ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.43 by root, Fri Nov 2 20:21:33 2007 UTC vs.
Revision 1.230 by root, Fri May 2 08:13:16 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
39
40#ifdef __cplusplus
41extern "C" {
42#endif
43
44/* this big block deduces configuration from config.h */
45#ifndef EV_STANDALONE
31#if EV_USE_CONFIG_H 46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
32# include "config.h" 49# include "config.h"
50# endif
51
52# if HAVE_CLOCK_GETTIME
53# ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1
55# endif
56# ifndef EV_USE_REALTIME
57# define EV_USE_REALTIME 1
58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
74# endif
75
76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
82# endif
83
84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
90# endif
91
92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
98# endif
99
100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
33#endif 132#endif
34 133
35#include <math.h> 134#include <math.h>
36#include <stdlib.h> 135#include <stdlib.h>
37#include <unistd.h>
38#include <fcntl.h> 136#include <fcntl.h>
39#include <signal.h>
40#include <stddef.h> 137#include <stddef.h>
41 138
42#include <stdio.h> 139#include <stdio.h>
43 140
44#include <assert.h> 141#include <assert.h>
45#include <errno.h> 142#include <errno.h>
46#include <sys/types.h> 143#include <sys/types.h>
47#include <sys/wait.h>
48#include <sys/time.h>
49#include <time.h> 144#include <time.h>
50 145
51/**/ 146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
154#ifndef _WIN32
155# include <sys/time.h>
156# include <sys/wait.h>
157# include <unistd.h>
158#else
159# define WIN32_LEAN_AND_MEAN
160# include <windows.h>
161# ifndef EV_SELECT_IS_WINSOCKET
162# define EV_SELECT_IS_WINSOCKET 1
163# endif
164#endif
165
166/* this block tries to deduce configuration from header-defined symbols and defaults */
52 167
53#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
54# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
170#endif
171
172#ifndef EV_USE_REALTIME
173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
55#endif 178#endif
56 179
57#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
58# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
59#endif 182#endif
60 183
61#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
62# define EV_USE_POLL 0 /* poll is usually slower than select, and not as well tested */ 185# ifdef _WIN32
186# define EV_USE_POLL 0
187# else
188# define EV_USE_POLL 1
189# endif
63#endif 190#endif
64 191
65#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
66# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
67#endif 197# endif
198#endif
68 199
200#ifndef EV_USE_KQUEUE
201# define EV_USE_KQUEUE 0
202#endif
203
69#ifndef EV_USE_REALTIME 204#ifndef EV_USE_PORT
205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
70# define EV_USE_REALTIME 1 210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
71#endif 213# endif
214#endif
72 215
73/**/ 216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
74 241
75#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
76# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
77# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
78#endif 245#endif
80#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
81# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
82# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
83#endif 250#endif
84 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
267#if EV_SELECT_IS_WINSOCKET
268# include <winsock.h>
269#endif
270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
85/**/ 283/**/
86 284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
294
87#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
88#define MAX_BLOCKTIME 59.731 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
89#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
90/*#define CLEANUP_INTERVAL 300. /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
91 298
92#include "ev.h"
93
94#if __GNUC__ >= 3 299#if __GNUC__ >= 4
95# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
96# define inline inline 301# define noinline __attribute__ ((noinline))
97#else 302#else
98# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
99# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
100#endif 308#endif
101 309
102#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
103#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
104 319
105#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
106#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
107 322
323#define EMPTY /* required for microsofts broken pseudo-c compiler */
324#define EMPTY2(a,b) /* used to suppress some warnings */
325
108typedef struct ev_watcher *W; 326typedef ev_watcher *W;
109typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
110typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
111 329
112static ev_tstamp now_floor, now, diff; /* monotonic clock */ 330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
338
339#ifdef _WIN32
340# include "ev_win32.c"
341#endif
342
343/*****************************************************************************/
344
345static void (*syserr_cb)(const char *msg);
346
347void
348ev_set_syserr_cb (void (*cb)(const char *msg))
349{
350 syserr_cb = cb;
351}
352
353static void noinline
354syserr (const char *msg)
355{
356 if (!msg)
357 msg = "(libev) system error";
358
359 if (syserr_cb)
360 syserr_cb (msg);
361 else
362 {
363 perror (msg);
364 abort ();
365 }
366}
367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
384
385void
386ev_set_allocator (void *(*cb)(void *ptr, long size))
387{
388 alloc = cb;
389}
390
391inline_speed void *
392ev_realloc (void *ptr, long size)
393{
394 ptr = alloc (ptr, size);
395
396 if (!ptr && size)
397 {
398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
399 abort ();
400 }
401
402 return ptr;
403}
404
405#define ev_malloc(size) ev_realloc (0, (size))
406#define ev_free(ptr) ev_realloc ((ptr), 0)
407
408/*****************************************************************************/
409
410typedef struct
411{
412 WL head;
413 unsigned char events;
414 unsigned char reify;
415#if EV_SELECT_IS_WINSOCKET
416 SOCKET handle;
417#endif
418} ANFD;
419
420typedef struct
421{
422 W w;
423 int events;
424} ANPENDING;
425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
432
433#if EV_MULTIPLICITY
434
435 struct ev_loop
436 {
437 ev_tstamp ev_rt_now;
438 #define ev_rt_now ((loop)->ev_rt_now)
439 #define VAR(name,decl) decl;
440 #include "ev_vars.h"
441 #undef VAR
442 };
443 #include "ev_wrap.h"
444
445 static struct ev_loop default_loop_struct;
446 struct ev_loop *ev_default_loop_ptr;
447
448#else
449
113ev_tstamp ev_now; 450 ev_tstamp ev_rt_now;
114int ev_method; 451 #define VAR(name,decl) static decl;
452 #include "ev_vars.h"
453 #undef VAR
115 454
116static int have_monotonic; /* runtime */ 455 static int ev_default_loop_ptr;
117 456
118static ev_tstamp method_fudge; /* stupid epoll-returns-early bug */ 457#endif
119static void (*method_modify)(int fd, int oev, int nev);
120static void (*method_poll)(ev_tstamp timeout);
121 458
122/*****************************************************************************/ 459/*****************************************************************************/
123 460
124ev_tstamp 461ev_tstamp
125ev_time (void) 462ev_time (void)
133 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
134 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
135#endif 472#endif
136} 473}
137 474
138static ev_tstamp 475ev_tstamp inline_size
139get_clock (void) 476get_clock (void)
140{ 477{
141#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
142 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
143 { 480 {
148#endif 485#endif
149 486
150 return ev_time (); 487 return ev_time ();
151} 488}
152 489
153#define array_roundsize(base,n) ((n) | 4 & ~3) 490#if EV_MULTIPLICITY
491ev_tstamp
492ev_now (EV_P)
493{
494 return ev_rt_now;
495}
496#endif
154 497
155#define array_needsize(base,cur,cnt,init) \ 498void
156 if (expect_false ((cnt) > cur)) \ 499ev_sleep (ev_tstamp delay)
157 { \ 500{
158 int newcnt = cur; \ 501 if (delay > 0.)
159 do \
160 { \
161 newcnt = array_roundsize (base, newcnt << 1); \
162 } \
163 while ((cnt) > newcnt); \
164 \
165 base = realloc (base, sizeof (*base) * (newcnt)); \
166 init (base + cur, newcnt - cur); \
167 cur = newcnt; \
168 } 502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
169 522
170/*****************************************************************************/ 523/*****************************************************************************/
171 524
172typedef struct 525int inline_size
526array_nextsize (int elem, int cur, int cnt)
173{ 527{
174 struct ev_io *head; 528 int ncur = cur + 1;
175 unsigned char events;
176 unsigned char reify;
177} ANFD;
178 529
179static ANFD *anfds; 530 do
180static int anfdmax; 531 ncur <<= 1;
532 while (cnt > ncur);
181 533
182static void 534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
535 if (elem * ncur > 4096)
536 {
537 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
539 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem;
541 }
542
543 return ncur;
544}
545
546static noinline void *
547array_realloc (int elem, void *base, int *cur, int cnt)
548{
549 *cur = array_nextsize (elem, *cur, cnt);
550 return ev_realloc (base, elem * *cur);
551}
552
553#define array_needsize(type,base,cur,cnt,init) \
554 if (expect_false ((cnt) > (cur))) \
555 { \
556 int ocur_ = (cur); \
557 (base) = (type *)array_realloc \
558 (sizeof (type), (base), &(cur), (cnt)); \
559 init ((base) + (ocur_), (cur) - ocur_); \
560 }
561
562#if 0
563#define array_slim(type,stem) \
564 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
565 { \
566 stem ## max = array_roundsize (stem ## cnt >> 1); \
567 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
568 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
569 }
570#endif
571
572#define array_free(stem, idx) \
573 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
574
575/*****************************************************************************/
576
577void noinline
578ev_feed_event (EV_P_ void *w, int revents)
579{
580 W w_ = (W)w;
581 int pri = ABSPRI (w_);
582
583 if (expect_false (w_->pending))
584 pendings [pri][w_->pending - 1].events |= revents;
585 else
586 {
587 w_->pending = ++pendingcnt [pri];
588 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
589 pendings [pri][w_->pending - 1].w = w_;
590 pendings [pri][w_->pending - 1].events = revents;
591 }
592}
593
594void inline_speed
595queue_events (EV_P_ W *events, int eventcnt, int type)
596{
597 int i;
598
599 for (i = 0; i < eventcnt; ++i)
600 ev_feed_event (EV_A_ events [i], type);
601}
602
603/*****************************************************************************/
604
605void inline_size
183anfds_init (ANFD *base, int count) 606anfds_init (ANFD *base, int count)
184{ 607{
185 while (count--) 608 while (count--)
186 { 609 {
187 base->head = 0; 610 base->head = 0;
190 613
191 ++base; 614 ++base;
192 } 615 }
193} 616}
194 617
195typedef struct 618void inline_speed
196{
197 W w;
198 int events;
199} ANPENDING;
200
201static ANPENDING *pendings [NUMPRI];
202static int pendingmax [NUMPRI], pendingcnt [NUMPRI];
203
204static void
205event (W w, int events)
206{
207 if (w->pending)
208 {
209 pendings [ABSPRI (w)][w->pending - 1].events |= events;
210 return;
211 }
212
213 w->pending = ++pendingcnt [ABSPRI (w)];
214 array_needsize (pendings [ABSPRI (w)], pendingmax [ABSPRI (w)], pendingcnt [ABSPRI (w)], );
215 pendings [ABSPRI (w)][w->pending - 1].w = w;
216 pendings [ABSPRI (w)][w->pending - 1].events = events;
217}
218
219static void
220queue_events (W *events, int eventcnt, int type)
221{
222 int i;
223
224 for (i = 0; i < eventcnt; ++i)
225 event (events [i], type);
226}
227
228static void
229fd_event (int fd, int events) 619fd_event (EV_P_ int fd, int revents)
230{ 620{
231 ANFD *anfd = anfds + fd; 621 ANFD *anfd = anfds + fd;
232 struct ev_io *w; 622 ev_io *w;
233 623
234 for (w = anfd->head; w; w = w->next) 624 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
235 { 625 {
236 int ev = w->events & events; 626 int ev = w->events & revents;
237 627
238 if (ev) 628 if (ev)
239 event ((W)w, ev); 629 ev_feed_event (EV_A_ (W)w, ev);
240 } 630 }
241} 631}
242 632
243/*****************************************************************************/ 633void
634ev_feed_fd_event (EV_P_ int fd, int revents)
635{
636 if (fd >= 0 && fd < anfdmax)
637 fd_event (EV_A_ fd, revents);
638}
244 639
245static int *fdchanges; 640void inline_size
246static int fdchangemax, fdchangecnt; 641fd_reify (EV_P)
247
248static void
249fd_reify (void)
250{ 642{
251 int i; 643 int i;
252 644
253 for (i = 0; i < fdchangecnt; ++i) 645 for (i = 0; i < fdchangecnt; ++i)
254 { 646 {
255 int fd = fdchanges [i]; 647 int fd = fdchanges [i];
256 ANFD *anfd = anfds + fd; 648 ANFD *anfd = anfds + fd;
257 struct ev_io *w; 649 ev_io *w;
258 650
259 int events = 0; 651 unsigned char events = 0;
260 652
261 for (w = anfd->head; w; w = w->next) 653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
262 events |= w->events; 654 events |= (unsigned char)w->events;
263 655
264 anfd->reify = 0; 656#if EV_SELECT_IS_WINSOCKET
265 657 if (events)
266 if (anfd->events != events)
267 { 658 {
268 method_modify (fd, anfd->events, events); 659 unsigned long argp;
269 anfd->events = events; 660 #ifdef EV_FD_TO_WIN32_HANDLE
661 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
662 #else
663 anfd->handle = _get_osfhandle (fd);
664 #endif
665 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
270 } 666 }
667#endif
668
669 {
670 unsigned char o_events = anfd->events;
671 unsigned char o_reify = anfd->reify;
672
673 anfd->reify = 0;
674 anfd->events = events;
675
676 if (o_events != events || o_reify & EV_IOFDSET)
677 backend_modify (EV_A_ fd, o_events, events);
678 }
271 } 679 }
272 680
273 fdchangecnt = 0; 681 fdchangecnt = 0;
274} 682}
275 683
276static void 684void inline_size
277fd_change (int fd) 685fd_change (EV_P_ int fd, int flags)
278{ 686{
279 if (anfds [fd].reify || fdchangecnt < 0) 687 unsigned char reify = anfds [fd].reify;
280 return;
281
282 anfds [fd].reify = 1; 688 anfds [fd].reify |= flags;
283 689
690 if (expect_true (!reify))
691 {
284 ++fdchangecnt; 692 ++fdchangecnt;
285 array_needsize (fdchanges, fdchangemax, fdchangecnt, ); 693 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
286 fdchanges [fdchangecnt - 1] = fd; 694 fdchanges [fdchangecnt - 1] = fd;
695 }
287} 696}
288 697
289static void 698void inline_speed
290fd_kill (int fd) 699fd_kill (EV_P_ int fd)
291{ 700{
292 struct ev_io *w; 701 ev_io *w;
293 702
294 printf ("killing fd %d\n", fd);//D
295 while ((w = anfds [fd].head)) 703 while ((w = (ev_io *)anfds [fd].head))
296 { 704 {
297 ev_io_stop (w); 705 ev_io_stop (EV_A_ w);
298 event ((W)w, EV_ERROR | EV_READ | EV_WRITE); 706 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
299 } 707 }
708}
709
710int inline_size
711fd_valid (int fd)
712{
713#ifdef _WIN32
714 return _get_osfhandle (fd) != -1;
715#else
716 return fcntl (fd, F_GETFD) != -1;
717#endif
300} 718}
301 719
302/* called on EBADF to verify fds */ 720/* called on EBADF to verify fds */
303static void 721static void noinline
304fd_ebadf (void) 722fd_ebadf (EV_P)
305{ 723{
306 int fd; 724 int fd;
307 725
308 for (fd = 0; fd < anfdmax; ++fd) 726 for (fd = 0; fd < anfdmax; ++fd)
309 if (anfds [fd].events) 727 if (anfds [fd].events)
310 if (fcntl (fd, F_GETFD) == -1 && errno == EBADF) 728 if (!fd_valid (fd) == -1 && errno == EBADF)
311 fd_kill (fd); 729 fd_kill (EV_A_ fd);
312} 730}
313 731
314/* called on ENOMEM in select/poll to kill some fds and retry */ 732/* called on ENOMEM in select/poll to kill some fds and retry */
315static void 733static void noinline
316fd_enomem (void) 734fd_enomem (EV_P)
317{ 735{
318 int fd = anfdmax; 736 int fd;
319 737
320 while (fd--) 738 for (fd = anfdmax; fd--; )
321 if (anfds [fd].events) 739 if (anfds [fd].events)
322 { 740 {
323 close (fd);
324 fd_kill (fd); 741 fd_kill (EV_A_ fd);
325 return; 742 return;
326 } 743 }
327} 744}
328 745
746/* usually called after fork if backend needs to re-arm all fds from scratch */
747static void noinline
748fd_rearm_all (EV_P)
749{
750 int fd;
751
752 for (fd = 0; fd < anfdmax; ++fd)
753 if (anfds [fd].events)
754 {
755 anfds [fd].events = 0;
756 fd_change (EV_A_ fd, EV_IOFDSET | 1);
757 }
758}
759
329/*****************************************************************************/ 760/*****************************************************************************/
330 761
331static struct ev_timer **timers; 762/* towards the root */
332static int timermax, timercnt; 763void inline_speed
333
334static struct ev_periodic **periodics;
335static int periodicmax, periodiccnt;
336
337static void
338upheap (WT *timers, int k) 764upheap (WT *heap, int k)
339{ 765{
340 WT w = timers [k]; 766 WT w = heap [k];
341 767
342 while (k && timers [k >> 1]->at > w->at) 768 for (;;)
343 {
344 timers [k] = timers [k >> 1];
345 timers [k]->active = k + 1;
346 k >>= 1;
347 } 769 {
348
349 timers [k] = w;
350 timers [k]->active = k + 1;
351
352}
353
354static void
355downheap (WT *timers, int N, int k)
356{
357 WT w = timers [k];
358
359 while (k < (N >> 1))
360 {
361 int j = k << 1; 770 int p = k >> 1;
362 771
363 if (j + 1 < N && timers [j]->at > timers [j + 1]->at) 772 /* maybe we could use a dummy element at heap [0]? */
364 ++j; 773 if (!p || heap [p]->at <= w->at)
365
366 if (w->at <= timers [j]->at)
367 break; 774 break;
368 775
369 timers [k] = timers [j]; 776 heap [k] = heap [p];
370 timers [k]->active = k + 1; 777 ev_active (heap [k]) = k;
371 k = j; 778 k = p;
779 }
780
781 heap [k] = w;
782 ev_active (heap [k]) = k;
783}
784
785/* away from the root */
786void inline_speed
787downheap (WT *heap, int N, int k)
788{
789 WT w = heap [k];
790
791 for (;;)
372 } 792 {
793 int c = k << 1;
373 794
795 if (c > N)
796 break;
797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
804 heap [k] = heap [c];
805 ev_active (heap [k]) = k;
806
807 k = c;
808 }
809
374 timers [k] = w; 810 heap [k] = w;
375 timers [k]->active = k + 1; 811 ev_active (heap [k]) = k;
812}
813
814void inline_size
815adjustheap (WT *heap, int N, int k)
816{
817 upheap (heap, k);
818 downheap (heap, N, k);
376} 819}
377 820
378/*****************************************************************************/ 821/*****************************************************************************/
379 822
380typedef struct 823typedef struct
381{ 824{
382 struct ev_signal *head; 825 WL head;
383 sig_atomic_t volatile gotsig; 826 EV_ATOMIC_T gotsig;
384} ANSIG; 827} ANSIG;
385 828
386static ANSIG *signals; 829static ANSIG *signals;
387static int signalmax; 830static int signalmax;
388 831
389static int sigpipe [2]; 832static EV_ATOMIC_T gotsig;
390static sig_atomic_t volatile gotsig;
391static struct ev_io sigev;
392 833
393static void 834void inline_size
394signals_init (ANSIG *base, int count) 835signals_init (ANSIG *base, int count)
395{ 836{
396 while (count--) 837 while (count--)
397 { 838 {
398 base->head = 0; 839 base->head = 0;
400 841
401 ++base; 842 ++base;
402 } 843 }
403} 844}
404 845
846/*****************************************************************************/
847
848void inline_speed
849fd_intern (int fd)
850{
851#ifdef _WIN32
852 int arg = 1;
853 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
854#else
855 fcntl (fd, F_SETFD, FD_CLOEXEC);
856 fcntl (fd, F_SETFL, O_NONBLOCK);
857#endif
858}
859
860static void noinline
861evpipe_init (EV_P)
862{
863 if (!ev_is_active (&pipeev))
864 {
865#if EV_USE_EVENTFD
866 if ((evfd = eventfd (0, 0)) >= 0)
867 {
868 evpipe [0] = -1;
869 fd_intern (evfd);
870 ev_io_set (&pipeev, evfd, EV_READ);
871 }
872 else
873#endif
874 {
875 while (pipe (evpipe))
876 syserr ("(libev) error creating signal/async pipe");
877
878 fd_intern (evpipe [0]);
879 fd_intern (evpipe [1]);
880 ev_io_set (&pipeev, evpipe [0], EV_READ);
881 }
882
883 ev_io_start (EV_A_ &pipeev);
884 ev_unref (EV_A); /* watcher should not keep loop alive */
885 }
886}
887
888void inline_size
889evpipe_write (EV_P_ EV_ATOMIC_T *flag)
890{
891 if (!*flag)
892 {
893 int old_errno = errno; /* save errno because write might clobber it */
894
895 *flag = 1;
896
897#if EV_USE_EVENTFD
898 if (evfd >= 0)
899 {
900 uint64_t counter = 1;
901 write (evfd, &counter, sizeof (uint64_t));
902 }
903 else
904#endif
905 write (evpipe [1], &old_errno, 1);
906
907 errno = old_errno;
908 }
909}
910
405static void 911static void
912pipecb (EV_P_ ev_io *iow, int revents)
913{
914#if EV_USE_EVENTFD
915 if (evfd >= 0)
916 {
917 uint64_t counter = 1;
918 read (evfd, &counter, sizeof (uint64_t));
919 }
920 else
921#endif
922 {
923 char dummy;
924 read (evpipe [0], &dummy, 1);
925 }
926
927 if (gotsig && ev_is_default_loop (EV_A))
928 {
929 int signum;
930 gotsig = 0;
931
932 for (signum = signalmax; signum--; )
933 if (signals [signum].gotsig)
934 ev_feed_signal_event (EV_A_ signum + 1);
935 }
936
937#if EV_ASYNC_ENABLE
938 if (gotasync)
939 {
940 int i;
941 gotasync = 0;
942
943 for (i = asynccnt; i--; )
944 if (asyncs [i]->sent)
945 {
946 asyncs [i]->sent = 0;
947 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
948 }
949 }
950#endif
951}
952
953/*****************************************************************************/
954
955static void
406sighandler (int signum) 956ev_sighandler (int signum)
407{ 957{
958#if EV_MULTIPLICITY
959 struct ev_loop *loop = &default_loop_struct;
960#endif
961
962#if _WIN32
963 signal (signum, ev_sighandler);
964#endif
965
408 signals [signum - 1].gotsig = 1; 966 signals [signum - 1].gotsig = 1;
409 967 evpipe_write (EV_A_ &gotsig);
410 if (!gotsig)
411 {
412 gotsig = 1;
413 write (sigpipe [1], &signum, 1);
414 }
415} 968}
416 969
417static void 970void noinline
418sigcb (struct ev_io *iow, int revents) 971ev_feed_signal_event (EV_P_ int signum)
419{ 972{
420 struct ev_signal *w; 973 WL w;
974
975#if EV_MULTIPLICITY
976 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
977#endif
978
421 int signum; 979 --signum;
422 980
423 read (sigpipe [0], &revents, 1); 981 if (signum < 0 || signum >= signalmax)
424 gotsig = 0; 982 return;
425 983
426 for (signum = signalmax; signum--; )
427 if (signals [signum].gotsig)
428 {
429 signals [signum].gotsig = 0; 984 signals [signum].gotsig = 0;
430 985
431 for (w = signals [signum].head; w; w = w->next) 986 for (w = signals [signum].head; w; w = w->next)
432 event ((W)w, EV_SIGNAL); 987 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
433 }
434}
435
436static void
437siginit (void)
438{
439 fcntl (sigpipe [0], F_SETFD, FD_CLOEXEC);
440 fcntl (sigpipe [1], F_SETFD, FD_CLOEXEC);
441
442 /* rather than sort out wether we really need nb, set it */
443 fcntl (sigpipe [0], F_SETFL, O_NONBLOCK);
444 fcntl (sigpipe [1], F_SETFL, O_NONBLOCK);
445
446 ev_io_set (&sigev, sigpipe [0], EV_READ);
447 ev_io_start (&sigev);
448} 988}
449 989
450/*****************************************************************************/ 990/*****************************************************************************/
451 991
452static struct ev_idle **idles; 992static WL childs [EV_PID_HASHSIZE];
453static int idlemax, idlecnt;
454 993
455static struct ev_prepare **prepares; 994#ifndef _WIN32
456static int preparemax, preparecnt;
457 995
458static struct ev_check **checks;
459static int checkmax, checkcnt;
460
461/*****************************************************************************/
462
463static struct ev_child *childs [PID_HASHSIZE];
464static struct ev_signal childev; 996static ev_signal childev;
997
998#ifndef WIFCONTINUED
999# define WIFCONTINUED(status) 0
1000#endif
1001
1002void inline_speed
1003child_reap (EV_P_ int chain, int pid, int status)
1004{
1005 ev_child *w;
1006 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1007
1008 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1009 {
1010 if ((w->pid == pid || !w->pid)
1011 && (!traced || (w->flags & 1)))
1012 {
1013 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1014 w->rpid = pid;
1015 w->rstatus = status;
1016 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1017 }
1018 }
1019}
465 1020
466#ifndef WCONTINUED 1021#ifndef WCONTINUED
467# define WCONTINUED 0 1022# define WCONTINUED 0
468#endif 1023#endif
469 1024
470static void 1025static void
471childcb (struct ev_signal *sw, int revents) 1026childcb (EV_P_ ev_signal *sw, int revents)
472{ 1027{
473 struct ev_child *w;
474 int pid, status; 1028 int pid, status;
475 1029
1030 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
476 while ((pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)) != -1) 1031 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
477 for (w = childs [pid & (PID_HASHSIZE - 1)]; w; w = w->next) 1032 if (!WCONTINUED
478 if (w->pid == pid || !w->pid) 1033 || errno != EINVAL
479 { 1034 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
480 w->status = status; 1035 return;
481 event ((W)w, EV_CHILD); 1036
482 } 1037 /* make sure we are called again until all children have been reaped */
1038 /* we need to do it this way so that the callback gets called before we continue */
1039 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
1040
1041 child_reap (EV_A_ pid, pid, status);
1042 if (EV_PID_HASHSIZE > 1)
1043 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
483} 1044}
1045
1046#endif
484 1047
485/*****************************************************************************/ 1048/*****************************************************************************/
486 1049
1050#if EV_USE_PORT
1051# include "ev_port.c"
1052#endif
1053#if EV_USE_KQUEUE
1054# include "ev_kqueue.c"
1055#endif
487#if EV_USE_EPOLL 1056#if EV_USE_EPOLL
488# include "ev_epoll.c" 1057# include "ev_epoll.c"
489#endif 1058#endif
490#if EV_USE_POLL 1059#if EV_USE_POLL
491# include "ev_poll.c" 1060# include "ev_poll.c"
504ev_version_minor (void) 1073ev_version_minor (void)
505{ 1074{
506 return EV_VERSION_MINOR; 1075 return EV_VERSION_MINOR;
507} 1076}
508 1077
509/* return true if we are running with elevated privileges and ignore env variables */ 1078/* return true if we are running with elevated privileges and should ignore env variables */
510static int 1079int inline_size
511enable_secure () 1080enable_secure (void)
512{ 1081{
1082#ifdef _WIN32
1083 return 0;
1084#else
513 return getuid () != geteuid () 1085 return getuid () != geteuid ()
514 || getgid () != getegid (); 1086 || getgid () != getegid ();
1087#endif
515} 1088}
516 1089
517int ev_init (int methods) 1090unsigned int
1091ev_supported_backends (void)
518{ 1092{
519 if (!ev_method) 1093 unsigned int flags = 0;
1094
1095 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1096 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1097 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1098 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1099 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1100
1101 return flags;
1102}
1103
1104unsigned int
1105ev_recommended_backends (void)
1106{
1107 unsigned int flags = ev_supported_backends ();
1108
1109#ifndef __NetBSD__
1110 /* kqueue is borked on everything but netbsd apparently */
1111 /* it usually doesn't work correctly on anything but sockets and pipes */
1112 flags &= ~EVBACKEND_KQUEUE;
1113#endif
1114#ifdef __APPLE__
1115 // flags &= ~EVBACKEND_KQUEUE; for documentation
1116 flags &= ~EVBACKEND_POLL;
1117#endif
1118
1119 return flags;
1120}
1121
1122unsigned int
1123ev_embeddable_backends (void)
1124{
1125 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1126
1127 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1128 /* please fix it and tell me how to detect the fix */
1129 flags &= ~EVBACKEND_EPOLL;
1130
1131 return flags;
1132}
1133
1134unsigned int
1135ev_backend (EV_P)
1136{
1137 return backend;
1138}
1139
1140unsigned int
1141ev_loop_count (EV_P)
1142{
1143 return loop_count;
1144}
1145
1146void
1147ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 io_blocktime = interval;
1150}
1151
1152void
1153ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1154{
1155 timeout_blocktime = interval;
1156}
1157
1158static void noinline
1159loop_init (EV_P_ unsigned int flags)
1160{
1161 if (!backend)
520 { 1162 {
521#if EV_USE_MONOTONIC 1163#if EV_USE_MONOTONIC
522 { 1164 {
523 struct timespec ts; 1165 struct timespec ts;
524 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1166 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
525 have_monotonic = 1; 1167 have_monotonic = 1;
526 } 1168 }
527#endif 1169#endif
528 1170
529 ev_now = ev_time (); 1171 ev_rt_now = ev_time ();
530 now = get_clock (); 1172 mn_now = get_clock ();
531 now_floor = now; 1173 now_floor = mn_now;
532 diff = ev_now - now; 1174 rtmn_diff = ev_rt_now - mn_now;
533 1175
534 if (pipe (sigpipe)) 1176 io_blocktime = 0.;
535 return 0; 1177 timeout_blocktime = 0.;
1178 backend = 0;
1179 backend_fd = -1;
1180 gotasync = 0;
1181#if EV_USE_INOTIFY
1182 fs_fd = -2;
1183#endif
536 1184
537 if (methods == EVMETHOD_AUTO) 1185 /* pid check not overridable via env */
538 if (!enable_secure () && getenv ("LIBEV_METHODS")) 1186#ifndef _WIN32
1187 if (flags & EVFLAG_FORKCHECK)
1188 curpid = getpid ();
1189#endif
1190
1191 if (!(flags & EVFLAG_NOENV)
1192 && !enable_secure ()
1193 && getenv ("LIBEV_FLAGS"))
539 methods = atoi (getenv ("LIBEV_METHODS")); 1194 flags = atoi (getenv ("LIBEV_FLAGS"));
540 else
541 methods = EVMETHOD_ANY;
542 1195
543 ev_method = 0; 1196 if (!(flags & 0x0000ffffU))
1197 flags |= ev_recommended_backends ();
1198
1199#if EV_USE_PORT
1200 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
1201#endif
1202#if EV_USE_KQUEUE
1203 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
1204#endif
544#if EV_USE_EPOLL 1205#if EV_USE_EPOLL
545 if (!ev_method && (methods & EVMETHOD_EPOLL )) epoll_init (methods); 1206 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
546#endif 1207#endif
547#if EV_USE_POLL 1208#if EV_USE_POLL
548 if (!ev_method && (methods & EVMETHOD_POLL )) poll_init (methods); 1209 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
549#endif 1210#endif
550#if EV_USE_SELECT 1211#if EV_USE_SELECT
551 if (!ev_method && (methods & EVMETHOD_SELECT)) select_init (methods); 1212 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
552#endif 1213#endif
553 1214
554 if (ev_method) 1215 ev_init (&pipeev, pipecb);
1216 ev_set_priority (&pipeev, EV_MAXPRI);
1217 }
1218}
1219
1220static void noinline
1221loop_destroy (EV_P)
1222{
1223 int i;
1224
1225 if (ev_is_active (&pipeev))
1226 {
1227 ev_ref (EV_A); /* signal watcher */
1228 ev_io_stop (EV_A_ &pipeev);
1229
1230#if EV_USE_EVENTFD
1231 if (evfd >= 0)
1232 close (evfd);
1233#endif
1234
1235 if (evpipe [0] >= 0)
555 { 1236 {
556 ev_watcher_init (&sigev, sigcb); 1237 close (evpipe [0]);
557 siginit (); 1238 close (evpipe [1]);
1239 }
1240 }
558 1241
1242#if EV_USE_INOTIFY
1243 if (fs_fd >= 0)
1244 close (fs_fd);
1245#endif
1246
1247 if (backend_fd >= 0)
1248 close (backend_fd);
1249
1250#if EV_USE_PORT
1251 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
1252#endif
1253#if EV_USE_KQUEUE
1254 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
1255#endif
1256#if EV_USE_EPOLL
1257 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
1258#endif
1259#if EV_USE_POLL
1260 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
1261#endif
1262#if EV_USE_SELECT
1263 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
1264#endif
1265
1266 for (i = NUMPRI; i--; )
1267 {
1268 array_free (pending, [i]);
1269#if EV_IDLE_ENABLE
1270 array_free (idle, [i]);
1271#endif
1272 }
1273
1274 ev_free (anfds); anfdmax = 0;
1275
1276 /* have to use the microsoft-never-gets-it-right macro */
1277 array_free (fdchange, EMPTY);
1278 array_free (timer, EMPTY);
1279#if EV_PERIODIC_ENABLE
1280 array_free (periodic, EMPTY);
1281#endif
1282#if EV_FORK_ENABLE
1283 array_free (fork, EMPTY);
1284#endif
1285 array_free (prepare, EMPTY);
1286 array_free (check, EMPTY);
1287#if EV_ASYNC_ENABLE
1288 array_free (async, EMPTY);
1289#endif
1290
1291 backend = 0;
1292}
1293
1294#if EV_USE_INOTIFY
1295void inline_size infy_fork (EV_P);
1296#endif
1297
1298void inline_size
1299loop_fork (EV_P)
1300{
1301#if EV_USE_PORT
1302 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
1303#endif
1304#if EV_USE_KQUEUE
1305 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
1306#endif
1307#if EV_USE_EPOLL
1308 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
1309#endif
1310#if EV_USE_INOTIFY
1311 infy_fork (EV_A);
1312#endif
1313
1314 if (ev_is_active (&pipeev))
1315 {
1316 /* this "locks" the handlers against writing to the pipe */
1317 /* while we modify the fd vars */
1318 gotsig = 1;
1319#if EV_ASYNC_ENABLE
1320 gotasync = 1;
1321#endif
1322
1323 ev_ref (EV_A);
1324 ev_io_stop (EV_A_ &pipeev);
1325
1326#if EV_USE_EVENTFD
1327 if (evfd >= 0)
1328 close (evfd);
1329#endif
1330
1331 if (evpipe [0] >= 0)
1332 {
1333 close (evpipe [0]);
1334 close (evpipe [1]);
1335 }
1336
1337 evpipe_init (EV_A);
1338 /* now iterate over everything, in case we missed something */
1339 pipecb (EV_A_ &pipeev, EV_READ);
1340 }
1341
1342 postfork = 0;
1343}
1344
1345#if EV_MULTIPLICITY
1346struct ev_loop *
1347ev_loop_new (unsigned int flags)
1348{
1349 struct ev_loop *loop = (struct ev_loop *)ev_malloc (sizeof (struct ev_loop));
1350
1351 memset (loop, 0, sizeof (struct ev_loop));
1352
1353 loop_init (EV_A_ flags);
1354
1355 if (ev_backend (EV_A))
1356 return loop;
1357
1358 return 0;
1359}
1360
1361void
1362ev_loop_destroy (EV_P)
1363{
1364 loop_destroy (EV_A);
1365 ev_free (loop);
1366}
1367
1368void
1369ev_loop_fork (EV_P)
1370{
1371 postfork = 1; /* must be in line with ev_default_fork */
1372}
1373
1374#endif
1375
1376#if EV_MULTIPLICITY
1377struct ev_loop *
1378ev_default_loop_init (unsigned int flags)
1379#else
1380int
1381ev_default_loop (unsigned int flags)
1382#endif
1383{
1384 if (!ev_default_loop_ptr)
1385 {
1386#if EV_MULTIPLICITY
1387 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1388#else
1389 ev_default_loop_ptr = 1;
1390#endif
1391
1392 loop_init (EV_A_ flags);
1393
1394 if (ev_backend (EV_A))
1395 {
1396#ifndef _WIN32
559 ev_signal_init (&childev, childcb, SIGCHLD); 1397 ev_signal_init (&childev, childcb, SIGCHLD);
1398 ev_set_priority (&childev, EV_MAXPRI);
560 ev_signal_start (&childev); 1399 ev_signal_start (EV_A_ &childev);
1400 ev_unref (EV_A); /* child watcher should not keep loop alive */
1401#endif
561 } 1402 }
1403 else
1404 ev_default_loop_ptr = 0;
562 } 1405 }
563 1406
564 return ev_method; 1407 return ev_default_loop_ptr;
1408}
1409
1410void
1411ev_default_destroy (void)
1412{
1413#if EV_MULTIPLICITY
1414 struct ev_loop *loop = ev_default_loop_ptr;
1415#endif
1416
1417#ifndef _WIN32
1418 ev_ref (EV_A); /* child watcher */
1419 ev_signal_stop (EV_A_ &childev);
1420#endif
1421
1422 loop_destroy (EV_A);
1423}
1424
1425void
1426ev_default_fork (void)
1427{
1428#if EV_MULTIPLICITY
1429 struct ev_loop *loop = ev_default_loop_ptr;
1430#endif
1431
1432 if (backend)
1433 postfork = 1; /* must be in line with ev_loop_fork */
565} 1434}
566 1435
567/*****************************************************************************/ 1436/*****************************************************************************/
568 1437
569void 1438void
570ev_fork_prepare (void) 1439ev_invoke (EV_P_ void *w, int revents)
571{ 1440{
572 /* nop */ 1441 EV_CB_INVOKE ((W)w, revents);
573} 1442}
574 1443
575void 1444void inline_speed
576ev_fork_parent (void)
577{
578 /* nop */
579}
580
581void
582ev_fork_child (void)
583{
584#if EV_USE_EPOLL
585 if (ev_method == EVMETHOD_EPOLL)
586 epoll_postfork_child ();
587#endif
588
589 ev_io_stop (&sigev);
590 close (sigpipe [0]);
591 close (sigpipe [1]);
592 pipe (sigpipe);
593 siginit ();
594}
595
596/*****************************************************************************/
597
598static void
599call_pending (void) 1445call_pending (EV_P)
600{ 1446{
601 int pri; 1447 int pri;
602 1448
603 for (pri = NUMPRI; pri--; ) 1449 for (pri = NUMPRI; pri--; )
604 while (pendingcnt [pri]) 1450 while (pendingcnt [pri])
605 { 1451 {
606 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1452 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
607 1453
608 if (p->w) 1454 if (expect_true (p->w))
609 { 1455 {
1456 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1457
610 p->w->pending = 0; 1458 p->w->pending = 0;
611 p->w->cb (p->w, p->events); 1459 EV_CB_INVOKE (p->w, p->events);
612 } 1460 }
613 } 1461 }
614} 1462}
615 1463
616static void 1464void inline_size
617timers_reify (void) 1465timers_reify (EV_P)
618{ 1466{
619 while (timercnt && timers [0]->at <= now) 1467 while (timercnt && ev_at (timers [1]) <= mn_now)
620 { 1468 {
621 struct ev_timer *w = timers [0]; 1469 ev_timer *w = (ev_timer *)timers [1];
1470
1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
622 1472
623 /* first reschedule or stop timer */ 1473 /* first reschedule or stop timer */
624 if (w->repeat) 1474 if (w->repeat)
625 { 1475 {
626 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
627 w->at = now + w->repeat; 1477
1478 ev_at (w) += w->repeat;
1479 if (ev_at (w) < mn_now)
1480 ev_at (w) = mn_now;
1481
628 downheap ((WT *)timers, timercnt, 0); 1482 downheap (timers, timercnt, 1);
629 } 1483 }
630 else 1484 else
631 ev_timer_stop (w); /* nonrepeating: stop timer */ 1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
632 1486
633 event ((W)w, EV_TIMEOUT); 1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
634 } 1488 }
635} 1489}
636 1490
637static void 1491#if EV_PERIODIC_ENABLE
1492void inline_size
638periodics_reify (void) 1493periodics_reify (EV_P)
639{ 1494{
640 while (periodiccnt && periodics [0]->at <= ev_now) 1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
641 { 1496 {
642 struct ev_periodic *w = periodics [0]; 1497 ev_periodic *w = (ev_periodic *)periodics [1];
1498
1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
643 1500
644 /* first reschedule or stop timer */ 1501 /* first reschedule or stop timer */
645 if (w->interval) 1502 if (w->reschedule_cb)
646 { 1503 {
1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1506 downheap (periodics, periodiccnt, 1);
1507 }
1508 else if (w->interval)
1509 {
647 w->at += floor ((ev_now - w->at) / w->interval + 1.) * w->interval; 1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
648 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", w->at > ev_now)); 1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
649 downheap ((WT *)periodics, periodiccnt, 0); 1513 downheap (periodics, periodiccnt, 1);
650 } 1514 }
651 else 1515 else
652 ev_periodic_stop (w); /* nonrepeating: stop timer */ 1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
653 1517
654 event ((W)w, EV_PERIODIC); 1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
655 } 1519 }
656} 1520}
657 1521
658static void 1522static void noinline
659periodics_reschedule (ev_tstamp diff) 1523periodics_reschedule (EV_P)
660{ 1524{
661 int i; 1525 int i;
662 1526
663 /* adjust periodics after time jump */ 1527 /* adjust periodics after time jump */
664 for (i = 0; i < periodiccnt; ++i) 1528 for (i = 0; i < periodiccnt; ++i)
665 { 1529 {
666 struct ev_periodic *w = periodics [i]; 1530 ev_periodic *w = (ev_periodic *)periodics [i];
667 1531
1532 if (w->reschedule_cb)
1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
668 if (w->interval) 1534 else if (w->interval)
1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1536 }
1537
1538 /* now rebuild the heap */
1539 for (i = periodiccnt >> 1; i--; )
1540 downheap (periodics, periodiccnt, i);
1541}
1542#endif
1543
1544#if EV_IDLE_ENABLE
1545void inline_size
1546idle_reify (EV_P)
1547{
1548 if (expect_false (idleall))
1549 {
1550 int pri;
1551
1552 for (pri = NUMPRI; pri--; )
669 { 1553 {
670 ev_tstamp diff = ceil ((ev_now - w->at) / w->interval) * w->interval; 1554 if (pendingcnt [pri])
1555 break;
671 1556
672 if (fabs (diff) >= 1e-4) 1557 if (idlecnt [pri])
673 { 1558 {
674 ev_periodic_stop (w); 1559 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
675 ev_periodic_start (w); 1560 break;
676
677 i = 0; /* restart loop, inefficient, but time jumps should be rare */
678 } 1561 }
679 } 1562 }
680 } 1563 }
681} 1564}
1565#endif
682 1566
683static int 1567void inline_speed
684time_update_monotonic (void) 1568time_update (EV_P_ ev_tstamp max_block)
685{
686 now = get_clock ();
687
688 if (expect_true (now - now_floor < MIN_TIMEJUMP * .5))
689 {
690 ev_now = now + diff;
691 return 0;
692 }
693 else
694 {
695 now_floor = now;
696 ev_now = ev_time ();
697 return 1;
698 }
699}
700
701static void
702time_update (void)
703{ 1569{
704 int i; 1570 int i;
705 1571
706#if EV_USE_MONOTONIC 1572#if EV_USE_MONOTONIC
707 if (expect_true (have_monotonic)) 1573 if (expect_true (have_monotonic))
708 { 1574 {
709 if (time_update_monotonic ()) 1575 ev_tstamp odiff = rtmn_diff;
1576
1577 mn_now = get_clock ();
1578
1579 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1580 /* interpolate in the meantime */
1581 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
710 { 1582 {
711 ev_tstamp odiff = diff; 1583 ev_rt_now = rtmn_diff + mn_now;
712 1584 return;
713 for (i = 4; --i; ) /* loop a few times, before making important decisions */
714 {
715 diff = ev_now - now;
716
717 if (fabs (odiff - diff) < MIN_TIMEJUMP)
718 return; /* all is well */
719
720 ev_now = ev_time ();
721 now = get_clock ();
722 now_floor = now;
723 }
724
725 periodics_reschedule (diff - odiff);
726 /* no timer adjustment, as the monotonic clock doesn't jump */
727 } 1585 }
1586
1587 now_floor = mn_now;
1588 ev_rt_now = ev_time ();
1589
1590 /* loop a few times, before making important decisions.
1591 * on the choice of "4": one iteration isn't enough,
1592 * in case we get preempted during the calls to
1593 * ev_time and get_clock. a second call is almost guaranteed
1594 * to succeed in that case, though. and looping a few more times
1595 * doesn't hurt either as we only do this on time-jumps or
1596 * in the unlikely event of having been preempted here.
1597 */
1598 for (i = 4; --i; )
1599 {
1600 rtmn_diff = ev_rt_now - mn_now;
1601
1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1603 return; /* all is well */
1604
1605 ev_rt_now = ev_time ();
1606 mn_now = get_clock ();
1607 now_floor = mn_now;
1608 }
1609
1610# if EV_PERIODIC_ENABLE
1611 periodics_reschedule (EV_A);
1612# endif
1613 /* no timer adjustment, as the monotonic clock doesn't jump */
1614 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
728 } 1615 }
729 else 1616 else
730#endif 1617#endif
731 { 1618 {
732 ev_now = ev_time (); 1619 ev_rt_now = ev_time ();
733 1620
734 if (expect_false (now > ev_now || now < ev_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1621 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
735 { 1622 {
1623#if EV_PERIODIC_ENABLE
736 periodics_reschedule (ev_now - now); 1624 periodics_reschedule (EV_A);
737 1625#endif
738 /* adjust timers. this is easy, as the offset is the same for all */ 1626 /* adjust timers. this is easy, as the offset is the same for all of them */
739 for (i = 0; i < timercnt; ++i) 1627 for (i = 1; i <= timercnt; ++i)
740 timers [i]->at += diff; 1628 ev_at (timers [i]) += ev_rt_now - mn_now;
741 } 1629 }
742 1630
743 now = ev_now; 1631 mn_now = ev_rt_now;
744 } 1632 }
745} 1633}
746 1634
747int ev_loop_done; 1635void
1636ev_ref (EV_P)
1637{
1638 ++activecnt;
1639}
748 1640
1641void
1642ev_unref (EV_P)
1643{
1644 --activecnt;
1645}
1646
1647static int loop_done;
1648
1649void
749void ev_loop (int flags) 1650ev_loop (EV_P_ int flags)
750{ 1651{
751 double block; 1652 loop_done = EVUNLOOP_CANCEL;
752 ev_loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0; 1653
1654 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
753 1655
754 do 1656 do
755 { 1657 {
1658#ifndef _WIN32
1659 if (expect_false (curpid)) /* penalise the forking check even more */
1660 if (expect_false (getpid () != curpid))
1661 {
1662 curpid = getpid ();
1663 postfork = 1;
1664 }
1665#endif
1666
1667#if EV_FORK_ENABLE
1668 /* we might have forked, so queue fork handlers */
1669 if (expect_false (postfork))
1670 if (forkcnt)
1671 {
1672 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1673 call_pending (EV_A);
1674 }
1675#endif
1676
756 /* queue check watchers (and execute them) */ 1677 /* queue prepare watchers (and execute them) */
757 if (expect_false (preparecnt)) 1678 if (expect_false (preparecnt))
758 { 1679 {
759 queue_events ((W *)prepares, preparecnt, EV_PREPARE); 1680 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
760 call_pending (); 1681 call_pending (EV_A);
761 } 1682 }
762 1683
1684 if (expect_false (!activecnt))
1685 break;
1686
1687 /* we might have forked, so reify kernel state if necessary */
1688 if (expect_false (postfork))
1689 loop_fork (EV_A);
1690
763 /* update fd-related kernel structures */ 1691 /* update fd-related kernel structures */
764 fd_reify (); 1692 fd_reify (EV_A);
765 1693
766 /* calculate blocking time */ 1694 /* calculate blocking time */
1695 {
1696 ev_tstamp waittime = 0.;
1697 ev_tstamp sleeptime = 0.;
767 1698
768 /* we only need this for !monotonic clockor timers, but as we basically 1699 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
769 always have timers, we just calculate it always */
770#if EV_USE_MONOTONIC
771 if (expect_true (have_monotonic))
772 time_update_monotonic ();
773 else
774#endif
775 { 1700 {
776 ev_now = ev_time (); 1701 /* update time to cancel out callback processing overhead */
777 now = ev_now; 1702 time_update (EV_A_ 1e100);
778 }
779 1703
780 if (flags & EVLOOP_NONBLOCK || idlecnt)
781 block = 0.;
782 else
783 {
784 block = MAX_BLOCKTIME; 1704 waittime = MAX_BLOCKTIME;
785 1705
786 if (timercnt) 1706 if (timercnt)
787 { 1707 {
788 ev_tstamp to = timers [0]->at - now + method_fudge; 1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
789 if (block > to) block = to; 1709 if (waittime > to) waittime = to;
790 } 1710 }
791 1711
1712#if EV_PERIODIC_ENABLE
792 if (periodiccnt) 1713 if (periodiccnt)
793 { 1714 {
794 ev_tstamp to = periodics [0]->at - ev_now + method_fudge; 1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
795 if (block > to) block = to; 1716 if (waittime > to) waittime = to;
796 } 1717 }
1718#endif
797 1719
798 if (block < 0.) block = 0.; 1720 if (expect_false (waittime < timeout_blocktime))
1721 waittime = timeout_blocktime;
1722
1723 sleeptime = waittime - backend_fudge;
1724
1725 if (expect_true (sleeptime > io_blocktime))
1726 sleeptime = io_blocktime;
1727
1728 if (sleeptime)
1729 {
1730 ev_sleep (sleeptime);
1731 waittime -= sleeptime;
1732 }
799 } 1733 }
800 1734
801 method_poll (block); 1735 ++loop_count;
1736 backend_poll (EV_A_ waittime);
802 1737
803 /* update ev_now, do magic */ 1738 /* update ev_rt_now, do magic */
804 time_update (); 1739 time_update (EV_A_ waittime + sleeptime);
1740 }
805 1741
806 /* queue pending timers and reschedule them */ 1742 /* queue pending timers and reschedule them */
807 timers_reify (); /* relative timers called last */ 1743 timers_reify (EV_A); /* relative timers called last */
1744#if EV_PERIODIC_ENABLE
808 periodics_reify (); /* absolute timers called first */ 1745 periodics_reify (EV_A); /* absolute timers called first */
1746#endif
809 1747
1748#if EV_IDLE_ENABLE
810 /* queue idle watchers unless io or timers are pending */ 1749 /* queue idle watchers unless other events are pending */
811 if (!pendingcnt) 1750 idle_reify (EV_A);
812 queue_events ((W *)idles, idlecnt, EV_IDLE); 1751#endif
813 1752
814 /* queue check watchers, to be executed first */ 1753 /* queue check watchers, to be executed first */
815 if (checkcnt) 1754 if (expect_false (checkcnt))
816 queue_events ((W *)checks, checkcnt, EV_CHECK); 1755 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
817 1756
818 call_pending (); 1757 call_pending (EV_A);
819 } 1758 }
820 while (!ev_loop_done); 1759 while (expect_true (
1760 activecnt
1761 && !loop_done
1762 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1763 ));
821 1764
822 if (ev_loop_done != 2) 1765 if (loop_done == EVUNLOOP_ONE)
1766 loop_done = EVUNLOOP_CANCEL;
1767}
1768
1769void
1770ev_unloop (EV_P_ int how)
1771{
823 ev_loop_done = 0; 1772 loop_done = how;
824} 1773}
825 1774
826/*****************************************************************************/ 1775/*****************************************************************************/
827 1776
828static void 1777void inline_size
829wlist_add (WL *head, WL elem) 1778wlist_add (WL *head, WL elem)
830{ 1779{
831 elem->next = *head; 1780 elem->next = *head;
832 *head = elem; 1781 *head = elem;
833} 1782}
834 1783
835static void 1784void inline_size
836wlist_del (WL *head, WL elem) 1785wlist_del (WL *head, WL elem)
837{ 1786{
838 while (*head) 1787 while (*head)
839 { 1788 {
840 if (*head == elem) 1789 if (*head == elem)
845 1794
846 head = &(*head)->next; 1795 head = &(*head)->next;
847 } 1796 }
848} 1797}
849 1798
850static void 1799void inline_speed
851ev_clear_pending (W w) 1800clear_pending (EV_P_ W w)
852{ 1801{
853 if (w->pending) 1802 if (w->pending)
854 { 1803 {
855 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1804 pendings [ABSPRI (w)][w->pending - 1].w = 0;
856 w->pending = 0; 1805 w->pending = 0;
857 } 1806 }
858} 1807}
859 1808
860static void 1809int
1810ev_clear_pending (EV_P_ void *w)
1811{
1812 W w_ = (W)w;
1813 int pending = w_->pending;
1814
1815 if (expect_true (pending))
1816 {
1817 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1818 w_->pending = 0;
1819 p->w = 0;
1820 return p->events;
1821 }
1822 else
1823 return 0;
1824}
1825
1826void inline_size
1827pri_adjust (EV_P_ W w)
1828{
1829 int pri = w->priority;
1830 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1831 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1832 w->priority = pri;
1833}
1834
1835void inline_speed
861ev_start (W w, int active) 1836ev_start (EV_P_ W w, int active)
862{ 1837{
863 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1838 pri_adjust (EV_A_ w);
864 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
865
866 w->active = active; 1839 w->active = active;
1840 ev_ref (EV_A);
867} 1841}
868 1842
869static void 1843void inline_size
870ev_stop (W w) 1844ev_stop (EV_P_ W w)
871{ 1845{
1846 ev_unref (EV_A);
872 w->active = 0; 1847 w->active = 0;
873} 1848}
874 1849
875/*****************************************************************************/ 1850/*****************************************************************************/
876 1851
877void 1852void noinline
878ev_io_start (struct ev_io *w) 1853ev_io_start (EV_P_ ev_io *w)
879{ 1854{
880 int fd = w->fd; 1855 int fd = w->fd;
881 1856
882 if (ev_is_active (w)) 1857 if (expect_false (ev_is_active (w)))
883 return; 1858 return;
884 1859
885 assert (("ev_io_start called with negative fd", fd >= 0)); 1860 assert (("ev_io_start called with negative fd", fd >= 0));
886 1861
887 ev_start ((W)w, 1); 1862 ev_start (EV_A_ (W)w, 1);
888 array_needsize (anfds, anfdmax, fd + 1, anfds_init); 1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
889 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1864 wlist_add (&anfds[fd].head, (WL)w);
890 1865
891 fd_change (fd); 1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1867 w->events &= ~EV_IOFDSET;
892} 1868}
893 1869
894void 1870void noinline
895ev_io_stop (struct ev_io *w) 1871ev_io_stop (EV_P_ ev_io *w)
896{ 1872{
897 ev_clear_pending ((W)w); 1873 clear_pending (EV_A_ (W)w);
898 if (!ev_is_active (w)) 1874 if (expect_false (!ev_is_active (w)))
899 return; 1875 return;
900 1876
1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1878
901 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1879 wlist_del (&anfds[w->fd].head, (WL)w);
902 ev_stop ((W)w); 1880 ev_stop (EV_A_ (W)w);
903 1881
904 fd_change (w->fd); 1882 fd_change (EV_A_ w->fd, 1);
905} 1883}
906 1884
907void 1885void noinline
908ev_timer_start (struct ev_timer *w) 1886ev_timer_start (EV_P_ ev_timer *w)
909{ 1887{
910 if (ev_is_active (w)) 1888 if (expect_false (ev_is_active (w)))
911 return; 1889 return;
912 1890
913 w->at += now; 1891 ev_at (w) += mn_now;
914 1892
915 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
916 1894
917 ev_start ((W)w, ++timercnt); 1895 ev_start (EV_A_ (W)w, ++timercnt);
918 array_needsize (timers, timermax, timercnt, ); 1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
919 timers [timercnt - 1] = w; 1897 timers [timercnt] = (WT)w;
920 upheap ((WT *)timers, timercnt - 1); 1898 upheap (timers, timercnt);
921}
922 1899
923void 1900 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1901}
1902
1903void noinline
924ev_timer_stop (struct ev_timer *w) 1904ev_timer_stop (EV_P_ ev_timer *w)
925{ 1905{
926 ev_clear_pending ((W)w); 1906 clear_pending (EV_A_ (W)w);
927 if (!ev_is_active (w)) 1907 if (expect_false (!ev_is_active (w)))
928 return; 1908 return;
929 1909
930 if (w->active < timercnt--) 1910 {
1911 int active = ev_active (w);
1912
1913 assert (("internal timer heap corruption", timers [active] == (WT)w));
1914
1915 if (expect_true (active < timercnt))
931 { 1916 {
932 timers [w->active - 1] = timers [timercnt]; 1917 timers [active] = timers [timercnt];
933 downheap ((WT *)timers, timercnt, w->active - 1); 1918 adjustheap (timers, timercnt, active);
934 } 1919 }
935 1920
936 w->at = w->repeat; 1921 --timercnt;
1922 }
937 1923
1924 ev_at (w) -= mn_now;
1925
938 ev_stop ((W)w); 1926 ev_stop (EV_A_ (W)w);
939} 1927}
940 1928
941void 1929void noinline
942ev_timer_again (struct ev_timer *w) 1930ev_timer_again (EV_P_ ev_timer *w)
943{ 1931{
944 if (ev_is_active (w)) 1932 if (ev_is_active (w))
945 { 1933 {
946 if (w->repeat) 1934 if (w->repeat)
947 { 1935 {
948 w->at = now + w->repeat; 1936 ev_at (w) = mn_now + w->repeat;
949 downheap ((WT *)timers, timercnt, w->active - 1); 1937 adjustheap (timers, timercnt, ev_active (w));
950 } 1938 }
951 else 1939 else
952 ev_timer_stop (w); 1940 ev_timer_stop (EV_A_ w);
953 } 1941 }
954 else if (w->repeat) 1942 else if (w->repeat)
1943 {
1944 ev_at (w) = w->repeat;
955 ev_timer_start (w); 1945 ev_timer_start (EV_A_ w);
1946 }
956} 1947}
957 1948
958void 1949#if EV_PERIODIC_ENABLE
1950void noinline
959ev_periodic_start (struct ev_periodic *w) 1951ev_periodic_start (EV_P_ ev_periodic *w)
960{ 1952{
961 if (ev_is_active (w)) 1953 if (expect_false (ev_is_active (w)))
962 return; 1954 return;
963 1955
1956 if (w->reschedule_cb)
1957 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1958 else if (w->interval)
1959 {
964 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1960 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
965
966 /* this formula differs from the one in periodic_reify because we do not always round up */ 1961 /* this formula differs from the one in periodic_reify because we do not always round up */
967 if (w->interval)
968 w->at += ceil ((ev_now - w->at) / w->interval) * w->interval; 1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1963 }
1964 else
1965 ev_at (w) = w->offset;
969 1966
970 ev_start ((W)w, ++periodiccnt); 1967 ev_start (EV_A_ (W)w, ++periodiccnt);
971 array_needsize (periodics, periodicmax, periodiccnt, ); 1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
972 periodics [periodiccnt - 1] = w; 1969 periodics [periodiccnt] = (WT)w;
973 upheap ((WT *)periodics, periodiccnt - 1); 1970 upheap (periodics, periodiccnt);
974}
975 1971
976void 1972 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1973}
1974
1975void noinline
977ev_periodic_stop (struct ev_periodic *w) 1976ev_periodic_stop (EV_P_ ev_periodic *w)
978{ 1977{
979 ev_clear_pending ((W)w); 1978 clear_pending (EV_A_ (W)w);
980 if (!ev_is_active (w)) 1979 if (expect_false (!ev_is_active (w)))
981 return; 1980 return;
982 1981
983 if (w->active < periodiccnt--) 1982 {
1983 int active = ev_active (w);
1984
1985 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1986
1987 if (expect_true (active < periodiccnt))
984 { 1988 {
985 periodics [w->active - 1] = periodics [periodiccnt]; 1989 periodics [active] = periodics [periodiccnt];
986 downheap ((WT *)periodics, periodiccnt, w->active - 1); 1990 adjustheap (periodics, periodiccnt, active);
987 } 1991 }
988 1992
1993 --periodiccnt;
1994 }
1995
989 ev_stop ((W)w); 1996 ev_stop (EV_A_ (W)w);
990} 1997}
991 1998
992void 1999void noinline
2000ev_periodic_again (EV_P_ ev_periodic *w)
2001{
2002 /* TODO: use adjustheap and recalculation */
2003 ev_periodic_stop (EV_A_ w);
2004 ev_periodic_start (EV_A_ w);
2005}
2006#endif
2007
2008#ifndef SA_RESTART
2009# define SA_RESTART 0
2010#endif
2011
2012void noinline
993ev_signal_start (struct ev_signal *w) 2013ev_signal_start (EV_P_ ev_signal *w)
994{ 2014{
2015#if EV_MULTIPLICITY
2016 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2017#endif
995 if (ev_is_active (w)) 2018 if (expect_false (ev_is_active (w)))
996 return; 2019 return;
997 2020
998 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
999 2022
1000 ev_start ((W)w, 1); 2023 evpipe_init (EV_A);
2024
2025 {
2026#ifndef _WIN32
2027 sigset_t full, prev;
2028 sigfillset (&full);
2029 sigprocmask (SIG_SETMASK, &full, &prev);
2030#endif
2031
1001 array_needsize (signals, signalmax, w->signum, signals_init); 2032 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2033
2034#ifndef _WIN32
2035 sigprocmask (SIG_SETMASK, &prev, 0);
2036#endif
2037 }
2038
2039 ev_start (EV_A_ (W)w, 1);
1002 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2040 wlist_add (&signals [w->signum - 1].head, (WL)w);
1003 2041
1004 if (!w->next) 2042 if (!((WL)w)->next)
1005 { 2043 {
2044#if _WIN32
2045 signal (w->signum, ev_sighandler);
2046#else
1006 struct sigaction sa; 2047 struct sigaction sa;
1007 sa.sa_handler = sighandler; 2048 sa.sa_handler = ev_sighandler;
1008 sigfillset (&sa.sa_mask); 2049 sigfillset (&sa.sa_mask);
1009 sa.sa_flags = 0; 2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1010 sigaction (w->signum, &sa, 0); 2051 sigaction (w->signum, &sa, 0);
2052#endif
1011 } 2053 }
1012} 2054}
1013 2055
1014void 2056void noinline
1015ev_signal_stop (struct ev_signal *w) 2057ev_signal_stop (EV_P_ ev_signal *w)
1016{ 2058{
1017 ev_clear_pending ((W)w); 2059 clear_pending (EV_A_ (W)w);
1018 if (!ev_is_active (w)) 2060 if (expect_false (!ev_is_active (w)))
1019 return; 2061 return;
1020 2062
1021 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2063 wlist_del (&signals [w->signum - 1].head, (WL)w);
1022 ev_stop ((W)w); 2064 ev_stop (EV_A_ (W)w);
1023 2065
1024 if (!signals [w->signum - 1].head) 2066 if (!signals [w->signum - 1].head)
1025 signal (w->signum, SIG_DFL); 2067 signal (w->signum, SIG_DFL);
1026} 2068}
1027 2069
1028void 2070void
1029ev_idle_start (struct ev_idle *w) 2071ev_child_start (EV_P_ ev_child *w)
1030{ 2072{
2073#if EV_MULTIPLICITY
2074 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
2075#endif
1031 if (ev_is_active (w)) 2076 if (expect_false (ev_is_active (w)))
1032 return; 2077 return;
1033 2078
1034 ev_start ((W)w, ++idlecnt); 2079 ev_start (EV_A_ (W)w, 1);
1035 array_needsize (idles, idlemax, idlecnt, ); 2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1036 idles [idlecnt - 1] = w;
1037} 2081}
1038 2082
1039void 2083void
1040ev_idle_stop (struct ev_idle *w) 2084ev_child_stop (EV_P_ ev_child *w)
1041{ 2085{
1042 ev_clear_pending ((W)w); 2086 clear_pending (EV_A_ (W)w);
1043 if (ev_is_active (w)) 2087 if (expect_false (!ev_is_active (w)))
1044 return; 2088 return;
1045 2089
1046 idles [w->active - 1] = idles [--idlecnt]; 2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1047 ev_stop ((W)w); 2091 ev_stop (EV_A_ (W)w);
1048} 2092}
1049 2093
2094#if EV_STAT_ENABLE
2095
2096# ifdef _WIN32
2097# undef lstat
2098# define lstat(a,b) _stati64 (a,b)
2099# endif
2100
2101#define DEF_STAT_INTERVAL 5.0074891
2102#define MIN_STAT_INTERVAL 0.1074891
2103
2104static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2105
2106#if EV_USE_INOTIFY
2107# define EV_INOTIFY_BUFSIZE 8192
2108
2109static void noinline
2110infy_add (EV_P_ ev_stat *w)
2111{
2112 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2113
2114 if (w->wd < 0)
2115 {
2116 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2117
2118 /* monitor some parent directory for speedup hints */
2119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2120 {
2121 char path [4096];
2122 strcpy (path, w->path);
2123
2124 do
2125 {
2126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2128
2129 char *pend = strrchr (path, '/');
2130
2131 if (!pend)
2132 break; /* whoops, no '/', complain to your admin */
2133
2134 *pend = 0;
2135 w->wd = inotify_add_watch (fs_fd, path, mask);
2136 }
2137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2138 }
2139 }
2140 else
2141 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2142
2143 if (w->wd >= 0)
2144 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2145}
2146
2147static void noinline
2148infy_del (EV_P_ ev_stat *w)
2149{
2150 int slot;
2151 int wd = w->wd;
2152
2153 if (wd < 0)
2154 return;
2155
2156 w->wd = -2;
2157 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2158 wlist_del (&fs_hash [slot].head, (WL)w);
2159
2160 /* remove this watcher, if others are watching it, they will rearm */
2161 inotify_rm_watch (fs_fd, wd);
2162}
2163
2164static void noinline
2165infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2166{
2167 if (slot < 0)
2168 /* overflow, need to check for all hahs slots */
2169 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2170 infy_wd (EV_A_ slot, wd, ev);
2171 else
2172 {
2173 WL w_;
2174
2175 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2176 {
2177 ev_stat *w = (ev_stat *)w_;
2178 w_ = w_->next; /* lets us remove this watcher and all before it */
2179
2180 if (w->wd == wd || wd == -1)
2181 {
2182 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2183 {
2184 w->wd = -1;
2185 infy_add (EV_A_ w); /* re-add, no matter what */
2186 }
2187
2188 stat_timer_cb (EV_A_ &w->timer, 0);
2189 }
2190 }
2191 }
2192}
2193
2194static void
2195infy_cb (EV_P_ ev_io *w, int revents)
2196{
2197 char buf [EV_INOTIFY_BUFSIZE];
2198 struct inotify_event *ev = (struct inotify_event *)buf;
2199 int ofs;
2200 int len = read (fs_fd, buf, sizeof (buf));
2201
2202 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2203 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2204}
2205
2206void inline_size
2207infy_init (EV_P)
2208{
2209 if (fs_fd != -2)
2210 return;
2211
2212 fs_fd = inotify_init ();
2213
2214 if (fs_fd >= 0)
2215 {
2216 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2217 ev_set_priority (&fs_w, EV_MAXPRI);
2218 ev_io_start (EV_A_ &fs_w);
2219 }
2220}
2221
2222void inline_size
2223infy_fork (EV_P)
2224{
2225 int slot;
2226
2227 if (fs_fd < 0)
2228 return;
2229
2230 close (fs_fd);
2231 fs_fd = inotify_init ();
2232
2233 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2234 {
2235 WL w_ = fs_hash [slot].head;
2236 fs_hash [slot].head = 0;
2237
2238 while (w_)
2239 {
2240 ev_stat *w = (ev_stat *)w_;
2241 w_ = w_->next; /* lets us add this watcher */
2242
2243 w->wd = -1;
2244
2245 if (fs_fd >= 0)
2246 infy_add (EV_A_ w); /* re-add, no matter what */
2247 else
2248 ev_timer_start (EV_A_ &w->timer);
2249 }
2250
2251 }
2252}
2253
2254#endif
2255
1050void 2256void
2257ev_stat_stat (EV_P_ ev_stat *w)
2258{
2259 if (lstat (w->path, &w->attr) < 0)
2260 w->attr.st_nlink = 0;
2261 else if (!w->attr.st_nlink)
2262 w->attr.st_nlink = 1;
2263}
2264
2265static void noinline
2266stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2267{
2268 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2269
2270 /* we copy this here each the time so that */
2271 /* prev has the old value when the callback gets invoked */
2272 w->prev = w->attr;
2273 ev_stat_stat (EV_A_ w);
2274
2275 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2276 if (
2277 w->prev.st_dev != w->attr.st_dev
2278 || w->prev.st_ino != w->attr.st_ino
2279 || w->prev.st_mode != w->attr.st_mode
2280 || w->prev.st_nlink != w->attr.st_nlink
2281 || w->prev.st_uid != w->attr.st_uid
2282 || w->prev.st_gid != w->attr.st_gid
2283 || w->prev.st_rdev != w->attr.st_rdev
2284 || w->prev.st_size != w->attr.st_size
2285 || w->prev.st_atime != w->attr.st_atime
2286 || w->prev.st_mtime != w->attr.st_mtime
2287 || w->prev.st_ctime != w->attr.st_ctime
2288 ) {
2289 #if EV_USE_INOTIFY
2290 infy_del (EV_A_ w);
2291 infy_add (EV_A_ w);
2292 ev_stat_stat (EV_A_ w); /* avoid race... */
2293 #endif
2294
2295 ev_feed_event (EV_A_ w, EV_STAT);
2296 }
2297}
2298
2299void
2300ev_stat_start (EV_P_ ev_stat *w)
2301{
2302 if (expect_false (ev_is_active (w)))
2303 return;
2304
2305 /* since we use memcmp, we need to clear any padding data etc. */
2306 memset (&w->prev, 0, sizeof (ev_statdata));
2307 memset (&w->attr, 0, sizeof (ev_statdata));
2308
2309 ev_stat_stat (EV_A_ w);
2310
2311 if (w->interval < MIN_STAT_INTERVAL)
2312 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2313
2314 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2315 ev_set_priority (&w->timer, ev_priority (w));
2316
2317#if EV_USE_INOTIFY
2318 infy_init (EV_A);
2319
2320 if (fs_fd >= 0)
2321 infy_add (EV_A_ w);
2322 else
2323#endif
2324 ev_timer_start (EV_A_ &w->timer);
2325
2326 ev_start (EV_A_ (W)w, 1);
2327}
2328
2329void
2330ev_stat_stop (EV_P_ ev_stat *w)
2331{
2332 clear_pending (EV_A_ (W)w);
2333 if (expect_false (!ev_is_active (w)))
2334 return;
2335
2336#if EV_USE_INOTIFY
2337 infy_del (EV_A_ w);
2338#endif
2339 ev_timer_stop (EV_A_ &w->timer);
2340
2341 ev_stop (EV_A_ (W)w);
2342}
2343#endif
2344
2345#if EV_IDLE_ENABLE
2346void
2347ev_idle_start (EV_P_ ev_idle *w)
2348{
2349 if (expect_false (ev_is_active (w)))
2350 return;
2351
2352 pri_adjust (EV_A_ (W)w);
2353
2354 {
2355 int active = ++idlecnt [ABSPRI (w)];
2356
2357 ++idleall;
2358 ev_start (EV_A_ (W)w, active);
2359
2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2361 idles [ABSPRI (w)][active - 1] = w;
2362 }
2363}
2364
2365void
2366ev_idle_stop (EV_P_ ev_idle *w)
2367{
2368 clear_pending (EV_A_ (W)w);
2369 if (expect_false (!ev_is_active (w)))
2370 return;
2371
2372 {
2373 int active = ev_active (w);
2374
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2376 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2377
2378 ev_stop (EV_A_ (W)w);
2379 --idleall;
2380 }
2381}
2382#endif
2383
2384void
1051ev_prepare_start (struct ev_prepare *w) 2385ev_prepare_start (EV_P_ ev_prepare *w)
1052{ 2386{
1053 if (ev_is_active (w)) 2387 if (expect_false (ev_is_active (w)))
1054 return; 2388 return;
1055 2389
1056 ev_start ((W)w, ++preparecnt); 2390 ev_start (EV_A_ (W)w, ++preparecnt);
1057 array_needsize (prepares, preparemax, preparecnt, ); 2391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1058 prepares [preparecnt - 1] = w; 2392 prepares [preparecnt - 1] = w;
1059} 2393}
1060 2394
1061void 2395void
1062ev_prepare_stop (struct ev_prepare *w) 2396ev_prepare_stop (EV_P_ ev_prepare *w)
1063{ 2397{
1064 ev_clear_pending ((W)w); 2398 clear_pending (EV_A_ (W)w);
1065 if (ev_is_active (w)) 2399 if (expect_false (!ev_is_active (w)))
1066 return; 2400 return;
1067 2401
2402 {
2403 int active = ev_active (w);
2404
1068 prepares [w->active - 1] = prepares [--preparecnt]; 2405 prepares [active - 1] = prepares [--preparecnt];
2406 ev_active (prepares [active - 1]) = active;
2407 }
2408
1069 ev_stop ((W)w); 2409 ev_stop (EV_A_ (W)w);
1070} 2410}
1071 2411
1072void 2412void
1073ev_check_start (struct ev_check *w) 2413ev_check_start (EV_P_ ev_check *w)
1074{ 2414{
1075 if (ev_is_active (w)) 2415 if (expect_false (ev_is_active (w)))
1076 return; 2416 return;
1077 2417
1078 ev_start ((W)w, ++checkcnt); 2418 ev_start (EV_A_ (W)w, ++checkcnt);
1079 array_needsize (checks, checkmax, checkcnt, ); 2419 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
1080 checks [checkcnt - 1] = w; 2420 checks [checkcnt - 1] = w;
1081} 2421}
1082 2422
1083void 2423void
1084ev_check_stop (struct ev_check *w) 2424ev_check_stop (EV_P_ ev_check *w)
1085{ 2425{
1086 ev_clear_pending ((W)w); 2426 clear_pending (EV_A_ (W)w);
1087 if (ev_is_active (w)) 2427 if (expect_false (!ev_is_active (w)))
1088 return; 2428 return;
1089 2429
2430 {
2431 int active = ev_active (w);
2432
1090 checks [w->active - 1] = checks [--checkcnt]; 2433 checks [active - 1] = checks [--checkcnt];
2434 ev_active (checks [active - 1]) = active;
2435 }
2436
1091 ev_stop ((W)w); 2437 ev_stop (EV_A_ (W)w);
1092} 2438}
1093 2439
1094void 2440#if EV_EMBED_ENABLE
1095ev_child_start (struct ev_child *w) 2441void noinline
2442ev_embed_sweep (EV_P_ ev_embed *w)
1096{ 2443{
2444 ev_loop (w->other, EVLOOP_NONBLOCK);
2445}
2446
2447static void
2448embed_io_cb (EV_P_ ev_io *io, int revents)
2449{
2450 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2451
1097 if (ev_is_active (w)) 2452 if (ev_cb (w))
1098 return; 2453 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2454 else
2455 ev_loop (w->other, EVLOOP_NONBLOCK);
2456}
1099 2457
2458static void
2459embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2460{
2461 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2462
2463 {
2464 struct ev_loop *loop = w->other;
2465
2466 while (fdchangecnt)
2467 {
2468 fd_reify (EV_A);
2469 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2470 }
2471 }
2472}
2473
2474#if 0
2475static void
2476embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2477{
2478 ev_idle_stop (EV_A_ idle);
2479}
2480#endif
2481
2482void
2483ev_embed_start (EV_P_ ev_embed *w)
2484{
2485 if (expect_false (ev_is_active (w)))
2486 return;
2487
2488 {
2489 struct ev_loop *loop = w->other;
2490 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2492 }
2493
2494 ev_set_priority (&w->io, ev_priority (w));
2495 ev_io_start (EV_A_ &w->io);
2496
2497 ev_prepare_init (&w->prepare, embed_prepare_cb);
2498 ev_set_priority (&w->prepare, EV_MINPRI);
2499 ev_prepare_start (EV_A_ &w->prepare);
2500
2501 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2502
1100 ev_start ((W)w, 1); 2503 ev_start (EV_A_ (W)w, 1);
1101 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w);
1102} 2504}
1103 2505
1104void 2506void
1105ev_child_stop (struct ev_child *w) 2507ev_embed_stop (EV_P_ ev_embed *w)
1106{ 2508{
1107 ev_clear_pending ((W)w); 2509 clear_pending (EV_A_ (W)w);
1108 if (ev_is_active (w)) 2510 if (expect_false (!ev_is_active (w)))
1109 return; 2511 return;
1110 2512
1111 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2513 ev_io_stop (EV_A_ &w->io);
2514 ev_prepare_stop (EV_A_ &w->prepare);
2515
1112 ev_stop ((W)w); 2516 ev_stop (EV_A_ (W)w);
1113} 2517}
2518#endif
2519
2520#if EV_FORK_ENABLE
2521void
2522ev_fork_start (EV_P_ ev_fork *w)
2523{
2524 if (expect_false (ev_is_active (w)))
2525 return;
2526
2527 ev_start (EV_A_ (W)w, ++forkcnt);
2528 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2529 forks [forkcnt - 1] = w;
2530}
2531
2532void
2533ev_fork_stop (EV_P_ ev_fork *w)
2534{
2535 clear_pending (EV_A_ (W)w);
2536 if (expect_false (!ev_is_active (w)))
2537 return;
2538
2539 {
2540 int active = ev_active (w);
2541
2542 forks [active - 1] = forks [--forkcnt];
2543 ev_active (forks [active - 1]) = active;
2544 }
2545
2546 ev_stop (EV_A_ (W)w);
2547}
2548#endif
2549
2550#if EV_ASYNC_ENABLE
2551void
2552ev_async_start (EV_P_ ev_async *w)
2553{
2554 if (expect_false (ev_is_active (w)))
2555 return;
2556
2557 evpipe_init (EV_A);
2558
2559 ev_start (EV_A_ (W)w, ++asynccnt);
2560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2561 asyncs [asynccnt - 1] = w;
2562}
2563
2564void
2565ev_async_stop (EV_P_ ev_async *w)
2566{
2567 clear_pending (EV_A_ (W)w);
2568 if (expect_false (!ev_is_active (w)))
2569 return;
2570
2571 {
2572 int active = ev_active (w);
2573
2574 asyncs [active - 1] = asyncs [--asynccnt];
2575 ev_active (asyncs [active - 1]) = active;
2576 }
2577
2578 ev_stop (EV_A_ (W)w);
2579}
2580
2581void
2582ev_async_send (EV_P_ ev_async *w)
2583{
2584 w->sent = 1;
2585 evpipe_write (EV_A_ &gotasync);
2586}
2587#endif
1114 2588
1115/*****************************************************************************/ 2589/*****************************************************************************/
1116 2590
1117struct ev_once 2591struct ev_once
1118{ 2592{
1119 struct ev_io io; 2593 ev_io io;
1120 struct ev_timer to; 2594 ev_timer to;
1121 void (*cb)(int revents, void *arg); 2595 void (*cb)(int revents, void *arg);
1122 void *arg; 2596 void *arg;
1123}; 2597};
1124 2598
1125static void 2599static void
1126once_cb (struct ev_once *once, int revents) 2600once_cb (EV_P_ struct ev_once *once, int revents)
1127{ 2601{
1128 void (*cb)(int revents, void *arg) = once->cb; 2602 void (*cb)(int revents, void *arg) = once->cb;
1129 void *arg = once->arg; 2603 void *arg = once->arg;
1130 2604
1131 ev_io_stop (&once->io); 2605 ev_io_stop (EV_A_ &once->io);
1132 ev_timer_stop (&once->to); 2606 ev_timer_stop (EV_A_ &once->to);
1133 free (once); 2607 ev_free (once);
1134 2608
1135 cb (revents, arg); 2609 cb (revents, arg);
1136} 2610}
1137 2611
1138static void 2612static void
1139once_cb_io (struct ev_io *w, int revents) 2613once_cb_io (EV_P_ ev_io *w, int revents)
1140{ 2614{
1141 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2615 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1142} 2616}
1143 2617
1144static void 2618static void
1145once_cb_to (struct ev_timer *w, int revents) 2619once_cb_to (EV_P_ ev_timer *w, int revents)
1146{ 2620{
1147 once_cb ((struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2621 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1148} 2622}
1149 2623
1150void 2624void
1151ev_once (int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2625ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1152{ 2626{
1153 struct ev_once *once = malloc (sizeof (struct ev_once)); 2627 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1154 2628
1155 if (!once) 2629 if (expect_false (!once))
2630 {
1156 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2631 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1157 else 2632 return;
1158 { 2633 }
2634
1159 once->cb = cb; 2635 once->cb = cb;
1160 once->arg = arg; 2636 once->arg = arg;
1161 2637
1162 ev_watcher_init (&once->io, once_cb_io); 2638 ev_init (&once->io, once_cb_io);
1163 if (fd >= 0) 2639 if (fd >= 0)
1164 { 2640 {
1165 ev_io_set (&once->io, fd, events); 2641 ev_io_set (&once->io, fd, events);
1166 ev_io_start (&once->io); 2642 ev_io_start (EV_A_ &once->io);
1167 } 2643 }
1168 2644
1169 ev_watcher_init (&once->to, once_cb_to); 2645 ev_init (&once->to, once_cb_to);
1170 if (timeout >= 0.) 2646 if (timeout >= 0.)
1171 { 2647 {
1172 ev_timer_set (&once->to, timeout, 0.); 2648 ev_timer_set (&once->to, timeout, 0.);
1173 ev_timer_start (&once->to); 2649 ev_timer_start (EV_A_ &once->to);
1174 }
1175 }
1176}
1177
1178/*****************************************************************************/
1179
1180#if 0
1181
1182struct ev_io wio;
1183
1184static void
1185sin_cb (struct ev_io *w, int revents)
1186{
1187 fprintf (stderr, "sin %d, revents %d\n", w->fd, revents);
1188}
1189
1190static void
1191ocb (struct ev_timer *w, int revents)
1192{
1193 //fprintf (stderr, "timer %f,%f (%x) (%f) d%p\n", w->at, w->repeat, revents, w->at - ev_time (), w->data);
1194 ev_timer_stop (w);
1195 ev_timer_start (w);
1196}
1197
1198static void
1199scb (struct ev_signal *w, int revents)
1200{
1201 fprintf (stderr, "signal %x,%d\n", revents, w->signum);
1202 ev_io_stop (&wio);
1203 ev_io_start (&wio);
1204}
1205
1206static void
1207gcb (struct ev_signal *w, int revents)
1208{
1209 fprintf (stderr, "generic %x\n", revents);
1210
1211}
1212
1213int main (void)
1214{
1215 ev_init (0);
1216
1217 ev_io_init (&wio, sin_cb, 0, EV_READ);
1218 ev_io_start (&wio);
1219
1220 struct ev_timer t[10000];
1221
1222#if 0
1223 int i;
1224 for (i = 0; i < 10000; ++i)
1225 { 2650 }
1226 struct ev_timer *w = t + i;
1227 ev_watcher_init (w, ocb, i);
1228 ev_timer_init_abs (w, ocb, drand48 (), 0.99775533);
1229 ev_timer_start (w);
1230 if (drand48 () < 0.5)
1231 ev_timer_stop (w);
1232 }
1233#endif
1234
1235 struct ev_timer t1;
1236 ev_timer_init (&t1, ocb, 5, 10);
1237 ev_timer_start (&t1);
1238
1239 struct ev_signal sig;
1240 ev_signal_init (&sig, scb, SIGQUIT);
1241 ev_signal_start (&sig);
1242
1243 struct ev_check cw;
1244 ev_check_init (&cw, gcb);
1245 ev_check_start (&cw);
1246
1247 struct ev_idle iw;
1248 ev_idle_init (&iw, gcb);
1249 ev_idle_start (&iw);
1250
1251 ev_loop (0);
1252
1253 return 0;
1254} 2651}
1255 2652
2653#if EV_MULTIPLICITY
2654 #include "ev_wrap.h"
1256#endif 2655#endif
1257 2656
2657#ifdef __cplusplus
2658}
2659#endif
1258 2660
1259
1260

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines