_kill (EV_P_ int fd)
423{
424 struct ev_io *w;
425
426 while ((w = (struct ev_io *)anfds [fd].head))
427 {
428 ev_io_stop (EV_A_ w);
429 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
430 }
431}
432
433static int
434fd_valid (int fd)
435{
436#ifdef WIN32
437 return !!win32_get_osfhandle (fd);
438#else
439 return fcntl (fd, F_GETFD) != -1;
440#endif
198} 441}
199 442
200/* called on EBADF to verify fds */ 443/* called on EBADF to verify fds */
201static void 444static void
202fd_recheck () 445fd_ebadf (EV_P)
203{ 446{
204 int fd; 447 int fd;
205 448
206 for (fd = 0; fd < anfdmax; ++fd) 449 for (fd = 0; fd < anfdmax; ++fd)
207 if (anfds [fd].wev) 450 if (anfds [fd].events)
208 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 451 if (!fd_valid (fd) == -1 && errno == EBADF)
209 while (anfds [fd].head) 452 fd_kill (EV_A_ fd);
210 evio_stop (anfds [fd].head); 453}
454
455/* called on ENOMEM in select/poll to kill some fds and retry */
456static void
457fd_enomem (EV_P)
458{
459 int fd;
460
461 for (fd = anfdmax; fd--; )
462 if (anfds [fd].events)
463 {
464 fd_kill (EV_A_ fd);
465 return;
466 }
467}
468
469/* usually called after fork if method needs to re-arm all fds from scratch */
470static void
471fd_rearm_all (EV_P)
472{
473 int fd;
474
475 /* this should be highly optimised to not do anything but set a flag */
476 for (fd = 0; fd < anfdmax; ++fd)
477 if (anfds [fd].events)
478 {
479 anfds [fd].events = 0;
480 fd_change (EV_A_ fd);
481 }
211} 482}
212 483
213/*****************************************************************************/ 484/*****************************************************************************/
214 485
215static struct ev_timer **timers;
216static int timermax, timercnt;
217
218static struct ev_periodic **periodics;
219static int periodicmax, periodiccnt;
220
221static void 486static void
222upheap (WT *timers, int k) 487upheap (WT *heap, int k)
223{ 488{
224 WT w = timers [k]; 489 WT w = heap [k];
225 490
226 while (k && timers [k >> 1]->at > w->at) 491 while (k && heap [k >> 1]->at > w->at)
227 { 492 {
228 timers [k] = timers [k >> 1]; 493 heap [k] = heap [k >> 1];
229 timers [k]->active = k + 1; 494 ((W)heap [k])->active = k + 1;
230 k >>= 1; 495 k >>= 1;
231 } 496 }
232 497
233 timers [k] = w; 498 heap [k] = w;
234 timers [k]->active = k + 1; 499 ((W)heap [k])->active = k + 1;
235 500
236} 501}
237 502
238static void 503static void
239downheap (WT *timers, int N, int k) 504downheap (WT *heap, int N, int k)
240{ 505{
241 WT w = timers [k]; 506 WT w = heap [k];
242 507
243 while (k < (N >> 1)) 508 while (k < (N >> 1))
244 { 509 {
245 int j = k << 1; 510 int j = k << 1;
246 511
247 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 512 if (j + 1 < N && heap [j]->at > heap [j + 1]->at)
248 ++j; 513 ++j;
249 514
250 if (w->at <= timers [j]->at) 515 if (w->at <= heap [j]->at)
251 break; 516 break;
252 517
253 timers [k] = timers [j]; 518 heap [k] = heap [j];
254 timers [k]->active = k + 1; 519 ((W)heap [k])->active = k + 1;
255 k = j; 520 k = j;
256 } 521 }
257 522
258 timers [k] = w; 523 heap [k] = w;
259 timers [k]->active = k + 1; 524 ((W)heap [k])->active = k + 1;
525}
526
527inline void
528adjustheap (WT *heap, int N, int k, ev_tstamp at)
529{
530 ev_tstamp old_at = heap [k]->at;
531 heap [k]->at = at;
532
533 if (old_at < at)
534 downheap (heap, N, k);
535 else
536 upheap (heap, k);
260} 537}
261 538
262/*****************************************************************************/ 539/*****************************************************************************/
263 540
264typedef struct 541typedef struct
265{ 542{
266 struct ev_signal *head; 543 WL head;
267 sig_atomic_t gotsig; 544 sig_atomic_t volatile gotsig;
268} ANSIG; 545} ANSIG;
269 546
270static ANSIG *signals; 547static ANSIG *signals;
271static int signalmax; 548static int signalmax;
272 549
273static int sigpipe [2]; 550static int sigpipe [2];
274static sig_atomic_t gotsig; 551static sig_atomic_t volatile gotsig;
275static struct ev_io sigev; 552static struct ev_io sigev;
276 553
277static void 554static void
278signals_init (ANSIG *base, int count) 555signals_init (ANSIG *base, int count)
279{ 556{
280 while (count--) 557 while (count--)
281 { 558 {
282 base->head = 0; 559 base->head = 0;
283 base->gotsig = 0; 560 base->gotsig = 0;
561
284 ++base; 562 ++base;
285 } 563 }
286} 564}
287 565
288static void 566static void
289sighandler (int signum) 567sighandler (int signum)
290{ 568{
569#if WIN32
570 signal (signum, sighandler);
571#endif
572
291 signals [signum - 1].gotsig = 1; 573 signals [signum - 1].gotsig = 1;
292 574
293 if (!gotsig) 575 if (!gotsig)
294 { 576 {
577 int old_errno = errno;
295 gotsig = 1; 578 gotsig = 1;
579#ifdef WIN32
580 send (sigpipe [1], &signum, 1, MSG_DONTWAIT);
581#else
296 write (sigpipe [1], &gotsig, 1); 582 write (sigpipe [1], &signum, 1);
583#endif
584 errno = old_errno;
297 } 585 }
298} 586}
299 587
588void
589ev_feed_signal_event (EV_P_ int signum)
590{
591 WL w;
592
593#if EV_MULTIPLICITY
594 assert (("feeding signal events is only supported in the default loop", loop == default_loop));
595#endif
596
597 --signum;
598
599 if (signum < 0 || signum >= signalmax)
600 return;
601
602 signals [signum].gotsig = 0;
603
604 for (w = signals [signum].head; w; w = w->next)
605 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
606}
607
300static void 608static void
301sigcb (struct ev_io *iow, int revents) 609sigcb (EV_P_ struct ev_io *iow, int revents)
302{ 610{
303 struct ev_signal *w;
304 int sig; 611 int signum;
305 612
613#ifdef WIN32
614 recv (sigpipe [0], &revents, 1, MSG_DONTWAIT);
615#else
616 read (sigpipe [0], &revents, 1);
617#endif
306 gotsig = 0; 618 gotsig = 0;
307 read (sigpipe [0], &revents, 1);
308 619
309 for (sig = signalmax; sig--; ) 620 for (signum = signalmax; signum--; )
310 if (signals [sig].gotsig) 621 if (signals [signum].gotsig)
311 { 622 ev_feed_signal_event (EV_A_ signum + 1);
312 signals [sig].gotsig = 0;
313
314 for (w = signals [sig].head; w; w = w->next)
315 event ((W)w, EV_SIGNAL);
316 }
317} 623}
318 624
319static void 625static void
320siginit (void) 626siginit (EV_P)
321{ 627{
628#ifndef WIN32
322 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC); 629 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
323 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC); 630 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
324 631
325 /* rather than sort out wether we really need nb, set it */ 632 /* rather than sort out wether we really need nb, set it */
326 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK); 633 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
327 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK); 634 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
635#endif
328 636
329 evio_set (&sigev, sigpipe [0], EV_READ); 637 ev_io_set (&sigev, sigpipe [0], EV_READ);
330 evio_start (&sigev); 638 ev_io_start (EV_A_ &sigev);
639 ev_unref (EV_A); /* child watcher should not keep loop alive */
331} 640}
332 641
333/*****************************************************************************/ 642/*****************************************************************************/
334 643
335static struct ev_idle **idles;
336static int idlemax, idlecnt;
337
338static struct ev_prepare **prepares;
339static int preparemax, preparecnt;
340
341static struct ev_check **checks;
342static int checkmax, checkcnt;
343
344/*****************************************************************************/
345
346static struct ev_child *childs [PID_HASHSIZE]; 644static struct ev_child *childs [PID_HASHSIZE];
645
646#ifndef WIN32
647
347static struct ev_signal childev; 648static struct ev_signal childev;
348 649
349#ifndef WCONTINUED 650#ifndef WCONTINUED
350# define WCONTINUED 0 651# define WCONTINUED 0
351#endif 652#endif
352 653
353static void 654static void
354childcb (struct ev_signal *sw, int revents) 655child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
355{ 656{
356 struct ev_child *w; 657 struct ev_child *w;
658
659 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
660 if (w->pid == pid || !w->pid)
661 {
662 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
663 w->rpid = pid;
664 w->rstatus = status;
665 ev_feed_event (EV_A_ (W)w, EV_CHILD);
666 }
667}
668
669static void
670childcb (EV_P_ struct ev_signal *sw, int revents)
671{
357 int pid, status; 672 int pid, status;
358 673
359 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 674 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
360 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 675 {
361 if (w->pid == pid || w->pid == -1) 676 /* make sure we are called again until all childs have been reaped */
362 { 677 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
363 w->status = status; 678
364 event ((W)w, EV_CHILD); 679 child_reap (EV_A_ sw, pid, pid, status);
365 } 680 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */
681 }
366} 682}
683
684#endif
367 685
368/*****************************************************************************/ 686/*****************************************************************************/
369 687
688#if EV_USE_KQUEUE
689# include "ev_kqueue.c"
690#endif
370#if HAVE_EPOLL 691#if EV_USE_EPOLL
371# include "ev_epoll.c" 692# include "ev_epoll.c"
372#endif 693#endif
694#if EV_USE_POLL
695# include "ev_poll.c"
696#endif
373#if HAVE_SELECT 697#if EV_USE_SELECT
374# include "ev_select.c" 698# include "ev_select.c"
375#endif 699#endif
376 700
377int ev_init (int flags) 701int
702ev_version_major (void)
378{ 703{
704 return EV_VERSION_MAJOR;
705}
706
707int
708ev_version_minor (void)
709{
710 return EV_VERSION_MINOR;
711}
712
713/* return true if we are running with elevated privileges and should ignore env variables */
714static int
715enable_secure (void)
716{
717#ifdef WIN32
718 return 0;
719#else
720 return getuid () != geteuid ()
721 || getgid () != getegid ();
722#endif
723}
724
725int
726ev_method (EV_P)
727{
728 return method;
729}
730
731static void
732loop_init (EV_P_ int methods)
733{
379 if (!ev_method) 734 if (!method)
380 { 735 {
381#if HAVE_MONOTONIC 736#if EV_USE_MONOTONIC
382 { 737 {
383 struct timespec ts; 738 struct timespec ts;
384 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 739 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
385 have_monotonic = 1; 740 have_monotonic = 1;
386 } 741 }
387#endif 742#endif
388 743
389 ev_now = ev_time (); 744 ev_rt_now = ev_time ();
390 now = get_clock (); 745 mn_now = get_clock ();
746 now_floor = mn_now;
391 diff = ev_now - now; 747 rtmn_diff = ev_rt_now - mn_now;
392 748
749 if (methods == EVMETHOD_AUTO)
750 if (!enable_secure () && getenv ("LIBEV_METHODS"))
751 methods = atoi (getenv ("LIBEV_METHODS"));
752 else
753 methods = EVMETHOD_ANY;
754
755 method = 0;
756#if EV_USE_WIN32
757 if (!method && (methods & EVMETHOD_WIN32 )) method = win32_init (EV_A_ methods);
758#endif
759#if EV_USE_KQUEUE
760 if (!method && (methods & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ methods);
761#endif
762#if EV_USE_EPOLL
763 if (!method && (methods & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ methods);
764#endif
765#if EV_USE_POLL
766 if (!method && (methods & EVMETHOD_POLL )) method = poll_init (EV_A_ methods);
767#endif
768#if EV_USE_SELECT
769 if (!method && (methods & EVMETHOD_SELECT)) method = select_init (EV_A_ methods);
770#endif
771
772 ev_init (&sigev, sigcb);
773 ev_set_priority (&sigev, EV_MAXPRI);
774 }
775}
776
777void
778loop_destroy (EV_P)
779{
780 int i;
781
782#if EV_USE_WIN32
783 if (method == EVMETHOD_WIN32 ) win32_destroy (EV_A);
784#endif
785#if EV_USE_KQUEUE
786 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A);
787#endif
788#if EV_USE_EPOLL
789 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A);
790#endif
791#if EV_USE_POLL
792 if (method == EVMETHOD_POLL ) poll_destroy (EV_A);
793#endif
794#if EV_USE_SELECT
795 if (method == EVMETHOD_SELECT) select_destroy (EV_A);
796#endif
797
798 for (i = NUMPRI; i--; )
799 array_free (pending, [i]);
800
801 /* have to use the microsoft-never-gets-it-right macro */
802 array_free_microshit (fdchange);
803 array_free_microshit (timer);
804 array_free_microshit (periodic);
805 array_free_microshit (idle);
806 array_free_microshit (prepare);
807 array_free_microshit (check);
808
809 method = 0;
810}
811
812static void
813loop_fork (EV_P)
814{
815#if EV_USE_EPOLL
816 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A);
817#endif
818#if EV_USE_KQUEUE
819 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A);
820#endif
821
822 if (ev_is_active (&sigev))
823 {
824 /* default loop */
825
826 ev_ref (EV_A);
827 ev_io_stop (EV_A_ &sigev);
828 close (sigpipe [0]);
829 close (sigpipe [1]);
830
831 while (pipe (sigpipe))
832 syserr ("(libev) error creating pipe");
833
834 siginit (EV_A);
835 }
836
837 postfork = 0;
838}
839
840#if EV_MULTIPLICITY
841struct ev_loop *
842ev_loop_new (int methods)
843{
844 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
845
846 memset (loop, 0, sizeof (struct ev_loop));
847
848 loop_init (EV_A_ methods);
849
850 if (ev_method (EV_A))
851 return loop;
852
853 return 0;
854}
855
856void
857ev_loop_destroy (EV_P)
858{
859 loop_destroy (EV_A);
860 ev_free (loop);
861}
862
863void
864ev_loop_fork (EV_P)
865{
866 postfork = 1;
867}
868
869#endif
870
871#if EV_MULTIPLICITY
872struct ev_loop *
873#else
874int
875#endif
876ev_default_loop (int methods)
877{
878 if (sigpipe [0] == sigpipe [1])
393 if (pipe (sigpipe)) 879 if (pipe (sigpipe))
394 return 0; 880 return 0;
395 881
396 ev_method = EVMETHOD_NONE; 882 if (!default_loop)
397#if HAVE_EPOLL 883 {
398 if (ev_method == EVMETHOD_NONE) epoll_init (flags); 884#if EV_MULTIPLICITY
885 struct ev_loop *loop = default_loop = &default_loop_struct;
886#else
887 default_loop = 1;
399#endif 888#endif
400#if HAVE_SELECT
401 if (ev_method == EVMETHOD_NONE) select_init (flags);
402#endif
403 889
890 loop_init (EV_A_ methods);
891
404 if (ev_method) 892 if (ev_method (EV_A))
405 { 893 {
406 evw_init (&sigev, sigcb);
407 siginit (); 894 siginit (EV_A);
408 895
896#ifndef WIN32
409 evsignal_init (&childev, childcb, SIGCHLD); 897 ev_signal_init (&childev, childcb, SIGCHLD);
898 ev_set_priority (&childev, EV_MAXPRI);
410 evsignal_start (&childev); 899 ev_signal_start (EV_A_ &childev);
900 ev_unref (EV_A); /* child watcher should not keep loop alive */
901#endif
411 } 902 }
903 else
904 default_loop = 0;
412 } 905 }
413 906
414 return ev_method; 907 return default_loop;
908}
909
910void
911ev_default_destroy (void)
912{
913#if EV_MULTIPLICITY
914 struct ev_loop *loop = default_loop;
915#endif
916
917#ifndef WIN32
918 ev_ref (EV_A); /* child watcher */
919 ev_signal_stop (EV_A_ &childev);
920#endif
921
922 ev_ref (EV_A); /* signal watcher */
923 ev_io_stop (EV_A_ &sigev);
924
925 close (sigpipe [0]); sigpipe [0] = 0;
926 close (sigpipe [1]); sigpipe [1] = 0;
927
928 loop_destroy (EV_A);
929}
930
931void
932ev_default_fork (void)
933{
934#if EV_MULTIPLICITY
935 struct ev_loop *loop = default_loop;
936#endif
937
938 if (method)
939 postfork = 1;
415} 940}
416 941
417/*****************************************************************************/ 942/*****************************************************************************/
418 943
419void ev_prefork (void)
420{
421 /* nop */
422}
423
424void ev_postfork_parent (void)
425{
426 /* nop */
427}
428
429void ev_postfork_child (void)
430{
431#if HAVE_EPOLL
432 if (ev_method == EVMETHOD_EPOLL)
433 epoll_postfork_child ();
434#endif
435
436 evio_stop (&sigev);
437 close (sigpipe [0]);
438 close (sigpipe [1]);
439 pipe (sigpipe);
440 siginit ();
441}
442
443/*****************************************************************************/
444
445static void 944static int
446fd_reify (void) 945any_pending (EV_P)
447{ 946{
448 int i; 947 int pri;
449 948
450 for (i = 0; i < fdchangecnt; ++i) 949 for (pri = NUMPRI; pri--; )
451 { 950 if (pendingcnt [pri])
452 int fd = fdchanges [i]; 951 return 1;
453 ANFD *anfd = anfds + fd;
454 struct ev_io *w;
455 952
456 int wev = 0; 953 return 0;
457
458 for (w = anfd->head; w; w = w->next)
459 wev |= w->events;
460
461 if (anfd->wev != wev)
462 {
463 method_modify (fd, anfd->wev, wev);
464 anfd->wev = wev;
465 }
466 }
467
468 fdchangecnt = 0;
469} 954}
470 955
471static void 956static void
472call_pending () 957call_pending (EV_P)
473{ 958{
959 int pri;
960
961 for (pri = NUMPRI; pri--; )
474 while (pendingcnt) 962 while (pendingcnt [pri])
475 { 963 {
476 ANPENDING *p = pendings + --pendingcnt; 964 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
477 965
478 if (p->w) 966 if (p->w)
479 { 967 {
480 p->w->pending = 0; 968 p->w->pending = 0;
481 p->w->cb (p->w, p->events); 969 EV_CB_INVOKE (p->w, p->events);
482 } 970 }
483 } 971 }
484} 972}
485 973
486static void 974static void
487timers_reify () 975timers_reify (EV_P)
488{ 976{
489 while (timercnt && timers [0]->at <= now) 977 while (timercnt && ((WT)timers [0])->at <= mn_now)
490 { 978 {
491 struct ev_timer *w = timers [0]; 979 struct ev_timer *w = timers [0];
492 980
493 event ((W)w, EV_TIMEOUT); 981 assert (("inactive timer on timer heap detected", ev_is_active (w)));
494 982
495 /* first reschedule or stop timer */ 983 /* first reschedule or stop timer */
496 if (w->repeat) 984 if (w->repeat)
497 { 985 {
986 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
498 w->at = now + w->repeat; 987 ((WT)w)->at = mn_now + w->repeat;
499 assert (("timer timeout in the past, negative repeat?", w->at > now));
500 downheap ((WT *)timers, timercnt, 0); 988 downheap ((WT *)timers, timercnt, 0);
501 } 989 }
502 else 990 else
503 evtimer_stop (w); /* nonrepeating: stop timer */ 991 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
504 }
505}
506 992
993 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
994 }
995}
996
507static void 997static void
508periodics_reify () 998periodics_reify (EV_P)
509{ 999{
510 while (periodiccnt && periodics [0]->at <= ev_now) 1000 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now)
511 { 1001 {
512 struct ev_periodic *w = periodics [0]; 1002 struct ev_periodic *w = periodics [0];
513 1003
1004 assert (("inactive timer on periodic heap detected", ev_is_active (w)));
1005
514 /* first reschedule or stop timer */ 1006 /* first reschedule or stop timer */
515 if (w->interval) 1007 if (w->reschedule_cb)
516 { 1008 {
1009 ev_tstamp at = ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001);
1010
1011 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now));
1012 downheap ((WT *)periodics, periodiccnt, 0);
1013 }
1014 else if (w->interval)
1015 {
517 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1016 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval;
518 assert (("periodic timeout in the past, negative interval?", w->at > ev_now)); 1017 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now));
519 downheap ((WT *)periodics, periodiccnt, 0); 1018 downheap ((WT *)periodics, periodiccnt, 0);
520 } 1019 }
521 else 1020 else
522 evperiodic_stop (w); /* nonrepeating: stop timer */ 1021 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
523 1022
524 event ((W)w, EV_TIMEOUT); 1023 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
525 } 1024 }
526} 1025}
527 1026
528static void 1027static void
529periodics_reschedule (ev_tstamp diff) 1028periodics_reschedule (EV_P)
530{ 1029{
531 int i; 1030 int i;
532 1031
533 /* adjust periodics after time jump */ 1032 /* adjust periodics after time jump */
534 for (i = 0; i < periodiccnt; ++i) 1033 for (i = 0; i < periodiccnt; ++i)
535 { 1034 {
536 struct ev_periodic *w = periodics [i]; 1035 struct ev_periodic *w = periodics [i];
537 1036
1037 if (w->reschedule_cb)
1038 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
538 if (w->interval) 1039 else if (w->interval)
1040 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1041 }
1042
1043 /* now rebuild the heap */
1044 for (i = periodiccnt >> 1; i--; )
1045 downheap ((WT *)periodics, periodiccnt, i);
1046}
1047
1048inline int
1049time_update_monotonic (EV_P)
1050{
1051 mn_now = get_clock ();
1052
1053 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1054 {
1055 ev_rt_now = rtmn_diff + mn_now;
1056 return 0;
1057 }
1058 else
1059 {
1060 now_floor = mn_now;
1061 ev_rt_now = ev_time ();
1062 return 1;
1063 }
1064}
1065
1066static void
1067time_update (EV_P)
1068{
1069 int i;
1070
1071#if EV_USE_MONOTONIC
1072 if (expect_true (have_monotonic))
1073 {
1074 if (time_update_monotonic (EV_A))
539 { 1075 {
540 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1076 ev_tstamp odiff = rtmn_diff;
541 1077
542 if (fabs (diff) >= 1e-4) 1078 for (i = 4; --i; ) /* loop a few times, before making important decisions */
543 { 1079 {
544 evperiodic_stop (w); 1080 rtmn_diff = ev_rt_now - mn_now;
545 evperiodic_start (w);
546 1081
547 i = 0; /* restart loop, inefficient, but time jumps should be rare */ 1082 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1083 return; /* all is well */
1084
1085 ev_rt_now = ev_time ();
1086 mn_now = get_clock ();
1087 now_floor = mn_now;
548 } 1088 }
1089
1090 periodics_reschedule (EV_A);
1091 /* no timer adjustment, as the monotonic clock doesn't jump */
1092 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
549 } 1093 }
550 } 1094 }
551} 1095 else
552 1096#endif
553static void 1097 {
554time_update ()
555{
556 int i;
557
558 ev_now = ev_time (); 1098 ev_rt_now = ev_time ();
559 1099
560 if (have_monotonic) 1100 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
561 {
562 ev_tstamp odiff = diff;
563
564 for (i = 4; --i; ) /* loop a few times, before making important decisions */
565 { 1101 {
566 now = get_clock ();
567 diff = ev_now - now;
568
569 if (fabs (odiff - diff) < MIN_TIMEJUMP)
570 return; /* all is well */
571
572 ev_now = ev_time ();
573 }
574
575 periodics_reschedule (diff - odiff);
576 /* no timer adjustment, as the monotonic clock doesn't jump */
577 }
578 else
579 {
580 if (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)
581 {
582 periodics_reschedule (ev_now - now); 1102 periodics_reschedule (EV_A);
583 1103
584 /* adjust timers. this is easy, as the offset is the same for all */ 1104 /* adjust timers. this is easy, as the offset is the same for all */
585 for (i = 0; i < timercnt; ++i) 1105 for (i = 0; i < timercnt; ++i)
586 timers [i]->at += diff; 1106 ((WT)timers [i])->at += ev_rt_now - mn_now;
587 } 1107 }
588 1108
589 now = ev_now; 1109 mn_now = ev_rt_now;
590 } 1110 }
591} 1111}
592 1112
593int ev_loop_done; 1113void
1114ev_ref (EV_P)
1115{
1116 ++activecnt;
1117}
594 1118
1119void
1120ev_unref (EV_P)
1121{
1122 --activecnt;
1123}
1124
1125static int loop_done;
1126
1127void
595void ev_loop (int flags) 1128ev_loop (EV_P_ int flags)
596{ 1129{
597 double block; 1130 double block;
598 ev_loop_done = flags & EVLOOP_ONESHOT ? 1 : 0; 1131 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
599 1132
600 do 1133 do
601 { 1134 {
602 /* queue check watchers (and execute them) */ 1135 /* queue check watchers (and execute them) */
603 if (preparecnt) 1136 if (expect_false (preparecnt))
604 { 1137 {
605 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1138 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
606 call_pending (); 1139 call_pending (EV_A);
607 } 1140 }
608 1141
1142 /* we might have forked, so reify kernel state if necessary */
1143 if (expect_false (postfork))
1144 loop_fork (EV_A);
1145
609 /* update fd-related kernel structures */ 1146 /* update fd-related kernel structures */
610 fd_reify (); 1147 fd_reify (EV_A);
611 1148
612 /* calculate blocking time */ 1149 /* calculate blocking time */
613 1150
614 /* we only need this for !monotonic clockor timers, but as we basically 1151 /* we only need this for !monotonic clock or timers, but as we basically
615 always have timers, we just calculate it always */ 1152 always have timers, we just calculate it always */
1153#if EV_USE_MONOTONIC
1154 if (expect_true (have_monotonic))
1155 time_update_monotonic (EV_A);
1156 else
1157#endif
1158 {
616 ev_now = ev_time (); 1159 ev_rt_now = ev_time ();
1160 mn_now = ev_rt_now;
1161 }
617 1162
618 if (flags & EVLOOP_NONBLOCK || idlecnt) 1163 if (flags & EVLOOP_NONBLOCK || idlecnt)
619 block = 0.; 1164 block = 0.;
620 else 1165 else
621 { 1166 {
622 block = MAX_BLOCKTIME; 1167 block = MAX_BLOCKTIME;
623 1168
624 if (timercnt) 1169 if (timercnt)
625 { 1170 {
626 ev_tstamp to = timers [0]->at - (have_monotonic ? get_clock () : ev_now) + method_fudge; 1171 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge;
627 if (block > to) block = to; 1172 if (block > to) block = to;
628 } 1173 }
629 1174
630 if (periodiccnt) 1175 if (periodiccnt)
631 { 1176 {
632 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1177 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge;
633 if (block > to) block = to; 1178 if (block > to) block = to;
634 } 1179 }
635 1180
636 if (block < 0.) block = 0.; 1181 if (block < 0.) block = 0.;
637 } 1182 }
638 1183
639 method_poll (block); 1184 method_poll (EV_A_ block);
640 1185
641 /* update ev_now, do magic */ 1186 /* update ev_rt_now, do magic */
642 time_update (); 1187 time_update (EV_A);
643 1188
644 /* queue pending timers and reschedule them */ 1189 /* queue pending timers and reschedule them */
645 timers_reify (); /* relative timers called last */ 1190 timers_reify (EV_A); /* relative timers called last */
646 periodics_reify (); /* absolute timers called first */ 1191 periodics_reify (EV_A); /* absolute timers called first */
647 1192
648 /* queue idle watchers unless io or timers are pending */ 1193 /* queue idle watchers unless io or timers are pending */
649 if (!pendingcnt) 1194 if (idlecnt && !any_pending (EV_A))
650 queue_events ((W *)idles, idlecnt, EV_IDLE); 1195 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE);
651 1196
652 /* queue check watchers, to be executed first */ 1197 /* queue check watchers, to be executed first */
653 if (checkcnt) 1198 if (checkcnt)
654 queue_events ((W *)checks, checkcnt, EV_CHECK); 1199 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
655 1200
656 call_pending (); 1201 call_pending (EV_A);
657 } 1202 }
658 while (!ev_loop_done); 1203 while (activecnt && !loop_done);
659 1204
660 if (ev_loop_done != 2) 1205 if (loop_done != 2)
661 ev_loop_done = 0; 1206 loop_done = 0;
1207}
1208
1209void
1210ev_unloop (EV_P_ int how)
1211{
1212 loop_done = how;
662} 1213}
663 1214
664/*****************************************************************************/ 1215/*****************************************************************************/
665 1216
666static void 1217inline void
667wlist_add (WL *head, WL elem) 1218wlist_add (WL *head, WL elem)
668{ 1219{
669 elem->next = *head; 1220 elem->next = *head;
670 *head = elem; 1221 *head = elem;
671} 1222}
672 1223
673static void 1224inline void
674wlist_del (WL *head, WL elem) 1225wlist_del (WL *head, WL elem)
675{ 1226{
676 while (*head) 1227 while (*head)
677 { 1228 {
678 if (*head == elem) 1229 if (*head == elem)
683 1234
684 head = &(*head)->next; 1235 head = &(*head)->next;
685 } 1236 }
686} 1237}
687 1238
688static void 1239inline void
689ev_clear (W w) 1240ev_clear_pending (EV_P_ W w)
690{ 1241{
691 if (w->pending) 1242 if (w->pending)
692 { 1243 {
693 pendings [w->pending - 1].w = 0; 1244 pendings [ABSPRI (w)][w->pending - 1].w = 0;
694 w->pending = 0; 1245 w->pending = 0;
695 } 1246 }
696} 1247}
697 1248
698static void 1249inline void
699ev_start (W w, int active) 1250ev_start (EV_P_ W w, int active)
700{ 1251{
1252 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI;
1253 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1254
701 w->active = active; 1255 w->active = active;
1256 ev_ref (EV_A);
702} 1257}
703 1258
704static void 1259inline void
705ev_stop (W w) 1260ev_stop (EV_P_ W w)
706{ 1261{
1262 ev_unref (EV_A);
707 w->active = 0; 1263 w->active = 0;
708} 1264}
709 1265
710/*****************************************************************************/ 1266/*****************************************************************************/
711 1267
712void 1268void
713evio_start (struct ev_io *w) 1269ev_io_start (EV_P_ struct ev_io *w)
714{ 1270{
1271 int fd = w->fd;
1272
715 if (ev_is_active (w)) 1273 if (ev_is_active (w))
716 return; 1274 return;
717 1275
718 int fd = w->fd; 1276 assert (("ev_io_start called with negative fd", fd >= 0));
719 1277
720 ev_start ((W)w, 1); 1278 ev_start (EV_A_ (W)w, 1);
721 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1279 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
722 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1280 wlist_add ((WL *)&anfds[fd].head, (WL)w);
723 1281
724 ++fdchangecnt; 1282 fd_change (EV_A_ fd);
725 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
726 fdchanges [fdchangecnt - 1] = fd;
727} 1283}
728 1284
729void 1285void
730evio_stop (struct ev_io *w) 1286ev_io_stop (EV_P_ struct ev_io *w)
731{ 1287{
732 ev_clear ((W)w); 1288 ev_clear_pending (EV_A_ (W)w);
733 if (!ev_is_active (w)) 1289 if (!ev_is_active (w))
734 return; 1290 return;
735 1291
736 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1292 wlist_del ((WL *)&anfds[w->fd].head, (WL)w);
737 ev_stop ((W)w); 1293 ev_stop (EV_A_ (W)w);
738 1294
739 ++fdchangecnt; 1295 fd_change (EV_A_ w->fd);
740 array_needsize (fdchanges, fdchangemax, fdchangecnt, );
741 fdchanges [fdchangecnt - 1] = w->fd;
742} 1296}
743 1297
744void 1298void
745evtimer_start (struct ev_timer *w) 1299ev_timer_start (EV_P_ struct ev_timer *w)
746{ 1300{
747 if (ev_is_active (w)) 1301 if (ev_is_active (w))
748 return; 1302 return;
749 1303
750 w->at += now; 1304 ((WT)w)->at += mn_now;
751 1305
752 assert (("timer repeat value less than zero not allowed", w->repeat >= 0.)); 1306 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
753 1307
754 ev_start ((W)w, ++timercnt); 1308 ev_start (EV_A_ (W)w, ++timercnt);
755 array_needsize (timers, timermax, timercnt, ); 1309 array_needsize (struct ev_timer *, timers, timermax, timercnt, (void));
756 timers [timercnt - 1] = w; 1310 timers [timercnt - 1] = w;
757 upheap ((WT *)timers, timercnt - 1); 1311 upheap ((WT *)timers, timercnt - 1);
758}
759 1312
1313 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1314}
1315
760void 1316void
761evtimer_stop (struct ev_timer *w) 1317ev_timer_stop (EV_P_ struct ev_timer *w)
762{ 1318{
763 ev_clear ((W)w); 1319 ev_clear_pending (EV_A_ (W)w);
764 if (!ev_is_active (w)) 1320 if (!ev_is_active (w))
765 return; 1321 return;
766 1322
1323 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1324
767 if (w->active < timercnt--) 1325 if (((W)w)->active < timercnt--)
768 { 1326 {
769 timers [w->active - 1] = timers [timercnt]; 1327 timers [((W)w)->active - 1] = timers [timercnt];
770 downheap ((WT *)timers, timercnt, w->active - 1); 1328 downheap ((WT *)timers, timercnt, ((W)w)->active - 1);
771 } 1329 }
772 1330
773 w->at = w->repeat; 1331 ((WT)w)->at = w->repeat;
774 1332
775 ev_stop ((W)w); 1333 ev_stop (EV_A_ (W)w);
776} 1334}
777 1335
778void 1336void
779evtimer_again (struct ev_timer *w) 1337ev_timer_again (EV_P_ struct ev_timer *w)
780{ 1338{
781 if (ev_is_active (w)) 1339 if (ev_is_active (w))
782 { 1340 {
783 if (w->repeat) 1341 if (w->repeat)
784 {
785 w->at = now + w->repeat;
786 downheap ((WT *)timers, timercnt, w->active - 1); 1342 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1, mn_now + w->repeat);
787 }
788 else 1343 else
789 evtimer_stop (w); 1344 ev_timer_stop (EV_A_ w);
790 } 1345 }
791 else if (w->repeat) 1346 else if (w->repeat)
792 evtimer_start (w); 1347 ev_timer_start (EV_A_ w);
793} 1348}
794 1349
795void 1350void
796evperiodic_start (struct ev_periodic *w) 1351ev_periodic_start (EV_P_ struct ev_periodic *w)
797{ 1352{
798 if (ev_is_active (w)) 1353 if (ev_is_active (w))
799 return; 1354 return;
800 1355
801 assert (("periodic interval value less than zero not allowed", w->interval >= 0.)); 1356 if (w->reschedule_cb)
802 1357 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now);
1358 else if (w->interval)
1359 {
1360 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
803 /* this formula differs from the one in periodic_reify because we do not always round up */ 1361 /* this formula differs from the one in periodic_reify because we do not always round up */
804 if (w->interval)
805 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1362 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval;
1363 }
806 1364
807 ev_start ((W)w, ++periodiccnt); 1365 ev_start (EV_A_ (W)w, ++periodiccnt);
808 array_needsize (periodics, periodicmax, periodiccnt, ); 1366 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, (void));
809 periodics [periodiccnt - 1] = w; 1367 periodics [periodiccnt - 1] = w;
810 upheap ((WT *)periodics, periodiccnt - 1); 1368 upheap ((WT *)periodics, periodiccnt - 1);
811}
812 1369
1370 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1371}
1372
813void 1373void
814evperiodic_stop (struct ev_periodic *w) 1374ev_periodic_stop (EV_P_ struct ev_periodic *w)
815{ 1375{
816 ev_clear ((W)w); 1376 ev_clear_pending (EV_A_ (W)w);
817 if (!ev_is_active (w)) 1377 if (!ev_is_active (w))
818 return; 1378 return;
819 1379
1380 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1381
820 if (w->active < periodiccnt--) 1382 if (((W)w)->active < periodiccnt--)
821 { 1383 {
822 periodics [w->active - 1] = periodics [periodiccnt]; 1384 periodics [((W)w)->active - 1] = periodics [periodiccnt];
823 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1385 downheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1);
824 } 1386 }
825 1387
826 ev_stop ((W)w); 1388 ev_stop (EV_A_ (W)w);
827} 1389}
828 1390
829void 1391void
830evsignal_start (struct ev_signal *w) 1392ev_periodic_again (EV_P_ struct ev_periodic *w)
1393{
1394 /* TODO: use adjustheap and recalculation */
1395 ev_periodic_stop (EV_A_ w);
1396 ev_periodic_start (EV_A_ w);
1397}
1398
1399void
1400ev_idle_start (EV_P_ struct ev_idle *w)
831{ 1401{
832 if (ev_is_active (w)) 1402 if (ev_is_active (w))
833 return; 1403 return;
834 1404
1405 ev_start (EV_A_ (W)w, ++idlecnt);
1406 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, (void));
1407 idles [idlecnt - 1] = w;
1408}
1409
1410void
1411ev_idle_stop (EV_P_ struct ev_idle *w)
1412{
1413 ev_clear_pending (EV_A_ (W)w);
1414 if (ev_is_active (w))
1415 return;
1416
1417 idles [((W)w)->active - 1] = idles [--idlecnt];
1418 ev_stop (EV_A_ (W)w);
1419}
1420
1421void
1422ev_prepare_start (EV_P_ struct ev_prepare *w)
1423{
1424 if (ev_is_active (w))
1425 return;
1426
1427 ev_start (EV_A_ (W)w, ++preparecnt);
1428 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, (void));
1429 prepares [preparecnt - 1] = w;
1430}
1431
1432void
1433ev_prepare_stop (EV_P_ struct ev_prepare *w)
1434{
1435 ev_clear_pending (EV_A_ (W)w);
1436 if (ev_is_active (w))
1437 return;
1438
1439 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1440 ev_stop (EV_A_ (W)w);
1441}
1442
1443void
1444ev_check_start (EV_P_ struct ev_check *w)
1445{
1446 if (ev_is_active (w))
1447 return;
1448
1449 ev_start (EV_A_ (W)w, ++checkcnt);
1450 array_needsize (struct ev_check *, checks, checkmax, checkcnt, (void));
1451 checks [checkcnt - 1] = w;
1452}
1453
1454void
1455ev_check_stop (EV_P_ struct ev_check *w)
1456{
1457 ev_clear_pending (EV_A_ (W)w);
1458 if (ev_is_active (w))
1459 return;
1460
1461 checks [((W)w)->active - 1] = checks [--checkcnt];
1462 ev_stop (EV_A_ (W)w);
1463}
1464
1465#ifndef SA_RESTART
1466# define SA_RESTART 0
1467#endif
1468
1469void
1470ev_signal_start (EV_P_ struct ev_signal *w)
1471{
1472#if EV_MULTIPLICITY
1473 assert (("signal watchers are only supported in the default loop", loop == default_loop));
1474#endif
1475 if (ev_is_active (w))
1476 return;
1477
1478 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1479
835 ev_start ((W)w, 1); 1480 ev_start (EV_A_ (W)w, 1);
836 array_needsize (signals, signalmax, w->signum, signals_init); 1481 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
837 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 1482 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w);
838 1483
839 if (!w->next) 1484 if (!((WL)w)->next)
840 { 1485 {
1486#if WIN32
1487 signal (w->signum, sighandler);
1488#else
841 struct sigaction sa; 1489 struct sigaction sa;
842 sa.sa_handler = sighandler; 1490 sa.sa_handler = sighandler;
843 sigfillset (&sa.sa_mask); 1491 sigfillset (&sa.sa_mask);
844 sa.sa_flags = 0; 1492 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
845 sigaction (w->signum, &sa, 0); 1493 sigaction (w->signum, &sa, 0);
1494#endif
846 } 1495 }
847} 1496}
848 1497
849void 1498void
850evsignal_stop (struct ev_signal *w) 1499ev_signal_stop (EV_P_ struct ev_signal *w)
851{ 1500{
852 ev_clear ((W)w); 1501 ev_clear_pending (EV_A_ (W)w);
853 if (!ev_is_active (w)) 1502 if (!ev_is_active (w))
854 return; 1503 return;
855 1504
856 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 1505 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w);
857 ev_stop ((W)w); 1506 ev_stop (EV_A_ (W)w);
858 1507
859 if (!signals [w->signum - 1].head) 1508 if (!signals [w->signum - 1].head)
860 signal (w->signum, SIG_DFL); 1509 signal (w->signum, SIG_DFL);
861} 1510}
862 1511
863void evidle_start (struct ev_idle *w) 1512void
1513ev_child_start (EV_P_ struct ev_child *w)
864{ 1514{
1515#if EV_MULTIPLICITY
1516 assert (("child watchers are only supported in the default loop", loop == default_loop));
1517#endif
865 if (ev_is_active (w)) 1518 if (ev_is_active (w))
866 return; 1519 return;
867 1520
868 ev_start ((W)w, ++idlecnt); 1521 ev_start (EV_A_ (W)w, 1);
869 array_needsize (idles, idlemax, idlecnt, ); 1522 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
870 idles [idlecnt - 1] = w;
871} 1523}
872 1524
873void evidle_stop (struct ev_idle *w) 1525void
1526ev_child_stop (EV_P_ struct ev_child *w)
874{ 1527{
875 ev_clear ((W)w); 1528 ev_clear_pending (EV_A_ (W)w);
876 if (ev_is_active (w)) 1529 if (ev_is_active (w))
877 return; 1530 return;
878 1531
879 idles [w->active - 1] = idles [--idlecnt];
880 ev_stop ((W)w);
881}
882
883void evprepare_start (struct ev_prepare *w)
884{
885 if (ev_is_active (w))
886 return;
887
888 ev_start ((W)w, ++preparecnt);
889 array_needsize (prepares, preparemax, preparecnt, );
890 prepares [preparecnt - 1] = w;
891}
892
893void evprepare_stop (struct ev_prepare *w)
894{
895 ev_clear ((W)w);
896 if (ev_is_active (w))
897 return;
898
899 prepares [w->active - 1] = prepares [--preparecnt];
900 ev_stop ((W)w);
901}
902
903void evcheck_start (struct ev_check *w)
904{
905 if (ev_is_active (w))
906 return;
907
908 ev_start ((W)w, ++checkcnt);
909 array_needsize (checks, checkmax, checkcnt, );
910 checks [checkcnt - 1] = w;
911}
912
913void evcheck_stop (struct ev_check *w)
914{
915 ev_clear ((W)w);
916 if (ev_is_active (w))
917 return;
918
919 checks [w->active - 1] = checks [--checkcnt];
920 ev_stop ((W)w);
921}
922
923void evchild_start (struct ev_child *w)
924{
925 if (ev_is_active (w))
926 return;
927
928 ev_start ((W)w, 1);
929 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
930}
931
932void evchild_stop (struct ev_child *w)
933{
934 ev_clear ((W)w);
935 if (ev_is_active (w))
936 return;
937
938 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 1532 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
939 ev_stop ((W)w); 1533 ev_stop (EV_A_ (W)w);
940} 1534}
941 1535
942/*****************************************************************************/ 1536/*****************************************************************************/
943 1537
944struct ev_once 1538struct ev_once
948 void (*cb)(int revents, void *arg); 1542 void (*cb)(int revents, void *arg);
949 void *arg; 1543 void *arg;
950}; 1544};
951 1545
952static void 1546static void
953once_cb (struct ev_once *once, int revents) 1547once_cb (EV_P_ struct ev_once *once, int revents)
954{ 1548{
955 void (*cb)(int revents, void *arg) = once->cb; 1549 void (*cb)(int revents, void *arg) = once->cb;
956 void *arg = once->arg; 1550 void *arg = once->arg;
957 1551
958 evio_stop (&once->io); 1552 ev_io_stop (EV_A_ &once->io);
959 evtimer_stop (&once->to); 1553 ev_timer_stop (EV_A_ &once->to);
960 free (once); 1554 ev_free (once);
961 1555
962 cb (revents, arg); 1556 cb (revents, arg);
963} 1557}
964 1558
965static void 1559static void
966once_cb_io (struct ev_io *w, int revents) 1560once_cb_io (EV_P_ struct ev_io *w, int revents)
967{ 1561{
968 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 1562 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
969} 1563}
970 1564
971static void 1565static void
972once_cb_to (struct ev_timer *w, int revents) 1566once_cb_to (EV_P_ struct ev_timer *w, int revents)
973{ 1567{
974 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 1568 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
975} 1569}
976 1570
977void 1571void
978ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 1572ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
979{ 1573{
980 struct ev_once *once = malloc (sizeof (struct ev_once)); 1574 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
981 1575
982 if (!once) 1576 if (!once)
983 cb (EV_ERROR, arg); 1577 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
984 else 1578 else
985 { 1579 {
986 once->cb = cb; 1580 once->cb = cb;
987 once->arg = arg; 1581 once->arg = arg;
988 1582
989 evw_init (&once->io, once_cb_io); 1583 ev_init (&once->io, once_cb_io);
990
991 if (fd >= 0) 1584 if (fd >= 0)
992 { 1585 {
993 evio_set (&once->io, fd, events); 1586 ev_io_set (&once->io, fd, events);
994 evio_start (&once->io); 1587 ev_io_start (EV_A_ &once->io);
995 } 1588 }
996 1589
997 evw_init (&once->to, once_cb_to); 1590 ev_init (&once->to, once_cb_to);
998
999 if (timeout >= 0.) 1591 if (timeout >= 0.)
1000 { 1592 {
1001 evtimer_set (&once->to, timeout, 0.); 1593 ev_timer_set (&once->to, timeout, 0.);
1002 evtimer_start (&once->to); 1594 ev_timer_start (EV_A_ &once->to);
1003 } 1595 }
1004 } 1596 }
1005} 1597}
1006 1598
1007/*****************************************************************************/
1008
1009#if 0
1010
1011struct ev_io wio;
1012
1013static void
1014sin_cb (struct ev_io *w, int revents)
1015{
1016 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1017}
1018
1019static void
1020ocb (struct ev_timer *w, int revents)
1021{
1022 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1023 evtimer_stop (w);
1024 evtimer_start (w);
1025}
1026
1027static void
1028scb (struct ev_signal *w, int revents)
1029{
1030 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1031 evio_stop (&wio);
1032 evio_start (&wio);
1033}
1034
1035static void
1036gcb (struct ev_signal *w, int revents)
1037{
1038 fprintf (stderr, "generic %x\n", revents);
1039
1040}
1041
1042int main (void)
1043{
1044 ev_init (0);
1045
1046 evio_init (&wio, sin_cb, 0, EV_READ);
1047 evio_start (&wio);
1048
1049 struct ev_timer t[10000];
1050
1051#if 0
1052 int i;
1053 for (i = 0; i < 10000; ++i)
1054 {
1055 struct ev_timer *w = t + i;
1056 evw_init (w, ocb, i);
1057 evtimer_init_abs (w, ocb, drand48 (), 0.99775533);
1058 evtimer_start (w);
1059 if (drand48 () < 0.5)
1060 evtimer_stop (w);
1061 }
1062#endif
1063
1064 struct ev_timer t1;
1065 evtimer_init (&t1, ocb, 5, 10);
1066 evtimer_start (&t1);
1067
1068 struct ev_signal sig;
1069 evsignal_init (&sig, scb, SIGQUIT);
1070 evsignal_start (&sig);
1071
1072 struct ev_check cw;
1073 evcheck_init (&cw, gcb);
1074 evcheck_start (&cw);
1075
1076 struct ev_idle iw;
1077 evidle_init (&iw, gcb);
1078 evidle_start (&iw);
1079
1080 ev_loop (0);
1081
1082 return 0;
1083}
1084
1085#endif
1086
1087
1088
1089

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines