ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.230 by root, Fri May 2 08:13:16 2008 UTC vs.
Revision 1.288 by root, Sat Apr 25 14:12:48 2009 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008,2009 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without modifica- 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * tion, are permitted provided that the following conditions are met: 8 * tion, are permitted provided that the following conditions are met:
9 * 9 *
47# include EV_CONFIG_H 47# include EV_CONFIG_H
48# else 48# else
49# include "config.h" 49# include "config.h"
50# endif 50# endif
51 51
52# if HAVE_CLOCK_SYSCALL
53# ifndef EV_USE_CLOCK_SYSCALL
54# define EV_USE_CLOCK_SYSCALL 1
55# ifndef EV_USE_REALTIME
56# define EV_USE_REALTIME 0
57# endif
58# ifndef EV_USE_MONOTONIC
59# define EV_USE_MONOTONIC 1
60# endif
61# endif
62# endif
63
52# if HAVE_CLOCK_GETTIME 64# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC 65# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 66# define EV_USE_MONOTONIC 1
55# endif 67# endif
56# ifndef EV_USE_REALTIME 68# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1 69# define EV_USE_REALTIME 0
58# endif 70# endif
59# else 71# else
60# ifndef EV_USE_MONOTONIC 72# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0 73# define EV_USE_MONOTONIC 0
62# endif 74# endif
126# define EV_USE_EVENTFD 1 138# define EV_USE_EVENTFD 1
127# else 139# else
128# define EV_USE_EVENTFD 0 140# define EV_USE_EVENTFD 0
129# endif 141# endif
130# endif 142# endif
131 143
132#endif 144#endif
133 145
134#include <math.h> 146#include <math.h>
135#include <stdlib.h> 147#include <stdlib.h>
136#include <fcntl.h> 148#include <fcntl.h>
154#ifndef _WIN32 166#ifndef _WIN32
155# include <sys/time.h> 167# include <sys/time.h>
156# include <sys/wait.h> 168# include <sys/wait.h>
157# include <unistd.h> 169# include <unistd.h>
158#else 170#else
171# include <io.h>
159# define WIN32_LEAN_AND_MEAN 172# define WIN32_LEAN_AND_MEAN
160# include <windows.h> 173# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET 174# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1 175# define EV_SELECT_IS_WINSOCKET 1
163# endif 176# endif
164#endif 177#endif
165 178
166/* this block tries to deduce configuration from header-defined symbols and defaults */ 179/* this block tries to deduce configuration from header-defined symbols and defaults */
167 180
181#ifndef EV_USE_CLOCK_SYSCALL
182# if __linux && __GLIBC__ >= 2
183# define EV_USE_CLOCK_SYSCALL 1
184# else
185# define EV_USE_CLOCK_SYSCALL 0
186# endif
187#endif
188
168#ifndef EV_USE_MONOTONIC 189#ifndef EV_USE_MONOTONIC
190# if defined (_POSIX_MONOTONIC_CLOCK) && _POSIX_MONOTONIC_CLOCK >= 0
191# define EV_USE_MONOTONIC 1
192# else
169# define EV_USE_MONOTONIC 0 193# define EV_USE_MONOTONIC 0
194# endif
170#endif 195#endif
171 196
172#ifndef EV_USE_REALTIME 197#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0 198# define EV_USE_REALTIME !EV_USE_CLOCK_SYSCALL
174#endif 199#endif
175 200
176#ifndef EV_USE_NANOSLEEP 201#ifndef EV_USE_NANOSLEEP
202# if _POSIX_C_SOURCE >= 199309L
203# define EV_USE_NANOSLEEP 1
204# else
177# define EV_USE_NANOSLEEP 0 205# define EV_USE_NANOSLEEP 0
206# endif
178#endif 207#endif
179 208
180#ifndef EV_USE_SELECT 209#ifndef EV_USE_SELECT
181# define EV_USE_SELECT 1 210# define EV_USE_SELECT 1
182#endif 211#endif
235# else 264# else
236# define EV_USE_EVENTFD 0 265# define EV_USE_EVENTFD 0
237# endif 266# endif
238#endif 267#endif
239 268
269#if 0 /* debugging */
270# define EV_VERIFY 3
271# define EV_USE_4HEAP 1
272# define EV_HEAP_CACHE_AT 1
273#endif
274
275#ifndef EV_VERIFY
276# define EV_VERIFY !EV_MINIMAL
277#endif
278
279#ifndef EV_USE_4HEAP
280# define EV_USE_4HEAP !EV_MINIMAL
281#endif
282
283#ifndef EV_HEAP_CACHE_AT
284# define EV_HEAP_CACHE_AT !EV_MINIMAL
285#endif
286
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 287/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 288
242#ifndef CLOCK_MONOTONIC 289#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 290# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 291# define EV_USE_MONOTONIC 0
259# include <sys/select.h> 306# include <sys/select.h>
260# endif 307# endif
261#endif 308#endif
262 309
263#if EV_USE_INOTIFY 310#if EV_USE_INOTIFY
311# include <sys/utsname.h>
312# include <sys/statfs.h>
264# include <sys/inotify.h> 313# include <sys/inotify.h>
314/* some very old inotify.h headers don't have IN_DONT_FOLLOW */
315# ifndef IN_DONT_FOLLOW
316# undef EV_USE_INOTIFY
317# define EV_USE_INOTIFY 0
318# endif
265#endif 319#endif
266 320
267#if EV_SELECT_IS_WINSOCKET 321#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h> 322# include <winsock.h>
323#endif
324
325/* on linux, we can use a (slow) syscall to avoid a dependency on pthread, */
326/* which makes programs even slower. might work on other unices, too. */
327#if EV_USE_CLOCK_SYSCALL
328# include <syscall.h>
329# define clock_gettime(id, ts) syscall (SYS_clock_gettime, (id), (ts))
330# undef EV_USE_MONOTONIC
331# define EV_USE_MONOTONIC 1
269#endif 332#endif
270 333
271#if EV_USE_EVENTFD 334#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */ 335/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h> 336# include <stdint.h>
279} 342}
280# endif 343# endif
281#endif 344#endif
282 345
283/**/ 346/**/
347
348#if EV_VERIFY >= 3
349# define EV_FREQUENT_CHECK ev_loop_verify (EV_A)
350#else
351# define EV_FREQUENT_CHECK do { } while (0)
352#endif
284 353
285/* 354/*
286 * This is used to avoid floating point rounding problems. 355 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics 356 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding 357 * to ensure progress, time-wise, even when rounding
328typedef ev_watcher_time *WT; 397typedef ev_watcher_time *WT;
329 398
330#define ev_active(w) ((W)(w))->active 399#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at 400#define ev_at(w) ((WT)(w))->at
332 401
333#if EV_USE_MONOTONIC 402#if EV_USE_REALTIME
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */ 403/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */ 404/* giving it a reasonably high chance of working on typical architetcures */
405static EV_ATOMIC_T have_realtime; /* did clock_gettime (CLOCK_REALTIME) work? */
406#endif
407
408#if EV_USE_MONOTONIC
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 409static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif 410#endif
338 411
339#ifdef _WIN32 412#ifdef _WIN32
340# include "ev_win32.c" 413# include "ev_win32.c"
349{ 422{
350 syserr_cb = cb; 423 syserr_cb = cb;
351} 424}
352 425
353static void noinline 426static void noinline
354syserr (const char *msg) 427ev_syserr (const char *msg)
355{ 428{
356 if (!msg) 429 if (!msg)
357 msg = "(libev) system error"; 430 msg = "(libev) system error";
358 431
359 if (syserr_cb) 432 if (syserr_cb)
405#define ev_malloc(size) ev_realloc (0, (size)) 478#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0) 479#define ev_free(ptr) ev_realloc ((ptr), 0)
407 480
408/*****************************************************************************/ 481/*****************************************************************************/
409 482
483/* file descriptor info structure */
410typedef struct 484typedef struct
411{ 485{
412 WL head; 486 WL head;
413 unsigned char events; 487 unsigned char events; /* the events watched for */
488 unsigned char reify; /* flag set when this ANFD needs reification */
489 unsigned char emask; /* the epoll backend stores the actual kernel mask in here */
414 unsigned char reify; 490 unsigned char unused;
491#if EV_USE_EPOLL
492 unsigned int egen; /* generation counter to counter epoll bugs */
493#endif
415#if EV_SELECT_IS_WINSOCKET 494#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle; 495 SOCKET handle;
417#endif 496#endif
418} ANFD; 497} ANFD;
419 498
499/* stores the pending event set for a given watcher */
420typedef struct 500typedef struct
421{ 501{
422 W w; 502 W w;
423 int events; 503 int events; /* the pending event set for the given watcher */
424} ANPENDING; 504} ANPENDING;
425 505
426#if EV_USE_INOTIFY 506#if EV_USE_INOTIFY
507/* hash table entry per inotify-id */
427typedef struct 508typedef struct
428{ 509{
429 WL head; 510 WL head;
430} ANFS; 511} ANFS;
512#endif
513
514/* Heap Entry */
515#if EV_HEAP_CACHE_AT
516 /* a heap element */
517 typedef struct {
518 ev_tstamp at;
519 WT w;
520 } ANHE;
521
522 #define ANHE_w(he) (he).w /* access watcher, read-write */
523 #define ANHE_at(he) (he).at /* access cached at, read-only */
524 #define ANHE_at_cache(he) (he).at = (he).w->at /* update at from watcher */
525#else
526 /* a heap element */
527 typedef WT ANHE;
528
529 #define ANHE_w(he) (he)
530 #define ANHE_at(he) (he)->at
531 #define ANHE_at_cache(he)
431#endif 532#endif
432 533
433#if EV_MULTIPLICITY 534#if EV_MULTIPLICITY
434 535
435 struct ev_loop 536 struct ev_loop
460 561
461ev_tstamp 562ev_tstamp
462ev_time (void) 563ev_time (void)
463{ 564{
464#if EV_USE_REALTIME 565#if EV_USE_REALTIME
566 if (expect_true (have_realtime))
567 {
465 struct timespec ts; 568 struct timespec ts;
466 clock_gettime (CLOCK_REALTIME, &ts); 569 clock_gettime (CLOCK_REALTIME, &ts);
467 return ts.tv_sec + ts.tv_nsec * 1e-9; 570 return ts.tv_sec + ts.tv_nsec * 1e-9;
468#else 571 }
572#endif
573
469 struct timeval tv; 574 struct timeval tv;
470 gettimeofday (&tv, 0); 575 gettimeofday (&tv, 0);
471 return tv.tv_sec + tv.tv_usec * 1e-6; 576 return tv.tv_sec + tv.tv_usec * 1e-6;
472#endif
473} 577}
474 578
475ev_tstamp inline_size 579inline_size ev_tstamp
476get_clock (void) 580get_clock (void)
477{ 581{
478#if EV_USE_MONOTONIC 582#if EV_USE_MONOTONIC
479 if (expect_true (have_monotonic)) 583 if (expect_true (have_monotonic))
480 { 584 {
513 struct timeval tv; 617 struct timeval tv;
514 618
515 tv.tv_sec = (time_t)delay; 619 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6); 620 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517 621
622 /* here we rely on sys/time.h + sys/types.h + unistd.h providing select */
623 /* somehting nto guaranteed by newer posix versions, but guaranteed */
624 /* by older ones */
518 select (0, 0, 0, 0, &tv); 625 select (0, 0, 0, 0, &tv);
519#endif 626#endif
520 } 627 }
521} 628}
522 629
523/*****************************************************************************/ 630/*****************************************************************************/
524 631
525int inline_size 632#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
633
634/* find a suitable new size for the given array, */
635/* hopefully by rounding to a ncie-to-malloc size */
636inline_size int
526array_nextsize (int elem, int cur, int cnt) 637array_nextsize (int elem, int cur, int cnt)
527{ 638{
528 int ncur = cur + 1; 639 int ncur = cur + 1;
529 640
530 do 641 do
531 ncur <<= 1; 642 ncur <<= 1;
532 while (cnt > ncur); 643 while (cnt > ncur);
533 644
534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */ 645 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
535 if (elem * ncur > 4096) 646 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
536 { 647 {
537 ncur *= elem; 648 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095; 649 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
539 ncur = ncur - sizeof (void *) * 4; 650 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem; 651 ncur /= elem;
541 } 652 }
542 653
543 return ncur; 654 return ncur;
547array_realloc (int elem, void *base, int *cur, int cnt) 658array_realloc (int elem, void *base, int *cur, int cnt)
548{ 659{
549 *cur = array_nextsize (elem, *cur, cnt); 660 *cur = array_nextsize (elem, *cur, cnt);
550 return ev_realloc (base, elem * *cur); 661 return ev_realloc (base, elem * *cur);
551} 662}
663
664#define array_init_zero(base,count) \
665 memset ((void *)(base), 0, sizeof (*(base)) * (count))
552 666
553#define array_needsize(type,base,cur,cnt,init) \ 667#define array_needsize(type,base,cur,cnt,init) \
554 if (expect_false ((cnt) > (cur))) \ 668 if (expect_false ((cnt) > (cur))) \
555 { \ 669 { \
556 int ocur_ = (cur); \ 670 int ocur_ = (cur); \
568 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 682 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
569 } 683 }
570#endif 684#endif
571 685
572#define array_free(stem, idx) \ 686#define array_free(stem, idx) \
573 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 687 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; stem ## s idx = 0
574 688
575/*****************************************************************************/ 689/*****************************************************************************/
690
691/* dummy callback for pending events */
692static void noinline
693pendingcb (EV_P_ ev_prepare *w, int revents)
694{
695}
576 696
577void noinline 697void noinline
578ev_feed_event (EV_P_ void *w, int revents) 698ev_feed_event (EV_P_ void *w, int revents)
579{ 699{
580 W w_ = (W)w; 700 W w_ = (W)w;
589 pendings [pri][w_->pending - 1].w = w_; 709 pendings [pri][w_->pending - 1].w = w_;
590 pendings [pri][w_->pending - 1].events = revents; 710 pendings [pri][w_->pending - 1].events = revents;
591 } 711 }
592} 712}
593 713
594void inline_speed 714inline_speed void
715feed_reverse (EV_P_ W w)
716{
717 array_needsize (W, rfeeds, rfeedmax, rfeedcnt + 1, EMPTY2);
718 rfeeds [rfeedcnt++] = w;
719}
720
721inline_size void
722feed_reverse_done (EV_P_ int revents)
723{
724 do
725 ev_feed_event (EV_A_ rfeeds [--rfeedcnt], revents);
726 while (rfeedcnt);
727}
728
729inline_speed void
595queue_events (EV_P_ W *events, int eventcnt, int type) 730queue_events (EV_P_ W *events, int eventcnt, int type)
596{ 731{
597 int i; 732 int i;
598 733
599 for (i = 0; i < eventcnt; ++i) 734 for (i = 0; i < eventcnt; ++i)
600 ev_feed_event (EV_A_ events [i], type); 735 ev_feed_event (EV_A_ events [i], type);
601} 736}
602 737
603/*****************************************************************************/ 738/*****************************************************************************/
604 739
605void inline_size 740inline_speed void
606anfds_init (ANFD *base, int count)
607{
608 while (count--)
609 {
610 base->head = 0;
611 base->events = EV_NONE;
612 base->reify = 0;
613
614 ++base;
615 }
616}
617
618void inline_speed
619fd_event (EV_P_ int fd, int revents) 741fd_event (EV_P_ int fd, int revents)
620{ 742{
621 ANFD *anfd = anfds + fd; 743 ANFD *anfd = anfds + fd;
622 ev_io *w; 744 ev_io *w;
623 745
635{ 757{
636 if (fd >= 0 && fd < anfdmax) 758 if (fd >= 0 && fd < anfdmax)
637 fd_event (EV_A_ fd, revents); 759 fd_event (EV_A_ fd, revents);
638} 760}
639 761
640void inline_size 762/* make sure the external fd watch events are in-sync */
763/* with the kernel/libev internal state */
764inline_size void
641fd_reify (EV_P) 765fd_reify (EV_P)
642{ 766{
643 int i; 767 int i;
644 768
645 for (i = 0; i < fdchangecnt; ++i) 769 for (i = 0; i < fdchangecnt; ++i)
654 events |= (unsigned char)w->events; 778 events |= (unsigned char)w->events;
655 779
656#if EV_SELECT_IS_WINSOCKET 780#if EV_SELECT_IS_WINSOCKET
657 if (events) 781 if (events)
658 { 782 {
659 unsigned long argp; 783 unsigned long arg;
660 #ifdef EV_FD_TO_WIN32_HANDLE 784 #ifdef EV_FD_TO_WIN32_HANDLE
661 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd); 785 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
662 #else 786 #else
663 anfd->handle = _get_osfhandle (fd); 787 anfd->handle = _get_osfhandle (fd);
664 #endif 788 #endif
665 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 789 assert (("libev: only socket fds supported in this configuration", ioctlsocket (anfd->handle, FIONREAD, &arg) == 0));
666 } 790 }
667#endif 791#endif
668 792
669 { 793 {
670 unsigned char o_events = anfd->events; 794 unsigned char o_events = anfd->events;
671 unsigned char o_reify = anfd->reify; 795 unsigned char o_reify = anfd->reify;
672 796
673 anfd->reify = 0; 797 anfd->reify = 0;
674 anfd->events = events; 798 anfd->events = events;
675 799
676 if (o_events != events || o_reify & EV_IOFDSET) 800 if (o_events != events || o_reify & EV__IOFDSET)
677 backend_modify (EV_A_ fd, o_events, events); 801 backend_modify (EV_A_ fd, o_events, events);
678 } 802 }
679 } 803 }
680 804
681 fdchangecnt = 0; 805 fdchangecnt = 0;
682} 806}
683 807
684void inline_size 808/* something about the given fd changed */
809inline_size void
685fd_change (EV_P_ int fd, int flags) 810fd_change (EV_P_ int fd, int flags)
686{ 811{
687 unsigned char reify = anfds [fd].reify; 812 unsigned char reify = anfds [fd].reify;
688 anfds [fd].reify |= flags; 813 anfds [fd].reify |= flags;
689 814
693 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 818 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
694 fdchanges [fdchangecnt - 1] = fd; 819 fdchanges [fdchangecnt - 1] = fd;
695 } 820 }
696} 821}
697 822
698void inline_speed 823/* the given fd is invalid/unusable, so make sure it doesn't hurt us anymore */
824inline_speed void
699fd_kill (EV_P_ int fd) 825fd_kill (EV_P_ int fd)
700{ 826{
701 ev_io *w; 827 ev_io *w;
702 828
703 while ((w = (ev_io *)anfds [fd].head)) 829 while ((w = (ev_io *)anfds [fd].head))
705 ev_io_stop (EV_A_ w); 831 ev_io_stop (EV_A_ w);
706 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 832 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
707 } 833 }
708} 834}
709 835
710int inline_size 836/* check whether the given fd is atcually valid, for error recovery */
837inline_size int
711fd_valid (int fd) 838fd_valid (int fd)
712{ 839{
713#ifdef _WIN32 840#ifdef _WIN32
714 return _get_osfhandle (fd) != -1; 841 return _get_osfhandle (fd) != -1;
715#else 842#else
723{ 850{
724 int fd; 851 int fd;
725 852
726 for (fd = 0; fd < anfdmax; ++fd) 853 for (fd = 0; fd < anfdmax; ++fd)
727 if (anfds [fd].events) 854 if (anfds [fd].events)
728 if (!fd_valid (fd) == -1 && errno == EBADF) 855 if (!fd_valid (fd) && errno == EBADF)
729 fd_kill (EV_A_ fd); 856 fd_kill (EV_A_ fd);
730} 857}
731 858
732/* called on ENOMEM in select/poll to kill some fds and retry */ 859/* called on ENOMEM in select/poll to kill some fds and retry */
733static void noinline 860static void noinline
751 878
752 for (fd = 0; fd < anfdmax; ++fd) 879 for (fd = 0; fd < anfdmax; ++fd)
753 if (anfds [fd].events) 880 if (anfds [fd].events)
754 { 881 {
755 anfds [fd].events = 0; 882 anfds [fd].events = 0;
883 anfds [fd].emask = 0;
756 fd_change (EV_A_ fd, EV_IOFDSET | 1); 884 fd_change (EV_A_ fd, EV__IOFDSET | 1);
757 } 885 }
758} 886}
759 887
760/*****************************************************************************/ 888/*****************************************************************************/
761 889
890/*
891 * the heap functions want a real array index. array index 0 uis guaranteed to not
892 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
893 * the branching factor of the d-tree.
894 */
895
896/*
897 * at the moment we allow libev the luxury of two heaps,
898 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
899 * which is more cache-efficient.
900 * the difference is about 5% with 50000+ watchers.
901 */
902#if EV_USE_4HEAP
903
904#define DHEAP 4
905#define HEAP0 (DHEAP - 1) /* index of first element in heap */
906#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
907#define UPHEAP_DONE(p,k) ((p) == (k))
908
909/* away from the root */
910inline_speed void
911downheap (ANHE *heap, int N, int k)
912{
913 ANHE he = heap [k];
914 ANHE *E = heap + N + HEAP0;
915
916 for (;;)
917 {
918 ev_tstamp minat;
919 ANHE *minpos;
920 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0 + 1;
921
922 /* find minimum child */
923 if (expect_true (pos + DHEAP - 1 < E))
924 {
925 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
926 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
927 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
928 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
929 }
930 else if (pos < E)
931 {
932 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
933 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
934 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
935 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
936 }
937 else
938 break;
939
940 if (ANHE_at (he) <= minat)
941 break;
942
943 heap [k] = *minpos;
944 ev_active (ANHE_w (*minpos)) = k;
945
946 k = minpos - heap;
947 }
948
949 heap [k] = he;
950 ev_active (ANHE_w (he)) = k;
951}
952
953#else /* 4HEAP */
954
955#define HEAP0 1
956#define HPARENT(k) ((k) >> 1)
957#define UPHEAP_DONE(p,k) (!(p))
958
959/* away from the root */
960inline_speed void
961downheap (ANHE *heap, int N, int k)
962{
963 ANHE he = heap [k];
964
965 for (;;)
966 {
967 int c = k << 1;
968
969 if (c > N + HEAP0 - 1)
970 break;
971
972 c += c + 1 < N + HEAP0 && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
973 ? 1 : 0;
974
975 if (ANHE_at (he) <= ANHE_at (heap [c]))
976 break;
977
978 heap [k] = heap [c];
979 ev_active (ANHE_w (heap [k])) = k;
980
981 k = c;
982 }
983
984 heap [k] = he;
985 ev_active (ANHE_w (he)) = k;
986}
987#endif
988
762/* towards the root */ 989/* towards the root */
763void inline_speed 990inline_speed void
764upheap (WT *heap, int k) 991upheap (ANHE *heap, int k)
765{ 992{
766 WT w = heap [k]; 993 ANHE he = heap [k];
767 994
768 for (;;) 995 for (;;)
769 { 996 {
770 int p = k >> 1; 997 int p = HPARENT (k);
771 998
772 /* maybe we could use a dummy element at heap [0]? */ 999 if (UPHEAP_DONE (p, k) || ANHE_at (heap [p]) <= ANHE_at (he))
773 if (!p || heap [p]->at <= w->at)
774 break; 1000 break;
775 1001
776 heap [k] = heap [p]; 1002 heap [k] = heap [p];
777 ev_active (heap [k]) = k; 1003 ev_active (ANHE_w (heap [k])) = k;
778 k = p; 1004 k = p;
779 } 1005 }
780 1006
781 heap [k] = w; 1007 heap [k] = he;
782 ev_active (heap [k]) = k; 1008 ev_active (ANHE_w (he)) = k;
783} 1009}
784 1010
785/* away from the root */ 1011/* move an element suitably so it is in a correct place */
786void inline_speed 1012inline_size void
787downheap (WT *heap, int N, int k)
788{
789 WT w = heap [k];
790
791 for (;;)
792 {
793 int c = k << 1;
794
795 if (c > N)
796 break;
797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
804 heap [k] = heap [c];
805 ev_active (heap [k]) = k;
806
807 k = c;
808 }
809
810 heap [k] = w;
811 ev_active (heap [k]) = k;
812}
813
814void inline_size
815adjustheap (WT *heap, int N, int k) 1013adjustheap (ANHE *heap, int N, int k)
816{ 1014{
1015 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
817 upheap (heap, k); 1016 upheap (heap, k);
1017 else
818 downheap (heap, N, k); 1018 downheap (heap, N, k);
1019}
1020
1021/* rebuild the heap: this function is used only once and executed rarely */
1022inline_size void
1023reheap (ANHE *heap, int N)
1024{
1025 int i;
1026
1027 /* we don't use floyds algorithm, upheap is simpler and is more cache-efficient */
1028 /* also, this is easy to implement and correct for both 2-heaps and 4-heaps */
1029 for (i = 0; i < N; ++i)
1030 upheap (heap, i + HEAP0);
819} 1031}
820 1032
821/*****************************************************************************/ 1033/*****************************************************************************/
822 1034
1035/* associate signal watchers to a signal signal */
823typedef struct 1036typedef struct
824{ 1037{
825 WL head; 1038 WL head;
826 EV_ATOMIC_T gotsig; 1039 EV_ATOMIC_T gotsig;
827} ANSIG; 1040} ANSIG;
829static ANSIG *signals; 1042static ANSIG *signals;
830static int signalmax; 1043static int signalmax;
831 1044
832static EV_ATOMIC_T gotsig; 1045static EV_ATOMIC_T gotsig;
833 1046
834void inline_size
835signals_init (ANSIG *base, int count)
836{
837 while (count--)
838 {
839 base->head = 0;
840 base->gotsig = 0;
841
842 ++base;
843 }
844}
845
846/*****************************************************************************/ 1047/*****************************************************************************/
847 1048
848void inline_speed 1049/* used to prepare libev internal fd's */
1050/* this is not fork-safe */
1051inline_speed void
849fd_intern (int fd) 1052fd_intern (int fd)
850{ 1053{
851#ifdef _WIN32 1054#ifdef _WIN32
852 int arg = 1; 1055 unsigned long arg = 1;
853 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 1056 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
854#else 1057#else
855 fcntl (fd, F_SETFD, FD_CLOEXEC); 1058 fcntl (fd, F_SETFD, FD_CLOEXEC);
856 fcntl (fd, F_SETFL, O_NONBLOCK); 1059 fcntl (fd, F_SETFL, O_NONBLOCK);
857#endif 1060#endif
858} 1061}
859 1062
860static void noinline 1063static void noinline
861evpipe_init (EV_P) 1064evpipe_init (EV_P)
862{ 1065{
863 if (!ev_is_active (&pipeev)) 1066 if (!ev_is_active (&pipe_w))
864 { 1067 {
865#if EV_USE_EVENTFD 1068#if EV_USE_EVENTFD
866 if ((evfd = eventfd (0, 0)) >= 0) 1069 if ((evfd = eventfd (0, 0)) >= 0)
867 { 1070 {
868 evpipe [0] = -1; 1071 evpipe [0] = -1;
869 fd_intern (evfd); 1072 fd_intern (evfd);
870 ev_io_set (&pipeev, evfd, EV_READ); 1073 ev_io_set (&pipe_w, evfd, EV_READ);
871 } 1074 }
872 else 1075 else
873#endif 1076#endif
874 { 1077 {
875 while (pipe (evpipe)) 1078 while (pipe (evpipe))
876 syserr ("(libev) error creating signal/async pipe"); 1079 ev_syserr ("(libev) error creating signal/async pipe");
877 1080
878 fd_intern (evpipe [0]); 1081 fd_intern (evpipe [0]);
879 fd_intern (evpipe [1]); 1082 fd_intern (evpipe [1]);
880 ev_io_set (&pipeev, evpipe [0], EV_READ); 1083 ev_io_set (&pipe_w, evpipe [0], EV_READ);
881 } 1084 }
882 1085
883 ev_io_start (EV_A_ &pipeev); 1086 ev_io_start (EV_A_ &pipe_w);
884 ev_unref (EV_A); /* watcher should not keep loop alive */ 1087 ev_unref (EV_A); /* watcher should not keep loop alive */
885 } 1088 }
886} 1089}
887 1090
888void inline_size 1091inline_size void
889evpipe_write (EV_P_ EV_ATOMIC_T *flag) 1092evpipe_write (EV_P_ EV_ATOMIC_T *flag)
890{ 1093{
891 if (!*flag) 1094 if (!*flag)
892 { 1095 {
893 int old_errno = errno; /* save errno because write might clobber it */ 1096 int old_errno = errno; /* save errno because write might clobber it */
906 1109
907 errno = old_errno; 1110 errno = old_errno;
908 } 1111 }
909} 1112}
910 1113
1114/* called whenever the libev signal pipe */
1115/* got some events (signal, async) */
911static void 1116static void
912pipecb (EV_P_ ev_io *iow, int revents) 1117pipecb (EV_P_ ev_io *iow, int revents)
913{ 1118{
914#if EV_USE_EVENTFD 1119#if EV_USE_EVENTFD
915 if (evfd >= 0) 1120 if (evfd >= 0)
916 { 1121 {
917 uint64_t counter = 1; 1122 uint64_t counter;
918 read (evfd, &counter, sizeof (uint64_t)); 1123 read (evfd, &counter, sizeof (uint64_t));
919 } 1124 }
920 else 1125 else
921#endif 1126#endif
922 { 1127 {
971ev_feed_signal_event (EV_P_ int signum) 1176ev_feed_signal_event (EV_P_ int signum)
972{ 1177{
973 WL w; 1178 WL w;
974 1179
975#if EV_MULTIPLICITY 1180#if EV_MULTIPLICITY
976 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr)); 1181 assert (("libev: feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
977#endif 1182#endif
978 1183
979 --signum; 1184 --signum;
980 1185
981 if (signum < 0 || signum >= signalmax) 1186 if (signum < 0 || signum >= signalmax)
997 1202
998#ifndef WIFCONTINUED 1203#ifndef WIFCONTINUED
999# define WIFCONTINUED(status) 0 1204# define WIFCONTINUED(status) 0
1000#endif 1205#endif
1001 1206
1002void inline_speed 1207/* handle a single child status event */
1208inline_speed void
1003child_reap (EV_P_ int chain, int pid, int status) 1209child_reap (EV_P_ int chain, int pid, int status)
1004{ 1210{
1005 ev_child *w; 1211 ev_child *w;
1006 int traced = WIFSTOPPED (status) || WIFCONTINUED (status); 1212 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1007 1213
1020 1226
1021#ifndef WCONTINUED 1227#ifndef WCONTINUED
1022# define WCONTINUED 0 1228# define WCONTINUED 0
1023#endif 1229#endif
1024 1230
1231/* called on sigchld etc., calls waitpid */
1025static void 1232static void
1026childcb (EV_P_ ev_signal *sw, int revents) 1233childcb (EV_P_ ev_signal *sw, int revents)
1027{ 1234{
1028 int pid, status; 1235 int pid, status;
1029 1236
1110 /* kqueue is borked on everything but netbsd apparently */ 1317 /* kqueue is borked on everything but netbsd apparently */
1111 /* it usually doesn't work correctly on anything but sockets and pipes */ 1318 /* it usually doesn't work correctly on anything but sockets and pipes */
1112 flags &= ~EVBACKEND_KQUEUE; 1319 flags &= ~EVBACKEND_KQUEUE;
1113#endif 1320#endif
1114#ifdef __APPLE__ 1321#ifdef __APPLE__
1115 // flags &= ~EVBACKEND_KQUEUE; for documentation 1322 /* only select works correctly on that "unix-certified" platform */
1116 flags &= ~EVBACKEND_POLL; 1323 flags &= ~EVBACKEND_KQUEUE; /* horribly broken, even for sockets */
1324 flags &= ~EVBACKEND_POLL; /* poll is based on kqueue from 10.5 onwards */
1117#endif 1325#endif
1118 1326
1119 return flags; 1327 return flags;
1120} 1328}
1121 1329
1153ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval) 1361ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1154{ 1362{
1155 timeout_blocktime = interval; 1363 timeout_blocktime = interval;
1156} 1364}
1157 1365
1366/* initialise a loop structure, must be zero-initialised */
1158static void noinline 1367static void noinline
1159loop_init (EV_P_ unsigned int flags) 1368loop_init (EV_P_ unsigned int flags)
1160{ 1369{
1161 if (!backend) 1370 if (!backend)
1162 { 1371 {
1372#if EV_USE_REALTIME
1373 if (!have_realtime)
1374 {
1375 struct timespec ts;
1376
1377 if (!clock_gettime (CLOCK_REALTIME, &ts))
1378 have_realtime = 1;
1379 }
1380#endif
1381
1163#if EV_USE_MONOTONIC 1382#if EV_USE_MONOTONIC
1383 if (!have_monotonic)
1164 { 1384 {
1165 struct timespec ts; 1385 struct timespec ts;
1386
1166 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1387 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
1167 have_monotonic = 1; 1388 have_monotonic = 1;
1168 } 1389 }
1169#endif 1390#endif
1170 1391
1171 ev_rt_now = ev_time (); 1392 ev_rt_now = ev_time ();
1172 mn_now = get_clock (); 1393 mn_now = get_clock ();
1173 now_floor = mn_now; 1394 now_floor = mn_now;
1210#endif 1431#endif
1211#if EV_USE_SELECT 1432#if EV_USE_SELECT
1212 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1433 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
1213#endif 1434#endif
1214 1435
1436 ev_prepare_init (&pending_w, pendingcb);
1437
1215 ev_init (&pipeev, pipecb); 1438 ev_init (&pipe_w, pipecb);
1216 ev_set_priority (&pipeev, EV_MAXPRI); 1439 ev_set_priority (&pipe_w, EV_MAXPRI);
1217 } 1440 }
1218} 1441}
1219 1442
1443/* free up a loop structure */
1220static void noinline 1444static void noinline
1221loop_destroy (EV_P) 1445loop_destroy (EV_P)
1222{ 1446{
1223 int i; 1447 int i;
1224 1448
1225 if (ev_is_active (&pipeev)) 1449 if (ev_is_active (&pipe_w))
1226 { 1450 {
1227 ev_ref (EV_A); /* signal watcher */ 1451 ev_ref (EV_A); /* signal watcher */
1228 ev_io_stop (EV_A_ &pipeev); 1452 ev_io_stop (EV_A_ &pipe_w);
1229 1453
1230#if EV_USE_EVENTFD 1454#if EV_USE_EVENTFD
1231 if (evfd >= 0) 1455 if (evfd >= 0)
1232 close (evfd); 1456 close (evfd);
1233#endif 1457#endif
1272 } 1496 }
1273 1497
1274 ev_free (anfds); anfdmax = 0; 1498 ev_free (anfds); anfdmax = 0;
1275 1499
1276 /* have to use the microsoft-never-gets-it-right macro */ 1500 /* have to use the microsoft-never-gets-it-right macro */
1501 array_free (rfeed, EMPTY);
1277 array_free (fdchange, EMPTY); 1502 array_free (fdchange, EMPTY);
1278 array_free (timer, EMPTY); 1503 array_free (timer, EMPTY);
1279#if EV_PERIODIC_ENABLE 1504#if EV_PERIODIC_ENABLE
1280 array_free (periodic, EMPTY); 1505 array_free (periodic, EMPTY);
1281#endif 1506#endif
1290 1515
1291 backend = 0; 1516 backend = 0;
1292} 1517}
1293 1518
1294#if EV_USE_INOTIFY 1519#if EV_USE_INOTIFY
1295void inline_size infy_fork (EV_P); 1520inline_size void infy_fork (EV_P);
1296#endif 1521#endif
1297 1522
1298void inline_size 1523inline_size void
1299loop_fork (EV_P) 1524loop_fork (EV_P)
1300{ 1525{
1301#if EV_USE_PORT 1526#if EV_USE_PORT
1302 if (backend == EVBACKEND_PORT ) port_fork (EV_A); 1527 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1303#endif 1528#endif
1309#endif 1534#endif
1310#if EV_USE_INOTIFY 1535#if EV_USE_INOTIFY
1311 infy_fork (EV_A); 1536 infy_fork (EV_A);
1312#endif 1537#endif
1313 1538
1314 if (ev_is_active (&pipeev)) 1539 if (ev_is_active (&pipe_w))
1315 { 1540 {
1316 /* this "locks" the handlers against writing to the pipe */ 1541 /* this "locks" the handlers against writing to the pipe */
1317 /* while we modify the fd vars */ 1542 /* while we modify the fd vars */
1318 gotsig = 1; 1543 gotsig = 1;
1319#if EV_ASYNC_ENABLE 1544#if EV_ASYNC_ENABLE
1320 gotasync = 1; 1545 gotasync = 1;
1321#endif 1546#endif
1322 1547
1323 ev_ref (EV_A); 1548 ev_ref (EV_A);
1324 ev_io_stop (EV_A_ &pipeev); 1549 ev_io_stop (EV_A_ &pipe_w);
1325 1550
1326#if EV_USE_EVENTFD 1551#if EV_USE_EVENTFD
1327 if (evfd >= 0) 1552 if (evfd >= 0)
1328 close (evfd); 1553 close (evfd);
1329#endif 1554#endif
1334 close (evpipe [1]); 1559 close (evpipe [1]);
1335 } 1560 }
1336 1561
1337 evpipe_init (EV_A); 1562 evpipe_init (EV_A);
1338 /* now iterate over everything, in case we missed something */ 1563 /* now iterate over everything, in case we missed something */
1339 pipecb (EV_A_ &pipeev, EV_READ); 1564 pipecb (EV_A_ &pipe_w, EV_READ);
1340 } 1565 }
1341 1566
1342 postfork = 0; 1567 postfork = 0;
1343} 1568}
1344 1569
1345#if EV_MULTIPLICITY 1570#if EV_MULTIPLICITY
1571
1346struct ev_loop * 1572struct ev_loop *
1347ev_loop_new (unsigned int flags) 1573ev_loop_new (unsigned int flags)
1348{ 1574{
1349 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop)); 1575 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1350 1576
1369ev_loop_fork (EV_P) 1595ev_loop_fork (EV_P)
1370{ 1596{
1371 postfork = 1; /* must be in line with ev_default_fork */ 1597 postfork = 1; /* must be in line with ev_default_fork */
1372} 1598}
1373 1599
1600#if EV_VERIFY
1601static void noinline
1602verify_watcher (EV_P_ W w)
1603{
1604 assert (("libev: watcher has invalid priority", ABSPRI (w) >= 0 && ABSPRI (w) < NUMPRI));
1605
1606 if (w->pending)
1607 assert (("libev: pending watcher not on pending queue", pendings [ABSPRI (w)][w->pending - 1].w == w));
1608}
1609
1610static void noinline
1611verify_heap (EV_P_ ANHE *heap, int N)
1612{
1613 int i;
1614
1615 for (i = HEAP0; i < N + HEAP0; ++i)
1616 {
1617 assert (("libev: active index mismatch in heap", ev_active (ANHE_w (heap [i])) == i));
1618 assert (("libev: heap condition violated", i == HEAP0 || ANHE_at (heap [HPARENT (i)]) <= ANHE_at (heap [i])));
1619 assert (("libev: heap at cache mismatch", ANHE_at (heap [i]) == ev_at (ANHE_w (heap [i]))));
1620
1621 verify_watcher (EV_A_ (W)ANHE_w (heap [i]));
1622 }
1623}
1624
1625static void noinline
1626array_verify (EV_P_ W *ws, int cnt)
1627{
1628 while (cnt--)
1629 {
1630 assert (("libev: active index mismatch", ev_active (ws [cnt]) == cnt + 1));
1631 verify_watcher (EV_A_ ws [cnt]);
1632 }
1633}
1634#endif
1635
1636void
1637ev_loop_verify (EV_P)
1638{
1639#if EV_VERIFY
1640 int i;
1641 WL w;
1642
1643 assert (activecnt >= -1);
1644
1645 assert (fdchangemax >= fdchangecnt);
1646 for (i = 0; i < fdchangecnt; ++i)
1647 assert (("libev: negative fd in fdchanges", fdchanges [i] >= 0));
1648
1649 assert (anfdmax >= 0);
1650 for (i = 0; i < anfdmax; ++i)
1651 for (w = anfds [i].head; w; w = w->next)
1652 {
1653 verify_watcher (EV_A_ (W)w);
1654 assert (("libev: inactive fd watcher on anfd list", ev_active (w) == 1));
1655 assert (("libev: fd mismatch between watcher and anfd", ((ev_io *)w)->fd == i));
1656 }
1657
1658 assert (timermax >= timercnt);
1659 verify_heap (EV_A_ timers, timercnt);
1660
1661#if EV_PERIODIC_ENABLE
1662 assert (periodicmax >= periodiccnt);
1663 verify_heap (EV_A_ periodics, periodiccnt);
1664#endif
1665
1666 for (i = NUMPRI; i--; )
1667 {
1668 assert (pendingmax [i] >= pendingcnt [i]);
1669#if EV_IDLE_ENABLE
1670 assert (idleall >= 0);
1671 assert (idlemax [i] >= idlecnt [i]);
1672 array_verify (EV_A_ (W *)idles [i], idlecnt [i]);
1673#endif
1674 }
1675
1676#if EV_FORK_ENABLE
1677 assert (forkmax >= forkcnt);
1678 array_verify (EV_A_ (W *)forks, forkcnt);
1679#endif
1680
1681#if EV_ASYNC_ENABLE
1682 assert (asyncmax >= asynccnt);
1683 array_verify (EV_A_ (W *)asyncs, asynccnt);
1684#endif
1685
1686 assert (preparemax >= preparecnt);
1687 array_verify (EV_A_ (W *)prepares, preparecnt);
1688
1689 assert (checkmax >= checkcnt);
1690 array_verify (EV_A_ (W *)checks, checkcnt);
1691
1692# if 0
1693 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1694 for (signum = signalmax; signum--; ) if (signals [signum].gotsig)
1374#endif 1695# endif
1696#endif
1697}
1698
1699#endif /* multiplicity */
1375 1700
1376#if EV_MULTIPLICITY 1701#if EV_MULTIPLICITY
1377struct ev_loop * 1702struct ev_loop *
1378ev_default_loop_init (unsigned int flags) 1703ev_default_loop_init (unsigned int flags)
1379#else 1704#else
1412{ 1737{
1413#if EV_MULTIPLICITY 1738#if EV_MULTIPLICITY
1414 struct ev_loop *loop = ev_default_loop_ptr; 1739 struct ev_loop *loop = ev_default_loop_ptr;
1415#endif 1740#endif
1416 1741
1742 ev_default_loop_ptr = 0;
1743
1417#ifndef _WIN32 1744#ifndef _WIN32
1418 ev_ref (EV_A); /* child watcher */ 1745 ev_ref (EV_A); /* child watcher */
1419 ev_signal_stop (EV_A_ &childev); 1746 ev_signal_stop (EV_A_ &childev);
1420#endif 1747#endif
1421 1748
1427{ 1754{
1428#if EV_MULTIPLICITY 1755#if EV_MULTIPLICITY
1429 struct ev_loop *loop = ev_default_loop_ptr; 1756 struct ev_loop *loop = ev_default_loop_ptr;
1430#endif 1757#endif
1431 1758
1432 if (backend)
1433 postfork = 1; /* must be in line with ev_loop_fork */ 1759 postfork = 1; /* must be in line with ev_loop_fork */
1434} 1760}
1435 1761
1436/*****************************************************************************/ 1762/*****************************************************************************/
1437 1763
1438void 1764void
1439ev_invoke (EV_P_ void *w, int revents) 1765ev_invoke (EV_P_ void *w, int revents)
1440{ 1766{
1441 EV_CB_INVOKE ((W)w, revents); 1767 EV_CB_INVOKE ((W)w, revents);
1442} 1768}
1443 1769
1444void inline_speed 1770inline_speed void
1445call_pending (EV_P) 1771call_pending (EV_P)
1446{ 1772{
1447 int pri; 1773 int pri;
1448 1774
1449 for (pri = NUMPRI; pri--; ) 1775 for (pri = NUMPRI; pri--; )
1450 while (pendingcnt [pri]) 1776 while (pendingcnt [pri])
1451 { 1777 {
1452 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1778 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1453 1779
1454 if (expect_true (p->w))
1455 {
1456 /*assert (("non-pending watcher on pending list", p->w->pending));*/ 1780 /*assert (("libev: non-pending watcher on pending list", p->w->pending));*/
1781 /* ^ this is no longer true, as pending_w could be here */
1457 1782
1458 p->w->pending = 0; 1783 p->w->pending = 0;
1459 EV_CB_INVOKE (p->w, p->events); 1784 EV_CB_INVOKE (p->w, p->events);
1460 } 1785 EV_FREQUENT_CHECK;
1461 } 1786 }
1462} 1787}
1463 1788
1464void inline_size
1465timers_reify (EV_P)
1466{
1467 while (timercnt && ev_at (timers [1]) <= mn_now)
1468 {
1469 ev_timer *w = (ev_timer *)timers [1];
1470
1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1472
1473 /* first reschedule or stop timer */
1474 if (w->repeat)
1475 {
1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1477
1478 ev_at (w) += w->repeat;
1479 if (ev_at (w) < mn_now)
1480 ev_at (w) = mn_now;
1481
1482 downheap (timers, timercnt, 1);
1483 }
1484 else
1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1486
1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1488 }
1489}
1490
1491#if EV_PERIODIC_ENABLE
1492void inline_size
1493periodics_reify (EV_P)
1494{
1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1496 {
1497 ev_periodic *w = (ev_periodic *)periodics [1];
1498
1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1500
1501 /* first reschedule or stop timer */
1502 if (w->reschedule_cb)
1503 {
1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1506 downheap (periodics, periodiccnt, 1);
1507 }
1508 else if (w->interval)
1509 {
1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1513 downheap (periodics, periodiccnt, 1);
1514 }
1515 else
1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1517
1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1519 }
1520}
1521
1522static void noinline
1523periodics_reschedule (EV_P)
1524{
1525 int i;
1526
1527 /* adjust periodics after time jump */
1528 for (i = 0; i < periodiccnt; ++i)
1529 {
1530 ev_periodic *w = (ev_periodic *)periodics [i];
1531
1532 if (w->reschedule_cb)
1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1534 else if (w->interval)
1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1536 }
1537
1538 /* now rebuild the heap */
1539 for (i = periodiccnt >> 1; i--; )
1540 downheap (periodics, periodiccnt, i);
1541}
1542#endif
1543
1544#if EV_IDLE_ENABLE 1789#if EV_IDLE_ENABLE
1545void inline_size 1790/* make idle watchers pending. this handles the "call-idle */
1791/* only when higher priorities are idle" logic */
1792inline_size void
1546idle_reify (EV_P) 1793idle_reify (EV_P)
1547{ 1794{
1548 if (expect_false (idleall)) 1795 if (expect_false (idleall))
1549 { 1796 {
1550 int pri; 1797 int pri;
1562 } 1809 }
1563 } 1810 }
1564} 1811}
1565#endif 1812#endif
1566 1813
1567void inline_speed 1814/* make timers pending */
1815inline_size void
1816timers_reify (EV_P)
1817{
1818 EV_FREQUENT_CHECK;
1819
1820 if (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1821 {
1822 do
1823 {
1824 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1825
1826 /*assert (("libev: inactive timer on timer heap detected", ev_is_active (w)));*/
1827
1828 /* first reschedule or stop timer */
1829 if (w->repeat)
1830 {
1831 ev_at (w) += w->repeat;
1832 if (ev_at (w) < mn_now)
1833 ev_at (w) = mn_now;
1834
1835 assert (("libev: negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1836
1837 ANHE_at_cache (timers [HEAP0]);
1838 downheap (timers, timercnt, HEAP0);
1839 }
1840 else
1841 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1842
1843 EV_FREQUENT_CHECK;
1844 feed_reverse (EV_A_ (W)w);
1845 }
1846 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now);
1847
1848 feed_reverse_done (EV_A_ EV_TIMEOUT);
1849 }
1850}
1851
1852#if EV_PERIODIC_ENABLE
1853/* make periodics pending */
1854inline_size void
1855periodics_reify (EV_P)
1856{
1857 EV_FREQUENT_CHECK;
1858
1859 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1860 {
1861 int feed_count = 0;
1862
1863 do
1864 {
1865 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1866
1867 /*assert (("libev: inactive timer on periodic heap detected", ev_is_active (w)));*/
1868
1869 /* first reschedule or stop timer */
1870 if (w->reschedule_cb)
1871 {
1872 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1873
1874 assert (("libev: ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1875
1876 ANHE_at_cache (periodics [HEAP0]);
1877 downheap (periodics, periodiccnt, HEAP0);
1878 }
1879 else if (w->interval)
1880 {
1881 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1882 /* if next trigger time is not sufficiently in the future, put it there */
1883 /* this might happen because of floating point inexactness */
1884 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1885 {
1886 ev_at (w) += w->interval;
1887
1888 /* if interval is unreasonably low we might still have a time in the past */
1889 /* so correct this. this will make the periodic very inexact, but the user */
1890 /* has effectively asked to get triggered more often than possible */
1891 if (ev_at (w) < ev_rt_now)
1892 ev_at (w) = ev_rt_now;
1893 }
1894
1895 ANHE_at_cache (periodics [HEAP0]);
1896 downheap (periodics, periodiccnt, HEAP0);
1897 }
1898 else
1899 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1900
1901 EV_FREQUENT_CHECK;
1902 feed_reverse (EV_A_ (W)w);
1903 }
1904 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now);
1905
1906 feed_reverse_done (EV_A_ EV_PERIODIC);
1907 }
1908}
1909
1910/* simply recalculate all periodics */
1911/* TODO: maybe ensure that at leats one event happens when jumping forward? */
1912static void noinline
1913periodics_reschedule (EV_P)
1914{
1915 int i;
1916
1917 /* adjust periodics after time jump */
1918 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1919 {
1920 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1921
1922 if (w->reschedule_cb)
1923 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1924 else if (w->interval)
1925 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1926
1927 ANHE_at_cache (periodics [i]);
1928 }
1929
1930 reheap (periodics, periodiccnt);
1931}
1932#endif
1933
1934/* adjust all timers by a given offset */
1935static void noinline
1936timers_reschedule (EV_P_ ev_tstamp adjust)
1937{
1938 int i;
1939
1940 for (i = 0; i < timercnt; ++i)
1941 {
1942 ANHE *he = timers + i + HEAP0;
1943 ANHE_w (*he)->at += adjust;
1944 ANHE_at_cache (*he);
1945 }
1946}
1947
1948/* fetch new monotonic and realtime times from the kernel */
1949/* also detetc if there was a timejump, and act accordingly */
1950inline_speed void
1568time_update (EV_P_ ev_tstamp max_block) 1951time_update (EV_P_ ev_tstamp max_block)
1569{ 1952{
1570 int i; 1953 int i;
1571 1954
1572#if EV_USE_MONOTONIC 1955#if EV_USE_MONOTONIC
1597 */ 1980 */
1598 for (i = 4; --i; ) 1981 for (i = 4; --i; )
1599 { 1982 {
1600 rtmn_diff = ev_rt_now - mn_now; 1983 rtmn_diff = ev_rt_now - mn_now;
1601 1984
1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1985 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1603 return; /* all is well */ 1986 return; /* all is well */
1604 1987
1605 ev_rt_now = ev_time (); 1988 ev_rt_now = ev_time ();
1606 mn_now = get_clock (); 1989 mn_now = get_clock ();
1607 now_floor = mn_now; 1990 now_floor = mn_now;
1608 } 1991 }
1609 1992
1993 /* no timer adjustment, as the monotonic clock doesn't jump */
1994 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1610# if EV_PERIODIC_ENABLE 1995# if EV_PERIODIC_ENABLE
1611 periodics_reschedule (EV_A); 1996 periodics_reschedule (EV_A);
1612# endif 1997# endif
1613 /* no timer adjustment, as the monotonic clock doesn't jump */
1614 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1615 } 1998 }
1616 else 1999 else
1617#endif 2000#endif
1618 { 2001 {
1619 ev_rt_now = ev_time (); 2002 ev_rt_now = ev_time ();
1620 2003
1621 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP)) 2004 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1622 { 2005 {
2006 /* adjust timers. this is easy, as the offset is the same for all of them */
2007 timers_reschedule (EV_A_ ev_rt_now - mn_now);
1623#if EV_PERIODIC_ENABLE 2008#if EV_PERIODIC_ENABLE
1624 periodics_reschedule (EV_A); 2009 periodics_reschedule (EV_A);
1625#endif 2010#endif
1626 /* adjust timers. this is easy, as the offset is the same for all of them */
1627 for (i = 1; i <= timercnt; ++i)
1628 ev_at (timers [i]) += ev_rt_now - mn_now;
1629 } 2011 }
1630 2012
1631 mn_now = ev_rt_now; 2013 mn_now = ev_rt_now;
1632 } 2014 }
1633} 2015}
1634 2016
1635void
1636ev_ref (EV_P)
1637{
1638 ++activecnt;
1639}
1640
1641void
1642ev_unref (EV_P)
1643{
1644 --activecnt;
1645}
1646
1647static int loop_done; 2017static int loop_done;
1648 2018
1649void 2019void
1650ev_loop (EV_P_ int flags) 2020ev_loop (EV_P_ int flags)
1651{ 2021{
1653 2023
1654 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */ 2024 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1655 2025
1656 do 2026 do
1657 { 2027 {
2028#if EV_VERIFY >= 2
2029 ev_loop_verify (EV_A);
2030#endif
2031
1658#ifndef _WIN32 2032#ifndef _WIN32
1659 if (expect_false (curpid)) /* penalise the forking check even more */ 2033 if (expect_false (curpid)) /* penalise the forking check even more */
1660 if (expect_false (getpid () != curpid)) 2034 if (expect_false (getpid () != curpid))
1661 { 2035 {
1662 curpid = getpid (); 2036 curpid = getpid ();
1679 { 2053 {
1680 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 2054 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1681 call_pending (EV_A); 2055 call_pending (EV_A);
1682 } 2056 }
1683 2057
1684 if (expect_false (!activecnt))
1685 break;
1686
1687 /* we might have forked, so reify kernel state if necessary */ 2058 /* we might have forked, so reify kernel state if necessary */
1688 if (expect_false (postfork)) 2059 if (expect_false (postfork))
1689 loop_fork (EV_A); 2060 loop_fork (EV_A);
1690 2061
1691 /* update fd-related kernel structures */ 2062 /* update fd-related kernel structures */
1703 2074
1704 waittime = MAX_BLOCKTIME; 2075 waittime = MAX_BLOCKTIME;
1705 2076
1706 if (timercnt) 2077 if (timercnt)
1707 { 2078 {
1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 2079 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1709 if (waittime > to) waittime = to; 2080 if (waittime > to) waittime = to;
1710 } 2081 }
1711 2082
1712#if EV_PERIODIC_ENABLE 2083#if EV_PERIODIC_ENABLE
1713 if (periodiccnt) 2084 if (periodiccnt)
1714 { 2085 {
1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 2086 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1716 if (waittime > to) waittime = to; 2087 if (waittime > to) waittime = to;
1717 } 2088 }
1718#endif 2089#endif
1719 2090
1720 if (expect_false (waittime < timeout_blocktime)) 2091 if (expect_false (waittime < timeout_blocktime))
1770ev_unloop (EV_P_ int how) 2141ev_unloop (EV_P_ int how)
1771{ 2142{
1772 loop_done = how; 2143 loop_done = how;
1773} 2144}
1774 2145
2146void
2147ev_ref (EV_P)
2148{
2149 ++activecnt;
2150}
2151
2152void
2153ev_unref (EV_P)
2154{
2155 --activecnt;
2156}
2157
2158void
2159ev_now_update (EV_P)
2160{
2161 time_update (EV_A_ 1e100);
2162}
2163
2164void
2165ev_suspend (EV_P)
2166{
2167 ev_now_update (EV_A);
2168}
2169
2170void
2171ev_resume (EV_P)
2172{
2173 ev_tstamp mn_prev = mn_now;
2174
2175 ev_now_update (EV_A);
2176 timers_reschedule (EV_A_ mn_now - mn_prev);
2177#if EV_PERIODIC_ENABLE
2178 /* TODO: really do this? */
2179 periodics_reschedule (EV_A);
2180#endif
2181}
2182
1775/*****************************************************************************/ 2183/*****************************************************************************/
2184/* singly-linked list management, used when the expected list length is short */
1776 2185
1777void inline_size 2186inline_size void
1778wlist_add (WL *head, WL elem) 2187wlist_add (WL *head, WL elem)
1779{ 2188{
1780 elem->next = *head; 2189 elem->next = *head;
1781 *head = elem; 2190 *head = elem;
1782} 2191}
1783 2192
1784void inline_size 2193inline_size void
1785wlist_del (WL *head, WL elem) 2194wlist_del (WL *head, WL elem)
1786{ 2195{
1787 while (*head) 2196 while (*head)
1788 { 2197 {
1789 if (*head == elem) 2198 if (*head == elem)
1794 2203
1795 head = &(*head)->next; 2204 head = &(*head)->next;
1796 } 2205 }
1797} 2206}
1798 2207
1799void inline_speed 2208/* internal, faster, version of ev_clear_pending */
2209inline_speed void
1800clear_pending (EV_P_ W w) 2210clear_pending (EV_P_ W w)
1801{ 2211{
1802 if (w->pending) 2212 if (w->pending)
1803 { 2213 {
1804 pendings [ABSPRI (w)][w->pending - 1].w = 0; 2214 pendings [ABSPRI (w)][w->pending - 1].w = (W)&pending_w;
1805 w->pending = 0; 2215 w->pending = 0;
1806 } 2216 }
1807} 2217}
1808 2218
1809int 2219int
1813 int pending = w_->pending; 2223 int pending = w_->pending;
1814 2224
1815 if (expect_true (pending)) 2225 if (expect_true (pending))
1816 { 2226 {
1817 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1; 2227 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
2228 p->w = (W)&pending_w;
1818 w_->pending = 0; 2229 w_->pending = 0;
1819 p->w = 0;
1820 return p->events; 2230 return p->events;
1821 } 2231 }
1822 else 2232 else
1823 return 0; 2233 return 0;
1824} 2234}
1825 2235
1826void inline_size 2236inline_size void
1827pri_adjust (EV_P_ W w) 2237pri_adjust (EV_P_ W w)
1828{ 2238{
1829 int pri = w->priority; 2239 int pri = w->priority;
1830 pri = pri < EV_MINPRI ? EV_MINPRI : pri; 2240 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1831 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri; 2241 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1832 w->priority = pri; 2242 w->priority = pri;
1833} 2243}
1834 2244
1835void inline_speed 2245inline_speed void
1836ev_start (EV_P_ W w, int active) 2246ev_start (EV_P_ W w, int active)
1837{ 2247{
1838 pri_adjust (EV_A_ w); 2248 pri_adjust (EV_A_ w);
1839 w->active = active; 2249 w->active = active;
1840 ev_ref (EV_A); 2250 ev_ref (EV_A);
1841} 2251}
1842 2252
1843void inline_size 2253inline_size void
1844ev_stop (EV_P_ W w) 2254ev_stop (EV_P_ W w)
1845{ 2255{
1846 ev_unref (EV_A); 2256 ev_unref (EV_A);
1847 w->active = 0; 2257 w->active = 0;
1848} 2258}
1855 int fd = w->fd; 2265 int fd = w->fd;
1856 2266
1857 if (expect_false (ev_is_active (w))) 2267 if (expect_false (ev_is_active (w)))
1858 return; 2268 return;
1859 2269
1860 assert (("ev_io_start called with negative fd", fd >= 0)); 2270 assert (("libev: ev_io_start called with negative fd", fd >= 0));
2271 assert (("libev: ev_io start called with illegal event mask", !(w->events & ~(EV__IOFDSET | EV_READ | EV_WRITE))));
2272
2273 EV_FREQUENT_CHECK;
1861 2274
1862 ev_start (EV_A_ (W)w, 1); 2275 ev_start (EV_A_ (W)w, 1);
1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 2276 array_needsize (ANFD, anfds, anfdmax, fd + 1, array_init_zero);
1864 wlist_add (&anfds[fd].head, (WL)w); 2277 wlist_add (&anfds[fd].head, (WL)w);
1865 2278
1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1); 2279 fd_change (EV_A_ fd, w->events & EV__IOFDSET | 1);
1867 w->events &= ~EV_IOFDSET; 2280 w->events &= ~EV__IOFDSET;
2281
2282 EV_FREQUENT_CHECK;
1868} 2283}
1869 2284
1870void noinline 2285void noinline
1871ev_io_stop (EV_P_ ev_io *w) 2286ev_io_stop (EV_P_ ev_io *w)
1872{ 2287{
1873 clear_pending (EV_A_ (W)w); 2288 clear_pending (EV_A_ (W)w);
1874 if (expect_false (!ev_is_active (w))) 2289 if (expect_false (!ev_is_active (w)))
1875 return; 2290 return;
1876 2291
1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2292 assert (("libev: ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
2293
2294 EV_FREQUENT_CHECK;
1878 2295
1879 wlist_del (&anfds[w->fd].head, (WL)w); 2296 wlist_del (&anfds[w->fd].head, (WL)w);
1880 ev_stop (EV_A_ (W)w); 2297 ev_stop (EV_A_ (W)w);
1881 2298
1882 fd_change (EV_A_ w->fd, 1); 2299 fd_change (EV_A_ w->fd, 1);
2300
2301 EV_FREQUENT_CHECK;
1883} 2302}
1884 2303
1885void noinline 2304void noinline
1886ev_timer_start (EV_P_ ev_timer *w) 2305ev_timer_start (EV_P_ ev_timer *w)
1887{ 2306{
1888 if (expect_false (ev_is_active (w))) 2307 if (expect_false (ev_is_active (w)))
1889 return; 2308 return;
1890 2309
1891 ev_at (w) += mn_now; 2310 ev_at (w) += mn_now;
1892 2311
1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2312 assert (("libev: ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1894 2313
2314 EV_FREQUENT_CHECK;
2315
2316 ++timercnt;
1895 ev_start (EV_A_ (W)w, ++timercnt); 2317 ev_start (EV_A_ (W)w, timercnt + HEAP0 - 1);
1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2318 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1897 timers [timercnt] = (WT)w; 2319 ANHE_w (timers [ev_active (w)]) = (WT)w;
2320 ANHE_at_cache (timers [ev_active (w)]);
1898 upheap (timers, timercnt); 2321 upheap (timers, ev_active (w));
1899 2322
2323 EV_FREQUENT_CHECK;
2324
1900 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2325 /*assert (("libev: internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1901} 2326}
1902 2327
1903void noinline 2328void noinline
1904ev_timer_stop (EV_P_ ev_timer *w) 2329ev_timer_stop (EV_P_ ev_timer *w)
1905{ 2330{
1906 clear_pending (EV_A_ (W)w); 2331 clear_pending (EV_A_ (W)w);
1907 if (expect_false (!ev_is_active (w))) 2332 if (expect_false (!ev_is_active (w)))
1908 return; 2333 return;
1909 2334
2335 EV_FREQUENT_CHECK;
2336
1910 { 2337 {
1911 int active = ev_active (w); 2338 int active = ev_active (w);
1912 2339
1913 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2340 assert (("libev: internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1914 2341
2342 --timercnt;
2343
1915 if (expect_true (active < timercnt)) 2344 if (expect_true (active < timercnt + HEAP0))
1916 { 2345 {
1917 timers [active] = timers [timercnt]; 2346 timers [active] = timers [timercnt + HEAP0];
1918 adjustheap (timers, timercnt, active); 2347 adjustheap (timers, timercnt, active);
1919 } 2348 }
1920
1921 --timercnt;
1922 } 2349 }
2350
2351 EV_FREQUENT_CHECK;
1923 2352
1924 ev_at (w) -= mn_now; 2353 ev_at (w) -= mn_now;
1925 2354
1926 ev_stop (EV_A_ (W)w); 2355 ev_stop (EV_A_ (W)w);
1927} 2356}
1928 2357
1929void noinline 2358void noinline
1930ev_timer_again (EV_P_ ev_timer *w) 2359ev_timer_again (EV_P_ ev_timer *w)
1931{ 2360{
2361 EV_FREQUENT_CHECK;
2362
1932 if (ev_is_active (w)) 2363 if (ev_is_active (w))
1933 { 2364 {
1934 if (w->repeat) 2365 if (w->repeat)
1935 { 2366 {
1936 ev_at (w) = mn_now + w->repeat; 2367 ev_at (w) = mn_now + w->repeat;
2368 ANHE_at_cache (timers [ev_active (w)]);
1937 adjustheap (timers, timercnt, ev_active (w)); 2369 adjustheap (timers, timercnt, ev_active (w));
1938 } 2370 }
1939 else 2371 else
1940 ev_timer_stop (EV_A_ w); 2372 ev_timer_stop (EV_A_ w);
1941 } 2373 }
1942 else if (w->repeat) 2374 else if (w->repeat)
1943 { 2375 {
1944 ev_at (w) = w->repeat; 2376 ev_at (w) = w->repeat;
1945 ev_timer_start (EV_A_ w); 2377 ev_timer_start (EV_A_ w);
1946 } 2378 }
2379
2380 EV_FREQUENT_CHECK;
1947} 2381}
1948 2382
1949#if EV_PERIODIC_ENABLE 2383#if EV_PERIODIC_ENABLE
1950void noinline 2384void noinline
1951ev_periodic_start (EV_P_ ev_periodic *w) 2385ev_periodic_start (EV_P_ ev_periodic *w)
1955 2389
1956 if (w->reschedule_cb) 2390 if (w->reschedule_cb)
1957 ev_at (w) = w->reschedule_cb (w, ev_rt_now); 2391 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1958 else if (w->interval) 2392 else if (w->interval)
1959 { 2393 {
1960 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 2394 assert (("libev: ev_periodic_start called with negative interval value", w->interval >= 0.));
1961 /* this formula differs from the one in periodic_reify because we do not always round up */ 2395 /* this formula differs from the one in periodic_reify because we do not always round up */
1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2396 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1963 } 2397 }
1964 else 2398 else
1965 ev_at (w) = w->offset; 2399 ev_at (w) = w->offset;
1966 2400
2401 EV_FREQUENT_CHECK;
2402
2403 ++periodiccnt;
1967 ev_start (EV_A_ (W)w, ++periodiccnt); 2404 ev_start (EV_A_ (W)w, periodiccnt + HEAP0 - 1);
1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2405 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1969 periodics [periodiccnt] = (WT)w; 2406 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1970 upheap (periodics, periodiccnt); 2407 ANHE_at_cache (periodics [ev_active (w)]);
2408 upheap (periodics, ev_active (w));
1971 2409
2410 EV_FREQUENT_CHECK;
2411
1972 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2412 /*assert (("libev: internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1973} 2413}
1974 2414
1975void noinline 2415void noinline
1976ev_periodic_stop (EV_P_ ev_periodic *w) 2416ev_periodic_stop (EV_P_ ev_periodic *w)
1977{ 2417{
1978 clear_pending (EV_A_ (W)w); 2418 clear_pending (EV_A_ (W)w);
1979 if (expect_false (!ev_is_active (w))) 2419 if (expect_false (!ev_is_active (w)))
1980 return; 2420 return;
1981 2421
2422 EV_FREQUENT_CHECK;
2423
1982 { 2424 {
1983 int active = ev_active (w); 2425 int active = ev_active (w);
1984 2426
1985 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2427 assert (("libev: internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1986 2428
2429 --periodiccnt;
2430
1987 if (expect_true (active < periodiccnt)) 2431 if (expect_true (active < periodiccnt + HEAP0))
1988 { 2432 {
1989 periodics [active] = periodics [periodiccnt]; 2433 periodics [active] = periodics [periodiccnt + HEAP0];
1990 adjustheap (periodics, periodiccnt, active); 2434 adjustheap (periodics, periodiccnt, active);
1991 } 2435 }
1992
1993 --periodiccnt;
1994 } 2436 }
2437
2438 EV_FREQUENT_CHECK;
1995 2439
1996 ev_stop (EV_A_ (W)w); 2440 ev_stop (EV_A_ (W)w);
1997} 2441}
1998 2442
1999void noinline 2443void noinline
2011 2455
2012void noinline 2456void noinline
2013ev_signal_start (EV_P_ ev_signal *w) 2457ev_signal_start (EV_P_ ev_signal *w)
2014{ 2458{
2015#if EV_MULTIPLICITY 2459#if EV_MULTIPLICITY
2016 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2460 assert (("libev: signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2017#endif 2461#endif
2018 if (expect_false (ev_is_active (w))) 2462 if (expect_false (ev_is_active (w)))
2019 return; 2463 return;
2020 2464
2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2465 assert (("libev: ev_signal_start called with illegal signal number", w->signum > 0));
2022 2466
2023 evpipe_init (EV_A); 2467 evpipe_init (EV_A);
2468
2469 EV_FREQUENT_CHECK;
2024 2470
2025 { 2471 {
2026#ifndef _WIN32 2472#ifndef _WIN32
2027 sigset_t full, prev; 2473 sigset_t full, prev;
2028 sigfillset (&full); 2474 sigfillset (&full);
2029 sigprocmask (SIG_SETMASK, &full, &prev); 2475 sigprocmask (SIG_SETMASK, &full, &prev);
2030#endif 2476#endif
2031 2477
2032 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init); 2478 array_needsize (ANSIG, signals, signalmax, w->signum, array_init_zero);
2033 2479
2034#ifndef _WIN32 2480#ifndef _WIN32
2035 sigprocmask (SIG_SETMASK, &prev, 0); 2481 sigprocmask (SIG_SETMASK, &prev, 0);
2036#endif 2482#endif
2037 } 2483 }
2049 sigfillset (&sa.sa_mask); 2495 sigfillset (&sa.sa_mask);
2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2496 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
2051 sigaction (w->signum, &sa, 0); 2497 sigaction (w->signum, &sa, 0);
2052#endif 2498#endif
2053 } 2499 }
2500
2501 EV_FREQUENT_CHECK;
2054} 2502}
2055 2503
2056void noinline 2504void noinline
2057ev_signal_stop (EV_P_ ev_signal *w) 2505ev_signal_stop (EV_P_ ev_signal *w)
2058{ 2506{
2059 clear_pending (EV_A_ (W)w); 2507 clear_pending (EV_A_ (W)w);
2060 if (expect_false (!ev_is_active (w))) 2508 if (expect_false (!ev_is_active (w)))
2061 return; 2509 return;
2062 2510
2511 EV_FREQUENT_CHECK;
2512
2063 wlist_del (&signals [w->signum - 1].head, (WL)w); 2513 wlist_del (&signals [w->signum - 1].head, (WL)w);
2064 ev_stop (EV_A_ (W)w); 2514 ev_stop (EV_A_ (W)w);
2065 2515
2066 if (!signals [w->signum - 1].head) 2516 if (!signals [w->signum - 1].head)
2067 signal (w->signum, SIG_DFL); 2517 signal (w->signum, SIG_DFL);
2518
2519 EV_FREQUENT_CHECK;
2068} 2520}
2069 2521
2070void 2522void
2071ev_child_start (EV_P_ ev_child *w) 2523ev_child_start (EV_P_ ev_child *w)
2072{ 2524{
2073#if EV_MULTIPLICITY 2525#if EV_MULTIPLICITY
2074 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2526 assert (("libev: child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2075#endif 2527#endif
2076 if (expect_false (ev_is_active (w))) 2528 if (expect_false (ev_is_active (w)))
2077 return; 2529 return;
2078 2530
2531 EV_FREQUENT_CHECK;
2532
2079 ev_start (EV_A_ (W)w, 1); 2533 ev_start (EV_A_ (W)w, 1);
2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2534 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2535
2536 EV_FREQUENT_CHECK;
2081} 2537}
2082 2538
2083void 2539void
2084ev_child_stop (EV_P_ ev_child *w) 2540ev_child_stop (EV_P_ ev_child *w)
2085{ 2541{
2086 clear_pending (EV_A_ (W)w); 2542 clear_pending (EV_A_ (W)w);
2087 if (expect_false (!ev_is_active (w))) 2543 if (expect_false (!ev_is_active (w)))
2088 return; 2544 return;
2089 2545
2546 EV_FREQUENT_CHECK;
2547
2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2548 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
2091 ev_stop (EV_A_ (W)w); 2549 ev_stop (EV_A_ (W)w);
2550
2551 EV_FREQUENT_CHECK;
2092} 2552}
2093 2553
2094#if EV_STAT_ENABLE 2554#if EV_STAT_ENABLE
2095 2555
2096# ifdef _WIN32 2556# ifdef _WIN32
2097# undef lstat 2557# undef lstat
2098# define lstat(a,b) _stati64 (a,b) 2558# define lstat(a,b) _stati64 (a,b)
2099# endif 2559# endif
2100 2560
2101#define DEF_STAT_INTERVAL 5.0074891 2561#define DEF_STAT_INTERVAL 5.0074891
2562#define NFS_STAT_INTERVAL 30.1074891 /* for filesystems potentially failing inotify */
2102#define MIN_STAT_INTERVAL 0.1074891 2563#define MIN_STAT_INTERVAL 0.1074891
2103 2564
2104static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents); 2565static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2105 2566
2106#if EV_USE_INOTIFY 2567#if EV_USE_INOTIFY
2107# define EV_INOTIFY_BUFSIZE 8192 2568# define EV_INOTIFY_BUFSIZE 8192
2111{ 2572{
2112 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD); 2573 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2113 2574
2114 if (w->wd < 0) 2575 if (w->wd < 0)
2115 { 2576 {
2577 w->timer.repeat = w->interval ? w->interval : DEF_STAT_INTERVAL;
2116 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */ 2578 ev_timer_again (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2117 2579
2118 /* monitor some parent directory for speedup hints */ 2580 /* monitor some parent directory for speedup hints */
2581 /* note that exceeding the hardcoded path limit is not a correctness issue, */
2582 /* but an efficiency issue only */
2119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096) 2583 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2120 { 2584 {
2121 char path [4096]; 2585 char path [4096];
2122 strcpy (path, w->path); 2586 strcpy (path, w->path);
2123 2587
2126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF 2590 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO); 2591 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2128 2592
2129 char *pend = strrchr (path, '/'); 2593 char *pend = strrchr (path, '/');
2130 2594
2131 if (!pend) 2595 if (!pend || pend == path)
2132 break; /* whoops, no '/', complain to your admin */ 2596 break;
2133 2597
2134 *pend = 0; 2598 *pend = 0;
2135 w->wd = inotify_add_watch (fs_fd, path, mask); 2599 w->wd = inotify_add_watch (fs_fd, path, mask);
2136 } 2600 }
2137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES)); 2601 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2138 } 2602 }
2139 } 2603 }
2140 else
2141 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2142 2604
2143 if (w->wd >= 0) 2605 if (w->wd >= 0)
2606 {
2144 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w); 2607 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2608
2609 /* now local changes will be tracked by inotify, but remote changes won't */
2610 /* unless the filesystem it known to be local, we therefore still poll */
2611 /* also do poll on <2.6.25, but with normal frequency */
2612 struct statfs sfs;
2613
2614 if (fs_2625 && !statfs (w->path, &sfs))
2615 if (sfs.f_type == 0x1373 /* devfs */
2616 || sfs.f_type == 0xEF53 /* ext2/3 */
2617 || sfs.f_type == 0x3153464a /* jfs */
2618 || sfs.f_type == 0x52654973 /* reiser3 */
2619 || sfs.f_type == 0x01021994 /* tempfs */
2620 || sfs.f_type == 0x58465342 /* xfs */)
2621 return;
2622
2623 w->timer.repeat = w->interval ? w->interval : fs_2625 ? NFS_STAT_INTERVAL : DEF_STAT_INTERVAL;
2624 ev_timer_again (EV_A_ &w->timer);
2625 }
2145} 2626}
2146 2627
2147static void noinline 2628static void noinline
2148infy_del (EV_P_ ev_stat *w) 2629infy_del (EV_P_ ev_stat *w)
2149{ 2630{
2163 2644
2164static void noinline 2645static void noinline
2165infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev) 2646infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2166{ 2647{
2167 if (slot < 0) 2648 if (slot < 0)
2168 /* overflow, need to check for all hahs slots */ 2649 /* overflow, need to check for all hash slots */
2169 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot) 2650 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2170 infy_wd (EV_A_ slot, wd, ev); 2651 infy_wd (EV_A_ slot, wd, ev);
2171 else 2652 else
2172 { 2653 {
2173 WL w_; 2654 WL w_;
2179 2660
2180 if (w->wd == wd || wd == -1) 2661 if (w->wd == wd || wd == -1)
2181 { 2662 {
2182 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF)) 2663 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2183 { 2664 {
2665 wlist_del (&fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2184 w->wd = -1; 2666 w->wd = -1;
2185 infy_add (EV_A_ w); /* re-add, no matter what */ 2667 infy_add (EV_A_ w); /* re-add, no matter what */
2186 } 2668 }
2187 2669
2188 stat_timer_cb (EV_A_ &w->timer, 0); 2670 stat_timer_cb (EV_A_ &w->timer, 0);
2201 2683
2202 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len) 2684 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2203 infy_wd (EV_A_ ev->wd, ev->wd, ev); 2685 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2204} 2686}
2205 2687
2206void inline_size 2688inline_size void
2689check_2625 (EV_P)
2690{
2691 /* kernels < 2.6.25 are borked
2692 * http://www.ussg.indiana.edu/hypermail/linux/kernel/0711.3/1208.html
2693 */
2694 struct utsname buf;
2695 int major, minor, micro;
2696
2697 if (uname (&buf))
2698 return;
2699
2700 if (sscanf (buf.release, "%d.%d.%d", &major, &minor, &micro) != 3)
2701 return;
2702
2703 if (major < 2
2704 || (major == 2 && minor < 6)
2705 || (major == 2 && minor == 6 && micro < 25))
2706 return;
2707
2708 fs_2625 = 1;
2709}
2710
2711inline_size void
2207infy_init (EV_P) 2712infy_init (EV_P)
2208{ 2713{
2209 if (fs_fd != -2) 2714 if (fs_fd != -2)
2210 return; 2715 return;
2716
2717 fs_fd = -1;
2718
2719 check_2625 (EV_A);
2211 2720
2212 fs_fd = inotify_init (); 2721 fs_fd = inotify_init ();
2213 2722
2214 if (fs_fd >= 0) 2723 if (fs_fd >= 0)
2215 { 2724 {
2217 ev_set_priority (&fs_w, EV_MAXPRI); 2726 ev_set_priority (&fs_w, EV_MAXPRI);
2218 ev_io_start (EV_A_ &fs_w); 2727 ev_io_start (EV_A_ &fs_w);
2219 } 2728 }
2220} 2729}
2221 2730
2222void inline_size 2731inline_size void
2223infy_fork (EV_P) 2732infy_fork (EV_P)
2224{ 2733{
2225 int slot; 2734 int slot;
2226 2735
2227 if (fs_fd < 0) 2736 if (fs_fd < 0)
2243 w->wd = -1; 2752 w->wd = -1;
2244 2753
2245 if (fs_fd >= 0) 2754 if (fs_fd >= 0)
2246 infy_add (EV_A_ w); /* re-add, no matter what */ 2755 infy_add (EV_A_ w); /* re-add, no matter what */
2247 else 2756 else
2248 ev_timer_start (EV_A_ &w->timer); 2757 ev_timer_again (EV_A_ &w->timer);
2249 } 2758 }
2250
2251 } 2759 }
2252} 2760}
2253 2761
2762#endif
2763
2764#ifdef _WIN32
2765# define EV_LSTAT(p,b) _stati64 (p, b)
2766#else
2767# define EV_LSTAT(p,b) lstat (p, b)
2254#endif 2768#endif
2255 2769
2256void 2770void
2257ev_stat_stat (EV_P_ ev_stat *w) 2771ev_stat_stat (EV_P_ ev_stat *w)
2258{ 2772{
2285 || w->prev.st_atime != w->attr.st_atime 2799 || w->prev.st_atime != w->attr.st_atime
2286 || w->prev.st_mtime != w->attr.st_mtime 2800 || w->prev.st_mtime != w->attr.st_mtime
2287 || w->prev.st_ctime != w->attr.st_ctime 2801 || w->prev.st_ctime != w->attr.st_ctime
2288 ) { 2802 ) {
2289 #if EV_USE_INOTIFY 2803 #if EV_USE_INOTIFY
2804 if (fs_fd >= 0)
2805 {
2290 infy_del (EV_A_ w); 2806 infy_del (EV_A_ w);
2291 infy_add (EV_A_ w); 2807 infy_add (EV_A_ w);
2292 ev_stat_stat (EV_A_ w); /* avoid race... */ 2808 ev_stat_stat (EV_A_ w); /* avoid race... */
2809 }
2293 #endif 2810 #endif
2294 2811
2295 ev_feed_event (EV_A_ w, EV_STAT); 2812 ev_feed_event (EV_A_ w, EV_STAT);
2296 } 2813 }
2297} 2814}
2300ev_stat_start (EV_P_ ev_stat *w) 2817ev_stat_start (EV_P_ ev_stat *w)
2301{ 2818{
2302 if (expect_false (ev_is_active (w))) 2819 if (expect_false (ev_is_active (w)))
2303 return; 2820 return;
2304 2821
2305 /* since we use memcmp, we need to clear any padding data etc. */
2306 memset (&w->prev, 0, sizeof (ev_statdata));
2307 memset (&w->attr, 0, sizeof (ev_statdata));
2308
2309 ev_stat_stat (EV_A_ w); 2822 ev_stat_stat (EV_A_ w);
2310 2823
2824 if (w->interval < MIN_STAT_INTERVAL && w->interval)
2311 if (w->interval < MIN_STAT_INTERVAL) 2825 w->interval = MIN_STAT_INTERVAL;
2312 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2313 2826
2314 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2827 ev_timer_init (&w->timer, stat_timer_cb, 0., w->interval ? w->interval : DEF_STAT_INTERVAL);
2315 ev_set_priority (&w->timer, ev_priority (w)); 2828 ev_set_priority (&w->timer, ev_priority (w));
2316 2829
2317#if EV_USE_INOTIFY 2830#if EV_USE_INOTIFY
2318 infy_init (EV_A); 2831 infy_init (EV_A);
2319 2832
2320 if (fs_fd >= 0) 2833 if (fs_fd >= 0)
2321 infy_add (EV_A_ w); 2834 infy_add (EV_A_ w);
2322 else 2835 else
2323#endif 2836#endif
2324 ev_timer_start (EV_A_ &w->timer); 2837 ev_timer_again (EV_A_ &w->timer);
2325 2838
2326 ev_start (EV_A_ (W)w, 1); 2839 ev_start (EV_A_ (W)w, 1);
2840
2841 EV_FREQUENT_CHECK;
2327} 2842}
2328 2843
2329void 2844void
2330ev_stat_stop (EV_P_ ev_stat *w) 2845ev_stat_stop (EV_P_ ev_stat *w)
2331{ 2846{
2332 clear_pending (EV_A_ (W)w); 2847 clear_pending (EV_A_ (W)w);
2333 if (expect_false (!ev_is_active (w))) 2848 if (expect_false (!ev_is_active (w)))
2334 return; 2849 return;
2335 2850
2851 EV_FREQUENT_CHECK;
2852
2336#if EV_USE_INOTIFY 2853#if EV_USE_INOTIFY
2337 infy_del (EV_A_ w); 2854 infy_del (EV_A_ w);
2338#endif 2855#endif
2339 ev_timer_stop (EV_A_ &w->timer); 2856 ev_timer_stop (EV_A_ &w->timer);
2340 2857
2341 ev_stop (EV_A_ (W)w); 2858 ev_stop (EV_A_ (W)w);
2859
2860 EV_FREQUENT_CHECK;
2342} 2861}
2343#endif 2862#endif
2344 2863
2345#if EV_IDLE_ENABLE 2864#if EV_IDLE_ENABLE
2346void 2865void
2348{ 2867{
2349 if (expect_false (ev_is_active (w))) 2868 if (expect_false (ev_is_active (w)))
2350 return; 2869 return;
2351 2870
2352 pri_adjust (EV_A_ (W)w); 2871 pri_adjust (EV_A_ (W)w);
2872
2873 EV_FREQUENT_CHECK;
2353 2874
2354 { 2875 {
2355 int active = ++idlecnt [ABSPRI (w)]; 2876 int active = ++idlecnt [ABSPRI (w)];
2356 2877
2357 ++idleall; 2878 ++idleall;
2358 ev_start (EV_A_ (W)w, active); 2879 ev_start (EV_A_ (W)w, active);
2359 2880
2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2); 2881 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2361 idles [ABSPRI (w)][active - 1] = w; 2882 idles [ABSPRI (w)][active - 1] = w;
2362 } 2883 }
2884
2885 EV_FREQUENT_CHECK;
2363} 2886}
2364 2887
2365void 2888void
2366ev_idle_stop (EV_P_ ev_idle *w) 2889ev_idle_stop (EV_P_ ev_idle *w)
2367{ 2890{
2368 clear_pending (EV_A_ (W)w); 2891 clear_pending (EV_A_ (W)w);
2369 if (expect_false (!ev_is_active (w))) 2892 if (expect_false (!ev_is_active (w)))
2370 return; 2893 return;
2371 2894
2895 EV_FREQUENT_CHECK;
2896
2372 { 2897 {
2373 int active = ev_active (w); 2898 int active = ev_active (w);
2374 2899
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]]; 2900 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2376 ev_active (idles [ABSPRI (w)][active - 1]) = active; 2901 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2377 2902
2378 ev_stop (EV_A_ (W)w); 2903 ev_stop (EV_A_ (W)w);
2379 --idleall; 2904 --idleall;
2380 } 2905 }
2906
2907 EV_FREQUENT_CHECK;
2381} 2908}
2382#endif 2909#endif
2383 2910
2384void 2911void
2385ev_prepare_start (EV_P_ ev_prepare *w) 2912ev_prepare_start (EV_P_ ev_prepare *w)
2386{ 2913{
2387 if (expect_false (ev_is_active (w))) 2914 if (expect_false (ev_is_active (w)))
2388 return; 2915 return;
2916
2917 EV_FREQUENT_CHECK;
2389 2918
2390 ev_start (EV_A_ (W)w, ++preparecnt); 2919 ev_start (EV_A_ (W)w, ++preparecnt);
2391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2); 2920 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2392 prepares [preparecnt - 1] = w; 2921 prepares [preparecnt - 1] = w;
2922
2923 EV_FREQUENT_CHECK;
2393} 2924}
2394 2925
2395void 2926void
2396ev_prepare_stop (EV_P_ ev_prepare *w) 2927ev_prepare_stop (EV_P_ ev_prepare *w)
2397{ 2928{
2398 clear_pending (EV_A_ (W)w); 2929 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w))) 2930 if (expect_false (!ev_is_active (w)))
2400 return; 2931 return;
2401 2932
2933 EV_FREQUENT_CHECK;
2934
2402 { 2935 {
2403 int active = ev_active (w); 2936 int active = ev_active (w);
2404 2937
2405 prepares [active - 1] = prepares [--preparecnt]; 2938 prepares [active - 1] = prepares [--preparecnt];
2406 ev_active (prepares [active - 1]) = active; 2939 ev_active (prepares [active - 1]) = active;
2407 } 2940 }
2408 2941
2409 ev_stop (EV_A_ (W)w); 2942 ev_stop (EV_A_ (W)w);
2943
2944 EV_FREQUENT_CHECK;
2410} 2945}
2411 2946
2412void 2947void
2413ev_check_start (EV_P_ ev_check *w) 2948ev_check_start (EV_P_ ev_check *w)
2414{ 2949{
2415 if (expect_false (ev_is_active (w))) 2950 if (expect_false (ev_is_active (w)))
2416 return; 2951 return;
2952
2953 EV_FREQUENT_CHECK;
2417 2954
2418 ev_start (EV_A_ (W)w, ++checkcnt); 2955 ev_start (EV_A_ (W)w, ++checkcnt);
2419 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2); 2956 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2420 checks [checkcnt - 1] = w; 2957 checks [checkcnt - 1] = w;
2958
2959 EV_FREQUENT_CHECK;
2421} 2960}
2422 2961
2423void 2962void
2424ev_check_stop (EV_P_ ev_check *w) 2963ev_check_stop (EV_P_ ev_check *w)
2425{ 2964{
2426 clear_pending (EV_A_ (W)w); 2965 clear_pending (EV_A_ (W)w);
2427 if (expect_false (!ev_is_active (w))) 2966 if (expect_false (!ev_is_active (w)))
2428 return; 2967 return;
2429 2968
2969 EV_FREQUENT_CHECK;
2970
2430 { 2971 {
2431 int active = ev_active (w); 2972 int active = ev_active (w);
2432 2973
2433 checks [active - 1] = checks [--checkcnt]; 2974 checks [active - 1] = checks [--checkcnt];
2434 ev_active (checks [active - 1]) = active; 2975 ev_active (checks [active - 1]) = active;
2435 } 2976 }
2436 2977
2437 ev_stop (EV_A_ (W)w); 2978 ev_stop (EV_A_ (W)w);
2979
2980 EV_FREQUENT_CHECK;
2438} 2981}
2439 2982
2440#if EV_EMBED_ENABLE 2983#if EV_EMBED_ENABLE
2441void noinline 2984void noinline
2442ev_embed_sweep (EV_P_ ev_embed *w) 2985ev_embed_sweep (EV_P_ ev_embed *w)
2469 ev_loop (EV_A_ EVLOOP_NONBLOCK); 3012 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2470 } 3013 }
2471 } 3014 }
2472} 3015}
2473 3016
3017static void
3018embed_fork_cb (EV_P_ ev_fork *fork_w, int revents)
3019{
3020 ev_embed *w = (ev_embed *)(((char *)fork_w) - offsetof (ev_embed, fork));
3021
3022 ev_embed_stop (EV_A_ w);
3023
3024 {
3025 struct ev_loop *loop = w->other;
3026
3027 ev_loop_fork (EV_A);
3028 ev_loop (EV_A_ EVLOOP_NONBLOCK);
3029 }
3030
3031 ev_embed_start (EV_A_ w);
3032}
3033
2474#if 0 3034#if 0
2475static void 3035static void
2476embed_idle_cb (EV_P_ ev_idle *idle, int revents) 3036embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2477{ 3037{
2478 ev_idle_stop (EV_A_ idle); 3038 ev_idle_stop (EV_A_ idle);
2485 if (expect_false (ev_is_active (w))) 3045 if (expect_false (ev_is_active (w)))
2486 return; 3046 return;
2487 3047
2488 { 3048 {
2489 struct ev_loop *loop = w->other; 3049 struct ev_loop *loop = w->other;
2490 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 3050 assert (("libev: loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ); 3051 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2492 } 3052 }
3053
3054 EV_FREQUENT_CHECK;
2493 3055
2494 ev_set_priority (&w->io, ev_priority (w)); 3056 ev_set_priority (&w->io, ev_priority (w));
2495 ev_io_start (EV_A_ &w->io); 3057 ev_io_start (EV_A_ &w->io);
2496 3058
2497 ev_prepare_init (&w->prepare, embed_prepare_cb); 3059 ev_prepare_init (&w->prepare, embed_prepare_cb);
2498 ev_set_priority (&w->prepare, EV_MINPRI); 3060 ev_set_priority (&w->prepare, EV_MINPRI);
2499 ev_prepare_start (EV_A_ &w->prepare); 3061 ev_prepare_start (EV_A_ &w->prepare);
2500 3062
3063 ev_fork_init (&w->fork, embed_fork_cb);
3064 ev_fork_start (EV_A_ &w->fork);
3065
2501 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/ 3066 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2502 3067
2503 ev_start (EV_A_ (W)w, 1); 3068 ev_start (EV_A_ (W)w, 1);
3069
3070 EV_FREQUENT_CHECK;
2504} 3071}
2505 3072
2506void 3073void
2507ev_embed_stop (EV_P_ ev_embed *w) 3074ev_embed_stop (EV_P_ ev_embed *w)
2508{ 3075{
2509 clear_pending (EV_A_ (W)w); 3076 clear_pending (EV_A_ (W)w);
2510 if (expect_false (!ev_is_active (w))) 3077 if (expect_false (!ev_is_active (w)))
2511 return; 3078 return;
2512 3079
3080 EV_FREQUENT_CHECK;
3081
2513 ev_io_stop (EV_A_ &w->io); 3082 ev_io_stop (EV_A_ &w->io);
2514 ev_prepare_stop (EV_A_ &w->prepare); 3083 ev_prepare_stop (EV_A_ &w->prepare);
3084 ev_fork_stop (EV_A_ &w->fork);
2515 3085
2516 ev_stop (EV_A_ (W)w); 3086 EV_FREQUENT_CHECK;
2517} 3087}
2518#endif 3088#endif
2519 3089
2520#if EV_FORK_ENABLE 3090#if EV_FORK_ENABLE
2521void 3091void
2522ev_fork_start (EV_P_ ev_fork *w) 3092ev_fork_start (EV_P_ ev_fork *w)
2523{ 3093{
2524 if (expect_false (ev_is_active (w))) 3094 if (expect_false (ev_is_active (w)))
2525 return; 3095 return;
3096
3097 EV_FREQUENT_CHECK;
2526 3098
2527 ev_start (EV_A_ (W)w, ++forkcnt); 3099 ev_start (EV_A_ (W)w, ++forkcnt);
2528 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2); 3100 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2529 forks [forkcnt - 1] = w; 3101 forks [forkcnt - 1] = w;
3102
3103 EV_FREQUENT_CHECK;
2530} 3104}
2531 3105
2532void 3106void
2533ev_fork_stop (EV_P_ ev_fork *w) 3107ev_fork_stop (EV_P_ ev_fork *w)
2534{ 3108{
2535 clear_pending (EV_A_ (W)w); 3109 clear_pending (EV_A_ (W)w);
2536 if (expect_false (!ev_is_active (w))) 3110 if (expect_false (!ev_is_active (w)))
2537 return; 3111 return;
2538 3112
3113 EV_FREQUENT_CHECK;
3114
2539 { 3115 {
2540 int active = ev_active (w); 3116 int active = ev_active (w);
2541 3117
2542 forks [active - 1] = forks [--forkcnt]; 3118 forks [active - 1] = forks [--forkcnt];
2543 ev_active (forks [active - 1]) = active; 3119 ev_active (forks [active - 1]) = active;
2544 } 3120 }
2545 3121
2546 ev_stop (EV_A_ (W)w); 3122 ev_stop (EV_A_ (W)w);
3123
3124 EV_FREQUENT_CHECK;
2547} 3125}
2548#endif 3126#endif
2549 3127
2550#if EV_ASYNC_ENABLE 3128#if EV_ASYNC_ENABLE
2551void 3129void
2553{ 3131{
2554 if (expect_false (ev_is_active (w))) 3132 if (expect_false (ev_is_active (w)))
2555 return; 3133 return;
2556 3134
2557 evpipe_init (EV_A); 3135 evpipe_init (EV_A);
3136
3137 EV_FREQUENT_CHECK;
2558 3138
2559 ev_start (EV_A_ (W)w, ++asynccnt); 3139 ev_start (EV_A_ (W)w, ++asynccnt);
2560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2); 3140 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2561 asyncs [asynccnt - 1] = w; 3141 asyncs [asynccnt - 1] = w;
3142
3143 EV_FREQUENT_CHECK;
2562} 3144}
2563 3145
2564void 3146void
2565ev_async_stop (EV_P_ ev_async *w) 3147ev_async_stop (EV_P_ ev_async *w)
2566{ 3148{
2567 clear_pending (EV_A_ (W)w); 3149 clear_pending (EV_A_ (W)w);
2568 if (expect_false (!ev_is_active (w))) 3150 if (expect_false (!ev_is_active (w)))
2569 return; 3151 return;
2570 3152
3153 EV_FREQUENT_CHECK;
3154
2571 { 3155 {
2572 int active = ev_active (w); 3156 int active = ev_active (w);
2573 3157
2574 asyncs [active - 1] = asyncs [--asynccnt]; 3158 asyncs [active - 1] = asyncs [--asynccnt];
2575 ev_active (asyncs [active - 1]) = active; 3159 ev_active (asyncs [active - 1]) = active;
2576 } 3160 }
2577 3161
2578 ev_stop (EV_A_ (W)w); 3162 ev_stop (EV_A_ (W)w);
3163
3164 EV_FREQUENT_CHECK;
2579} 3165}
2580 3166
2581void 3167void
2582ev_async_send (EV_P_ ev_async *w) 3168ev_async_send (EV_P_ ev_async *w)
2583{ 3169{
2600once_cb (EV_P_ struct ev_once *once, int revents) 3186once_cb (EV_P_ struct ev_once *once, int revents)
2601{ 3187{
2602 void (*cb)(int revents, void *arg) = once->cb; 3188 void (*cb)(int revents, void *arg) = once->cb;
2603 void *arg = once->arg; 3189 void *arg = once->arg;
2604 3190
2605 ev_io_stop (EV_A_ &once->io); 3191 ev_io_stop (EV_A_ &once->io);
2606 ev_timer_stop (EV_A_ &once->to); 3192 ev_timer_stop (EV_A_ &once->to);
2607 ev_free (once); 3193 ev_free (once);
2608 3194
2609 cb (revents, arg); 3195 cb (revents, arg);
2610} 3196}
2611 3197
2612static void 3198static void
2613once_cb_io (EV_P_ ev_io *w, int revents) 3199once_cb_io (EV_P_ ev_io *w, int revents)
2614{ 3200{
2615 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 3201 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io));
3202
3203 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->to));
2616} 3204}
2617 3205
2618static void 3206static void
2619once_cb_to (EV_P_ ev_timer *w, int revents) 3207once_cb_to (EV_P_ ev_timer *w, int revents)
2620{ 3208{
2621 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 3209 struct ev_once *once = (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to));
3210
3211 once_cb (EV_A_ once, revents | ev_clear_pending (EV_A_ &once->io));
2622} 3212}
2623 3213
2624void 3214void
2625ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 3215ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
2626{ 3216{
2648 ev_timer_set (&once->to, timeout, 0.); 3238 ev_timer_set (&once->to, timeout, 0.);
2649 ev_timer_start (EV_A_ &once->to); 3239 ev_timer_start (EV_A_ &once->to);
2650 } 3240 }
2651} 3241}
2652 3242
3243/*****************************************************************************/
3244
3245#if EV_WALK_ENABLE
3246void
3247ev_walk (EV_P_ int types, void (*cb)(EV_P_ int type, void *w))
3248{
3249 int i, j;
3250 ev_watcher_list *wl, *wn;
3251
3252 if (types & (EV_IO | EV_EMBED))
3253 for (i = 0; i < anfdmax; ++i)
3254 for (wl = anfds [i].head; wl; )
3255 {
3256 wn = wl->next;
3257
3258#if EV_EMBED_ENABLE
3259 if (ev_cb ((ev_io *)wl) == embed_io_cb)
3260 {
3261 if (types & EV_EMBED)
3262 cb (EV_A_ EV_EMBED, ((char *)wl) - offsetof (struct ev_embed, io));
3263 }
3264 else
3265#endif
3266#if EV_USE_INOTIFY
3267 if (ev_cb ((ev_io *)wl) == infy_cb)
3268 ;
3269 else
3270#endif
3271 if ((ev_io *)wl != &pipe_w)
3272 if (types & EV_IO)
3273 cb (EV_A_ EV_IO, wl);
3274
3275 wl = wn;
3276 }
3277
3278 if (types & (EV_TIMER | EV_STAT))
3279 for (i = timercnt + HEAP0; i-- > HEAP0; )
3280#if EV_STAT_ENABLE
3281 /*TODO: timer is not always active*/
3282 if (ev_cb ((ev_timer *)ANHE_w (timers [i])) == stat_timer_cb)
3283 {
3284 if (types & EV_STAT)
3285 cb (EV_A_ EV_STAT, ((char *)ANHE_w (timers [i])) - offsetof (struct ev_stat, timer));
3286 }
3287 else
3288#endif
3289 if (types & EV_TIMER)
3290 cb (EV_A_ EV_TIMER, ANHE_w (timers [i]));
3291
3292#if EV_PERIODIC_ENABLE
3293 if (types & EV_PERIODIC)
3294 for (i = periodiccnt + HEAP0; i-- > HEAP0; )
3295 cb (EV_A_ EV_PERIODIC, ANHE_w (periodics [i]));
3296#endif
3297
3298#if EV_IDLE_ENABLE
3299 if (types & EV_IDLE)
3300 for (j = NUMPRI; i--; )
3301 for (i = idlecnt [j]; i--; )
3302 cb (EV_A_ EV_IDLE, idles [j][i]);
3303#endif
3304
3305#if EV_FORK_ENABLE
3306 if (types & EV_FORK)
3307 for (i = forkcnt; i--; )
3308 if (ev_cb (forks [i]) != embed_fork_cb)
3309 cb (EV_A_ EV_FORK, forks [i]);
3310#endif
3311
3312#if EV_ASYNC_ENABLE
3313 if (types & EV_ASYNC)
3314 for (i = asynccnt; i--; )
3315 cb (EV_A_ EV_ASYNC, asyncs [i]);
3316#endif
3317
3318 if (types & EV_PREPARE)
3319 for (i = preparecnt; i--; )
3320#if EV_EMBED_ENABLE
3321 if (ev_cb (prepares [i]) != embed_prepare_cb)
3322#endif
3323 cb (EV_A_ EV_PREPARE, prepares [i]);
3324
3325 if (types & EV_CHECK)
3326 for (i = checkcnt; i--; )
3327 cb (EV_A_ EV_CHECK, checks [i]);
3328
3329 if (types & EV_SIGNAL)
3330 for (i = 0; i < signalmax; ++i)
3331 for (wl = signals [i].head; wl; )
3332 {
3333 wn = wl->next;
3334 cb (EV_A_ EV_SIGNAL, wl);
3335 wl = wn;
3336 }
3337
3338 if (types & EV_CHILD)
3339 for (i = EV_PID_HASHSIZE; i--; )
3340 for (wl = childs [i]; wl; )
3341 {
3342 wn = wl->next;
3343 cb (EV_A_ EV_CHILD, wl);
3344 wl = wn;
3345 }
3346/* EV_STAT 0x00001000 /* stat data changed */
3347/* EV_EMBED 0x00010000 /* embedded event loop needs sweep */
3348}
3349#endif
3350
2653#if EV_MULTIPLICITY 3351#if EV_MULTIPLICITY
2654 #include "ev_wrap.h" 3352 #include "ev_wrap.h"
2655#endif 3353#endif
2656 3354
2657#ifdef __cplusplus 3355#ifdef __cplusplus

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines