ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.230 by root, Fri May 2 08:13:16 2008 UTC vs.
Revision 1.249 by root, Wed May 21 23:30:52 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#if 0 /* debugging */
241# define EV_VERIFY 1
242# define EV_USE_4HEAP 1
243# define EV_HEAP_CACHE_AT 1
244#endif
245
246#ifndef EV_USE_4HEAP
247# define EV_USE_4HEAP !EV_MINIMAL
248#endif
249
250#ifndef EV_HEAP_CACHE_AT
251# define EV_HEAP_CACHE_AT !EV_MINIMAL
252#endif
253
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 254/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 255
242#ifndef CLOCK_MONOTONIC 256#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 257# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 258# define EV_USE_MONOTONIC 0
279} 293}
280# endif 294# endif
281#endif 295#endif
282 296
283/**/ 297/**/
298
299/* EV_VERIFY: enable internal consistency checks
300 * undefined or zero: no verification done or available
301 * 1 or higher: ev_loop_verify function available
302 * 2 or higher: ev_loop_verify is called frequently
303 */
304#if EV_VERIFY >= 1
305# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
306#else
307# define EV_FREQUENT_CHECK do { } while (0)
308#endif
284 309
285/* 310/*
286 * This is used to avoid floating point rounding problems. 311 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 312 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 313 * to ensure progress, time-wise, even when rounding
422 W w; 447 W w;
423 int events; 448 int events;
424} ANPENDING; 449} ANPENDING;
425 450
426#if EV_USE_INOTIFY 451#if EV_USE_INOTIFY
452/* hash table entry per inotify-id */
427typedef struct 453typedef struct
428{ 454{
429 WL head; 455 WL head;
430} ANFS; 456} ANFS;
457#endif
458
459/* Heap Entry */
460#if EV_HEAP_CACHE_AT
461 typedef struct {
462 ev_tstamp at;
463 WT w;
464 } ANHE;
465
466 #define ANHE_w(he) (he).w /* access watcher, read-write */
467 #define ANHE_at(he) (he).at /* access cached at, read-only */
468 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
469#else
470 typedef WT ANHE;
471
472 #define ANHE_w(he) (he)
473 #define ANHE_at(he) (he)->at
474 #define ANHE_at_cache(he)
431#endif 475#endif
432 476
433#if EV_MULTIPLICITY 477#if EV_MULTIPLICITY
434 478
435 struct ev_loop 479 struct ev_loop
520 } 564 }
521} 565}
522 566
523/*****************************************************************************/ 567/*****************************************************************************/
524 568
569#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
570
525int inline_size 571int inline_size
526array_nextsize (int elem, int cur, int cnt) 572array_nextsize (int elem, int cur, int cnt)
527{ 573{
528 int ncur = cur + 1; 574 int ncur = cur + 1;
529 575
530 do 576 do
531 ncur <<= 1; 577 ncur <<= 1;
532 while (cnt > ncur); 578 while (cnt > ncur);
533 579
534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 580 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
535 if (elem * ncur > 4096) 581 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
536 { 582 {
537 ncur *= elem; 583 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 584 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
539 ncur = ncur - sizeof (void *) * 4; 585 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem; 586 ncur /= elem;
541 } 587 }
542 588
543 return ncur; 589 return ncur;
757 } 803 }
758} 804}
759 805
760/*****************************************************************************/ 806/*****************************************************************************/
761 807
808/*
809 * the heap functions want a real array index. array index 0 uis guaranteed to not
810 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
811 * the branching factor of the d-tree.
812 */
813
814/*
815 * at the moment we allow libev the luxury of two heaps,
816 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
817 * which is more cache-efficient.
818 * the difference is about 5% with 50000+ watchers.
819 */
820#if EV_USE_4HEAP
821
822#define DHEAP 4
823#define HEAP0 (DHEAP - 1) /* index of first element in heap */
824#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
825#define UPHEAP_DONE(p,k) ((p) == (k))
826
827/* away from the root */
828void inline_speed
829downheap (ANHE *heap, int N, int k)
830{
831 ANHE he = heap [k];
832 ANHE *E = heap + N + HEAP0;
833
834 for (;;)
835 {
836 ev_tstamp minat;
837 ANHE *minpos;
838 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
839
840 /* find minimum child */
841 if (expect_true (pos + DHEAP - 1 < E))
842 {
843 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
844 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
845 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
846 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
847 }
848 else if (pos < E)
849 {
850 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else
856 break;
857
858 if (ANHE_at (he) <= minat)
859 break;
860
861 heap [k] = *minpos;
862 ev_active (ANHE_w (*minpos)) = k;
863
864 k = minpos - heap;
865 }
866
867 heap [k] = he;
868 ev_active (ANHE_w (he)) = k;
869}
870
871#else /* 4HEAP */
872
873#define HEAP0 1
874#define HPARENT(k) ((k) >> 1)
875#define UPHEAP_DONE(p,k) (!(p))
876
877/* away from the root */
878void inline_speed
879downheap (ANHE *heap, int N, int k)
880{
881 ANHE he = heap [k];
882
883 for (;;)
884 {
885 int c = k << 1;
886
887 if (c > N + HEAP0 - 1)
888 break;
889
890 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
891 ? 1 : 0;
892
893 if (ANHE_at (he) <= ANHE_at (heap [c]))
894 break;
895
896 heap [k] = heap [c];
897 ev_active (ANHE_w (heap [k])) = k;
898
899 k = c;
900 }
901
902 heap [k] = he;
903 ev_active (ANHE_w (he)) = k;
904}
905#endif
906
762/* towards the root */ 907/* towards the root */
763void inline_speed 908void inline_speed
764upheap (WT *heap, int k) 909upheap (ANHE *heap, int k)
765{ 910{
766 WT w = heap [k]; 911 ANHE he = heap [k];
767 912
768 for (;;) 913 for (;;)
769 { 914 {
770 int p = k >> 1; 915 int p = HPARENT (k);
771 916
772 /* maybe we could use a dummy element at heap [0]? */ 917 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
773 if (!p || heap [p]->at <= w->at)
774 break; 918 break;
775 919
776 heap [k] = heap [p]; 920 heap [k] = heap [p];
777 ev_active (heap [k]) = k; 921 ev_active (ANHE_w (heap [k])) = k;
778 k = p; 922 k = p;
779 } 923 }
780 924
781 heap [k] = w; 925 heap [k] = he;
782 ev_active (heap [k]) = k; 926 ev_active (ANHE_w (he)) = k;
783}
784
785/* away from the root */
786void inline_speed
787downheap (WT *heap, int N, int k)
788{
789 WT w = heap [k];
790
791 for (;;)
792 {
793 int c = k << 1;
794
795 if (c > N)
796 break;
797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
804 heap [k] = heap [c];
805 ev_active (heap [k]) = k;
806
807 k = c;
808 }
809
810 heap [k] = w;
811 ev_active (heap [k]) = k;
812} 927}
813 928
814void inline_size 929void inline_size
815adjustheap (WT *heap, int N, int k) 930adjustheap (ANHE *heap, int N, int k)
816{ 931{
932 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
817 upheap (heap, k); 933 upheap (heap, k);
934 else
818 downheap (heap, N, k); 935 downheap (heap, N, k);
819} 936}
937
938/* rebuild the heap: this function is used only once and executed rarely */
939void inline_size
940reheap (ANHE *heap, int N)
941{
942 int i;
943 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
944 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
945 for (i = 0; i < N; ++i)
946 upheap (heap, i + HEAP0);
947}
948
949#if EV_VERIFY
950static void
951checkheap (ANHE *heap, int N)
952{
953 int i;
954
955 for (i = HEAP0; i < N + HEAP0; ++i)
956 {
957 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
958 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
959 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
960 }
961}
962#endif
820 963
821/*****************************************************************************/ 964/*****************************************************************************/
822 965
823typedef struct 966typedef struct
824{ 967{
912pipecb (EV_P_ ev_io *iow, int revents) 1055pipecb (EV_P_ ev_io *iow, int revents)
913{ 1056{
914#if EV_USE_EVENTFD 1057#if EV_USE_EVENTFD
915 if (evfd >= 0) 1058 if (evfd >= 0)
916 { 1059 {
917 uint64_t counter = 1; 1060 uint64_t counter;
918 read (evfd, &counter, sizeof (uint64_t)); 1061 read (evfd, &counter, sizeof (uint64_t));
919 } 1062 }
920 else 1063 else
921#endif 1064#endif
922 { 1065 {
1369ev_loop_fork (EV_P) 1512ev_loop_fork (EV_P)
1370{ 1513{
1371 postfork = 1; /* must be in line with ev_default_fork */ 1514 postfork = 1; /* must be in line with ev_default_fork */
1372} 1515}
1373 1516
1517#if EV_VERIFY
1518static void
1519array_check (W **ws, int cnt)
1520{
1521 while (cnt--)
1522 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1523}
1524
1525static void
1526ev_loop_verify (EV_P)
1527{
1528 int i;
1529
1530 checkheap (timers, timercnt);
1531#if EV_PERIODIC_ENABLE
1532 checkheap (periodics, periodiccnt);
1533#endif
1534
1535#if EV_IDLE_ENABLE
1536 for (i = NUMPRI; i--; )
1537 array_check ((W **)idles [i], idlecnt [i]);
1538#endif
1539#if EV_FORK_ENABLE
1540 array_check ((W **)forks, forkcnt);
1541#endif
1542 array_check ((W **)prepares, preparecnt);
1543 array_check ((W **)checks, checkcnt);
1544#if EV_ASYNC_ENABLE
1545 array_check ((W **)asyncs, asynccnt);
1546#endif
1547}
1548#endif
1549
1374#endif 1550#endif
1375 1551
1376#if EV_MULTIPLICITY 1552#if EV_MULTIPLICITY
1377struct ev_loop * 1553struct ev_loop *
1378ev_default_loop_init (unsigned int flags) 1554ev_default_loop_init (unsigned int flags)
1444void inline_speed 1620void inline_speed
1445call_pending (EV_P) 1621call_pending (EV_P)
1446{ 1622{
1447 int pri; 1623 int pri;
1448 1624
1625 EV_FREQUENT_CHECK;
1626
1449 for (pri = NUMPRI; pri--; ) 1627 for (pri = NUMPRI; pri--; )
1450 while (pendingcnt [pri]) 1628 while (pendingcnt [pri])
1451 { 1629 {
1452 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1630 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1453 1631
1457 1635
1458 p->w->pending = 0; 1636 p->w->pending = 0;
1459 EV_CB_INVOKE (p->w, p->events); 1637 EV_CB_INVOKE (p->w, p->events);
1460 } 1638 }
1461 } 1639 }
1462}
1463 1640
1464void inline_size 1641 EV_FREQUENT_CHECK;
1465timers_reify (EV_P)
1466{
1467 while (timercnt && ev_at (timers [1]) <= mn_now)
1468 {
1469 ev_timer *w = (ev_timer *)timers [1];
1470
1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1472
1473 /* first reschedule or stop timer */
1474 if (w->repeat)
1475 {
1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1477
1478 ev_at (w) += w->repeat;
1479 if (ev_at (w) < mn_now)
1480 ev_at (w) = mn_now;
1481
1482 downheap (timers, timercnt, 1);
1483 }
1484 else
1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1486
1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1488 }
1489} 1642}
1490
1491#if EV_PERIODIC_ENABLE
1492void inline_size
1493periodics_reify (EV_P)
1494{
1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1496 {
1497 ev_periodic *w = (ev_periodic *)periodics [1];
1498
1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1500
1501 /* first reschedule or stop timer */
1502 if (w->reschedule_cb)
1503 {
1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1506 downheap (periodics, periodiccnt, 1);
1507 }
1508 else if (w->interval)
1509 {
1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1513 downheap (periodics, periodiccnt, 1);
1514 }
1515 else
1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1517
1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1519 }
1520}
1521
1522static void noinline
1523periodics_reschedule (EV_P)
1524{
1525 int i;
1526
1527 /* adjust periodics after time jump */
1528 for (i = 0; i < periodiccnt; ++i)
1529 {
1530 ev_periodic *w = (ev_periodic *)periodics [i];
1531
1532 if (w->reschedule_cb)
1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1534 else if (w->interval)
1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1536 }
1537
1538 /* now rebuild the heap */
1539 for (i = periodiccnt >> 1; i--; )
1540 downheap (periodics, periodiccnt, i);
1541}
1542#endif
1543 1643
1544#if EV_IDLE_ENABLE 1644#if EV_IDLE_ENABLE
1545void inline_size 1645void inline_size
1546idle_reify (EV_P) 1646idle_reify (EV_P)
1547{ 1647{
1559 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1659 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1560 break; 1660 break;
1561 } 1661 }
1562 } 1662 }
1563 } 1663 }
1664}
1665#endif
1666
1667void inline_size
1668timers_reify (EV_P)
1669{
1670 EV_FREQUENT_CHECK;
1671
1672 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1673 {
1674 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1675
1676 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1677
1678 /* first reschedule or stop timer */
1679 if (w->repeat)
1680 {
1681 ev_at (w) += w->repeat;
1682 if (ev_at (w) < mn_now)
1683 ev_at (w) = mn_now;
1684
1685 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1686
1687 ANHE_at_cache (timers [HEAP0]);
1688 downheap (timers, timercnt, HEAP0);
1689 }
1690 else
1691 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1692
1693 EV_FREQUENT_CHECK;
1694 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1695 }
1696}
1697
1698#if EV_PERIODIC_ENABLE
1699void inline_size
1700periodics_reify (EV_P)
1701{
1702 EV_FREQUENT_CHECK;
1703 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1704 {
1705 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1706
1707 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1708
1709 /* first reschedule or stop timer */
1710 if (w->reschedule_cb)
1711 {
1712 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1713
1714 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1715
1716 ANHE_at_cache (periodics [HEAP0]);
1717 downheap (periodics, periodiccnt, HEAP0);
1718 EV_FREQUENT_CHECK;
1719 }
1720 else if (w->interval)
1721 {
1722 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1723 /* if next trigger time is not sufficiently in the future, put it there */
1724 /* this might happen because of floating point inexactness */
1725 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1726 {
1727 ev_at (w) += w->interval;
1728
1729 /* if interval is unreasonably low we might still have a time in the past */
1730 /* so correct this. this will make the periodic very inexact, but the user */
1731 /* has effectively asked to get triggered more often than possible */
1732 if (ev_at (w) < ev_rt_now)
1733 ev_at (w) = ev_rt_now;
1734 }
1735
1736 ANHE_at_cache (periodics [HEAP0]);
1737 downheap (periodics, periodiccnt, HEAP0);
1738 }
1739 else
1740 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1741
1742 EV_FREQUENT_CHECK;
1743 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1744 }
1745}
1746
1747static void noinline
1748periodics_reschedule (EV_P)
1749{
1750 int i;
1751
1752 /* adjust periodics after time jump */
1753 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1754 {
1755 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1756
1757 if (w->reschedule_cb)
1758 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1759 else if (w->interval)
1760 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1761
1762 ANHE_at_cache (periodics [i]);
1763 }
1764
1765 reheap (periodics, periodiccnt);
1564} 1766}
1565#endif 1767#endif
1566 1768
1567void inline_speed 1769void inline_speed
1568time_update (EV_P_ ev_tstamp max_block) 1770time_update (EV_P_ ev_tstamp max_block)
1597 */ 1799 */
1598 for (i = 4; --i; ) 1800 for (i = 4; --i; )
1599 { 1801 {
1600 rtmn_diff = ev_rt_now - mn_now; 1802 rtmn_diff = ev_rt_now - mn_now;
1601 1803
1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1804 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1603 return; /* all is well */ 1805 return; /* all is well */
1604 1806
1605 ev_rt_now = ev_time (); 1807 ev_rt_now = ev_time ();
1606 mn_now = get_clock (); 1808 mn_now = get_clock ();
1607 now_floor = mn_now; 1809 now_floor = mn_now;
1622 { 1824 {
1623#if EV_PERIODIC_ENABLE 1825#if EV_PERIODIC_ENABLE
1624 periodics_reschedule (EV_A); 1826 periodics_reschedule (EV_A);
1625#endif 1827#endif
1626 /* adjust timers. this is easy, as the offset is the same for all of them */ 1828 /* adjust timers. this is easy, as the offset is the same for all of them */
1627 for (i = 1; i <= timercnt; ++i) 1829 for (i = 0; i < timercnt; ++i)
1628 ev_at (timers [i]) += ev_rt_now - mn_now; 1830 {
1831 ANHE *he = timers + i + HEAP0;
1832 ANHE_w (*he)->at += ev_rt_now - mn_now;
1833 ANHE_at_cache (*he);
1834 }
1629 } 1835 }
1630 1836
1631 mn_now = ev_rt_now; 1837 mn_now = ev_rt_now;
1632 } 1838 }
1633} 1839}
1703 1909
1704 waittime = MAX_BLOCKTIME; 1910 waittime = MAX_BLOCKTIME;
1705 1911
1706 if (timercnt) 1912 if (timercnt)
1707 { 1913 {
1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 1914 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1709 if (waittime > to) waittime = to; 1915 if (waittime > to) waittime = to;
1710 } 1916 }
1711 1917
1712#if EV_PERIODIC_ENABLE 1918#if EV_PERIODIC_ENABLE
1713 if (periodiccnt) 1919 if (periodiccnt)
1714 { 1920 {
1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 1921 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1716 if (waittime > to) waittime = to; 1922 if (waittime > to) waittime = to;
1717 } 1923 }
1718#endif 1924#endif
1719 1925
1720 if (expect_false (waittime < timeout_blocktime)) 1926 if (expect_false (waittime < timeout_blocktime))
1857 if (expect_false (ev_is_active (w))) 2063 if (expect_false (ev_is_active (w)))
1858 return; 2064 return;
1859 2065
1860 assert (("ev_io_start called with negative fd", fd >= 0)); 2066 assert (("ev_io_start called with negative fd", fd >= 0));
1861 2067
2068 EV_FREQUENT_CHECK;
2069
1862 ev_start (EV_A_ (W)w, 1); 2070 ev_start (EV_A_ (W)w, 1);
1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2071 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1864 wlist_add (&anfds[fd].head, (WL)w); 2072 wlist_add (&anfds[fd].head, (WL)w);
1865 2073
1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2074 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1867 w->events &= ~EV_IOFDSET; 2075 w->events &= ~EV_IOFDSET;
2076
2077 EV_FREQUENT_CHECK;
1868} 2078}
1869 2079
1870void noinline 2080void noinline
1871ev_io_stop (EV_P_ ev_io *w) 2081ev_io_stop (EV_P_ ev_io *w)
1872{ 2082{
1873 clear_pending (EV_A_ (W)w); 2083 clear_pending (EV_A_ (W)w);
1874 if (expect_false (!ev_is_active (w))) 2084 if (expect_false (!ev_is_active (w)))
1875 return; 2085 return;
1876 2086
1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2087 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2088
2089 EV_FREQUENT_CHECK;
1878 2090
1879 wlist_del (&anfds[w->fd].head, (WL)w); 2091 wlist_del (&anfds[w->fd].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 2092 ev_stop (EV_A_ (W)w);
1881 2093
1882 fd_change (EV_A_ w->fd, 1); 2094 fd_change (EV_A_ w->fd, 1);
2095
2096 EV_FREQUENT_CHECK;
1883} 2097}
1884 2098
1885void noinline 2099void noinline
1886ev_timer_start (EV_P_ ev_timer *w) 2100ev_timer_start (EV_P_ ev_timer *w)
1887{ 2101{
1890 2104
1891 ev_at (w) += mn_now; 2105 ev_at (w) += mn_now;
1892 2106
1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2107 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1894 2108
2109 EV_FREQUENT_CHECK;
2110
2111 ++timercnt;
1895 ev_start (EV_A_ (W)w, ++timercnt); 2112 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2113 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1897 timers [timercnt] = (WT)w; 2114 ANHE_w (timers [ev_active (w)]) = (WT)w;
2115 ANHE_at_cache (timers [ev_active (w)]);
1898 upheap (timers, timercnt); 2116 upheap (timers, ev_active (w));
1899 2117
2118 EV_FREQUENT_CHECK;
2119
1900 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2120 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1901} 2121}
1902 2122
1903void noinline 2123void noinline
1904ev_timer_stop (EV_P_ ev_timer *w) 2124ev_timer_stop (EV_P_ ev_timer *w)
1905{ 2125{
1906 clear_pending (EV_A_ (W)w); 2126 clear_pending (EV_A_ (W)w);
1907 if (expect_false (!ev_is_active (w))) 2127 if (expect_false (!ev_is_active (w)))
1908 return; 2128 return;
1909 2129
2130 EV_FREQUENT_CHECK;
2131
1910 { 2132 {
1911 int active = ev_active (w); 2133 int active = ev_active (w);
1912 2134
1913 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2135 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1914 2136
2137 --timercnt;
2138
1915 if (expect_true (active < timercnt)) 2139 if (expect_true (active < timercnt + HEAP0))
1916 { 2140 {
1917 timers [active] = timers [timercnt]; 2141 timers [active] = timers [timercnt + HEAP0];
1918 adjustheap (timers, timercnt, active); 2142 adjustheap (timers, timercnt, active);
1919 } 2143 }
1920
1921 --timercnt;
1922 } 2144 }
2145
2146 EV_FREQUENT_CHECK;
1923 2147
1924 ev_at (w) -= mn_now; 2148 ev_at (w) -= mn_now;
1925 2149
1926 ev_stop (EV_A_ (W)w); 2150 ev_stop (EV_A_ (W)w);
1927} 2151}
1928 2152
1929void noinline 2153void noinline
1930ev_timer_again (EV_P_ ev_timer *w) 2154ev_timer_again (EV_P_ ev_timer *w)
1931{ 2155{
2156 EV_FREQUENT_CHECK;
2157
1932 if (ev_is_active (w)) 2158 if (ev_is_active (w))
1933 { 2159 {
1934 if (w->repeat) 2160 if (w->repeat)
1935 { 2161 {
1936 ev_at (w) = mn_now + w->repeat; 2162 ev_at (w) = mn_now + w->repeat;
2163 ANHE_at_cache (timers [ev_active (w)]);
1937 adjustheap (timers, timercnt, ev_active (w)); 2164 adjustheap (timers, timercnt, ev_active (w));
1938 } 2165 }
1939 else 2166 else
1940 ev_timer_stop (EV_A_ w); 2167 ev_timer_stop (EV_A_ w);
1941 } 2168 }
1942 else if (w->repeat) 2169 else if (w->repeat)
1943 { 2170 {
1944 ev_at (w) = w->repeat; 2171 ev_at (w) = w->repeat;
1945 ev_timer_start (EV_A_ w); 2172 ev_timer_start (EV_A_ w);
1946 } 2173 }
2174
2175 EV_FREQUENT_CHECK;
1947} 2176}
1948 2177
1949#if EV_PERIODIC_ENABLE 2178#if EV_PERIODIC_ENABLE
1950void noinline 2179void noinline
1951ev_periodic_start (EV_P_ ev_periodic *w) 2180ev_periodic_start (EV_P_ ev_periodic *w)
1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2191 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1963 } 2192 }
1964 else 2193 else
1965 ev_at (w) = w->offset; 2194 ev_at (w) = w->offset;
1966 2195
2196 EV_FREQUENT_CHECK;
2197
2198 ++periodiccnt;
1967 ev_start (EV_A_ (W)w, ++periodiccnt); 2199 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2200 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1969 periodics [periodiccnt] = (WT)w; 2201 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1970 upheap (periodics, periodiccnt); 2202 ANHE_at_cache (periodics [ev_active (w)]);
2203 upheap (periodics, ev_active (w));
1971 2204
2205 EV_FREQUENT_CHECK;
2206
1972 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2207 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1973} 2208}
1974 2209
1975void noinline 2210void noinline
1976ev_periodic_stop (EV_P_ ev_periodic *w) 2211ev_periodic_stop (EV_P_ ev_periodic *w)
1977{ 2212{
1978 clear_pending (EV_A_ (W)w); 2213 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2214 if (expect_false (!ev_is_active (w)))
1980 return; 2215 return;
1981 2216
2217 EV_FREQUENT_CHECK;
2218
1982 { 2219 {
1983 int active = ev_active (w); 2220 int active = ev_active (w);
1984 2221
1985 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2222 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1986 2223
2224 --periodiccnt;
2225
1987 if (expect_true (active < periodiccnt)) 2226 if (expect_true (active < periodiccnt + HEAP0))
1988 { 2227 {
1989 periodics [active] = periodics [periodiccnt]; 2228 periodics [active] = periodics [periodiccnt + HEAP0];
1990 adjustheap (periodics, periodiccnt, active); 2229 adjustheap (periodics, periodiccnt, active);
1991 } 2230 }
1992
1993 --periodiccnt;
1994 } 2231 }
2232
2233 EV_FREQUENT_CHECK;
1995 2234
1996 ev_stop (EV_A_ (W)w); 2235 ev_stop (EV_A_ (W)w);
1997} 2236}
1998 2237
1999void noinline 2238void noinline
2019 return; 2258 return;
2020 2259
2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2260 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2022 2261
2023 evpipe_init (EV_A); 2262 evpipe_init (EV_A);
2263
2264 EV_FREQUENT_CHECK;
2024 2265
2025 { 2266 {
2026#ifndef _WIN32 2267#ifndef _WIN32
2027 sigset_t full, prev; 2268 sigset_t full, prev;
2028 sigfillset (&full); 2269 sigfillset (&full);
2049 sigfillset (&sa.sa_mask); 2290 sigfillset (&sa.sa_mask);
2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2291 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2051 sigaction (w->signum, &sa, 0); 2292 sigaction (w->signum, &sa, 0);
2052#endif 2293#endif
2053 } 2294 }
2295
2296 EV_FREQUENT_CHECK;
2054} 2297}
2055 2298
2056void noinline 2299void noinline
2057ev_signal_stop (EV_P_ ev_signal *w) 2300ev_signal_stop (EV_P_ ev_signal *w)
2058{ 2301{
2059 clear_pending (EV_A_ (W)w); 2302 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2303 if (expect_false (!ev_is_active (w)))
2061 return; 2304 return;
2062 2305
2306 EV_FREQUENT_CHECK;
2307
2063 wlist_del (&signals [w->signum - 1].head, (WL)w); 2308 wlist_del (&signals [w->signum - 1].head, (WL)w);
2064 ev_stop (EV_A_ (W)w); 2309 ev_stop (EV_A_ (W)w);
2065 2310
2066 if (!signals [w->signum - 1].head) 2311 if (!signals [w->signum - 1].head)
2067 signal (w->signum, SIG_DFL); 2312 signal (w->signum, SIG_DFL);
2313
2314 EV_FREQUENT_CHECK;
2068} 2315}
2069 2316
2070void 2317void
2071ev_child_start (EV_P_ ev_child *w) 2318ev_child_start (EV_P_ ev_child *w)
2072{ 2319{
2074 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2321 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2075#endif 2322#endif
2076 if (expect_false (ev_is_active (w))) 2323 if (expect_false (ev_is_active (w)))
2077 return; 2324 return;
2078 2325
2326 EV_FREQUENT_CHECK;
2327
2079 ev_start (EV_A_ (W)w, 1); 2328 ev_start (EV_A_ (W)w, 1);
2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2329 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2330
2331 EV_FREQUENT_CHECK;
2081} 2332}
2082 2333
2083void 2334void
2084ev_child_stop (EV_P_ ev_child *w) 2335ev_child_stop (EV_P_ ev_child *w)
2085{ 2336{
2086 clear_pending (EV_A_ (W)w); 2337 clear_pending (EV_A_ (W)w);
2087 if (expect_false (!ev_is_active (w))) 2338 if (expect_false (!ev_is_active (w)))
2088 return; 2339 return;
2089 2340
2341 EV_FREQUENT_CHECK;
2342
2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2343 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2091 ev_stop (EV_A_ (W)w); 2344 ev_stop (EV_A_ (W)w);
2345
2346 EV_FREQUENT_CHECK;
2092} 2347}
2093 2348
2094#if EV_STAT_ENABLE 2349#if EV_STAT_ENABLE
2095 2350
2096# ifdef _WIN32 2351# ifdef _WIN32
2114 if (w->wd < 0) 2369 if (w->wd < 0)
2115 { 2370 {
2116 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2371 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2117 2372
2118 /* monitor some parent directory for speedup hints */ 2373 /* monitor some parent directory for speedup hints */
2374 /* note that exceeding the hardcoded limit is not a correctness issue, */
2375 /* but an efficiency issue only */
2119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2376 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2120 { 2377 {
2121 char path [4096]; 2378 char path [4096];
2122 strcpy (path, w->path); 2379 strcpy (path, w->path);
2123 2380
2322 else 2579 else
2323#endif 2580#endif
2324 ev_timer_start (EV_A_ &w->timer); 2581 ev_timer_start (EV_A_ &w->timer);
2325 2582
2326 ev_start (EV_A_ (W)w, 1); 2583 ev_start (EV_A_ (W)w, 1);
2584
2585 EV_FREQUENT_CHECK;
2327} 2586}
2328 2587
2329void 2588void
2330ev_stat_stop (EV_P_ ev_stat *w) 2589ev_stat_stop (EV_P_ ev_stat *w)
2331{ 2590{
2332 clear_pending (EV_A_ (W)w); 2591 clear_pending (EV_A_ (W)w);
2333 if (expect_false (!ev_is_active (w))) 2592 if (expect_false (!ev_is_active (w)))
2334 return; 2593 return;
2335 2594
2595 EV_FREQUENT_CHECK;
2596
2336#if EV_USE_INOTIFY 2597#if EV_USE_INOTIFY
2337 infy_del (EV_A_ w); 2598 infy_del (EV_A_ w);
2338#endif 2599#endif
2339 ev_timer_stop (EV_A_ &w->timer); 2600 ev_timer_stop (EV_A_ &w->timer);
2340 2601
2341 ev_stop (EV_A_ (W)w); 2602 ev_stop (EV_A_ (W)w);
2603
2604 EV_FREQUENT_CHECK;
2342} 2605}
2343#endif 2606#endif
2344 2607
2345#if EV_IDLE_ENABLE 2608#if EV_IDLE_ENABLE
2346void 2609void
2348{ 2611{
2349 if (expect_false (ev_is_active (w))) 2612 if (expect_false (ev_is_active (w)))
2350 return; 2613 return;
2351 2614
2352 pri_adjust (EV_A_ (W)w); 2615 pri_adjust (EV_A_ (W)w);
2616
2617 EV_FREQUENT_CHECK;
2353 2618
2354 { 2619 {
2355 int active = ++idlecnt [ABSPRI (w)]; 2620 int active = ++idlecnt [ABSPRI (w)];
2356 2621
2357 ++idleall; 2622 ++idleall;
2358 ev_start (EV_A_ (W)w, active); 2623 ev_start (EV_A_ (W)w, active);
2359 2624
2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2625 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2361 idles [ABSPRI (w)][active - 1] = w; 2626 idles [ABSPRI (w)][active - 1] = w;
2362 } 2627 }
2628
2629 EV_FREQUENT_CHECK;
2363} 2630}
2364 2631
2365void 2632void
2366ev_idle_stop (EV_P_ ev_idle *w) 2633ev_idle_stop (EV_P_ ev_idle *w)
2367{ 2634{
2368 clear_pending (EV_A_ (W)w); 2635 clear_pending (EV_A_ (W)w);
2369 if (expect_false (!ev_is_active (w))) 2636 if (expect_false (!ev_is_active (w)))
2370 return; 2637 return;
2371 2638
2639 EV_FREQUENT_CHECK;
2640
2372 { 2641 {
2373 int active = ev_active (w); 2642 int active = ev_active (w);
2374 2643
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2644 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2376 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2645 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2377 2646
2378 ev_stop (EV_A_ (W)w); 2647 ev_stop (EV_A_ (W)w);
2379 --idleall; 2648 --idleall;
2380 } 2649 }
2650
2651 EV_FREQUENT_CHECK;
2381} 2652}
2382#endif 2653#endif
2383 2654
2384void 2655void
2385ev_prepare_start (EV_P_ ev_prepare *w) 2656ev_prepare_start (EV_P_ ev_prepare *w)
2386{ 2657{
2387 if (expect_false (ev_is_active (w))) 2658 if (expect_false (ev_is_active (w)))
2388 return; 2659 return;
2660
2661 EV_FREQUENT_CHECK;
2389 2662
2390 ev_start (EV_A_ (W)w, ++preparecnt); 2663 ev_start (EV_A_ (W)w, ++preparecnt);
2391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2664 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2392 prepares [preparecnt - 1] = w; 2665 prepares [preparecnt - 1] = w;
2666
2667 EV_FREQUENT_CHECK;
2393} 2668}
2394 2669
2395void 2670void
2396ev_prepare_stop (EV_P_ ev_prepare *w) 2671ev_prepare_stop (EV_P_ ev_prepare *w)
2397{ 2672{
2398 clear_pending (EV_A_ (W)w); 2673 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 2674 if (expect_false (!ev_is_active (w)))
2400 return; 2675 return;
2401 2676
2677 EV_FREQUENT_CHECK;
2678
2402 { 2679 {
2403 int active = ev_active (w); 2680 int active = ev_active (w);
2404 2681
2405 prepares [active - 1] = prepares [--preparecnt]; 2682 prepares [active - 1] = prepares [--preparecnt];
2406 ev_active (prepares [active - 1]) = active; 2683 ev_active (prepares [active - 1]) = active;
2407 } 2684 }
2408 2685
2409 ev_stop (EV_A_ (W)w); 2686 ev_stop (EV_A_ (W)w);
2687
2688 EV_FREQUENT_CHECK;
2410} 2689}
2411 2690
2412void 2691void
2413ev_check_start (EV_P_ ev_check *w) 2692ev_check_start (EV_P_ ev_check *w)
2414{ 2693{
2415 if (expect_false (ev_is_active (w))) 2694 if (expect_false (ev_is_active (w)))
2416 return; 2695 return;
2696
2697 EV_FREQUENT_CHECK;
2417 2698
2418 ev_start (EV_A_ (W)w, ++checkcnt); 2699 ev_start (EV_A_ (W)w, ++checkcnt);
2419 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2700 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2420 checks [checkcnt - 1] = w; 2701 checks [checkcnt - 1] = w;
2702
2703 EV_FREQUENT_CHECK;
2421} 2704}
2422 2705
2423void 2706void
2424ev_check_stop (EV_P_ ev_check *w) 2707ev_check_stop (EV_P_ ev_check *w)
2425{ 2708{
2426 clear_pending (EV_A_ (W)w); 2709 clear_pending (EV_A_ (W)w);
2427 if (expect_false (!ev_is_active (w))) 2710 if (expect_false (!ev_is_active (w)))
2428 return; 2711 return;
2429 2712
2713 EV_FREQUENT_CHECK;
2714
2430 { 2715 {
2431 int active = ev_active (w); 2716 int active = ev_active (w);
2432 2717
2433 checks [active - 1] = checks [--checkcnt]; 2718 checks [active - 1] = checks [--checkcnt];
2434 ev_active (checks [active - 1]) = active; 2719 ev_active (checks [active - 1]) = active;
2435 } 2720 }
2436 2721
2437 ev_stop (EV_A_ (W)w); 2722 ev_stop (EV_A_ (W)w);
2723
2724 EV_FREQUENT_CHECK;
2438} 2725}
2439 2726
2440#if EV_EMBED_ENABLE 2727#if EV_EMBED_ENABLE
2441void noinline 2728void noinline
2442ev_embed_sweep (EV_P_ ev_embed *w) 2729ev_embed_sweep (EV_P_ ev_embed *w)
2489 struct ev_loop *loop = w->other; 2776 struct ev_loop *loop = w->other;
2490 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2777 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2778 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2492 } 2779 }
2493 2780
2781 EV_FREQUENT_CHECK;
2782
2494 ev_set_priority (&w->io, ev_priority (w)); 2783 ev_set_priority (&w->io, ev_priority (w));
2495 ev_io_start (EV_A_ &w->io); 2784 ev_io_start (EV_A_ &w->io);
2496 2785
2497 ev_prepare_init (&w->prepare, embed_prepare_cb); 2786 ev_prepare_init (&w->prepare, embed_prepare_cb);
2498 ev_set_priority (&w->prepare, EV_MINPRI); 2787 ev_set_priority (&w->prepare, EV_MINPRI);
2499 ev_prepare_start (EV_A_ &w->prepare); 2788 ev_prepare_start (EV_A_ &w->prepare);
2500 2789
2501 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2790 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2502 2791
2503 ev_start (EV_A_ (W)w, 1); 2792 ev_start (EV_A_ (W)w, 1);
2793
2794 EV_FREQUENT_CHECK;
2504} 2795}
2505 2796
2506void 2797void
2507ev_embed_stop (EV_P_ ev_embed *w) 2798ev_embed_stop (EV_P_ ev_embed *w)
2508{ 2799{
2509 clear_pending (EV_A_ (W)w); 2800 clear_pending (EV_A_ (W)w);
2510 if (expect_false (!ev_is_active (w))) 2801 if (expect_false (!ev_is_active (w)))
2511 return; 2802 return;
2512 2803
2804 EV_FREQUENT_CHECK;
2805
2513 ev_io_stop (EV_A_ &w->io); 2806 ev_io_stop (EV_A_ &w->io);
2514 ev_prepare_stop (EV_A_ &w->prepare); 2807 ev_prepare_stop (EV_A_ &w->prepare);
2515 2808
2516 ev_stop (EV_A_ (W)w); 2809 ev_stop (EV_A_ (W)w);
2810
2811 EV_FREQUENT_CHECK;
2517} 2812}
2518#endif 2813#endif
2519 2814
2520#if EV_FORK_ENABLE 2815#if EV_FORK_ENABLE
2521void 2816void
2522ev_fork_start (EV_P_ ev_fork *w) 2817ev_fork_start (EV_P_ ev_fork *w)
2523{ 2818{
2524 if (expect_false (ev_is_active (w))) 2819 if (expect_false (ev_is_active (w)))
2525 return; 2820 return;
2821
2822 EV_FREQUENT_CHECK;
2526 2823
2527 ev_start (EV_A_ (W)w, ++forkcnt); 2824 ev_start (EV_A_ (W)w, ++forkcnt);
2528 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2825 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2529 forks [forkcnt - 1] = w; 2826 forks [forkcnt - 1] = w;
2827
2828 EV_FREQUENT_CHECK;
2530} 2829}
2531 2830
2532void 2831void
2533ev_fork_stop (EV_P_ ev_fork *w) 2832ev_fork_stop (EV_P_ ev_fork *w)
2534{ 2833{
2535 clear_pending (EV_A_ (W)w); 2834 clear_pending (EV_A_ (W)w);
2536 if (expect_false (!ev_is_active (w))) 2835 if (expect_false (!ev_is_active (w)))
2537 return; 2836 return;
2538 2837
2838 EV_FREQUENT_CHECK;
2839
2539 { 2840 {
2540 int active = ev_active (w); 2841 int active = ev_active (w);
2541 2842
2542 forks [active - 1] = forks [--forkcnt]; 2843 forks [active - 1] = forks [--forkcnt];
2543 ev_active (forks [active - 1]) = active; 2844 ev_active (forks [active - 1]) = active;
2544 } 2845 }
2545 2846
2546 ev_stop (EV_A_ (W)w); 2847 ev_stop (EV_A_ (W)w);
2848
2849 EV_FREQUENT_CHECK;
2547} 2850}
2548#endif 2851#endif
2549 2852
2550#if EV_ASYNC_ENABLE 2853#if EV_ASYNC_ENABLE
2551void 2854void
2553{ 2856{
2554 if (expect_false (ev_is_active (w))) 2857 if (expect_false (ev_is_active (w)))
2555 return; 2858 return;
2556 2859
2557 evpipe_init (EV_A); 2860 evpipe_init (EV_A);
2861
2862 EV_FREQUENT_CHECK;
2558 2863
2559 ev_start (EV_A_ (W)w, ++asynccnt); 2864 ev_start (EV_A_ (W)w, ++asynccnt);
2560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2865 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2561 asyncs [asynccnt - 1] = w; 2866 asyncs [asynccnt - 1] = w;
2867
2868 EV_FREQUENT_CHECK;
2562} 2869}
2563 2870
2564void 2871void
2565ev_async_stop (EV_P_ ev_async *w) 2872ev_async_stop (EV_P_ ev_async *w)
2566{ 2873{
2567 clear_pending (EV_A_ (W)w); 2874 clear_pending (EV_A_ (W)w);
2568 if (expect_false (!ev_is_active (w))) 2875 if (expect_false (!ev_is_active (w)))
2569 return; 2876 return;
2570 2877
2878 EV_FREQUENT_CHECK;
2879
2571 { 2880 {
2572 int active = ev_active (w); 2881 int active = ev_active (w);
2573 2882
2574 asyncs [active - 1] = asyncs [--asynccnt]; 2883 asyncs [active - 1] = asyncs [--asynccnt];
2575 ev_active (asyncs [active - 1]) = active; 2884 ev_active (asyncs [active - 1]) = active;
2576 } 2885 }
2577 2886
2578 ev_stop (EV_A_ (W)w); 2887 ev_stop (EV_A_ (W)w);
2888
2889 EV_FREQUENT_CHECK;
2579} 2890}
2580 2891
2581void 2892void
2582ev_async_send (EV_P_ ev_async *w) 2893ev_async_send (EV_P_ ev_async *w)
2583{ 2894{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines