ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.120 by root, Fri Nov 16 01:54:25 2007 UTC vs.
Revision 1.231 by root, Mon May 5 20:47:33 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
46# ifdef EV_CONFIG_H
47# include EV_CONFIG_H
48# else
37# include "config.h" 49# include "config.h"
50# endif
38 51
39# if HAVE_CLOCK_GETTIME 52# if HAVE_CLOCK_GETTIME
40# ifndef EV_USE_MONOTONIC 53# ifndef EV_USE_MONOTONIC
41# define EV_USE_MONOTONIC 1 54# define EV_USE_MONOTONIC 1
42# endif 55# endif
43# ifndef EV_USE_REALTIME 56# ifndef EV_USE_REALTIME
44# define EV_USE_REALTIME 1 57# define EV_USE_REALTIME 1
45# endif 58# endif
59# else
60# ifndef EV_USE_MONOTONIC
61# define EV_USE_MONOTONIC 0
62# endif
63# ifndef EV_USE_REALTIME
64# define EV_USE_REALTIME 0
65# endif
46# endif 66# endif
47 67
48# if HAVE_SELECT && HAVE_SYS_SELECT_H && !defined (EV_USE_SELECT) 68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
49# define EV_USE_SELECT 1 70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
73# endif
50# endif 74# endif
51 75
52# if HAVE_POLL && HAVE_POLL_H && !defined (EV_USE_POLL) 76# ifndef EV_USE_SELECT
77# if HAVE_SELECT && HAVE_SYS_SELECT_H
53# define EV_USE_POLL 1 78# define EV_USE_SELECT 1
79# else
80# define EV_USE_SELECT 0
81# endif
54# endif 82# endif
55 83
56# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H && !defined (EV_USE_EPOLL) 84# ifndef EV_USE_POLL
85# if HAVE_POLL && HAVE_POLL_H
57# define EV_USE_EPOLL 1 86# define EV_USE_POLL 1
87# else
88# define EV_USE_POLL 0
89# endif
58# endif 90# endif
59 91
60# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H && !defined (EV_USE_KQUEUE) 92# ifndef EV_USE_EPOLL
93# if HAVE_EPOLL_CTL && HAVE_SYS_EPOLL_H
61# define EV_USE_KQUEUE 1 94# define EV_USE_EPOLL 1
95# else
96# define EV_USE_EPOLL 0
97# endif
62# endif 98# endif
63 99
64# if HAVE_PORT_H && HAVE_PORT_CREATE && !defined (EV_USE_PORT) 100# ifndef EV_USE_KQUEUE
101# if HAVE_KQUEUE && HAVE_SYS_EVENT_H && HAVE_SYS_QUEUE_H
65# define EV_USE_PORT 1 102# define EV_USE_KQUEUE 1
103# else
104# define EV_USE_KQUEUE 0
105# endif
66# endif 106# endif
107
108# ifndef EV_USE_PORT
109# if HAVE_PORT_H && HAVE_PORT_CREATE
110# define EV_USE_PORT 1
111# else
112# define EV_USE_PORT 0
113# endif
114# endif
67 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
68#endif 132#endif
69 133
70#include <math.h> 134#include <math.h>
71#include <stdlib.h> 135#include <stdlib.h>
72#include <fcntl.h> 136#include <fcntl.h>
79#include <sys/types.h> 143#include <sys/types.h>
80#include <time.h> 144#include <time.h>
81 145
82#include <signal.h> 146#include <signal.h>
83 147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
153
84#ifndef _WIN32 154#ifndef _WIN32
85# include <unistd.h>
86# include <sys/time.h> 155# include <sys/time.h>
87# include <sys/wait.h> 156# include <sys/wait.h>
157# include <unistd.h>
88#else 158#else
89# define WIN32_LEAN_AND_MEAN 159# define WIN32_LEAN_AND_MEAN
90# include <windows.h> 160# include <windows.h>
91# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
92# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
93# endif 163# endif
94#endif 164#endif
95 165
96/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
97 167
98#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
99# define EV_USE_MONOTONIC 1 169# define EV_USE_MONOTONIC 0
100#endif 170#endif
101 171
102#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
103# define EV_USE_REALTIME 1 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
104#endif 178#endif
105 179
106#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
107# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
108# define EV_SELECT_USE_FD_SET 1
109#endif 182#endif
110 183
111#ifndef EV_USE_POLL 184#ifndef EV_USE_POLL
112# ifdef _WIN32 185# ifdef _WIN32
113# define EV_USE_POLL 0 186# define EV_USE_POLL 0
115# define EV_USE_POLL 1 188# define EV_USE_POLL 1
116# endif 189# endif
117#endif 190#endif
118 191
119#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
120# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
121#endif 198#endif
122 199
123#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
124# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
125#endif 202#endif
126 203
127#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
128# define EV_USE_PORT 0 205# define EV_USE_PORT 0
129#endif 206#endif
130 207
131/**/ 208#ifndef EV_USE_INOTIFY
132 209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
133/* darwin simply cannot be helped */ 210# define EV_USE_INOTIFY 1
134#ifdef __APPLE__ 211# else
135# undef EV_USE_POLL 212# define EV_USE_INOTIFY 0
136# undef EV_USE_KQUEUE
137#endif 213# endif
214#endif
215
216#ifndef EV_PID_HASHSIZE
217# if EV_MINIMAL
218# define EV_PID_HASHSIZE 1
219# else
220# define EV_PID_HASHSIZE 16
221# endif
222#endif
223
224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
138 241
139#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
140# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
141# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
142#endif 245#endif
144#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
145# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
146# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
147#endif 250#endif
148 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
149#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
150# include <winsock.h> 268# include <winsock.h>
151#endif 269#endif
152 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
153/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
154 294
155#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
156#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
157#define PID_HASHSIZE 16 /* size of pid hash table, must be power of two */
158/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
159 298
160#ifdef EV_H
161# include EV_H
162#else
163# include "ev.h"
164#endif
165
166#if __GNUC__ >= 3 299#if __GNUC__ >= 4
167# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
168# define inline inline 301# define noinline __attribute__ ((noinline))
169#else 302#else
170# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
171# define inline static 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
172#endif 308#endif
173 309
174#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
175#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
176 319
177#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
178#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
179 322
180#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
181#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
182 325
183typedef struct ev_watcher *W; 326typedef ev_watcher *W;
184typedef struct ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
185typedef struct ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
186 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
187static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
188 338
189#ifdef _WIN32 339#ifdef _WIN32
190# include "ev_win32.c" 340# include "ev_win32.c"
191#endif 341#endif
192 342
193/*****************************************************************************/ 343/*****************************************************************************/
194 344
195static void (*syserr_cb)(const char *msg); 345static void (*syserr_cb)(const char *msg);
196 346
347void
197void ev_set_syserr_cb (void (*cb)(const char *msg)) 348ev_set_syserr_cb (void (*cb)(const char *msg))
198{ 349{
199 syserr_cb = cb; 350 syserr_cb = cb;
200} 351}
201 352
202static void 353static void noinline
203syserr (const char *msg) 354syserr (const char *msg)
204{ 355{
205 if (!msg) 356 if (!msg)
206 msg = "(libev) system error"; 357 msg = "(libev) system error";
207 358
212 perror (msg); 363 perror (msg);
213 abort (); 364 abort ();
214 } 365 }
215} 366}
216 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
217static void *(*alloc)(void *ptr, long size); 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
218 384
385void
219void ev_set_allocator (void *(*cb)(void *ptr, long size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
220{ 387{
221 alloc = cb; 388 alloc = cb;
222} 389}
223 390
224static void * 391inline_speed void *
225ev_realloc (void *ptr, long size) 392ev_realloc (void *ptr, long size)
226{ 393{
227 ptr = alloc ? alloc (ptr, size) : realloc (ptr, size); 394 ptr = alloc (ptr, size);
228 395
229 if (!ptr && size) 396 if (!ptr && size)
230 { 397 {
231 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
232 abort (); 399 abort ();
253typedef struct 420typedef struct
254{ 421{
255 W w; 422 W w;
256 int events; 423 int events;
257} ANPENDING; 424} ANPENDING;
425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
258 432
259#if EV_MULTIPLICITY 433#if EV_MULTIPLICITY
260 434
261 struct ev_loop 435 struct ev_loop
262 { 436 {
296 gettimeofday (&tv, 0); 470 gettimeofday (&tv, 0);
297 return tv.tv_sec + tv.tv_usec * 1e-6; 471 return tv.tv_sec + tv.tv_usec * 1e-6;
298#endif 472#endif
299} 473}
300 474
301inline ev_tstamp 475ev_tstamp inline_size
302get_clock (void) 476get_clock (void)
303{ 477{
304#if EV_USE_MONOTONIC 478#if EV_USE_MONOTONIC
305 if (expect_true (have_monotonic)) 479 if (expect_true (have_monotonic))
306 { 480 {
319{ 493{
320 return ev_rt_now; 494 return ev_rt_now;
321} 495}
322#endif 496#endif
323 497
324#define array_roundsize(type,n) (((n) | 4) & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525int inline_size
526array_nextsize (int elem, int cur, int cnt)
527{
528 int ncur = cur + 1;
529
530 do
531 ncur <<= 1;
532 while (cnt > ncur);
533
534 /* if size > 4096, round to 4096 - 4 * longs to accomodate malloc overhead */
535 if (elem * ncur > 4096)
536 {
537 ncur *= elem;
538 ncur = (ncur + elem + 4095 + sizeof (void *) * 4) & ~4095;
539 ncur = ncur - sizeof (void *) * 4;
540 ncur /= elem;
541 }
542
543 return ncur;
544}
545
546static noinline void *
547array_realloc (int elem, void *base, int *cur, int cnt)
548{
549 *cur = array_nextsize (elem, *cur, cnt);
550 return ev_realloc (base, elem * *cur);
551}
325 552
326#define array_needsize(type,base,cur,cnt,init) \ 553#define array_needsize(type,base,cur,cnt,init) \
327 if (expect_false ((cnt) > cur)) \ 554 if (expect_false ((cnt) > (cur))) \
328 { \ 555 { \
329 int newcnt = cur; \ 556 int ocur_ = (cur); \
330 do \ 557 (base) = (type *)array_realloc \
331 { \ 558 (sizeof (type), (base), &(cur), (cnt)); \
332 newcnt = array_roundsize (type, newcnt << 1); \ 559 init ((base) + (ocur_), (cur) - ocur_); \
333 } \
334 while ((cnt) > newcnt); \
335 \
336 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
337 init (base + cur, newcnt - cur); \
338 cur = newcnt; \
339 } 560 }
340 561
562#if 0
341#define array_slim(type,stem) \ 563#define array_slim(type,stem) \
342 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 564 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
343 { \ 565 { \
344 stem ## max = array_roundsize (stem ## cnt >> 1); \ 566 stem ## max = array_roundsize (stem ## cnt >> 1); \
345 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 567 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
346 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 568 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
347 } 569 }
570#endif
348 571
349#define array_free(stem, idx) \ 572#define array_free(stem, idx) \
350 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 573 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
351 574
352/*****************************************************************************/ 575/*****************************************************************************/
353 576
354static void 577void noinline
578ev_feed_event (EV_P_ void *w, int revents)
579{
580 W w_ = (W)w;
581 int pri = ABSPRI (w_);
582
583 if (expect_false (w_->pending))
584 pendings [pri][w_->pending - 1].events |= revents;
585 else
586 {
587 w_->pending = ++pendingcnt [pri];
588 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
589 pendings [pri][w_->pending - 1].w = w_;
590 pendings [pri][w_->pending - 1].events = revents;
591 }
592}
593
594void inline_speed
595queue_events (EV_P_ W *events, int eventcnt, int type)
596{
597 int i;
598
599 for (i = 0; i < eventcnt; ++i)
600 ev_feed_event (EV_A_ events [i], type);
601}
602
603/*****************************************************************************/
604
605void inline_size
355anfds_init (ANFD *base, int count) 606anfds_init (ANFD *base, int count)
356{ 607{
357 while (count--) 608 while (count--)
358 { 609 {
359 base->head = 0; 610 base->head = 0;
362 613
363 ++base; 614 ++base;
364 } 615 }
365} 616}
366 617
367void 618void inline_speed
368ev_feed_event (EV_P_ void *w, int revents)
369{
370 W w_ = (W)w;
371
372 if (w_->pending)
373 {
374 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents;
375 return;
376 }
377
378 w_->pending = ++pendingcnt [ABSPRI (w_)];
379 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
380 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
381 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
382}
383
384static void
385queue_events (EV_P_ W *events, int eventcnt, int type)
386{
387 int i;
388
389 for (i = 0; i < eventcnt; ++i)
390 ev_feed_event (EV_A_ events [i], type);
391}
392
393inline void
394fd_event (EV_P_ int fd, int revents) 619fd_event (EV_P_ int fd, int revents)
395{ 620{
396 ANFD *anfd = anfds + fd; 621 ANFD *anfd = anfds + fd;
397 struct ev_io *w; 622 ev_io *w;
398 623
399 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 624 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
400 { 625 {
401 int ev = w->events & revents; 626 int ev = w->events & revents;
402 627
403 if (ev) 628 if (ev)
404 ev_feed_event (EV_A_ (W)w, ev); 629 ev_feed_event (EV_A_ (W)w, ev);
406} 631}
407 632
408void 633void
409ev_feed_fd_event (EV_P_ int fd, int revents) 634ev_feed_fd_event (EV_P_ int fd, int revents)
410{ 635{
636 if (fd >= 0 && fd < anfdmax)
411 fd_event (EV_A_ fd, revents); 637 fd_event (EV_A_ fd, revents);
412} 638}
413 639
414/*****************************************************************************/ 640void inline_size
415
416static void
417fd_reify (EV_P) 641fd_reify (EV_P)
418{ 642{
419 int i; 643 int i;
420 644
421 for (i = 0; i < fdchangecnt; ++i) 645 for (i = 0; i < fdchangecnt; ++i)
422 { 646 {
423 int fd = fdchanges [i]; 647 int fd = fdchanges [i];
424 ANFD *anfd = anfds + fd; 648 ANFD *anfd = anfds + fd;
425 struct ev_io *w; 649 ev_io *w;
426 650
427 int events = 0; 651 unsigned char events = 0;
428 652
429 for (w = (struct ev_io *)anfd->head; w; w = (struct ev_io *)((WL)w)->next) 653 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
430 events |= w->events; 654 events |= (unsigned char)w->events;
431 655
432#if EV_SELECT_IS_WINSOCKET 656#if EV_SELECT_IS_WINSOCKET
433 if (events) 657 if (events)
434 { 658 {
435 unsigned long argp; 659 unsigned long argp;
660 #ifdef EV_FD_TO_WIN32_HANDLE
661 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
662 #else
436 anfd->handle = _get_osfhandle (fd); 663 anfd->handle = _get_osfhandle (fd);
664 #endif
437 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 665 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
438 } 666 }
439#endif 667#endif
440 668
669 {
670 unsigned char o_events = anfd->events;
671 unsigned char o_reify = anfd->reify;
672
441 anfd->reify = 0; 673 anfd->reify = 0;
442
443 method_modify (EV_A_ fd, anfd->events, events);
444 anfd->events = events; 674 anfd->events = events;
675
676 if (o_events != events || o_reify & EV_IOFDSET)
677 backend_modify (EV_A_ fd, o_events, events);
678 }
445 } 679 }
446 680
447 fdchangecnt = 0; 681 fdchangecnt = 0;
448} 682}
449 683
450static void 684void inline_size
451fd_change (EV_P_ int fd) 685fd_change (EV_P_ int fd, int flags)
452{ 686{
453 if (anfds [fd].reify) 687 unsigned char reify = anfds [fd].reify;
454 return;
455
456 anfds [fd].reify = 1; 688 anfds [fd].reify |= flags;
457 689
690 if (expect_true (!reify))
691 {
458 ++fdchangecnt; 692 ++fdchangecnt;
459 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 693 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
460 fdchanges [fdchangecnt - 1] = fd; 694 fdchanges [fdchangecnt - 1] = fd;
695 }
461} 696}
462 697
463static void 698void inline_speed
464fd_kill (EV_P_ int fd) 699fd_kill (EV_P_ int fd)
465{ 700{
466 struct ev_io *w; 701 ev_io *w;
467 702
468 while ((w = (struct ev_io *)anfds [fd].head)) 703 while ((w = (ev_io *)anfds [fd].head))
469 { 704 {
470 ev_io_stop (EV_A_ w); 705 ev_io_stop (EV_A_ w);
471 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE); 706 ev_feed_event (EV_A_ (W)w, EV_ERROR | EV_READ | EV_WRITE);
472 } 707 }
473} 708}
474 709
475static int 710int inline_size
476fd_valid (int fd) 711fd_valid (int fd)
477{ 712{
478#ifdef _WIN32 713#ifdef _WIN32
479 return _get_osfhandle (fd) != -1; 714 return _get_osfhandle (fd) != -1;
480#else 715#else
481 return fcntl (fd, F_GETFD) != -1; 716 return fcntl (fd, F_GETFD) != -1;
482#endif 717#endif
483} 718}
484 719
485/* called on EBADF to verify fds */ 720/* called on EBADF to verify fds */
486static void 721static void noinline
487fd_ebadf (EV_P) 722fd_ebadf (EV_P)
488{ 723{
489 int fd; 724 int fd;
490 725
491 for (fd = 0; fd < anfdmax; ++fd) 726 for (fd = 0; fd < anfdmax; ++fd)
493 if (!fd_valid (fd) == -1 && errno == EBADF) 728 if (!fd_valid (fd) == -1 && errno == EBADF)
494 fd_kill (EV_A_ fd); 729 fd_kill (EV_A_ fd);
495} 730}
496 731
497/* called on ENOMEM in select/poll to kill some fds and retry */ 732/* called on ENOMEM in select/poll to kill some fds and retry */
498static void 733static void noinline
499fd_enomem (EV_P) 734fd_enomem (EV_P)
500{ 735{
501 int fd; 736 int fd;
502 737
503 for (fd = anfdmax; fd--; ) 738 for (fd = anfdmax; fd--; )
506 fd_kill (EV_A_ fd); 741 fd_kill (EV_A_ fd);
507 return; 742 return;
508 } 743 }
509} 744}
510 745
511/* usually called after fork if method needs to re-arm all fds from scratch */ 746/* usually called after fork if backend needs to re-arm all fds from scratch */
512static void 747static void noinline
513fd_rearm_all (EV_P) 748fd_rearm_all (EV_P)
514{ 749{
515 int fd; 750 int fd;
516 751
517 /* this should be highly optimised to not do anything but set a flag */
518 for (fd = 0; fd < anfdmax; ++fd) 752 for (fd = 0; fd < anfdmax; ++fd)
519 if (anfds [fd].events) 753 if (anfds [fd].events)
520 { 754 {
521 anfds [fd].events = 0; 755 anfds [fd].events = 0;
522 fd_change (EV_A_ fd); 756 fd_change (EV_A_ fd, EV_IOFDSET | 1);
523 } 757 }
524} 758}
525 759
526/*****************************************************************************/ 760/*****************************************************************************/
527 761
528static void 762/* towards the root */
763void inline_speed
529upheap (WT *heap, int k) 764upheap (WT *heap, int k)
530{ 765{
531 WT w = heap [k]; 766 WT w = heap [k];
532 767
533 while (k && heap [k >> 1]->at > w->at) 768 for (;;)
534 { 769 {
770 int p = k >> 1;
771
772 /* maybe we could use a dummy element at heap [0]? */
773 if (!p || heap [p]->at <= w->at)
774 break;
775
535 heap [k] = heap [k >> 1]; 776 heap [k] = heap [p];
536 ((W)heap [k])->active = k + 1; 777 ev_active (heap [k]) = k;
537 k >>= 1; 778 k = p;
538 } 779 }
539 780
540 heap [k] = w; 781 heap [k] = w;
541 ((W)heap [k])->active = k + 1; 782 ev_active (heap [k]) = k;
542
543} 783}
544 784
545static void 785/* away from the root */
786void inline_speed
546downheap (WT *heap, int N, int k) 787downheap (WT *heap, int N, int k)
547{ 788{
548 WT w = heap [k]; 789 WT w = heap [k];
549 790
550 while (k < (N >> 1)) 791 for (;;)
551 { 792 {
552 int j = k << 1; 793 int c = k << 1;
553 794
554 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 795 if (c > N)
555 ++j;
556
557 if (w->at <= heap [j]->at)
558 break; 796 break;
559 797
798 c += c < N && heap [c]->at > heap [c + 1]->at
799 ? 1 : 0;
800
801 if (w->at <= heap [c]->at)
802 break;
803
560 heap [k] = heap [j]; 804 heap [k] = heap [c];
561 ((W)heap [k])->active = k + 1; 805 ev_active (heap [k]) = k;
806
562 k = j; 807 k = c;
563 } 808 }
564 809
565 heap [k] = w; 810 heap [k] = w;
566 ((W)heap [k])->active = k + 1; 811 ev_active (heap [k]) = k;
567} 812}
568 813
569inline void 814void inline_size
570adjustheap (WT *heap, int N, int k) 815adjustheap (WT *heap, int N, int k)
571{ 816{
572 upheap (heap, k); 817 upheap (heap, k);
573 downheap (heap, N, k); 818 downheap (heap, N, k);
574} 819}
576/*****************************************************************************/ 821/*****************************************************************************/
577 822
578typedef struct 823typedef struct
579{ 824{
580 WL head; 825 WL head;
581 sig_atomic_t volatile gotsig; 826 EV_ATOMIC_T gotsig;
582} ANSIG; 827} ANSIG;
583 828
584static ANSIG *signals; 829static ANSIG *signals;
585static int signalmax; 830static int signalmax;
586 831
587static int sigpipe [2]; 832static EV_ATOMIC_T gotsig;
588static sig_atomic_t volatile gotsig;
589static struct ev_io sigev;
590 833
591static void 834void inline_size
592signals_init (ANSIG *base, int count) 835signals_init (ANSIG *base, int count)
593{ 836{
594 while (count--) 837 while (count--)
595 { 838 {
596 base->head = 0; 839 base->head = 0;
598 841
599 ++base; 842 ++base;
600 } 843 }
601} 844}
602 845
603static void 846/*****************************************************************************/
604sighandler (int signum)
605{
606#if _WIN32
607 signal (signum, sighandler);
608#endif
609 847
610 signals [signum - 1].gotsig = 1; 848void inline_speed
611
612 if (!gotsig)
613 {
614 int old_errno = errno;
615 gotsig = 1;
616 write (sigpipe [1], &signum, 1);
617 errno = old_errno;
618 }
619}
620
621void
622ev_feed_signal_event (EV_P_ int signum)
623{
624 WL w;
625
626#if EV_MULTIPLICITY
627 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
628#endif
629
630 --signum;
631
632 if (signum < 0 || signum >= signalmax)
633 return;
634
635 signals [signum].gotsig = 0;
636
637 for (w = signals [signum].head; w; w = w->next)
638 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
639}
640
641static void
642sigcb (EV_P_ struct ev_io *iow, int revents)
643{
644 int signum;
645
646 read (sigpipe [0], &revents, 1);
647 gotsig = 0;
648
649 for (signum = signalmax; signum--; )
650 if (signals [signum].gotsig)
651 ev_feed_signal_event (EV_A_ signum + 1);
652}
653
654inline void
655fd_intern (int fd) 849fd_intern (int fd)
656{ 850{
657#ifdef _WIN32 851#ifdef _WIN32
658 int arg = 1; 852 int arg = 1;
659 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 853 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
661 fcntl (fd, F_SETFD, FD_CLOEXEC); 855 fcntl (fd, F_SETFD, FD_CLOEXEC);
662 fcntl (fd, F_SETFL, O_NONBLOCK); 856 fcntl (fd, F_SETFL, O_NONBLOCK);
663#endif 857#endif
664} 858}
665 859
860static void noinline
861evpipe_init (EV_P)
862{
863 if (!ev_is_active (&pipeev))
864 {
865#if EV_USE_EVENTFD
866 if ((evfd = eventfd (0, 0)) >= 0)
867 {
868 evpipe [0] = -1;
869 fd_intern (evfd);
870 ev_io_set (&pipeev, evfd, EV_READ);
871 }
872 else
873#endif
874 {
875 while (pipe (evpipe))
876 syserr ("(libev) error creating signal/async pipe");
877
878 fd_intern (evpipe [0]);
879 fd_intern (evpipe [1]);
880 ev_io_set (&pipeev, evpipe [0], EV_READ);
881 }
882
883 ev_io_start (EV_A_ &pipeev);
884 ev_unref (EV_A); /* watcher should not keep loop alive */
885 }
886}
887
888void inline_size
889evpipe_write (EV_P_ EV_ATOMIC_T *flag)
890{
891 if (!*flag)
892 {
893 int old_errno = errno; /* save errno because write might clobber it */
894
895 *flag = 1;
896
897#if EV_USE_EVENTFD
898 if (evfd >= 0)
899 {
900 uint64_t counter = 1;
901 write (evfd, &counter, sizeof (uint64_t));
902 }
903 else
904#endif
905 write (evpipe [1], &old_errno, 1);
906
907 errno = old_errno;
908 }
909}
910
666static void 911static void
667siginit (EV_P) 912pipecb (EV_P_ ev_io *iow, int revents)
668{ 913{
669 fd_intern (sigpipe [0]); 914#if EV_USE_EVENTFD
670 fd_intern (sigpipe [1]); 915 if (evfd >= 0)
916 {
917 uint64_t counter = 1;
918 read (evfd, &counter, sizeof (uint64_t));
919 }
920 else
921#endif
922 {
923 char dummy;
924 read (evpipe [0], &dummy, 1);
925 }
671 926
672 ev_io_set (&sigev, sigpipe [0], EV_READ); 927 if (gotsig && ev_is_default_loop (EV_A))
673 ev_io_start (EV_A_ &sigev); 928 {
674 ev_unref (EV_A); /* child watcher should not keep loop alive */ 929 int signum;
930 gotsig = 0;
931
932 for (signum = signalmax; signum--; )
933 if (signals [signum].gotsig)
934 ev_feed_signal_event (EV_A_ signum + 1);
935 }
936
937#if EV_ASYNC_ENABLE
938 if (gotasync)
939 {
940 int i;
941 gotasync = 0;
942
943 for (i = asynccnt; i--; )
944 if (asyncs [i]->sent)
945 {
946 asyncs [i]->sent = 0;
947 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
948 }
949 }
950#endif
675} 951}
676 952
677/*****************************************************************************/ 953/*****************************************************************************/
678 954
679static struct ev_child *childs [PID_HASHSIZE]; 955static void
956ev_sighandler (int signum)
957{
958#if EV_MULTIPLICITY
959 struct ev_loop *loop = &default_loop_struct;
960#endif
961
962#if _WIN32
963 signal (signum, ev_sighandler);
964#endif
965
966 signals [signum - 1].gotsig = 1;
967 evpipe_write (EV_A_ &gotsig);
968}
969
970void noinline
971ev_feed_signal_event (EV_P_ int signum)
972{
973 WL w;
974
975#if EV_MULTIPLICITY
976 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
977#endif
978
979 --signum;
980
981 if (signum < 0 || signum >= signalmax)
982 return;
983
984 signals [signum].gotsig = 0;
985
986 for (w = signals [signum].head; w; w = w->next)
987 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
988}
989
990/*****************************************************************************/
991
992static WL childs [EV_PID_HASHSIZE];
680 993
681#ifndef _WIN32 994#ifndef _WIN32
682 995
683static struct ev_signal childev; 996static ev_signal childev;
997
998#ifndef WIFCONTINUED
999# define WIFCONTINUED(status) 0
1000#endif
1001
1002void inline_speed
1003child_reap (EV_P_ int chain, int pid, int status)
1004{
1005 ev_child *w;
1006 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
1007
1008 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1009 {
1010 if ((w->pid == pid || !w->pid)
1011 && (!traced || (w->flags & 1)))
1012 {
1013 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
1014 w->rpid = pid;
1015 w->rstatus = status;
1016 ev_feed_event (EV_A_ (W)w, EV_CHILD);
1017 }
1018 }
1019}
684 1020
685#ifndef WCONTINUED 1021#ifndef WCONTINUED
686# define WCONTINUED 0 1022# define WCONTINUED 0
687#endif 1023#endif
688 1024
689static void 1025static void
690child_reap (EV_P_ struct ev_signal *sw, int chain, int pid, int status)
691{
692 struct ev_child *w;
693
694 for (w = (struct ev_child *)childs [chain & (PID_HASHSIZE - 1)]; w; w = (struct ev_child *)((WL)w)->next)
695 if (w->pid == pid || !w->pid)
696 {
697 ev_priority (w) = ev_priority (sw); /* need to do it *now* */
698 w->rpid = pid;
699 w->rstatus = status;
700 ev_feed_event (EV_A_ (W)w, EV_CHILD);
701 }
702}
703
704static void
705childcb (EV_P_ struct ev_signal *sw, int revents) 1026childcb (EV_P_ ev_signal *sw, int revents)
706{ 1027{
707 int pid, status; 1028 int pid, status;
708 1029
1030 /* some systems define WCONTINUED but then fail to support it (linux 2.4) */
709 if (0 < (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED))) 1031 if (0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED | WCONTINUED)))
710 { 1032 if (!WCONTINUED
1033 || errno != EINVAL
1034 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
1035 return;
1036
711 /* make sure we are called again until all childs have been reaped */ 1037 /* make sure we are called again until all children have been reaped */
1038 /* we need to do it this way so that the callback gets called before we continue */
712 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1039 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
713 1040
714 child_reap (EV_A_ sw, pid, pid, status); 1041 child_reap (EV_A_ pid, pid, status);
1042 if (EV_PID_HASHSIZE > 1)
715 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but event catches that */ 1043 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
716 }
717} 1044}
718 1045
719#endif 1046#endif
720 1047
721/*****************************************************************************/ 1048/*****************************************************************************/
747{ 1074{
748 return EV_VERSION_MINOR; 1075 return EV_VERSION_MINOR;
749} 1076}
750 1077
751/* return true if we are running with elevated privileges and should ignore env variables */ 1078/* return true if we are running with elevated privileges and should ignore env variables */
752static int 1079int inline_size
753enable_secure (void) 1080enable_secure (void)
754{ 1081{
755#ifdef _WIN32 1082#ifdef _WIN32
756 return 0; 1083 return 0;
757#else 1084#else
759 || getgid () != getegid (); 1086 || getgid () != getegid ();
760#endif 1087#endif
761} 1088}
762 1089
763unsigned int 1090unsigned int
764ev_method (EV_P) 1091ev_supported_backends (void)
765{ 1092{
766 return method; 1093 unsigned int flags = 0;
767}
768 1094
769static void 1095 if (EV_USE_PORT ) flags |= EVBACKEND_PORT;
1096 if (EV_USE_KQUEUE) flags |= EVBACKEND_KQUEUE;
1097 if (EV_USE_EPOLL ) flags |= EVBACKEND_EPOLL;
1098 if (EV_USE_POLL ) flags |= EVBACKEND_POLL;
1099 if (EV_USE_SELECT) flags |= EVBACKEND_SELECT;
1100
1101 return flags;
1102}
1103
1104unsigned int
1105ev_recommended_backends (void)
1106{
1107 unsigned int flags = ev_supported_backends ();
1108
1109#ifndef __NetBSD__
1110 /* kqueue is borked on everything but netbsd apparently */
1111 /* it usually doesn't work correctly on anything but sockets and pipes */
1112 flags &= ~EVBACKEND_KQUEUE;
1113#endif
1114#ifdef __APPLE__
1115 // flags &= ~EVBACKEND_KQUEUE; for documentation
1116 flags &= ~EVBACKEND_POLL;
1117#endif
1118
1119 return flags;
1120}
1121
1122unsigned int
1123ev_embeddable_backends (void)
1124{
1125 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
1126
1127 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1128 /* please fix it and tell me how to detect the fix */
1129 flags &= ~EVBACKEND_EPOLL;
1130
1131 return flags;
1132}
1133
1134unsigned int
1135ev_backend (EV_P)
1136{
1137 return backend;
1138}
1139
1140unsigned int
1141ev_loop_count (EV_P)
1142{
1143 return loop_count;
1144}
1145
1146void
1147ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1148{
1149 io_blocktime = interval;
1150}
1151
1152void
1153ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1154{
1155 timeout_blocktime = interval;
1156}
1157
1158static void noinline
770loop_init (EV_P_ unsigned int flags) 1159loop_init (EV_P_ unsigned int flags)
771{ 1160{
772 if (!method) 1161 if (!backend)
773 { 1162 {
774#if EV_USE_MONOTONIC 1163#if EV_USE_MONOTONIC
775 { 1164 {
776 struct timespec ts; 1165 struct timespec ts;
777 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1166 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
778 have_monotonic = 1; 1167 have_monotonic = 1;
779 } 1168 }
780#endif 1169#endif
781 1170
782 ev_rt_now = ev_time (); 1171 ev_rt_now = ev_time ();
783 mn_now = get_clock (); 1172 mn_now = get_clock ();
784 now_floor = mn_now; 1173 now_floor = mn_now;
785 rtmn_diff = ev_rt_now - mn_now; 1174 rtmn_diff = ev_rt_now - mn_now;
786 1175
787 if (!(flags & EVFLAG_NOENV) && !enable_secure () && getenv ("LIBEV_FLAGS")) 1176 io_blocktime = 0.;
1177 timeout_blocktime = 0.;
1178 backend = 0;
1179 backend_fd = -1;
1180 gotasync = 0;
1181#if EV_USE_INOTIFY
1182 fs_fd = -2;
1183#endif
1184
1185 /* pid check not overridable via env */
1186#ifndef _WIN32
1187 if (flags & EVFLAG_FORKCHECK)
1188 curpid = getpid ();
1189#endif
1190
1191 if (!(flags & EVFLAG_NOENV)
1192 && !enable_secure ()
1193 && getenv ("LIBEV_FLAGS"))
788 flags = atoi (getenv ("LIBEV_FLAGS")); 1194 flags = atoi (getenv ("LIBEV_FLAGS"));
789 1195
790 if (!(flags & 0x0000ffff)) 1196 if (!(flags & 0x0000ffffU))
791 flags |= 0x0000ffff; 1197 flags |= ev_recommended_backends ();
792 1198
793 method = 0;
794#if EV_USE_PORT 1199#if EV_USE_PORT
795 if (!method && (flags & EVMETHOD_PORT )) method = port_init (EV_A_ flags); 1200 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
796#endif 1201#endif
797#if EV_USE_KQUEUE 1202#if EV_USE_KQUEUE
798 if (!method && (flags & EVMETHOD_KQUEUE)) method = kqueue_init (EV_A_ flags); 1203 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
799#endif 1204#endif
800#if EV_USE_EPOLL 1205#if EV_USE_EPOLL
801 if (!method && (flags & EVMETHOD_EPOLL )) method = epoll_init (EV_A_ flags); 1206 if (!backend && (flags & EVBACKEND_EPOLL )) backend = epoll_init (EV_A_ flags);
802#endif 1207#endif
803#if EV_USE_POLL 1208#if EV_USE_POLL
804 if (!method && (flags & EVMETHOD_POLL )) method = poll_init (EV_A_ flags); 1209 if (!backend && (flags & EVBACKEND_POLL )) backend = poll_init (EV_A_ flags);
805#endif 1210#endif
806#if EV_USE_SELECT 1211#if EV_USE_SELECT
807 if (!method && (flags & EVMETHOD_SELECT)) method = select_init (EV_A_ flags); 1212 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
808#endif 1213#endif
809 1214
810 ev_init (&sigev, sigcb); 1215 ev_init (&pipeev, pipecb);
811 ev_set_priority (&sigev, EV_MAXPRI); 1216 ev_set_priority (&pipeev, EV_MAXPRI);
812 } 1217 }
813} 1218}
814 1219
815void 1220static void noinline
816loop_destroy (EV_P) 1221loop_destroy (EV_P)
817{ 1222{
818 int i; 1223 int i;
819 1224
1225 if (ev_is_active (&pipeev))
1226 {
1227 ev_ref (EV_A); /* signal watcher */
1228 ev_io_stop (EV_A_ &pipeev);
1229
1230#if EV_USE_EVENTFD
1231 if (evfd >= 0)
1232 close (evfd);
1233#endif
1234
1235 if (evpipe [0] >= 0)
1236 {
1237 close (evpipe [0]);
1238 close (evpipe [1]);
1239 }
1240 }
1241
1242#if EV_USE_INOTIFY
1243 if (fs_fd >= 0)
1244 close (fs_fd);
1245#endif
1246
1247 if (backend_fd >= 0)
1248 close (backend_fd);
1249
820#if EV_USE_PORT 1250#if EV_USE_PORT
821 if (method == EVMETHOD_PORT ) port_destroy (EV_A); 1251 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
822#endif 1252#endif
823#if EV_USE_KQUEUE 1253#if EV_USE_KQUEUE
824 if (method == EVMETHOD_KQUEUE) kqueue_destroy (EV_A); 1254 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
825#endif 1255#endif
826#if EV_USE_EPOLL 1256#if EV_USE_EPOLL
827 if (method == EVMETHOD_EPOLL ) epoll_destroy (EV_A); 1257 if (backend == EVBACKEND_EPOLL ) epoll_destroy (EV_A);
828#endif 1258#endif
829#if EV_USE_POLL 1259#if EV_USE_POLL
830 if (method == EVMETHOD_POLL ) poll_destroy (EV_A); 1260 if (backend == EVBACKEND_POLL ) poll_destroy (EV_A);
831#endif 1261#endif
832#if EV_USE_SELECT 1262#if EV_USE_SELECT
833 if (method == EVMETHOD_SELECT) select_destroy (EV_A); 1263 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
834#endif 1264#endif
835 1265
836 for (i = NUMPRI; i--; ) 1266 for (i = NUMPRI; i--; )
1267 {
837 array_free (pending, [i]); 1268 array_free (pending, [i]);
1269#if EV_IDLE_ENABLE
1270 array_free (idle, [i]);
1271#endif
1272 }
1273
1274 ev_free (anfds); anfdmax = 0;
838 1275
839 /* have to use the microsoft-never-gets-it-right macro */ 1276 /* have to use the microsoft-never-gets-it-right macro */
840 array_free (fdchange, EMPTY0); 1277 array_free (fdchange, EMPTY);
841 array_free (timer, EMPTY0); 1278 array_free (timer, EMPTY);
842#if EV_PERIODICS 1279#if EV_PERIODIC_ENABLE
843 array_free (periodic, EMPTY0); 1280 array_free (periodic, EMPTY);
844#endif 1281#endif
1282#if EV_FORK_ENABLE
845 array_free (idle, EMPTY0); 1283 array_free (fork, EMPTY);
1284#endif
846 array_free (prepare, EMPTY0); 1285 array_free (prepare, EMPTY);
847 array_free (check, EMPTY0); 1286 array_free (check, EMPTY);
1287#if EV_ASYNC_ENABLE
1288 array_free (async, EMPTY);
1289#endif
848 1290
849 method = 0; 1291 backend = 0;
850} 1292}
851 1293
852static void 1294#if EV_USE_INOTIFY
1295void inline_size infy_fork (EV_P);
1296#endif
1297
1298void inline_size
853loop_fork (EV_P) 1299loop_fork (EV_P)
854{ 1300{
855#if EV_USE_PORT 1301#if EV_USE_PORT
856 if (method == EVMETHOD_PORT ) port_fork (EV_A); 1302 if (backend == EVBACKEND_PORT ) port_fork (EV_A);
857#endif 1303#endif
858#if EV_USE_KQUEUE 1304#if EV_USE_KQUEUE
859 if (method == EVMETHOD_KQUEUE) kqueue_fork (EV_A); 1305 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
860#endif 1306#endif
861#if EV_USE_EPOLL 1307#if EV_USE_EPOLL
862 if (method == EVMETHOD_EPOLL ) epoll_fork (EV_A); 1308 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
863#endif 1309#endif
1310#if EV_USE_INOTIFY
1311 infy_fork (EV_A);
1312#endif
864 1313
865 if (ev_is_active (&sigev)) 1314 if (ev_is_active (&pipeev))
866 { 1315 {
867 /* default loop */ 1316 /* this "locks" the handlers against writing to the pipe */
1317 /* while we modify the fd vars */
1318 gotsig = 1;
1319#if EV_ASYNC_ENABLE
1320 gotasync = 1;
1321#endif
868 1322
869 ev_ref (EV_A); 1323 ev_ref (EV_A);
870 ev_io_stop (EV_A_ &sigev); 1324 ev_io_stop (EV_A_ &pipeev);
1325
1326#if EV_USE_EVENTFD
1327 if (evfd >= 0)
1328 close (evfd);
1329#endif
1330
1331 if (evpipe [0] >= 0)
1332 {
871 close (sigpipe [0]); 1333 close (evpipe [0]);
872 close (sigpipe [1]); 1334 close (evpipe [1]);
1335 }
873 1336
874 while (pipe (sigpipe))
875 syserr ("(libev) error creating pipe");
876
877 siginit (EV_A); 1337 evpipe_init (EV_A);
1338 /* now iterate over everything, in case we missed something */
1339 pipecb (EV_A_ &pipeev, EV_READ);
878 } 1340 }
879 1341
880 postfork = 0; 1342 postfork = 0;
881} 1343}
882 1344
888 1350
889 memset (loop, 0, sizeof (struct ev_loop)); 1351 memset (loop, 0, sizeof (struct ev_loop));
890 1352
891 loop_init (EV_A_ flags); 1353 loop_init (EV_A_ flags);
892 1354
893 if (ev_method (EV_A)) 1355 if (ev_backend (EV_A))
894 return loop; 1356 return loop;
895 1357
896 return 0; 1358 return 0;
897} 1359}
898 1360
904} 1366}
905 1367
906void 1368void
907ev_loop_fork (EV_P) 1369ev_loop_fork (EV_P)
908{ 1370{
909 postfork = 1; 1371 postfork = 1; /* must be in line with ev_default_fork */
910} 1372}
911 1373
912#endif 1374#endif
913 1375
914#if EV_MULTIPLICITY 1376#if EV_MULTIPLICITY
915struct ev_loop * 1377struct ev_loop *
916ev_default_loop_ (unsigned int flags) 1378ev_default_loop_init (unsigned int flags)
917#else 1379#else
918int 1380int
919ev_default_loop (unsigned int flags) 1381ev_default_loop (unsigned int flags)
920#endif 1382#endif
921{ 1383{
922 if (sigpipe [0] == sigpipe [1])
923 if (pipe (sigpipe))
924 return 0;
925
926 if (!ev_default_loop_ptr) 1384 if (!ev_default_loop_ptr)
927 { 1385 {
928#if EV_MULTIPLICITY 1386#if EV_MULTIPLICITY
929 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1387 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
930#else 1388#else
931 ev_default_loop_ptr = 1; 1389 ev_default_loop_ptr = 1;
932#endif 1390#endif
933 1391
934 loop_init (EV_A_ flags); 1392 loop_init (EV_A_ flags);
935 1393
936 if (ev_method (EV_A)) 1394 if (ev_backend (EV_A))
937 { 1395 {
938 siginit (EV_A);
939
940#ifndef _WIN32 1396#ifndef _WIN32
941 ev_signal_init (&childev, childcb, SIGCHLD); 1397 ev_signal_init (&childev, childcb, SIGCHLD);
942 ev_set_priority (&childev, EV_MAXPRI); 1398 ev_set_priority (&childev, EV_MAXPRI);
943 ev_signal_start (EV_A_ &childev); 1399 ev_signal_start (EV_A_ &childev);
944 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1400 ev_unref (EV_A); /* child watcher should not keep loop alive */
961#ifndef _WIN32 1417#ifndef _WIN32
962 ev_ref (EV_A); /* child watcher */ 1418 ev_ref (EV_A); /* child watcher */
963 ev_signal_stop (EV_A_ &childev); 1419 ev_signal_stop (EV_A_ &childev);
964#endif 1420#endif
965 1421
966 ev_ref (EV_A); /* signal watcher */
967 ev_io_stop (EV_A_ &sigev);
968
969 close (sigpipe [0]); sigpipe [0] = 0;
970 close (sigpipe [1]); sigpipe [1] = 0;
971
972 loop_destroy (EV_A); 1422 loop_destroy (EV_A);
973} 1423}
974 1424
975void 1425void
976ev_default_fork (void) 1426ev_default_fork (void)
977{ 1427{
978#if EV_MULTIPLICITY 1428#if EV_MULTIPLICITY
979 struct ev_loop *loop = ev_default_loop_ptr; 1429 struct ev_loop *loop = ev_default_loop_ptr;
980#endif 1430#endif
981 1431
982 if (method) 1432 if (backend)
983 postfork = 1; 1433 postfork = 1; /* must be in line with ev_loop_fork */
984} 1434}
985 1435
986/*****************************************************************************/ 1436/*****************************************************************************/
987 1437
988static int 1438void
989any_pending (EV_P) 1439ev_invoke (EV_P_ void *w, int revents)
990{ 1440{
991 int pri; 1441 EV_CB_INVOKE ((W)w, revents);
992
993 for (pri = NUMPRI; pri--; )
994 if (pendingcnt [pri])
995 return 1;
996
997 return 0;
998} 1442}
999 1443
1000static void 1444void inline_speed
1001call_pending (EV_P) 1445call_pending (EV_P)
1002{ 1446{
1003 int pri; 1447 int pri;
1004 1448
1005 for (pri = NUMPRI; pri--; ) 1449 for (pri = NUMPRI; pri--; )
1006 while (pendingcnt [pri]) 1450 while (pendingcnt [pri])
1007 { 1451 {
1008 ANPENDING *p = pendings [pri] + --pendingcnt [pri]; 1452 ANPENDING *p = pendings [pri] + --pendingcnt [pri];
1009 1453
1010 if (p->w) 1454 if (expect_true (p->w))
1011 { 1455 {
1456 /*assert (("non-pending watcher on pending list", p->w->pending));*/
1457
1012 p->w->pending = 0; 1458 p->w->pending = 0;
1013 EV_CB_INVOKE (p->w, p->events); 1459 EV_CB_INVOKE (p->w, p->events);
1014 } 1460 }
1015 } 1461 }
1016} 1462}
1017 1463
1018static void 1464void inline_size
1019timers_reify (EV_P) 1465timers_reify (EV_P)
1020{ 1466{
1021 while (timercnt && ((WT)timers [0])->at <= mn_now) 1467 while (timercnt && ev_at (timers [1]) <= mn_now)
1022 { 1468 {
1023 struct ev_timer *w = timers [0]; 1469 ev_timer *w = (ev_timer *)timers [1];
1024 1470
1025 assert (("inactive timer on timer heap detected", ev_is_active (w))); 1471 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1026 1472
1027 /* first reschedule or stop timer */ 1473 /* first reschedule or stop timer */
1028 if (w->repeat) 1474 if (w->repeat)
1029 { 1475 {
1030 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1476 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1031 1477
1032 ((WT)w)->at += w->repeat; 1478 ev_at (w) += w->repeat;
1033 if (((WT)w)->at < mn_now) 1479 if (ev_at (w) < mn_now)
1034 ((WT)w)->at = mn_now; 1480 ev_at (w) = mn_now;
1035 1481
1036 downheap ((WT *)timers, timercnt, 0); 1482 downheap (timers, timercnt, 1);
1037 } 1483 }
1038 else 1484 else
1039 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1485 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1040 1486
1041 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1487 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1042 } 1488 }
1043} 1489}
1044 1490
1045#if EV_PERIODICS 1491#if EV_PERIODIC_ENABLE
1046static void 1492void inline_size
1047periodics_reify (EV_P) 1493periodics_reify (EV_P)
1048{ 1494{
1049 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1495 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1050 { 1496 {
1051 struct ev_periodic *w = periodics [0]; 1497 ev_periodic *w = (ev_periodic *)periodics [1];
1052 1498
1053 assert (("inactive timer on periodic heap detected", ev_is_active (w))); 1499 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1054 1500
1055 /* first reschedule or stop timer */ 1501 /* first reschedule or stop timer */
1056 if (w->reschedule_cb) 1502 if (w->reschedule_cb)
1057 { 1503 {
1058 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1504 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1059 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1505 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1060 downheap ((WT *)periodics, periodiccnt, 0); 1506 downheap (periodics, periodiccnt, 1);
1061 } 1507 }
1062 else if (w->interval) 1508 else if (w->interval)
1063 { 1509 {
1064 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1510 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1511 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1065 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1512 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1066 downheap ((WT *)periodics, periodiccnt, 0); 1513 downheap (periodics, periodiccnt, 1);
1067 } 1514 }
1068 else 1515 else
1069 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1516 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1070 1517
1071 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1518 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1072 } 1519 }
1073} 1520}
1074 1521
1075static void 1522static void noinline
1076periodics_reschedule (EV_P) 1523periodics_reschedule (EV_P)
1077{ 1524{
1078 int i; 1525 int i;
1079 1526
1080 /* adjust periodics after time jump */ 1527 /* adjust periodics after time jump */
1081 for (i = 0; i < periodiccnt; ++i) 1528 for (i = 1; i <= periodiccnt; ++i)
1082 { 1529 {
1083 struct ev_periodic *w = periodics [i]; 1530 ev_periodic *w = (ev_periodic *)periodics [i];
1084 1531
1085 if (w->reschedule_cb) 1532 if (w->reschedule_cb)
1086 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1533 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1087 else if (w->interval) 1534 else if (w->interval)
1088 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1535 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1089 } 1536 }
1090 1537
1091 /* now rebuild the heap */ 1538 /* now rebuild the heap */
1092 for (i = periodiccnt >> 1; i--; ) 1539 for (i = periodiccnt >> 1; i--; )
1093 downheap ((WT *)periodics, periodiccnt, i); 1540 downheap (periodics, periodiccnt, i);
1094} 1541}
1095#endif 1542#endif
1096 1543
1097inline int 1544#if EV_IDLE_ENABLE
1098time_update_monotonic (EV_P) 1545void inline_size
1546idle_reify (EV_P)
1099{ 1547{
1548 if (expect_false (idleall))
1549 {
1550 int pri;
1551
1552 for (pri = NUMPRI; pri--; )
1553 {
1554 if (pendingcnt [pri])
1555 break;
1556
1557 if (idlecnt [pri])
1558 {
1559 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1560 break;
1561 }
1562 }
1563 }
1564}
1565#endif
1566
1567void inline_speed
1568time_update (EV_P_ ev_tstamp max_block)
1569{
1570 int i;
1571
1572#if EV_USE_MONOTONIC
1573 if (expect_true (have_monotonic))
1574 {
1575 ev_tstamp odiff = rtmn_diff;
1576
1100 mn_now = get_clock (); 1577 mn_now = get_clock ();
1101 1578
1579 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1580 /* interpolate in the meantime */
1102 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1581 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1103 { 1582 {
1104 ev_rt_now = rtmn_diff + mn_now; 1583 ev_rt_now = rtmn_diff + mn_now;
1105 return 0; 1584 return;
1106 } 1585 }
1107 else 1586
1108 {
1109 now_floor = mn_now; 1587 now_floor = mn_now;
1110 ev_rt_now = ev_time (); 1588 ev_rt_now = ev_time ();
1111 return 1;
1112 }
1113}
1114 1589
1115static void 1590 /* loop a few times, before making important decisions.
1116time_update (EV_P) 1591 * on the choice of "4": one iteration isn't enough,
1117{ 1592 * in case we get preempted during the calls to
1118 int i; 1593 * ev_time and get_clock. a second call is almost guaranteed
1119 1594 * to succeed in that case, though. and looping a few more times
1120#if EV_USE_MONOTONIC 1595 * doesn't hurt either as we only do this on time-jumps or
1121 if (expect_true (have_monotonic)) 1596 * in the unlikely event of having been preempted here.
1122 { 1597 */
1123 if (time_update_monotonic (EV_A)) 1598 for (i = 4; --i; )
1124 { 1599 {
1125 ev_tstamp odiff = rtmn_diff;
1126
1127 for (i = 4; --i; ) /* loop a few times, before making important decisions */
1128 {
1129 rtmn_diff = ev_rt_now - mn_now; 1600 rtmn_diff = ev_rt_now - mn_now;
1130 1601
1131 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1602 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1132 return; /* all is well */ 1603 return; /* all is well */
1133 1604
1134 ev_rt_now = ev_time (); 1605 ev_rt_now = ev_time ();
1135 mn_now = get_clock (); 1606 mn_now = get_clock ();
1136 now_floor = mn_now; 1607 now_floor = mn_now;
1137 } 1608 }
1138 1609
1139# if EV_PERIODICS 1610# if EV_PERIODIC_ENABLE
1611 periodics_reschedule (EV_A);
1612# endif
1613 /* no timer adjustment, as the monotonic clock doesn't jump */
1614 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1615 }
1616 else
1617#endif
1618 {
1619 ev_rt_now = ev_time ();
1620
1621 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1622 {
1623#if EV_PERIODIC_ENABLE
1140 periodics_reschedule (EV_A); 1624 periodics_reschedule (EV_A);
1141# endif 1625#endif
1142 /* no timer adjustment, as the monotonic clock doesn't jump */ 1626 /* adjust timers. this is easy, as the offset is the same for all of them */
1143 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1627 for (i = 1; i <= timercnt; ++i)
1628 ev_at (timers [i]) += ev_rt_now - mn_now;
1144 } 1629 }
1145 }
1146 else
1147#endif
1148 {
1149 ev_rt_now = ev_time ();
1150
1151 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP))
1152 {
1153#if EV_PERIODICS
1154 periodics_reschedule (EV_A);
1155#endif
1156
1157 /* adjust timers. this is easy, as the offset is the same for all */
1158 for (i = 0; i < timercnt; ++i)
1159 ((WT)timers [i])->at += ev_rt_now - mn_now;
1160 }
1161 1630
1162 mn_now = ev_rt_now; 1631 mn_now = ev_rt_now;
1163 } 1632 }
1164} 1633}
1165 1634
1178static int loop_done; 1647static int loop_done;
1179 1648
1180void 1649void
1181ev_loop (EV_P_ int flags) 1650ev_loop (EV_P_ int flags)
1182{ 1651{
1183 double block; 1652 loop_done = EVUNLOOP_CANCEL;
1184 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) ? 1 : 0;
1185 1653
1186 while (activecnt) 1654 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1655
1656 do
1187 { 1657 {
1658#ifndef _WIN32
1659 if (expect_false (curpid)) /* penalise the forking check even more */
1660 if (expect_false (getpid () != curpid))
1661 {
1662 curpid = getpid ();
1663 postfork = 1;
1664 }
1665#endif
1666
1667#if EV_FORK_ENABLE
1668 /* we might have forked, so queue fork handlers */
1669 if (expect_false (postfork))
1670 if (forkcnt)
1671 {
1672 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1673 call_pending (EV_A);
1674 }
1675#endif
1676
1188 /* queue check watchers (and execute them) */ 1677 /* queue prepare watchers (and execute them) */
1189 if (expect_false (preparecnt)) 1678 if (expect_false (preparecnt))
1190 { 1679 {
1191 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1680 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1192 call_pending (EV_A); 1681 call_pending (EV_A);
1193 } 1682 }
1194 1683
1684 if (expect_false (!activecnt))
1685 break;
1686
1195 /* we might have forked, so reify kernel state if necessary */ 1687 /* we might have forked, so reify kernel state if necessary */
1196 if (expect_false (postfork)) 1688 if (expect_false (postfork))
1197 loop_fork (EV_A); 1689 loop_fork (EV_A);
1198 1690
1199 /* update fd-related kernel structures */ 1691 /* update fd-related kernel structures */
1200 fd_reify (EV_A); 1692 fd_reify (EV_A);
1201 1693
1202 /* calculate blocking time */ 1694 /* calculate blocking time */
1695 {
1696 ev_tstamp waittime = 0.;
1697 ev_tstamp sleeptime = 0.;
1203 1698
1204 /* we only need this for !monotonic clock or timers, but as we basically 1699 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1205 always have timers, we just calculate it always */
1206#if EV_USE_MONOTONIC
1207 if (expect_true (have_monotonic))
1208 time_update_monotonic (EV_A);
1209 else
1210#endif
1211 { 1700 {
1212 ev_rt_now = ev_time (); 1701 /* update time to cancel out callback processing overhead */
1213 mn_now = ev_rt_now; 1702 time_update (EV_A_ 1e100);
1214 }
1215 1703
1216 if (flags & EVLOOP_NONBLOCK || idlecnt)
1217 block = 0.;
1218 else
1219 {
1220 block = MAX_BLOCKTIME; 1704 waittime = MAX_BLOCKTIME;
1221 1705
1222 if (timercnt) 1706 if (timercnt)
1223 { 1707 {
1224 ev_tstamp to = ((WT)timers [0])->at - mn_now + method_fudge; 1708 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1225 if (block > to) block = to; 1709 if (waittime > to) waittime = to;
1226 } 1710 }
1227 1711
1228#if EV_PERIODICS 1712#if EV_PERIODIC_ENABLE
1229 if (periodiccnt) 1713 if (periodiccnt)
1230 { 1714 {
1231 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + method_fudge; 1715 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1232 if (block > to) block = to; 1716 if (waittime > to) waittime = to;
1233 } 1717 }
1234#endif 1718#endif
1235 1719
1236 if (block < 0.) block = 0.; 1720 if (expect_false (waittime < timeout_blocktime))
1721 waittime = timeout_blocktime;
1722
1723 sleeptime = waittime - backend_fudge;
1724
1725 if (expect_true (sleeptime > io_blocktime))
1726 sleeptime = io_blocktime;
1727
1728 if (sleeptime)
1729 {
1730 ev_sleep (sleeptime);
1731 waittime -= sleeptime;
1732 }
1237 } 1733 }
1238 1734
1239 method_poll (EV_A_ block); 1735 ++loop_count;
1736 backend_poll (EV_A_ waittime);
1240 1737
1241 /* update ev_rt_now, do magic */ 1738 /* update ev_rt_now, do magic */
1242 time_update (EV_A); 1739 time_update (EV_A_ waittime + sleeptime);
1740 }
1243 1741
1244 /* queue pending timers and reschedule them */ 1742 /* queue pending timers and reschedule them */
1245 timers_reify (EV_A); /* relative timers called last */ 1743 timers_reify (EV_A); /* relative timers called last */
1246#if EV_PERIODICS 1744#if EV_PERIODIC_ENABLE
1247 periodics_reify (EV_A); /* absolute timers called first */ 1745 periodics_reify (EV_A); /* absolute timers called first */
1248#endif 1746#endif
1249 1747
1748#if EV_IDLE_ENABLE
1250 /* queue idle watchers unless io or timers are pending */ 1749 /* queue idle watchers unless other events are pending */
1251 if (idlecnt && !any_pending (EV_A)) 1750 idle_reify (EV_A);
1252 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1751#endif
1253 1752
1254 /* queue check watchers, to be executed first */ 1753 /* queue check watchers, to be executed first */
1255 if (checkcnt) 1754 if (expect_false (checkcnt))
1256 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1755 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1257 1756
1258 call_pending (EV_A); 1757 call_pending (EV_A);
1259
1260 if (loop_done)
1261 break;
1262 } 1758 }
1759 while (expect_true (
1760 activecnt
1761 && !loop_done
1762 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1763 ));
1263 1764
1264 if (loop_done != 2) 1765 if (loop_done == EVUNLOOP_ONE)
1265 loop_done = 0; 1766 loop_done = EVUNLOOP_CANCEL;
1266} 1767}
1267 1768
1268void 1769void
1269ev_unloop (EV_P_ int how) 1770ev_unloop (EV_P_ int how)
1270{ 1771{
1271 loop_done = how; 1772 loop_done = how;
1272} 1773}
1273 1774
1274/*****************************************************************************/ 1775/*****************************************************************************/
1275 1776
1276inline void 1777void inline_size
1277wlist_add (WL *head, WL elem) 1778wlist_add (WL *head, WL elem)
1278{ 1779{
1279 elem->next = *head; 1780 elem->next = *head;
1280 *head = elem; 1781 *head = elem;
1281} 1782}
1282 1783
1283inline void 1784void inline_size
1284wlist_del (WL *head, WL elem) 1785wlist_del (WL *head, WL elem)
1285{ 1786{
1286 while (*head) 1787 while (*head)
1287 { 1788 {
1288 if (*head == elem) 1789 if (*head == elem)
1293 1794
1294 head = &(*head)->next; 1795 head = &(*head)->next;
1295 } 1796 }
1296} 1797}
1297 1798
1298inline void 1799void inline_speed
1299ev_clear_pending (EV_P_ W w) 1800clear_pending (EV_P_ W w)
1300{ 1801{
1301 if (w->pending) 1802 if (w->pending)
1302 { 1803 {
1303 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1804 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1304 w->pending = 0; 1805 w->pending = 0;
1305 } 1806 }
1306} 1807}
1307 1808
1308inline void 1809int
1810ev_clear_pending (EV_P_ void *w)
1811{
1812 W w_ = (W)w;
1813 int pending = w_->pending;
1814
1815 if (expect_true (pending))
1816 {
1817 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1818 w_->pending = 0;
1819 p->w = 0;
1820 return p->events;
1821 }
1822 else
1823 return 0;
1824}
1825
1826void inline_size
1827pri_adjust (EV_P_ W w)
1828{
1829 int pri = w->priority;
1830 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1831 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1832 w->priority = pri;
1833}
1834
1835void inline_speed
1309ev_start (EV_P_ W w, int active) 1836ev_start (EV_P_ W w, int active)
1310{ 1837{
1311 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1838 pri_adjust (EV_A_ w);
1312 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1313
1314 w->active = active; 1839 w->active = active;
1315 ev_ref (EV_A); 1840 ev_ref (EV_A);
1316} 1841}
1317 1842
1318inline void 1843void inline_size
1319ev_stop (EV_P_ W w) 1844ev_stop (EV_P_ W w)
1320{ 1845{
1321 ev_unref (EV_A); 1846 ev_unref (EV_A);
1322 w->active = 0; 1847 w->active = 0;
1323} 1848}
1324 1849
1325/*****************************************************************************/ 1850/*****************************************************************************/
1326 1851
1327void 1852void noinline
1328ev_io_start (EV_P_ struct ev_io *w) 1853ev_io_start (EV_P_ ev_io *w)
1329{ 1854{
1330 int fd = w->fd; 1855 int fd = w->fd;
1331 1856
1332 if (ev_is_active (w)) 1857 if (expect_false (ev_is_active (w)))
1333 return; 1858 return;
1334 1859
1335 assert (("ev_io_start called with negative fd", fd >= 0)); 1860 assert (("ev_io_start called with negative fd", fd >= 0));
1336 1861
1337 ev_start (EV_A_ (W)w, 1); 1862 ev_start (EV_A_ (W)w, 1);
1338 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1863 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1339 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1864 wlist_add (&anfds[fd].head, (WL)w);
1340 1865
1341 fd_change (EV_A_ fd); 1866 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1867 w->events &= ~EV_IOFDSET;
1342} 1868}
1343 1869
1344void 1870void noinline
1345ev_io_stop (EV_P_ struct ev_io *w) 1871ev_io_stop (EV_P_ ev_io *w)
1346{ 1872{
1347 ev_clear_pending (EV_A_ (W)w); 1873 clear_pending (EV_A_ (W)w);
1348 if (!ev_is_active (w)) 1874 if (expect_false (!ev_is_active (w)))
1349 return; 1875 return;
1350 1876
1351 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1877 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1352 1878
1353 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1879 wlist_del (&anfds[w->fd].head, (WL)w);
1354 ev_stop (EV_A_ (W)w); 1880 ev_stop (EV_A_ (W)w);
1355 1881
1356 fd_change (EV_A_ w->fd); 1882 fd_change (EV_A_ w->fd, 1);
1357} 1883}
1358 1884
1359void 1885void noinline
1360ev_timer_start (EV_P_ struct ev_timer *w) 1886ev_timer_start (EV_P_ ev_timer *w)
1361{ 1887{
1362 if (ev_is_active (w)) 1888 if (expect_false (ev_is_active (w)))
1363 return; 1889 return;
1364 1890
1365 ((WT)w)->at += mn_now; 1891 ev_at (w) += mn_now;
1366 1892
1367 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1893 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1368 1894
1369 ev_start (EV_A_ (W)w, ++timercnt); 1895 ev_start (EV_A_ (W)w, ++timercnt);
1370 array_needsize (struct ev_timer *, timers, timermax, timercnt, EMPTY2); 1896 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1371 timers [timercnt - 1] = w; 1897 timers [timercnt] = (WT)w;
1372 upheap ((WT *)timers, timercnt - 1); 1898 upheap (timers, timercnt);
1373 1899
1374 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1900 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1375} 1901}
1376 1902
1377void 1903void noinline
1378ev_timer_stop (EV_P_ struct ev_timer *w) 1904ev_timer_stop (EV_P_ ev_timer *w)
1379{ 1905{
1380 ev_clear_pending (EV_A_ (W)w); 1906 clear_pending (EV_A_ (W)w);
1381 if (!ev_is_active (w)) 1907 if (expect_false (!ev_is_active (w)))
1382 return; 1908 return;
1383 1909
1910 {
1911 int active = ev_active (w);
1912
1384 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w)); 1913 assert (("internal timer heap corruption", timers [active] == (WT)w));
1385 1914
1386 if (((W)w)->active < timercnt--) 1915 if (expect_true (active < timercnt))
1387 { 1916 {
1388 timers [((W)w)->active - 1] = timers [timercnt]; 1917 timers [active] = timers [timercnt];
1389 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1918 adjustheap (timers, timercnt, active);
1390 } 1919 }
1391 1920
1392 ((WT)w)->at -= mn_now; 1921 --timercnt;
1922 }
1923
1924 ev_at (w) -= mn_now;
1393 1925
1394 ev_stop (EV_A_ (W)w); 1926 ev_stop (EV_A_ (W)w);
1395} 1927}
1396 1928
1397void 1929void noinline
1398ev_timer_again (EV_P_ struct ev_timer *w) 1930ev_timer_again (EV_P_ ev_timer *w)
1399{ 1931{
1400 if (ev_is_active (w)) 1932 if (ev_is_active (w))
1401 { 1933 {
1402 if (w->repeat) 1934 if (w->repeat)
1403 { 1935 {
1404 ((WT)w)->at = mn_now + w->repeat; 1936 ev_at (w) = mn_now + w->repeat;
1405 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1937 adjustheap (timers, timercnt, ev_active (w));
1406 } 1938 }
1407 else 1939 else
1408 ev_timer_stop (EV_A_ w); 1940 ev_timer_stop (EV_A_ w);
1409 } 1941 }
1410 else if (w->repeat) 1942 else if (w->repeat)
1411 { 1943 {
1412 w->at = w->repeat; 1944 ev_at (w) = w->repeat;
1413 ev_timer_start (EV_A_ w); 1945 ev_timer_start (EV_A_ w);
1414 } 1946 }
1415} 1947}
1416 1948
1417#if EV_PERIODICS 1949#if EV_PERIODIC_ENABLE
1418void 1950void noinline
1419ev_periodic_start (EV_P_ struct ev_periodic *w) 1951ev_periodic_start (EV_P_ ev_periodic *w)
1420{ 1952{
1421 if (ev_is_active (w)) 1953 if (expect_false (ev_is_active (w)))
1422 return; 1954 return;
1423 1955
1424 if (w->reschedule_cb) 1956 if (w->reschedule_cb)
1425 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1957 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1426 else if (w->interval) 1958 else if (w->interval)
1427 { 1959 {
1428 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1960 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1429 /* this formula differs from the one in periodic_reify because we do not always round up */ 1961 /* this formula differs from the one in periodic_reify because we do not always round up */
1430 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1962 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1431 } 1963 }
1964 else
1965 ev_at (w) = w->offset;
1432 1966
1433 ev_start (EV_A_ (W)w, ++periodiccnt); 1967 ev_start (EV_A_ (W)w, ++periodiccnt);
1434 array_needsize (struct ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1968 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1435 periodics [periodiccnt - 1] = w; 1969 periodics [periodiccnt] = (WT)w;
1436 upheap ((WT *)periodics, periodiccnt - 1); 1970 upheap (periodics, periodiccnt);
1437 1971
1438 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1972 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1439} 1973}
1440 1974
1441void 1975void noinline
1442ev_periodic_stop (EV_P_ struct ev_periodic *w) 1976ev_periodic_stop (EV_P_ ev_periodic *w)
1443{ 1977{
1444 ev_clear_pending (EV_A_ (W)w); 1978 clear_pending (EV_A_ (W)w);
1445 if (!ev_is_active (w)) 1979 if (expect_false (!ev_is_active (w)))
1446 return; 1980 return;
1447 1981
1982 {
1983 int active = ev_active (w);
1984
1448 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w)); 1985 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1449 1986
1450 if (((W)w)->active < periodiccnt--) 1987 if (expect_true (active < periodiccnt))
1451 { 1988 {
1452 periodics [((W)w)->active - 1] = periodics [periodiccnt]; 1989 periodics [active] = periodics [periodiccnt];
1453 adjustheap ((WT *)periodics, periodiccnt, ((W)w)->active - 1); 1990 adjustheap (periodics, periodiccnt, active);
1454 } 1991 }
1992
1993 --periodiccnt;
1994 }
1455 1995
1456 ev_stop (EV_A_ (W)w); 1996 ev_stop (EV_A_ (W)w);
1457} 1997}
1458 1998
1459void 1999void noinline
1460ev_periodic_again (EV_P_ struct ev_periodic *w) 2000ev_periodic_again (EV_P_ ev_periodic *w)
1461{ 2001{
1462 /* TODO: use adjustheap and recalculation */ 2002 /* TODO: use adjustheap and recalculation */
1463 ev_periodic_stop (EV_A_ w); 2003 ev_periodic_stop (EV_A_ w);
1464 ev_periodic_start (EV_A_ w); 2004 ev_periodic_start (EV_A_ w);
1465} 2005}
1466#endif 2006#endif
1467 2007
1468void
1469ev_idle_start (EV_P_ struct ev_idle *w)
1470{
1471 if (ev_is_active (w))
1472 return;
1473
1474 ev_start (EV_A_ (W)w, ++idlecnt);
1475 array_needsize (struct ev_idle *, idles, idlemax, idlecnt, EMPTY2);
1476 idles [idlecnt - 1] = w;
1477}
1478
1479void
1480ev_idle_stop (EV_P_ struct ev_idle *w)
1481{
1482 ev_clear_pending (EV_A_ (W)w);
1483 if (!ev_is_active (w))
1484 return;
1485
1486 idles [((W)w)->active - 1] = idles [--idlecnt];
1487 ev_stop (EV_A_ (W)w);
1488}
1489
1490void
1491ev_prepare_start (EV_P_ struct ev_prepare *w)
1492{
1493 if (ev_is_active (w))
1494 return;
1495
1496 ev_start (EV_A_ (W)w, ++preparecnt);
1497 array_needsize (struct ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
1498 prepares [preparecnt - 1] = w;
1499}
1500
1501void
1502ev_prepare_stop (EV_P_ struct ev_prepare *w)
1503{
1504 ev_clear_pending (EV_A_ (W)w);
1505 if (!ev_is_active (w))
1506 return;
1507
1508 prepares [((W)w)->active - 1] = prepares [--preparecnt];
1509 ev_stop (EV_A_ (W)w);
1510}
1511
1512void
1513ev_check_start (EV_P_ struct ev_check *w)
1514{
1515 if (ev_is_active (w))
1516 return;
1517
1518 ev_start (EV_A_ (W)w, ++checkcnt);
1519 array_needsize (struct ev_check *, checks, checkmax, checkcnt, EMPTY2);
1520 checks [checkcnt - 1] = w;
1521}
1522
1523void
1524ev_check_stop (EV_P_ struct ev_check *w)
1525{
1526 ev_clear_pending (EV_A_ (W)w);
1527 if (!ev_is_active (w))
1528 return;
1529
1530 checks [((W)w)->active - 1] = checks [--checkcnt];
1531 ev_stop (EV_A_ (W)w);
1532}
1533
1534#ifndef SA_RESTART 2008#ifndef SA_RESTART
1535# define SA_RESTART 0 2009# define SA_RESTART 0
1536#endif 2010#endif
1537 2011
1538void 2012void noinline
1539ev_signal_start (EV_P_ struct ev_signal *w) 2013ev_signal_start (EV_P_ ev_signal *w)
1540{ 2014{
1541#if EV_MULTIPLICITY 2015#if EV_MULTIPLICITY
1542 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2016 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1543#endif 2017#endif
1544 if (ev_is_active (w)) 2018 if (expect_false (ev_is_active (w)))
1545 return; 2019 return;
1546 2020
1547 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2021 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1548 2022
2023 evpipe_init (EV_A);
2024
2025 {
2026#ifndef _WIN32
2027 sigset_t full, prev;
2028 sigfillset (&full);
2029 sigprocmask (SIG_SETMASK, &full, &prev);
2030#endif
2031
2032 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2033
2034#ifndef _WIN32
2035 sigprocmask (SIG_SETMASK, &prev, 0);
2036#endif
2037 }
2038
1549 ev_start (EV_A_ (W)w, 1); 2039 ev_start (EV_A_ (W)w, 1);
1550 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1551 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2040 wlist_add (&signals [w->signum - 1].head, (WL)w);
1552 2041
1553 if (!((WL)w)->next) 2042 if (!((WL)w)->next)
1554 { 2043 {
1555#if _WIN32 2044#if _WIN32
1556 signal (w->signum, sighandler); 2045 signal (w->signum, ev_sighandler);
1557#else 2046#else
1558 struct sigaction sa; 2047 struct sigaction sa;
1559 sa.sa_handler = sighandler; 2048 sa.sa_handler = ev_sighandler;
1560 sigfillset (&sa.sa_mask); 2049 sigfillset (&sa.sa_mask);
1561 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2050 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1562 sigaction (w->signum, &sa, 0); 2051 sigaction (w->signum, &sa, 0);
1563#endif 2052#endif
1564 } 2053 }
1565} 2054}
1566 2055
1567void 2056void noinline
1568ev_signal_stop (EV_P_ struct ev_signal *w) 2057ev_signal_stop (EV_P_ ev_signal *w)
1569{ 2058{
1570 ev_clear_pending (EV_A_ (W)w); 2059 clear_pending (EV_A_ (W)w);
1571 if (!ev_is_active (w)) 2060 if (expect_false (!ev_is_active (w)))
1572 return; 2061 return;
1573 2062
1574 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2063 wlist_del (&signals [w->signum - 1].head, (WL)w);
1575 ev_stop (EV_A_ (W)w); 2064 ev_stop (EV_A_ (W)w);
1576 2065
1577 if (!signals [w->signum - 1].head) 2066 if (!signals [w->signum - 1].head)
1578 signal (w->signum, SIG_DFL); 2067 signal (w->signum, SIG_DFL);
1579} 2068}
1580 2069
1581void 2070void
1582ev_child_start (EV_P_ struct ev_child *w) 2071ev_child_start (EV_P_ ev_child *w)
1583{ 2072{
1584#if EV_MULTIPLICITY 2073#if EV_MULTIPLICITY
1585 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2074 assert (("child watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1586#endif 2075#endif
1587 if (ev_is_active (w)) 2076 if (expect_false (ev_is_active (w)))
1588 return; 2077 return;
1589 2078
1590 ev_start (EV_A_ (W)w, 1); 2079 ev_start (EV_A_ (W)w, 1);
1591 wlist_add ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2080 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1592} 2081}
1593 2082
1594void 2083void
1595ev_child_stop (EV_P_ struct ev_child *w) 2084ev_child_stop (EV_P_ ev_child *w)
1596{ 2085{
1597 ev_clear_pending (EV_A_ (W)w); 2086 clear_pending (EV_A_ (W)w);
1598 if (!ev_is_active (w)) 2087 if (expect_false (!ev_is_active (w)))
1599 return; 2088 return;
1600 2089
1601 wlist_del ((WL *)&childs [w->pid & (PID_HASHSIZE - 1)], (WL)w); 2090 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1602 ev_stop (EV_A_ (W)w); 2091 ev_stop (EV_A_ (W)w);
1603} 2092}
1604 2093
2094#if EV_STAT_ENABLE
2095
2096# ifdef _WIN32
2097# undef lstat
2098# define lstat(a,b) _stati64 (a,b)
2099# endif
2100
2101#define DEF_STAT_INTERVAL 5.0074891
2102#define MIN_STAT_INTERVAL 0.1074891
2103
2104static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2105
2106#if EV_USE_INOTIFY
2107# define EV_INOTIFY_BUFSIZE 8192
2108
2109static void noinline
2110infy_add (EV_P_ ev_stat *w)
2111{
2112 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2113
2114 if (w->wd < 0)
2115 {
2116 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2117
2118 /* monitor some parent directory for speedup hints */
2119 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2120 {
2121 char path [4096];
2122 strcpy (path, w->path);
2123
2124 do
2125 {
2126 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2127 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2128
2129 char *pend = strrchr (path, '/');
2130
2131 if (!pend)
2132 break; /* whoops, no '/', complain to your admin */
2133
2134 *pend = 0;
2135 w->wd = inotify_add_watch (fs_fd, path, mask);
2136 }
2137 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2138 }
2139 }
2140 else
2141 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2142
2143 if (w->wd >= 0)
2144 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2145}
2146
2147static void noinline
2148infy_del (EV_P_ ev_stat *w)
2149{
2150 int slot;
2151 int wd = w->wd;
2152
2153 if (wd < 0)
2154 return;
2155
2156 w->wd = -2;
2157 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2158 wlist_del (&fs_hash [slot].head, (WL)w);
2159
2160 /* remove this watcher, if others are watching it, they will rearm */
2161 inotify_rm_watch (fs_fd, wd);
2162}
2163
2164static void noinline
2165infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2166{
2167 if (slot < 0)
2168 /* overflow, need to check for all hahs slots */
2169 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2170 infy_wd (EV_A_ slot, wd, ev);
2171 else
2172 {
2173 WL w_;
2174
2175 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2176 {
2177 ev_stat *w = (ev_stat *)w_;
2178 w_ = w_->next; /* lets us remove this watcher and all before it */
2179
2180 if (w->wd == wd || wd == -1)
2181 {
2182 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2183 {
2184 w->wd = -1;
2185 infy_add (EV_A_ w); /* re-add, no matter what */
2186 }
2187
2188 stat_timer_cb (EV_A_ &w->timer, 0);
2189 }
2190 }
2191 }
2192}
2193
2194static void
2195infy_cb (EV_P_ ev_io *w, int revents)
2196{
2197 char buf [EV_INOTIFY_BUFSIZE];
2198 struct inotify_event *ev = (struct inotify_event *)buf;
2199 int ofs;
2200 int len = read (fs_fd, buf, sizeof (buf));
2201
2202 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2203 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2204}
2205
2206void inline_size
2207infy_init (EV_P)
2208{
2209 if (fs_fd != -2)
2210 return;
2211
2212 fs_fd = inotify_init ();
2213
2214 if (fs_fd >= 0)
2215 {
2216 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2217 ev_set_priority (&fs_w, EV_MAXPRI);
2218 ev_io_start (EV_A_ &fs_w);
2219 }
2220}
2221
2222void inline_size
2223infy_fork (EV_P)
2224{
2225 int slot;
2226
2227 if (fs_fd < 0)
2228 return;
2229
2230 close (fs_fd);
2231 fs_fd = inotify_init ();
2232
2233 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2234 {
2235 WL w_ = fs_hash [slot].head;
2236 fs_hash [slot].head = 0;
2237
2238 while (w_)
2239 {
2240 ev_stat *w = (ev_stat *)w_;
2241 w_ = w_->next; /* lets us add this watcher */
2242
2243 w->wd = -1;
2244
2245 if (fs_fd >= 0)
2246 infy_add (EV_A_ w); /* re-add, no matter what */
2247 else
2248 ev_timer_start (EV_A_ &w->timer);
2249 }
2250
2251 }
2252}
2253
2254#endif
2255
2256void
2257ev_stat_stat (EV_P_ ev_stat *w)
2258{
2259 if (lstat (w->path, &w->attr) < 0)
2260 w->attr.st_nlink = 0;
2261 else if (!w->attr.st_nlink)
2262 w->attr.st_nlink = 1;
2263}
2264
2265static void noinline
2266stat_timer_cb (EV_P_ ev_timer *w_, int revents)
2267{
2268 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
2269
2270 /* we copy this here each the time so that */
2271 /* prev has the old value when the callback gets invoked */
2272 w->prev = w->attr;
2273 ev_stat_stat (EV_A_ w);
2274
2275 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2276 if (
2277 w->prev.st_dev != w->attr.st_dev
2278 || w->prev.st_ino != w->attr.st_ino
2279 || w->prev.st_mode != w->attr.st_mode
2280 || w->prev.st_nlink != w->attr.st_nlink
2281 || w->prev.st_uid != w->attr.st_uid
2282 || w->prev.st_gid != w->attr.st_gid
2283 || w->prev.st_rdev != w->attr.st_rdev
2284 || w->prev.st_size != w->attr.st_size
2285 || w->prev.st_atime != w->attr.st_atime
2286 || w->prev.st_mtime != w->attr.st_mtime
2287 || w->prev.st_ctime != w->attr.st_ctime
2288 ) {
2289 #if EV_USE_INOTIFY
2290 infy_del (EV_A_ w);
2291 infy_add (EV_A_ w);
2292 ev_stat_stat (EV_A_ w); /* avoid race... */
2293 #endif
2294
2295 ev_feed_event (EV_A_ w, EV_STAT);
2296 }
2297}
2298
2299void
2300ev_stat_start (EV_P_ ev_stat *w)
2301{
2302 if (expect_false (ev_is_active (w)))
2303 return;
2304
2305 /* since we use memcmp, we need to clear any padding data etc. */
2306 memset (&w->prev, 0, sizeof (ev_statdata));
2307 memset (&w->attr, 0, sizeof (ev_statdata));
2308
2309 ev_stat_stat (EV_A_ w);
2310
2311 if (w->interval < MIN_STAT_INTERVAL)
2312 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
2313
2314 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
2315 ev_set_priority (&w->timer, ev_priority (w));
2316
2317#if EV_USE_INOTIFY
2318 infy_init (EV_A);
2319
2320 if (fs_fd >= 0)
2321 infy_add (EV_A_ w);
2322 else
2323#endif
2324 ev_timer_start (EV_A_ &w->timer);
2325
2326 ev_start (EV_A_ (W)w, 1);
2327}
2328
2329void
2330ev_stat_stop (EV_P_ ev_stat *w)
2331{
2332 clear_pending (EV_A_ (W)w);
2333 if (expect_false (!ev_is_active (w)))
2334 return;
2335
2336#if EV_USE_INOTIFY
2337 infy_del (EV_A_ w);
2338#endif
2339 ev_timer_stop (EV_A_ &w->timer);
2340
2341 ev_stop (EV_A_ (W)w);
2342}
2343#endif
2344
2345#if EV_IDLE_ENABLE
2346void
2347ev_idle_start (EV_P_ ev_idle *w)
2348{
2349 if (expect_false (ev_is_active (w)))
2350 return;
2351
2352 pri_adjust (EV_A_ (W)w);
2353
2354 {
2355 int active = ++idlecnt [ABSPRI (w)];
2356
2357 ++idleall;
2358 ev_start (EV_A_ (W)w, active);
2359
2360 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
2361 idles [ABSPRI (w)][active - 1] = w;
2362 }
2363}
2364
2365void
2366ev_idle_stop (EV_P_ ev_idle *w)
2367{
2368 clear_pending (EV_A_ (W)w);
2369 if (expect_false (!ev_is_active (w)))
2370 return;
2371
2372 {
2373 int active = ev_active (w);
2374
2375 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2376 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2377
2378 ev_stop (EV_A_ (W)w);
2379 --idleall;
2380 }
2381}
2382#endif
2383
2384void
2385ev_prepare_start (EV_P_ ev_prepare *w)
2386{
2387 if (expect_false (ev_is_active (w)))
2388 return;
2389
2390 ev_start (EV_A_ (W)w, ++preparecnt);
2391 array_needsize (ev_prepare *, prepares, preparemax, preparecnt, EMPTY2);
2392 prepares [preparecnt - 1] = w;
2393}
2394
2395void
2396ev_prepare_stop (EV_P_ ev_prepare *w)
2397{
2398 clear_pending (EV_A_ (W)w);
2399 if (expect_false (!ev_is_active (w)))
2400 return;
2401
2402 {
2403 int active = ev_active (w);
2404
2405 prepares [active - 1] = prepares [--preparecnt];
2406 ev_active (prepares [active - 1]) = active;
2407 }
2408
2409 ev_stop (EV_A_ (W)w);
2410}
2411
2412void
2413ev_check_start (EV_P_ ev_check *w)
2414{
2415 if (expect_false (ev_is_active (w)))
2416 return;
2417
2418 ev_start (EV_A_ (W)w, ++checkcnt);
2419 array_needsize (ev_check *, checks, checkmax, checkcnt, EMPTY2);
2420 checks [checkcnt - 1] = w;
2421}
2422
2423void
2424ev_check_stop (EV_P_ ev_check *w)
2425{
2426 clear_pending (EV_A_ (W)w);
2427 if (expect_false (!ev_is_active (w)))
2428 return;
2429
2430 {
2431 int active = ev_active (w);
2432
2433 checks [active - 1] = checks [--checkcnt];
2434 ev_active (checks [active - 1]) = active;
2435 }
2436
2437 ev_stop (EV_A_ (W)w);
2438}
2439
2440#if EV_EMBED_ENABLE
2441void noinline
2442ev_embed_sweep (EV_P_ ev_embed *w)
2443{
2444 ev_loop (w->other, EVLOOP_NONBLOCK);
2445}
2446
2447static void
2448embed_io_cb (EV_P_ ev_io *io, int revents)
2449{
2450 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
2451
2452 if (ev_cb (w))
2453 ev_feed_event (EV_A_ (W)w, EV_EMBED);
2454 else
2455 ev_loop (w->other, EVLOOP_NONBLOCK);
2456}
2457
2458static void
2459embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2460{
2461 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2462
2463 {
2464 struct ev_loop *loop = w->other;
2465
2466 while (fdchangecnt)
2467 {
2468 fd_reify (EV_A);
2469 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2470 }
2471 }
2472}
2473
2474#if 0
2475static void
2476embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2477{
2478 ev_idle_stop (EV_A_ idle);
2479}
2480#endif
2481
2482void
2483ev_embed_start (EV_P_ ev_embed *w)
2484{
2485 if (expect_false (ev_is_active (w)))
2486 return;
2487
2488 {
2489 struct ev_loop *loop = w->other;
2490 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
2491 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
2492 }
2493
2494 ev_set_priority (&w->io, ev_priority (w));
2495 ev_io_start (EV_A_ &w->io);
2496
2497 ev_prepare_init (&w->prepare, embed_prepare_cb);
2498 ev_set_priority (&w->prepare, EV_MINPRI);
2499 ev_prepare_start (EV_A_ &w->prepare);
2500
2501 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2502
2503 ev_start (EV_A_ (W)w, 1);
2504}
2505
2506void
2507ev_embed_stop (EV_P_ ev_embed *w)
2508{
2509 clear_pending (EV_A_ (W)w);
2510 if (expect_false (!ev_is_active (w)))
2511 return;
2512
2513 ev_io_stop (EV_A_ &w->io);
2514 ev_prepare_stop (EV_A_ &w->prepare);
2515
2516 ev_stop (EV_A_ (W)w);
2517}
2518#endif
2519
2520#if EV_FORK_ENABLE
2521void
2522ev_fork_start (EV_P_ ev_fork *w)
2523{
2524 if (expect_false (ev_is_active (w)))
2525 return;
2526
2527 ev_start (EV_A_ (W)w, ++forkcnt);
2528 array_needsize (ev_fork *, forks, forkmax, forkcnt, EMPTY2);
2529 forks [forkcnt - 1] = w;
2530}
2531
2532void
2533ev_fork_stop (EV_P_ ev_fork *w)
2534{
2535 clear_pending (EV_A_ (W)w);
2536 if (expect_false (!ev_is_active (w)))
2537 return;
2538
2539 {
2540 int active = ev_active (w);
2541
2542 forks [active - 1] = forks [--forkcnt];
2543 ev_active (forks [active - 1]) = active;
2544 }
2545
2546 ev_stop (EV_A_ (W)w);
2547}
2548#endif
2549
2550#if EV_ASYNC_ENABLE
2551void
2552ev_async_start (EV_P_ ev_async *w)
2553{
2554 if (expect_false (ev_is_active (w)))
2555 return;
2556
2557 evpipe_init (EV_A);
2558
2559 ev_start (EV_A_ (W)w, ++asynccnt);
2560 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2561 asyncs [asynccnt - 1] = w;
2562}
2563
2564void
2565ev_async_stop (EV_P_ ev_async *w)
2566{
2567 clear_pending (EV_A_ (W)w);
2568 if (expect_false (!ev_is_active (w)))
2569 return;
2570
2571 {
2572 int active = ev_active (w);
2573
2574 asyncs [active - 1] = asyncs [--asynccnt];
2575 ev_active (asyncs [active - 1]) = active;
2576 }
2577
2578 ev_stop (EV_A_ (W)w);
2579}
2580
2581void
2582ev_async_send (EV_P_ ev_async *w)
2583{
2584 w->sent = 1;
2585 evpipe_write (EV_A_ &gotasync);
2586}
2587#endif
2588
1605/*****************************************************************************/ 2589/*****************************************************************************/
1606 2590
1607struct ev_once 2591struct ev_once
1608{ 2592{
1609 struct ev_io io; 2593 ev_io io;
1610 struct ev_timer to; 2594 ev_timer to;
1611 void (*cb)(int revents, void *arg); 2595 void (*cb)(int revents, void *arg);
1612 void *arg; 2596 void *arg;
1613}; 2597};
1614 2598
1615static void 2599static void
1624 2608
1625 cb (revents, arg); 2609 cb (revents, arg);
1626} 2610}
1627 2611
1628static void 2612static void
1629once_cb_io (EV_P_ struct ev_io *w, int revents) 2613once_cb_io (EV_P_ ev_io *w, int revents)
1630{ 2614{
1631 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents); 2615 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, io)), revents);
1632} 2616}
1633 2617
1634static void 2618static void
1635once_cb_to (EV_P_ struct ev_timer *w, int revents) 2619once_cb_to (EV_P_ ev_timer *w, int revents)
1636{ 2620{
1637 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents); 2621 once_cb (EV_A_ (struct ev_once *)(((char *)w) - offsetof (struct ev_once, to)), revents);
1638} 2622}
1639 2623
1640void 2624void
1641ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg) 2625ev_once (EV_P_ int fd, int events, ev_tstamp timeout, void (*cb)(int revents, void *arg), void *arg)
1642{ 2626{
1643 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once)); 2627 struct ev_once *once = (struct ev_once *)ev_malloc (sizeof (struct ev_once));
1644 2628
1645 if (!once) 2629 if (expect_false (!once))
2630 {
1646 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg); 2631 cb (EV_ERROR | EV_READ | EV_WRITE | EV_TIMEOUT, arg);
1647 else 2632 return;
1648 { 2633 }
2634
1649 once->cb = cb; 2635 once->cb = cb;
1650 once->arg = arg; 2636 once->arg = arg;
1651 2637
1652 ev_init (&once->io, once_cb_io); 2638 ev_init (&once->io, once_cb_io);
1653 if (fd >= 0) 2639 if (fd >= 0)
1654 { 2640 {
1655 ev_io_set (&once->io, fd, events); 2641 ev_io_set (&once->io, fd, events);
1656 ev_io_start (EV_A_ &once->io); 2642 ev_io_start (EV_A_ &once->io);
1657 } 2643 }
1658 2644
1659 ev_init (&once->to, once_cb_to); 2645 ev_init (&once->to, once_cb_to);
1660 if (timeout >= 0.) 2646 if (timeout >= 0.)
1661 { 2647 {
1662 ev_timer_set (&once->to, timeout, 0.); 2648 ev_timer_set (&once->to, timeout, 0.);
1663 ev_timer_start (EV_A_ &once->to); 2649 ev_timer_start (EV_A_ &once->to);
1664 }
1665 } 2650 }
1666} 2651}
2652
2653#if EV_MULTIPLICITY
2654 #include "ev_wrap.h"
2655#endif
1667 2656
1668#ifdef __cplusplus 2657#ifdef __cplusplus
1669} 2658}
1670#endif 2659#endif
1671 2660

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines