ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.230 by root, Fri May 2 08:13:16 2008 UTC vs.
Revision 1.253 by root, Sat May 31 03:13:27 2008 UTC

126# define EV_USE_EVENTFD 1 126# define EV_USE_EVENTFD 1
127# else 127# else
128# define EV_USE_EVENTFD 0 128# define EV_USE_EVENTFD 0
129# endif 129# endif
130# endif 130# endif
131 131
132#endif 132#endif
133 133
134#include <math.h> 134#include <math.h>
135#include <stdlib.h> 135#include <stdlib.h>
136#include <fcntl.h> 136#include <fcntl.h>
164#endif 164#endif
165 165
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
167 167
168#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
169# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
170# define EV_USE_MONOTONIC 1
171# else
169# define EV_USE_MONOTONIC 0 172# define EV_USE_MONOTONIC 0
173# endif
170#endif 174#endif
171 175
172#ifndef EV_USE_REALTIME 176#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 177# define EV_USE_REALTIME 0
174#endif 178#endif
175 179
176#ifndef EV_USE_NANOSLEEP 180#ifndef EV_USE_NANOSLEEP
181# if _POSIX_C_SOURCE >= 199309L
182# define EV_USE_NANOSLEEP 1
183# else
177# define EV_USE_NANOSLEEP 0 184# define EV_USE_NANOSLEEP 0
185# endif
178#endif 186#endif
179 187
180#ifndef EV_USE_SELECT 188#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 189# define EV_USE_SELECT 1
182#endif 190#endif
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7)) 241# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1 242# define EV_USE_EVENTFD 1
235# else 243# else
236# define EV_USE_EVENTFD 0 244# define EV_USE_EVENTFD 0
237# endif 245# endif
246#endif
247
248#if 0 /* debugging */
249# define EV_VERIFY 3
250# define EV_USE_4HEAP 1
251# define EV_HEAP_CACHE_AT 1
252#endif
253
254#ifndef EV_VERIFY
255# define EV_VERIFY !EV_MINIMAL
256#endif
257
258#ifndef EV_USE_4HEAP
259# define EV_USE_4HEAP !EV_MINIMAL
260#endif
261
262#ifndef EV_HEAP_CACHE_AT
263# define EV_HEAP_CACHE_AT !EV_MINIMAL
238#endif 264#endif
239 265
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 266/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 267
242#ifndef CLOCK_MONOTONIC 268#ifndef CLOCK_MONOTONIC
279} 305}
280# endif 306# endif
281#endif 307#endif
282 308
283/**/ 309/**/
310
311#if EV_VERIFY >= 3
312# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
313#else
314# define EV_FREQUENT_CHECK do { } while (0)
315#endif
284 316
285/* 317/*
286 * This is used to avoid floating point rounding problems. 318 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 319 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 320 * to ensure progress, time-wise, even when rounding
422 W w; 454 W w;
423 int events; 455 int events;
424} ANPENDING; 456} ANPENDING;
425 457
426#if EV_USE_INOTIFY 458#if EV_USE_INOTIFY
459/* hash table entry per inotify-id */
427typedef struct 460typedef struct
428{ 461{
429 WL head; 462 WL head;
430} ANFS; 463} ANFS;
464#endif
465
466/* Heap Entry */
467#if EV_HEAP_CACHE_AT
468 typedef struct {
469 ev_tstamp at;
470 WT w;
471 } ANHE;
472
473 #define ANHE_w(he) (he).w /* access watcher, read-write */
474 #define ANHE_at(he) (he).at /* access cached at, read-only */
475 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
476#else
477 typedef WT ANHE;
478
479 #define ANHE_w(he) (he)
480 #define ANHE_at(he) (he)->at
481 #define ANHE_at_cache(he)
431#endif 482#endif
432 483
433#if EV_MULTIPLICITY 484#if EV_MULTIPLICITY
434 485
435 struct ev_loop 486 struct ev_loop
520 } 571 }
521} 572}
522 573
523/*****************************************************************************/ 574/*****************************************************************************/
524 575
576#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
577
525int inline_size 578int inline_size
526array_nextsize (int elem, int cur, int cnt) 579array_nextsize (int elem, int cur, int cnt)
527{ 580{
528 int ncur = cur + 1; 581 int ncur = cur + 1;
529 582
530 do 583 do
531 ncur <<= 1; 584 ncur <<= 1;
532 while (cnt > ncur); 585 while (cnt > ncur);
533 586
534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 587 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
535 if (elem * ncur > 4096) 588 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
536 { 589 {
537 ncur *= elem; 590 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 591 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
539 ncur = ncur - sizeof (void *) * 4; 592 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem; 593 ncur /= elem;
541 } 594 }
542 595
543 return ncur; 596 return ncur;
757 } 810 }
758} 811}
759 812
760/*****************************************************************************/ 813/*****************************************************************************/
761 814
815/*
816 * the heap functions want a real array index. array index 0 uis guaranteed to not
817 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
818 * the branching factor of the d-tree.
819 */
820
821/*
822 * at the moment we allow libev the luxury of two heaps,
823 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
824 * which is more cache-efficient.
825 * the difference is about 5% with 50000+ watchers.
826 */
827#if EV_USE_4HEAP
828
829#define DHEAP 4
830#define HEAP0 (DHEAP - 1) /* index of first element in heap */
831#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
832#define UPHEAP_DONE(p,k) ((p) == (k))
833
834/* away from the root */
835void inline_speed
836downheap (ANHE *heap, int N, int k)
837{
838 ANHE he = heap [k];
839 ANHE *E = heap + N + HEAP0;
840
841 for (;;)
842 {
843 ev_tstamp minat;
844 ANHE *minpos;
845 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
846
847 /* find minimum child */
848 if (expect_true (pos + DHEAP - 1 < E))
849 {
850 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
851 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
852 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
853 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
854 }
855 else if (pos < E)
856 {
857 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
858 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
859 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
860 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
861 }
862 else
863 break;
864
865 if (ANHE_at (he) <= minat)
866 break;
867
868 heap [k] = *minpos;
869 ev_active (ANHE_w (*minpos)) = k;
870
871 k = minpos - heap;
872 }
873
874 heap [k] = he;
875 ev_active (ANHE_w (he)) = k;
876}
877
878#else /* 4HEAP */
879
880#define HEAP0 1
881#define HPARENT(k) ((k) >> 1)
882#define UPHEAP_DONE(p,k) (!(p))
883
884/* away from the root */
885void inline_speed
886downheap (ANHE *heap, int N, int k)
887{
888 ANHE he = heap [k];
889
890 for (;;)
891 {
892 int c = k << 1;
893
894 if (c > N + HEAP0 - 1)
895 break;
896
897 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
898 ? 1 : 0;
899
900 if (ANHE_at (he) <= ANHE_at (heap [c]))
901 break;
902
903 heap [k] = heap [c];
904 ev_active (ANHE_w (heap [k])) = k;
905
906 k = c;
907 }
908
909 heap [k] = he;
910 ev_active (ANHE_w (he)) = k;
911}
912#endif
913
762/* towards the root */ 914/* towards the root */
763void inline_speed 915void inline_speed
764upheap (WT *heap, int k) 916upheap (ANHE *heap, int k)
765{ 917{
766 WT w = heap [k]; 918 ANHE he = heap [k];
767 919
768 for (;;) 920 for (;;)
769 { 921 {
770 int p = k >> 1; 922 int p = HPARENT (k);
771 923
772 /* maybe we could use a dummy element at heap [0]? */ 924 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
773 if (!p || heap [p]->at <= w->at)
774 break; 925 break;
775 926
776 heap [k] = heap [p]; 927 heap [k] = heap [p];
777 ev_active (heap [k]) = k; 928 ev_active (ANHE_w (heap [k])) = k;
778 k = p; 929 k = p;
779 } 930 }
780 931
781 heap [k] = w; 932 heap [k] = he;
782 ev_active (heap [k]) = k; 933 ev_active (ANHE_w (he)) = k;
783}
784
785/* away from the root */
786void inline_speed
787downheap (WT *heap, int N, int k)
788{
789 WT w = heap [k];
790
791 for (;;)
792 {
793 int c = k << 1;
794
795 if (c > N)
796 break;
797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
804 heap [k] = heap [c];
805 ev_active (heap [k]) = k;
806
807 k = c;
808 }
809
810 heap [k] = w;
811 ev_active (heap [k]) = k;
812} 934}
813 935
814void inline_size 936void inline_size
815adjustheap (WT *heap, int N, int k) 937adjustheap (ANHE *heap, int N, int k)
816{ 938{
939 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
817 upheap (heap, k); 940 upheap (heap, k);
941 else
818 downheap (heap, N, k); 942 downheap (heap, N, k);
943}
944
945/* rebuild the heap: this function is used only once and executed rarely */
946void inline_size
947reheap (ANHE *heap, int N)
948{
949 int i;
950
951 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
952 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
953 for (i = 0; i < N; ++i)
954 upheap (heap, i + HEAP0);
819} 955}
820 956
821/*****************************************************************************/ 957/*****************************************************************************/
822 958
823typedef struct 959typedef struct
912pipecb (EV_P_ ev_io *iow, int revents) 1048pipecb (EV_P_ ev_io *iow, int revents)
913{ 1049{
914#if EV_USE_EVENTFD 1050#if EV_USE_EVENTFD
915 if (evfd >= 0) 1051 if (evfd >= 0)
916 { 1052 {
917 uint64_t counter = 1; 1053 uint64_t counter;
918 read (evfd, &counter, sizeof (uint64_t)); 1054 read (evfd, &counter, sizeof (uint64_t));
919 } 1055 }
920 else 1056 else
921#endif 1057#endif
922 { 1058 {
1341 1477
1342 postfork = 0; 1478 postfork = 0;
1343} 1479}
1344 1480
1345#if EV_MULTIPLICITY 1481#if EV_MULTIPLICITY
1482
1346struct ev_loop * 1483struct ev_loop *
1347ev_loop_new (unsigned int flags) 1484ev_loop_new (unsigned int flags)
1348{ 1485{
1349 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1486 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1350 1487
1369ev_loop_fork (EV_P) 1506ev_loop_fork (EV_P)
1370{ 1507{
1371 postfork = 1; /* must be in line with ev_default_fork */ 1508 postfork = 1; /* must be in line with ev_default_fork */
1372} 1509}
1373 1510
1511#if EV_VERIFY
1512void noinline
1513verify_watcher (EV_P_ W w)
1514{
1515 assert (("watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1516
1517 if (w->pending)
1518 assert (("pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1519}
1520
1521static void noinline
1522verify_heap (EV_P_ ANHE *heap, int N)
1523{
1524 int i;
1525
1526 for (i = HEAP0; i < N + HEAP0; ++i)
1527 {
1528 assert (("active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1529 assert (("heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1530 assert (("heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1531
1532 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1533 }
1534}
1535
1536static void noinline
1537array_verify (EV_P_ W *ws, int cnt)
1538{
1539 while (cnt--)
1540 {
1541 assert (("active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1542 verify_watcher (EV_A_ ws [cnt]);
1543 }
1544}
1545#endif
1546
1547void
1548ev_loop_verify (EV_P)
1549{
1550#if EV_VERIFY
1551 int i;
1552 WL w;
1553
1554 assert (activecnt >= -1);
1555
1556 assert (fdchangemax >= fdchangecnt);
1557 for (i = 0; i < fdchangecnt; ++i)
1558 assert (("negative fd in fdchanges", fdchanges [i] >= 0));
1559
1560 assert (anfdmax >= 0);
1561 for (i = 0; i < anfdmax; ++i)
1562 for (w = anfds [i].head; w; w = w->next)
1563 {
1564 verify_watcher (EV_A_ (W)w);
1565 assert (("inactive fd watcher on anfd list", ev_active (w) == 1));
1566 assert (("fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1567 }
1568
1569 assert (timermax >= timercnt);
1570 verify_heap (EV_A_ timers, timercnt);
1571
1572#if EV_PERIODIC_ENABLE
1573 assert (periodicmax >= periodiccnt);
1574 verify_heap (EV_A_ periodics, periodiccnt);
1575#endif
1576
1577 for (i = NUMPRI; i--; )
1578 {
1579 assert (pendingmax [i] >= pendingcnt [i]);
1580#if EV_IDLE_ENABLE
1581 assert (idleall >= 0);
1582 assert (idlemax [i] >= idlecnt [i]);
1583 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1584#endif
1585 }
1586
1587#if EV_FORK_ENABLE
1588 assert (forkmax >= forkcnt);
1589 array_verify (EV_A_ (W *)forks, forkcnt);
1590#endif
1591
1592#if EV_ASYNC_ENABLE
1593 assert (asyncmax >= asynccnt);
1594 array_verify (EV_A_ (W *)asyncs, asynccnt);
1595#endif
1596
1597 assert (preparemax >= preparecnt);
1598 array_verify (EV_A_ (W *)prepares, preparecnt);
1599
1600 assert (checkmax >= checkcnt);
1601 array_verify (EV_A_ (W *)checks, checkcnt);
1602
1603# if 0
1604 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1605 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1374#endif 1606# endif
1607#endif
1608}
1609
1610#endif /* multiplicity */
1375 1611
1376#if EV_MULTIPLICITY 1612#if EV_MULTIPLICITY
1377struct ev_loop * 1613struct ev_loop *
1378ev_default_loop_init (unsigned int flags) 1614ev_default_loop_init (unsigned int flags)
1379#else 1615#else
1455 { 1691 {
1456 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1692 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1457 1693
1458 p->w->pending = 0; 1694 p->w->pending = 0;
1459 EV_CB_INVOKE (p->w, p->events); 1695 EV_CB_INVOKE (p->w, p->events);
1696 EV_FREQUENT_CHECK;
1460 } 1697 }
1461 } 1698 }
1462} 1699}
1463
1464void inline_size
1465timers_reify (EV_P)
1466{
1467 while (timercnt && ev_at (timers [1]) <= mn_now)
1468 {
1469 ev_timer *w = (ev_timer *)timers [1];
1470
1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1472
1473 /* first reschedule or stop timer */
1474 if (w->repeat)
1475 {
1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1477
1478 ev_at (w) += w->repeat;
1479 if (ev_at (w) < mn_now)
1480 ev_at (w) = mn_now;
1481
1482 downheap (timers, timercnt, 1);
1483 }
1484 else
1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1486
1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1488 }
1489}
1490
1491#if EV_PERIODIC_ENABLE
1492void inline_size
1493periodics_reify (EV_P)
1494{
1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1496 {
1497 ev_periodic *w = (ev_periodic *)periodics [1];
1498
1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1500
1501 /* first reschedule or stop timer */
1502 if (w->reschedule_cb)
1503 {
1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1506 downheap (periodics, periodiccnt, 1);
1507 }
1508 else if (w->interval)
1509 {
1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1513 downheap (periodics, periodiccnt, 1);
1514 }
1515 else
1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1517
1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1519 }
1520}
1521
1522static void noinline
1523periodics_reschedule (EV_P)
1524{
1525 int i;
1526
1527 /* adjust periodics after time jump */
1528 for (i = 0; i < periodiccnt; ++i)
1529 {
1530 ev_periodic *w = (ev_periodic *)periodics [i];
1531
1532 if (w->reschedule_cb)
1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1534 else if (w->interval)
1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1536 }
1537
1538 /* now rebuild the heap */
1539 for (i = periodiccnt >> 1; i--; )
1540 downheap (periodics, periodiccnt, i);
1541}
1542#endif
1543 1700
1544#if EV_IDLE_ENABLE 1701#if EV_IDLE_ENABLE
1545void inline_size 1702void inline_size
1546idle_reify (EV_P) 1703idle_reify (EV_P)
1547{ 1704{
1559 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1716 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1560 break; 1717 break;
1561 } 1718 }
1562 } 1719 }
1563 } 1720 }
1721}
1722#endif
1723
1724void inline_size
1725timers_reify (EV_P)
1726{
1727 EV_FREQUENT_CHECK;
1728
1729 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1730 {
1731 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1732
1733 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1734
1735 /* first reschedule or stop timer */
1736 if (w->repeat)
1737 {
1738 ev_at (w) += w->repeat;
1739 if (ev_at (w) < mn_now)
1740 ev_at (w) = mn_now;
1741
1742 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1743
1744 ANHE_at_cache (timers [HEAP0]);
1745 downheap (timers, timercnt, HEAP0);
1746 }
1747 else
1748 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1749
1750 EV_FREQUENT_CHECK;
1751 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1752 }
1753}
1754
1755#if EV_PERIODIC_ENABLE
1756void inline_size
1757periodics_reify (EV_P)
1758{
1759 EV_FREQUENT_CHECK;
1760
1761 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1762 {
1763 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1764
1765 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1766
1767 /* first reschedule or stop timer */
1768 if (w->reschedule_cb)
1769 {
1770 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1771
1772 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1773
1774 ANHE_at_cache (periodics [HEAP0]);
1775 downheap (periodics, periodiccnt, HEAP0);
1776 }
1777 else if (w->interval)
1778 {
1779 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1780 /* if next trigger time is not sufficiently in the future, put it there */
1781 /* this might happen because of floating point inexactness */
1782 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1783 {
1784 ev_at (w) += w->interval;
1785
1786 /* if interval is unreasonably low we might still have a time in the past */
1787 /* so correct this. this will make the periodic very inexact, but the user */
1788 /* has effectively asked to get triggered more often than possible */
1789 if (ev_at (w) < ev_rt_now)
1790 ev_at (w) = ev_rt_now;
1791 }
1792
1793 ANHE_at_cache (periodics [HEAP0]);
1794 downheap (periodics, periodiccnt, HEAP0);
1795 }
1796 else
1797 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1798
1799 EV_FREQUENT_CHECK;
1800 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1801 }
1802}
1803
1804static void noinline
1805periodics_reschedule (EV_P)
1806{
1807 int i;
1808
1809 /* adjust periodics after time jump */
1810 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1811 {
1812 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1813
1814 if (w->reschedule_cb)
1815 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1816 else if (w->interval)
1817 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1818
1819 ANHE_at_cache (periodics [i]);
1820 }
1821
1822 reheap (periodics, periodiccnt);
1564} 1823}
1565#endif 1824#endif
1566 1825
1567void inline_speed 1826void inline_speed
1568time_update (EV_P_ ev_tstamp max_block) 1827time_update (EV_P_ ev_tstamp max_block)
1597 */ 1856 */
1598 for (i = 4; --i; ) 1857 for (i = 4; --i; )
1599 { 1858 {
1600 rtmn_diff = ev_rt_now - mn_now; 1859 rtmn_diff = ev_rt_now - mn_now;
1601 1860
1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1861 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1603 return; /* all is well */ 1862 return; /* all is well */
1604 1863
1605 ev_rt_now = ev_time (); 1864 ev_rt_now = ev_time ();
1606 mn_now = get_clock (); 1865 mn_now = get_clock ();
1607 now_floor = mn_now; 1866 now_floor = mn_now;
1622 { 1881 {
1623#if EV_PERIODIC_ENABLE 1882#if EV_PERIODIC_ENABLE
1624 periodics_reschedule (EV_A); 1883 periodics_reschedule (EV_A);
1625#endif 1884#endif
1626 /* adjust timers. this is easy, as the offset is the same for all of them */ 1885 /* adjust timers. this is easy, as the offset is the same for all of them */
1627 for (i = 1; i <= timercnt; ++i) 1886 for (i = 0; i < timercnt; ++i)
1628 ev_at (timers [i]) += ev_rt_now - mn_now; 1887 {
1888 ANHE *he = timers + i + HEAP0;
1889 ANHE_w (*he)->at += ev_rt_now - mn_now;
1890 ANHE_at_cache (*he);
1891 }
1629 } 1892 }
1630 1893
1631 mn_now = ev_rt_now; 1894 mn_now = ev_rt_now;
1632 } 1895 }
1633} 1896}
1653 1916
1654 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 1917 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1655 1918
1656 do 1919 do
1657 { 1920 {
1921#if EV_VERIFY >= 2
1922 ev_loop_verify (EV_A);
1923#endif
1924
1658#ifndef _WIN32 1925#ifndef _WIN32
1659 if (expect_false (curpid)) /* penalise the forking check even more */ 1926 if (expect_false (curpid)) /* penalise the forking check even more */
1660 if (expect_false (getpid () != curpid)) 1927 if (expect_false (getpid () != curpid))
1661 { 1928 {
1662 curpid = getpid (); 1929 curpid = getpid ();
1703 1970
1704 waittime = MAX_BLOCKTIME; 1971 waittime = MAX_BLOCKTIME;
1705 1972
1706 if (timercnt) 1973 if (timercnt)
1707 { 1974 {
1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 1975 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1709 if (waittime > to) waittime = to; 1976 if (waittime > to) waittime = to;
1710 } 1977 }
1711 1978
1712#if EV_PERIODIC_ENABLE 1979#if EV_PERIODIC_ENABLE
1713 if (periodiccnt) 1980 if (periodiccnt)
1714 { 1981 {
1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 1982 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1716 if (waittime > to) waittime = to; 1983 if (waittime > to) waittime = to;
1717 } 1984 }
1718#endif 1985#endif
1719 1986
1720 if (expect_false (waittime < timeout_blocktime)) 1987 if (expect_false (waittime < timeout_blocktime))
1857 if (expect_false (ev_is_active (w))) 2124 if (expect_false (ev_is_active (w)))
1858 return; 2125 return;
1859 2126
1860 assert (("ev_io_start called with negative fd", fd >= 0)); 2127 assert (("ev_io_start called with negative fd", fd >= 0));
1861 2128
2129 EV_FREQUENT_CHECK;
2130
1862 ev_start (EV_A_ (W)w, 1); 2131 ev_start (EV_A_ (W)w, 1);
1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2132 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1864 wlist_add (&anfds[fd].head, (WL)w); 2133 wlist_add (&anfds[fd].head, (WL)w);
1865 2134
1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2135 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1867 w->events &= ~EV_IOFDSET; 2136 w->events &= ~EV_IOFDSET;
2137
2138 EV_FREQUENT_CHECK;
1868} 2139}
1869 2140
1870void noinline 2141void noinline
1871ev_io_stop (EV_P_ ev_io *w) 2142ev_io_stop (EV_P_ ev_io *w)
1872{ 2143{
1873 clear_pending (EV_A_ (W)w); 2144 clear_pending (EV_A_ (W)w);
1874 if (expect_false (!ev_is_active (w))) 2145 if (expect_false (!ev_is_active (w)))
1875 return; 2146 return;
1876 2147
1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2148 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2149
2150 EV_FREQUENT_CHECK;
1878 2151
1879 wlist_del (&anfds[w->fd].head, (WL)w); 2152 wlist_del (&anfds[w->fd].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 2153 ev_stop (EV_A_ (W)w);
1881 2154
1882 fd_change (EV_A_ w->fd, 1); 2155 fd_change (EV_A_ w->fd, 1);
2156
2157 EV_FREQUENT_CHECK;
1883} 2158}
1884 2159
1885void noinline 2160void noinline
1886ev_timer_start (EV_P_ ev_timer *w) 2161ev_timer_start (EV_P_ ev_timer *w)
1887{ 2162{
1890 2165
1891 ev_at (w) += mn_now; 2166 ev_at (w) += mn_now;
1892 2167
1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2168 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1894 2169
2170 EV_FREQUENT_CHECK;
2171
2172 ++timercnt;
1895 ev_start (EV_A_ (W)w, ++timercnt); 2173 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2174 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1897 timers [timercnt] = (WT)w; 2175 ANHE_w (timers [ev_active (w)]) = (WT)w;
2176 ANHE_at_cache (timers [ev_active (w)]);
1898 upheap (timers, timercnt); 2177 upheap (timers, ev_active (w));
1899 2178
2179 EV_FREQUENT_CHECK;
2180
1900 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2181 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1901} 2182}
1902 2183
1903void noinline 2184void noinline
1904ev_timer_stop (EV_P_ ev_timer *w) 2185ev_timer_stop (EV_P_ ev_timer *w)
1905{ 2186{
1906 clear_pending (EV_A_ (W)w); 2187 clear_pending (EV_A_ (W)w);
1907 if (expect_false (!ev_is_active (w))) 2188 if (expect_false (!ev_is_active (w)))
1908 return; 2189 return;
1909 2190
2191 EV_FREQUENT_CHECK;
2192
1910 { 2193 {
1911 int active = ev_active (w); 2194 int active = ev_active (w);
1912 2195
1913 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2196 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1914 2197
2198 --timercnt;
2199
1915 if (expect_true (active < timercnt)) 2200 if (expect_true (active < timercnt + HEAP0))
1916 { 2201 {
1917 timers [active] = timers [timercnt]; 2202 timers [active] = timers [timercnt + HEAP0];
1918 adjustheap (timers, timercnt, active); 2203 adjustheap (timers, timercnt, active);
1919 } 2204 }
1920
1921 --timercnt;
1922 } 2205 }
2206
2207 EV_FREQUENT_CHECK;
1923 2208
1924 ev_at (w) -= mn_now; 2209 ev_at (w) -= mn_now;
1925 2210
1926 ev_stop (EV_A_ (W)w); 2211 ev_stop (EV_A_ (W)w);
1927} 2212}
1928 2213
1929void noinline 2214void noinline
1930ev_timer_again (EV_P_ ev_timer *w) 2215ev_timer_again (EV_P_ ev_timer *w)
1931{ 2216{
2217 EV_FREQUENT_CHECK;
2218
1932 if (ev_is_active (w)) 2219 if (ev_is_active (w))
1933 { 2220 {
1934 if (w->repeat) 2221 if (w->repeat)
1935 { 2222 {
1936 ev_at (w) = mn_now + w->repeat; 2223 ev_at (w) = mn_now + w->repeat;
2224 ANHE_at_cache (timers [ev_active (w)]);
1937 adjustheap (timers, timercnt, ev_active (w)); 2225 adjustheap (timers, timercnt, ev_active (w));
1938 } 2226 }
1939 else 2227 else
1940 ev_timer_stop (EV_A_ w); 2228 ev_timer_stop (EV_A_ w);
1941 } 2229 }
1942 else if (w->repeat) 2230 else if (w->repeat)
1943 { 2231 {
1944 ev_at (w) = w->repeat; 2232 ev_at (w) = w->repeat;
1945 ev_timer_start (EV_A_ w); 2233 ev_timer_start (EV_A_ w);
1946 } 2234 }
2235
2236 EV_FREQUENT_CHECK;
1947} 2237}
1948 2238
1949#if EV_PERIODIC_ENABLE 2239#if EV_PERIODIC_ENABLE
1950void noinline 2240void noinline
1951ev_periodic_start (EV_P_ ev_periodic *w) 2241ev_periodic_start (EV_P_ ev_periodic *w)
1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2252 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1963 } 2253 }
1964 else 2254 else
1965 ev_at (w) = w->offset; 2255 ev_at (w) = w->offset;
1966 2256
2257 EV_FREQUENT_CHECK;
2258
2259 ++periodiccnt;
1967 ev_start (EV_A_ (W)w, ++periodiccnt); 2260 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2261 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1969 periodics [periodiccnt] = (WT)w; 2262 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1970 upheap (periodics, periodiccnt); 2263 ANHE_at_cache (periodics [ev_active (w)]);
2264 upheap (periodics, ev_active (w));
1971 2265
2266 EV_FREQUENT_CHECK;
2267
1972 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2268 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1973} 2269}
1974 2270
1975void noinline 2271void noinline
1976ev_periodic_stop (EV_P_ ev_periodic *w) 2272ev_periodic_stop (EV_P_ ev_periodic *w)
1977{ 2273{
1978 clear_pending (EV_A_ (W)w); 2274 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2275 if (expect_false (!ev_is_active (w)))
1980 return; 2276 return;
1981 2277
2278 EV_FREQUENT_CHECK;
2279
1982 { 2280 {
1983 int active = ev_active (w); 2281 int active = ev_active (w);
1984 2282
1985 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2283 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1986 2284
2285 --periodiccnt;
2286
1987 if (expect_true (active < periodiccnt)) 2287 if (expect_true (active < periodiccnt + HEAP0))
1988 { 2288 {
1989 periodics [active] = periodics [periodiccnt]; 2289 periodics [active] = periodics [periodiccnt + HEAP0];
1990 adjustheap (periodics, periodiccnt, active); 2290 adjustheap (periodics, periodiccnt, active);
1991 } 2291 }
1992
1993 --periodiccnt;
1994 } 2292 }
2293
2294 EV_FREQUENT_CHECK;
1995 2295
1996 ev_stop (EV_A_ (W)w); 2296 ev_stop (EV_A_ (W)w);
1997} 2297}
1998 2298
1999void noinline 2299void noinline
2019 return; 2319 return;
2020 2320
2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2321 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
2022 2322
2023 evpipe_init (EV_A); 2323 evpipe_init (EV_A);
2324
2325 EV_FREQUENT_CHECK;
2024 2326
2025 { 2327 {
2026#ifndef _WIN32 2328#ifndef _WIN32
2027 sigset_t full, prev; 2329 sigset_t full, prev;
2028 sigfillset (&full); 2330 sigfillset (&full);
2049 sigfillset (&sa.sa_mask); 2351 sigfillset (&sa.sa_mask);
2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2352 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2051 sigaction (w->signum, &sa, 0); 2353 sigaction (w->signum, &sa, 0);
2052#endif 2354#endif
2053 } 2355 }
2356
2357 EV_FREQUENT_CHECK;
2054} 2358}
2055 2359
2056void noinline 2360void noinline
2057ev_signal_stop (EV_P_ ev_signal *w) 2361ev_signal_stop (EV_P_ ev_signal *w)
2058{ 2362{
2059 clear_pending (EV_A_ (W)w); 2363 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2364 if (expect_false (!ev_is_active (w)))
2061 return; 2365 return;
2062 2366
2367 EV_FREQUENT_CHECK;
2368
2063 wlist_del (&signals [w->signum - 1].head, (WL)w); 2369 wlist_del (&signals [w->signum - 1].head, (WL)w);
2064 ev_stop (EV_A_ (W)w); 2370 ev_stop (EV_A_ (W)w);
2065 2371
2066 if (!signals [w->signum - 1].head) 2372 if (!signals [w->signum - 1].head)
2067 signal (w->signum, SIG_DFL); 2373 signal (w->signum, SIG_DFL);
2374
2375 EV_FREQUENT_CHECK;
2068} 2376}
2069 2377
2070void 2378void
2071ev_child_start (EV_P_ ev_child *w) 2379ev_child_start (EV_P_ ev_child *w)
2072{ 2380{
2074 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2382 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2075#endif 2383#endif
2076 if (expect_false (ev_is_active (w))) 2384 if (expect_false (ev_is_active (w)))
2077 return; 2385 return;
2078 2386
2387 EV_FREQUENT_CHECK;
2388
2079 ev_start (EV_A_ (W)w, 1); 2389 ev_start (EV_A_ (W)w, 1);
2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2390 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2391
2392 EV_FREQUENT_CHECK;
2081} 2393}
2082 2394
2083void 2395void
2084ev_child_stop (EV_P_ ev_child *w) 2396ev_child_stop (EV_P_ ev_child *w)
2085{ 2397{
2086 clear_pending (EV_A_ (W)w); 2398 clear_pending (EV_A_ (W)w);
2087 if (expect_false (!ev_is_active (w))) 2399 if (expect_false (!ev_is_active (w)))
2088 return; 2400 return;
2089 2401
2402 EV_FREQUENT_CHECK;
2403
2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2404 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2091 ev_stop (EV_A_ (W)w); 2405 ev_stop (EV_A_ (W)w);
2406
2407 EV_FREQUENT_CHECK;
2092} 2408}
2093 2409
2094#if EV_STAT_ENABLE 2410#if EV_STAT_ENABLE
2095 2411
2096# ifdef _WIN32 2412# ifdef _WIN32
2114 if (w->wd < 0) 2430 if (w->wd < 0)
2115 { 2431 {
2116 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2432 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2117 2433
2118 /* monitor some parent directory for speedup hints */ 2434 /* monitor some parent directory for speedup hints */
2435 /* note that exceeding the hardcoded limit is not a correctness issue, */
2436 /* but an efficiency issue only */
2119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2437 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2120 { 2438 {
2121 char path [4096]; 2439 char path [4096];
2122 strcpy (path, w->path); 2440 strcpy (path, w->path);
2123 2441
2322 else 2640 else
2323#endif 2641#endif
2324 ev_timer_start (EV_A_ &w->timer); 2642 ev_timer_start (EV_A_ &w->timer);
2325 2643
2326 ev_start (EV_A_ (W)w, 1); 2644 ev_start (EV_A_ (W)w, 1);
2645
2646 EV_FREQUENT_CHECK;
2327} 2647}
2328 2648
2329void 2649void
2330ev_stat_stop (EV_P_ ev_stat *w) 2650ev_stat_stop (EV_P_ ev_stat *w)
2331{ 2651{
2332 clear_pending (EV_A_ (W)w); 2652 clear_pending (EV_A_ (W)w);
2333 if (expect_false (!ev_is_active (w))) 2653 if (expect_false (!ev_is_active (w)))
2334 return; 2654 return;
2335 2655
2656 EV_FREQUENT_CHECK;
2657
2336#if EV_USE_INOTIFY 2658#if EV_USE_INOTIFY
2337 infy_del (EV_A_ w); 2659 infy_del (EV_A_ w);
2338#endif 2660#endif
2339 ev_timer_stop (EV_A_ &w->timer); 2661 ev_timer_stop (EV_A_ &w->timer);
2340 2662
2341 ev_stop (EV_A_ (W)w); 2663 ev_stop (EV_A_ (W)w);
2664
2665 EV_FREQUENT_CHECK;
2342} 2666}
2343#endif 2667#endif
2344 2668
2345#if EV_IDLE_ENABLE 2669#if EV_IDLE_ENABLE
2346void 2670void
2348{ 2672{
2349 if (expect_false (ev_is_active (w))) 2673 if (expect_false (ev_is_active (w)))
2350 return; 2674 return;
2351 2675
2352 pri_adjust (EV_A_ (W)w); 2676 pri_adjust (EV_A_ (W)w);
2677
2678 EV_FREQUENT_CHECK;
2353 2679
2354 { 2680 {
2355 int active = ++idlecnt [ABSPRI (w)]; 2681 int active = ++idlecnt [ABSPRI (w)];
2356 2682
2357 ++idleall; 2683 ++idleall;
2358 ev_start (EV_A_ (W)w, active); 2684 ev_start (EV_A_ (W)w, active);
2359 2685
2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2686 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2361 idles [ABSPRI (w)][active - 1] = w; 2687 idles [ABSPRI (w)][active - 1] = w;
2362 } 2688 }
2689
2690 EV_FREQUENT_CHECK;
2363} 2691}
2364 2692
2365void 2693void
2366ev_idle_stop (EV_P_ ev_idle *w) 2694ev_idle_stop (EV_P_ ev_idle *w)
2367{ 2695{
2368 clear_pending (EV_A_ (W)w); 2696 clear_pending (EV_A_ (W)w);
2369 if (expect_false (!ev_is_active (w))) 2697 if (expect_false (!ev_is_active (w)))
2370 return; 2698 return;
2371 2699
2700 EV_FREQUENT_CHECK;
2701
2372 { 2702 {
2373 int active = ev_active (w); 2703 int active = ev_active (w);
2374 2704
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2705 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2376 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2706 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2377 2707
2378 ev_stop (EV_A_ (W)w); 2708 ev_stop (EV_A_ (W)w);
2379 --idleall; 2709 --idleall;
2380 } 2710 }
2711
2712 EV_FREQUENT_CHECK;
2381} 2713}
2382#endif 2714#endif
2383 2715
2384void 2716void
2385ev_prepare_start (EV_P_ ev_prepare *w) 2717ev_prepare_start (EV_P_ ev_prepare *w)
2386{ 2718{
2387 if (expect_false (ev_is_active (w))) 2719 if (expect_false (ev_is_active (w)))
2388 return; 2720 return;
2721
2722 EV_FREQUENT_CHECK;
2389 2723
2390 ev_start (EV_A_ (W)w, ++preparecnt); 2724 ev_start (EV_A_ (W)w, ++preparecnt);
2391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2725 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2392 prepares [preparecnt - 1] = w; 2726 prepares [preparecnt - 1] = w;
2727
2728 EV_FREQUENT_CHECK;
2393} 2729}
2394 2730
2395void 2731void
2396ev_prepare_stop (EV_P_ ev_prepare *w) 2732ev_prepare_stop (EV_P_ ev_prepare *w)
2397{ 2733{
2398 clear_pending (EV_A_ (W)w); 2734 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 2735 if (expect_false (!ev_is_active (w)))
2400 return; 2736 return;
2401 2737
2738 EV_FREQUENT_CHECK;
2739
2402 { 2740 {
2403 int active = ev_active (w); 2741 int active = ev_active (w);
2404 2742
2405 prepares [active - 1] = prepares [--preparecnt]; 2743 prepares [active - 1] = prepares [--preparecnt];
2406 ev_active (prepares [active - 1]) = active; 2744 ev_active (prepares [active - 1]) = active;
2407 } 2745 }
2408 2746
2409 ev_stop (EV_A_ (W)w); 2747 ev_stop (EV_A_ (W)w);
2748
2749 EV_FREQUENT_CHECK;
2410} 2750}
2411 2751
2412void 2752void
2413ev_check_start (EV_P_ ev_check *w) 2753ev_check_start (EV_P_ ev_check *w)
2414{ 2754{
2415 if (expect_false (ev_is_active (w))) 2755 if (expect_false (ev_is_active (w)))
2416 return; 2756 return;
2757
2758 EV_FREQUENT_CHECK;
2417 2759
2418 ev_start (EV_A_ (W)w, ++checkcnt); 2760 ev_start (EV_A_ (W)w, ++checkcnt);
2419 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2761 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2420 checks [checkcnt - 1] = w; 2762 checks [checkcnt - 1] = w;
2763
2764 EV_FREQUENT_CHECK;
2421} 2765}
2422 2766
2423void 2767void
2424ev_check_stop (EV_P_ ev_check *w) 2768ev_check_stop (EV_P_ ev_check *w)
2425{ 2769{
2426 clear_pending (EV_A_ (W)w); 2770 clear_pending (EV_A_ (W)w);
2427 if (expect_false (!ev_is_active (w))) 2771 if (expect_false (!ev_is_active (w)))
2428 return; 2772 return;
2429 2773
2774 EV_FREQUENT_CHECK;
2775
2430 { 2776 {
2431 int active = ev_active (w); 2777 int active = ev_active (w);
2432 2778
2433 checks [active - 1] = checks [--checkcnt]; 2779 checks [active - 1] = checks [--checkcnt];
2434 ev_active (checks [active - 1]) = active; 2780 ev_active (checks [active - 1]) = active;
2435 } 2781 }
2436 2782
2437 ev_stop (EV_A_ (W)w); 2783 ev_stop (EV_A_ (W)w);
2784
2785 EV_FREQUENT_CHECK;
2438} 2786}
2439 2787
2440#if EV_EMBED_ENABLE 2788#if EV_EMBED_ENABLE
2441void noinline 2789void noinline
2442ev_embed_sweep (EV_P_ ev_embed *w) 2790ev_embed_sweep (EV_P_ ev_embed *w)
2489 struct ev_loop *loop = w->other; 2837 struct ev_loop *loop = w->other;
2490 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2838 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 2839 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2492 } 2840 }
2493 2841
2842 EV_FREQUENT_CHECK;
2843
2494 ev_set_priority (&w->io, ev_priority (w)); 2844 ev_set_priority (&w->io, ev_priority (w));
2495 ev_io_start (EV_A_ &w->io); 2845 ev_io_start (EV_A_ &w->io);
2496 2846
2497 ev_prepare_init (&w->prepare, embed_prepare_cb); 2847 ev_prepare_init (&w->prepare, embed_prepare_cb);
2498 ev_set_priority (&w->prepare, EV_MINPRI); 2848 ev_set_priority (&w->prepare, EV_MINPRI);
2499 ev_prepare_start (EV_A_ &w->prepare); 2849 ev_prepare_start (EV_A_ &w->prepare);
2500 2850
2501 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 2851 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2502 2852
2503 ev_start (EV_A_ (W)w, 1); 2853 ev_start (EV_A_ (W)w, 1);
2854
2855 EV_FREQUENT_CHECK;
2504} 2856}
2505 2857
2506void 2858void
2507ev_embed_stop (EV_P_ ev_embed *w) 2859ev_embed_stop (EV_P_ ev_embed *w)
2508{ 2860{
2509 clear_pending (EV_A_ (W)w); 2861 clear_pending (EV_A_ (W)w);
2510 if (expect_false (!ev_is_active (w))) 2862 if (expect_false (!ev_is_active (w)))
2511 return; 2863 return;
2512 2864
2865 EV_FREQUENT_CHECK;
2866
2513 ev_io_stop (EV_A_ &w->io); 2867 ev_io_stop (EV_A_ &w->io);
2514 ev_prepare_stop (EV_A_ &w->prepare); 2868 ev_prepare_stop (EV_A_ &w->prepare);
2515 2869
2516 ev_stop (EV_A_ (W)w); 2870 ev_stop (EV_A_ (W)w);
2871
2872 EV_FREQUENT_CHECK;
2517} 2873}
2518#endif 2874#endif
2519 2875
2520#if EV_FORK_ENABLE 2876#if EV_FORK_ENABLE
2521void 2877void
2522ev_fork_start (EV_P_ ev_fork *w) 2878ev_fork_start (EV_P_ ev_fork *w)
2523{ 2879{
2524 if (expect_false (ev_is_active (w))) 2880 if (expect_false (ev_is_active (w)))
2525 return; 2881 return;
2882
2883 EV_FREQUENT_CHECK;
2526 2884
2527 ev_start (EV_A_ (W)w, ++forkcnt); 2885 ev_start (EV_A_ (W)w, ++forkcnt);
2528 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 2886 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2529 forks [forkcnt - 1] = w; 2887 forks [forkcnt - 1] = w;
2888
2889 EV_FREQUENT_CHECK;
2530} 2890}
2531 2891
2532void 2892void
2533ev_fork_stop (EV_P_ ev_fork *w) 2893ev_fork_stop (EV_P_ ev_fork *w)
2534{ 2894{
2535 clear_pending (EV_A_ (W)w); 2895 clear_pending (EV_A_ (W)w);
2536 if (expect_false (!ev_is_active (w))) 2896 if (expect_false (!ev_is_active (w)))
2537 return; 2897 return;
2538 2898
2899 EV_FREQUENT_CHECK;
2900
2539 { 2901 {
2540 int active = ev_active (w); 2902 int active = ev_active (w);
2541 2903
2542 forks [active - 1] = forks [--forkcnt]; 2904 forks [active - 1] = forks [--forkcnt];
2543 ev_active (forks [active - 1]) = active; 2905 ev_active (forks [active - 1]) = active;
2544 } 2906 }
2545 2907
2546 ev_stop (EV_A_ (W)w); 2908 ev_stop (EV_A_ (W)w);
2909
2910 EV_FREQUENT_CHECK;
2547} 2911}
2548#endif 2912#endif
2549 2913
2550#if EV_ASYNC_ENABLE 2914#if EV_ASYNC_ENABLE
2551void 2915void
2553{ 2917{
2554 if (expect_false (ev_is_active (w))) 2918 if (expect_false (ev_is_active (w)))
2555 return; 2919 return;
2556 2920
2557 evpipe_init (EV_A); 2921 evpipe_init (EV_A);
2922
2923 EV_FREQUENT_CHECK;
2558 2924
2559 ev_start (EV_A_ (W)w, ++asynccnt); 2925 ev_start (EV_A_ (W)w, ++asynccnt);
2560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 2926 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2561 asyncs [asynccnt - 1] = w; 2927 asyncs [asynccnt - 1] = w;
2928
2929 EV_FREQUENT_CHECK;
2562} 2930}
2563 2931
2564void 2932void
2565ev_async_stop (EV_P_ ev_async *w) 2933ev_async_stop (EV_P_ ev_async *w)
2566{ 2934{
2567 clear_pending (EV_A_ (W)w); 2935 clear_pending (EV_A_ (W)w);
2568 if (expect_false (!ev_is_active (w))) 2936 if (expect_false (!ev_is_active (w)))
2569 return; 2937 return;
2570 2938
2939 EV_FREQUENT_CHECK;
2940
2571 { 2941 {
2572 int active = ev_active (w); 2942 int active = ev_active (w);
2573 2943
2574 asyncs [active - 1] = asyncs [--asynccnt]; 2944 asyncs [active - 1] = asyncs [--asynccnt];
2575 ev_active (asyncs [active - 1]) = active; 2945 ev_active (asyncs [active - 1]) = active;
2576 } 2946 }
2577 2947
2578 ev_stop (EV_A_ (W)w); 2948 ev_stop (EV_A_ (W)w);
2949
2950 EV_FREQUENT_CHECK;
2579} 2951}
2580 2952
2581void 2953void
2582ev_async_send (EV_P_ ev_async *w) 2954ev_async_send (EV_P_ ev_async *w)
2583{ 2955{

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines