ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.151 by root, Tue Nov 27 19:59:08 2007 UTC vs.
Revision 1.233 by root, Tue May 6 23:34:16 2008 UTC

1/* 1/*
2 * libev event processing core, watcher management 2 * libev event processing core, watcher management
3 * 3 *
4 * Copyright (c) 2007 Marc Alexander Lehmann <libev@schmorp.de> 4 * Copyright (c) 2007,2008 Marc Alexander Lehmann <libev@schmorp.de>
5 * All rights reserved. 5 * All rights reserved.
6 * 6 *
7 * Redistribution and use in source and binary forms, with or without 7 * Redistribution and use in source and binary forms, with or without modifica-
8 * modification, are permitted provided that the following conditions are 8 * tion, are permitted provided that the following conditions are met:
9 * met: 9 *
10 * 1. Redistributions of source code must retain the above copyright notice,
11 * this list of conditions and the following disclaimer.
12 *
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
18 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
19 * CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
20 * EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPE-
21 * CIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
22 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
23 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
24 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTH-
25 * ERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
26 * OF THE POSSIBILITY OF SUCH DAMAGE.
10 * 27 *
11 * * Redistributions of source code must retain the above copyright 28 * Alternatively, the contents of this file may be used under the terms of
12 * notice, this list of conditions and the following disclaimer. 29 * the GNU General Public License ("GPL") version 2 or any later version,
13 * 30 * in which case the provisions of the GPL are applicable instead of
14 * * Redistributions in binary form must reproduce the above 31 * the above. If you wish to allow the use of your version of this file
15 * copyright notice, this list of conditions and the following 32 * only under the terms of the GPL and not to allow others to use your
16 * disclaimer in the documentation and/or other materials provided 33 * version of this file under the BSD license, indicate your decision
17 * with the distribution. 34 * by deleting the provisions above and replace them with the notice
18 * 35 * and other provisions required by the GPL. If you do not delete the
19 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 36 * provisions above, a recipient may use your version of this file under
20 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 37 * either the BSD or the GPL.
21 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 */ 38 */
31 39
32#ifdef __cplusplus 40#ifdef __cplusplus
33extern "C" { 41extern "C" {
34#endif 42#endif
35 43
44/* this big block deduces configuration from config.h */
36#ifndef EV_STANDALONE 45#ifndef EV_STANDALONE
37# ifdef EV_CONFIG_H 46# ifdef EV_CONFIG_H
38# include EV_CONFIG_H 47# include EV_CONFIG_H
39# else 48# else
40# include "config.h" 49# include "config.h"
51# ifndef EV_USE_MONOTONIC 60# ifndef EV_USE_MONOTONIC
52# define EV_USE_MONOTONIC 0 61# define EV_USE_MONOTONIC 0
53# endif 62# endif
54# ifndef EV_USE_REALTIME 63# ifndef EV_USE_REALTIME
55# define EV_USE_REALTIME 0 64# define EV_USE_REALTIME 0
65# endif
66# endif
67
68# ifndef EV_USE_NANOSLEEP
69# if HAVE_NANOSLEEP
70# define EV_USE_NANOSLEEP 1
71# else
72# define EV_USE_NANOSLEEP 0
56# endif 73# endif
57# endif 74# endif
58 75
59# ifndef EV_USE_SELECT 76# ifndef EV_USE_SELECT
60# if HAVE_SELECT && HAVE_SYS_SELECT_H 77# if HAVE_SELECT && HAVE_SYS_SELECT_H
94# else 111# else
95# define EV_USE_PORT 0 112# define EV_USE_PORT 0
96# endif 113# endif
97# endif 114# endif
98 115
116# ifndef EV_USE_INOTIFY
117# if HAVE_INOTIFY_INIT && HAVE_SYS_INOTIFY_H
118# define EV_USE_INOTIFY 1
119# else
120# define EV_USE_INOTIFY 0
121# endif
122# endif
123
124# ifndef EV_USE_EVENTFD
125# if HAVE_EVENTFD
126# define EV_USE_EVENTFD 1
127# else
128# define EV_USE_EVENTFD 0
129# endif
130# endif
131
99#endif 132#endif
100 133
101#include <math.h> 134#include <math.h>
102#include <stdlib.h> 135#include <stdlib.h>
103#include <fcntl.h> 136#include <fcntl.h>
109#include <errno.h> 142#include <errno.h>
110#include <sys/types.h> 143#include <sys/types.h>
111#include <time.h> 144#include <time.h>
112 145
113#include <signal.h> 146#include <signal.h>
147
148#ifdef EV_H
149# include EV_H
150#else
151# include "ev.h"
152#endif
114 153
115#ifndef _WIN32 154#ifndef _WIN32
116# include <sys/time.h> 155# include <sys/time.h>
117# include <sys/wait.h> 156# include <sys/wait.h>
118# include <unistd.h> 157# include <unistd.h>
122# ifndef EV_SELECT_IS_WINSOCKET 161# ifndef EV_SELECT_IS_WINSOCKET
123# define EV_SELECT_IS_WINSOCKET 1 162# define EV_SELECT_IS_WINSOCKET 1
124# endif 163# endif
125#endif 164#endif
126 165
127/**/ 166/* this block tries to deduce configuration from header-defined symbols and defaults */
128 167
129#ifndef EV_USE_MONOTONIC 168#ifndef EV_USE_MONOTONIC
130# define EV_USE_MONOTONIC 0 169# define EV_USE_MONOTONIC 0
131#endif 170#endif
132 171
133#ifndef EV_USE_REALTIME 172#ifndef EV_USE_REALTIME
134# define EV_USE_REALTIME 0 173# define EV_USE_REALTIME 0
174#endif
175
176#ifndef EV_USE_NANOSLEEP
177# define EV_USE_NANOSLEEP 0
135#endif 178#endif
136 179
137#ifndef EV_USE_SELECT 180#ifndef EV_USE_SELECT
138# define EV_USE_SELECT 1 181# define EV_USE_SELECT 1
139#endif 182#endif
145# define EV_USE_POLL 1 188# define EV_USE_POLL 1
146# endif 189# endif
147#endif 190#endif
148 191
149#ifndef EV_USE_EPOLL 192#ifndef EV_USE_EPOLL
193# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
194# define EV_USE_EPOLL 1
195# else
150# define EV_USE_EPOLL 0 196# define EV_USE_EPOLL 0
197# endif
151#endif 198#endif
152 199
153#ifndef EV_USE_KQUEUE 200#ifndef EV_USE_KQUEUE
154# define EV_USE_KQUEUE 0 201# define EV_USE_KQUEUE 0
155#endif 202#endif
156 203
157#ifndef EV_USE_PORT 204#ifndef EV_USE_PORT
158# define EV_USE_PORT 0 205# define EV_USE_PORT 0
206#endif
207
208#ifndef EV_USE_INOTIFY
209# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 4))
210# define EV_USE_INOTIFY 1
211# else
212# define EV_USE_INOTIFY 0
213# endif
159#endif 214#endif
160 215
161#ifndef EV_PID_HASHSIZE 216#ifndef EV_PID_HASHSIZE
162# if EV_MINIMAL 217# if EV_MINIMAL
163# define EV_PID_HASHSIZE 1 218# define EV_PID_HASHSIZE 1
164# else 219# else
165# define EV_PID_HASHSIZE 16 220# define EV_PID_HASHSIZE 16
166# endif 221# endif
167#endif 222#endif
168 223
169/**/ 224#ifndef EV_INOTIFY_HASHSIZE
225# if EV_MINIMAL
226# define EV_INOTIFY_HASHSIZE 1
227# else
228# define EV_INOTIFY_HASHSIZE 16
229# endif
230#endif
231
232#ifndef EV_USE_EVENTFD
233# if __linux && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 7))
234# define EV_USE_EVENTFD 1
235# else
236# define EV_USE_EVENTFD 0
237# endif
238#endif
239
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */
170 241
171#ifndef CLOCK_MONOTONIC 242#ifndef CLOCK_MONOTONIC
172# undef EV_USE_MONOTONIC 243# undef EV_USE_MONOTONIC
173# define EV_USE_MONOTONIC 0 244# define EV_USE_MONOTONIC 0
174#endif 245#endif
176#ifndef CLOCK_REALTIME 247#ifndef CLOCK_REALTIME
177# undef EV_USE_REALTIME 248# undef EV_USE_REALTIME
178# define EV_USE_REALTIME 0 249# define EV_USE_REALTIME 0
179#endif 250#endif
180 251
252#if !EV_STAT_ENABLE
253# undef EV_USE_INOTIFY
254# define EV_USE_INOTIFY 0
255#endif
256
257#if !EV_USE_NANOSLEEP
258# ifndef _WIN32
259# include <sys/select.h>
260# endif
261#endif
262
263#if EV_USE_INOTIFY
264# include <sys/inotify.h>
265#endif
266
181#if EV_SELECT_IS_WINSOCKET 267#if EV_SELECT_IS_WINSOCKET
182# include <winsock.h> 268# include <winsock.h>
183#endif 269#endif
184 270
271#if EV_USE_EVENTFD
272/* our minimum requirement is glibc 2.7 which has the stub, but not the header */
273# include <stdint.h>
274# ifdef __cplusplus
275extern "C" {
276# endif
277int eventfd (unsigned int initval, int flags);
278# ifdef __cplusplus
279}
280# endif
281#endif
282
185/**/ 283/**/
284
285/*
286 * This is used to avoid floating point rounding problems.
287 * It is added to ev_rt_now when scheduling periodics
288 * to ensure progress, time-wise, even when rounding
289 * errors are against us.
290 * This value is good at least till the year 4000.
291 * Better solutions welcome.
292 */
293#define TIME_EPSILON 0.0001220703125 /* 1/8192 */
186 294
187#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */ 295#define MIN_TIMEJUMP 1. /* minimum timejump that gets detected (if monotonic clock available) */
188#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */ 296#define MAX_BLOCKTIME 59.743 /* never wait longer than this time (to detect time jumps) */
189/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds */ 297/*#define CLEANUP_INTERVAL (MAX_BLOCKTIME * 5.) /* how often to try to free memory and re-check fds, TODO */
190 298
191#ifdef EV_H
192# include EV_H
193#else
194# include "ev.h"
195#endif
196
197#if __GNUC__ >= 3 299#if __GNUC__ >= 4
198# define expect(expr,value) __builtin_expect ((expr),(value)) 300# define expect(expr,value) __builtin_expect ((expr),(value))
199# define inline_size static inline /* inline for codesize */
200# if EV_MINIMAL
201# define noinline __attribute__ ((noinline)) 301# define noinline __attribute__ ((noinline))
202# define inline_speed static noinline
203# else
204# define noinline
205# define inline_speed static inline
206# endif
207#else 302#else
208# define expect(expr,value) (expr) 303# define expect(expr,value) (expr)
209# define inline_speed static
210# define inline_size static
211# define noinline 304# define noinline
305# if __STDC_VERSION__ < 199901L && __GNUC__ < 2
306# define inline
307# endif
212#endif 308#endif
213 309
214#define expect_false(expr) expect ((expr) != 0, 0) 310#define expect_false(expr) expect ((expr) != 0, 0)
215#define expect_true(expr) expect ((expr) != 0, 1) 311#define expect_true(expr) expect ((expr) != 0, 1)
312#define inline_size static inline
313
314#if EV_MINIMAL
315# define inline_speed static noinline
316#else
317# define inline_speed static inline
318#endif
216 319
217#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1) 320#define NUMPRI (EV_MAXPRI - EV_MINPRI + 1)
218#define ABSPRI(w) ((w)->priority - EV_MINPRI) 321#define ABSPRI(w) (((W)w)->priority - EV_MINPRI)
219 322
220#define EMPTY0 /* required for microsofts broken pseudo-c compiler */ 323#define EMPTY /* required for microsofts broken pseudo-c compiler */
221#define EMPTY2(a,b) /* used to suppress some warnings */ 324#define EMPTY2(a,b) /* used to suppress some warnings */
222 325
223typedef ev_watcher *W; 326typedef ev_watcher *W;
224typedef ev_watcher_list *WL; 327typedef ev_watcher_list *WL;
225typedef ev_watcher_time *WT; 328typedef ev_watcher_time *WT;
226 329
330#define ev_active(w) ((W)(w))->active
331#define ev_at(w) ((WT)(w))->at
332
333#if EV_USE_MONOTONIC
334/* sig_atomic_t is used to avoid per-thread variables or locking but still */
335/* giving it a reasonably high chance of working on typical architetcures */
227static int have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */ 336static EV_ATOMIC_T have_monotonic; /* did clock_gettime (CLOCK_MONOTONIC) work? */
337#endif
228 338
229#ifdef _WIN32 339#ifdef _WIN32
230# include "ev_win32.c" 340# include "ev_win32.c"
231#endif 341#endif
232 342
253 perror (msg); 363 perror (msg);
254 abort (); 364 abort ();
255 } 365 }
256} 366}
257 367
368static void *
369ev_realloc_emul (void *ptr, long size)
370{
371 /* some systems, notably openbsd and darwin, fail to properly
372 * implement realloc (x, 0) (as required by both ansi c-98 and
373 * the single unix specification, so work around them here.
374 */
375
376 if (size)
377 return realloc (ptr, size);
378
379 free (ptr);
380 return 0;
381}
382
258static void *(*alloc)(void *ptr, size_t size) = realloc; 383static void *(*alloc)(void *ptr, long size) = ev_realloc_emul;
259 384
260void 385void
261ev_set_allocator (void *(*cb)(void *ptr, size_t size)) 386ev_set_allocator (void *(*cb)(void *ptr, long size))
262{ 387{
263 alloc = cb; 388 alloc = cb;
264} 389}
265 390
266inline_speed void * 391inline_speed void *
267ev_realloc (void *ptr, size_t size) 392ev_realloc (void *ptr, long size)
268{ 393{
269 ptr = alloc (ptr, size); 394 ptr = alloc (ptr, size);
270 395
271 if (!ptr && size) 396 if (!ptr && size)
272 { 397 {
273 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", (long)size); 398 fprintf (stderr, "libev: cannot allocate %ld bytes, aborting.", size);
274 abort (); 399 abort ();
275 } 400 }
276 401
277 return ptr; 402 return ptr;
278} 403}
295typedef struct 420typedef struct
296{ 421{
297 W w; 422 W w;
298 int events; 423 int events;
299} ANPENDING; 424} ANPENDING;
425
426#if EV_USE_INOTIFY
427typedef struct
428{
429 WL head;
430} ANFS;
431#endif
300 432
301#if EV_MULTIPLICITY 433#if EV_MULTIPLICITY
302 434
303 struct ev_loop 435 struct ev_loop
304 { 436 {
361{ 493{
362 return ev_rt_now; 494 return ev_rt_now;
363} 495}
364#endif 496#endif
365 497
366#define array_roundsize(type,n) (((n) | 4) & ~3) 498void
499ev_sleep (ev_tstamp delay)
500{
501 if (delay > 0.)
502 {
503#if EV_USE_NANOSLEEP
504 struct timespec ts;
505
506 ts.tv_sec = (time_t)delay;
507 ts.tv_nsec = (long)((delay - (ev_tstamp)(ts.tv_sec)) * 1e9);
508
509 nanosleep (&ts, 0);
510#elif defined(_WIN32)
511 Sleep ((unsigned long)(delay * 1e3));
512#else
513 struct timeval tv;
514
515 tv.tv_sec = (time_t)delay;
516 tv.tv_usec = (long)((delay - (ev_tstamp)(tv.tv_sec)) * 1e6);
517
518 select (0, 0, 0, 0, &tv);
519#endif
520 }
521}
522
523/*****************************************************************************/
524
525#define MALLOC_ROUND 4096 /* prefer to allocate in chunks of this size, must be 2**n and >> 4 longs */
526
527int inline_size
528array_nextsize (int elem, int cur, int cnt)
529{
530 int ncur = cur + 1;
531
532 do
533 ncur <<= 1;
534 while (cnt > ncur);
535
536 /* if size is large, round to MALLOC_ROUND - 4 * longs to accomodate malloc overhead */
537 if (elem * ncur > MALLOC_ROUND - sizeof (void *) * 4)
538 {
539 ncur *= elem;
540 ncur = (ncur + elem + (MALLOC_ROUND - 1) + sizeof (void *) * 4) & ~(MALLOC_ROUND - 1);
541 ncur = ncur - sizeof (void *) * 4;
542 ncur /= elem;
543 }
544
545 return ncur;
546}
547
548static noinline void *
549array_realloc (int elem, void *base, int *cur, int cnt)
550{
551 *cur = array_nextsize (elem, *cur, cnt);
552 return ev_realloc (base, elem * *cur);
553}
367 554
368#define array_needsize(type,base,cur,cnt,init) \ 555#define array_needsize(type,base,cur,cnt,init) \
369 if (expect_false ((cnt) > cur)) \ 556 if (expect_false ((cnt) > (cur))) \
370 { \ 557 { \
371 int newcnt = cur; \ 558 int ocur_ = (cur); \
372 do \ 559 (base) = (type *)array_realloc \
373 { \ 560 (sizeof (type), (base), &(cur), (cnt)); \
374 newcnt = array_roundsize (type, newcnt << 1); \ 561 init ((base) + (ocur_), (cur) - ocur_); \
375 } \
376 while ((cnt) > newcnt); \
377 \
378 base = (type *)ev_realloc (base, sizeof (type) * (newcnt));\
379 init (base + cur, newcnt - cur); \
380 cur = newcnt; \
381 } 562 }
382 563
564#if 0
383#define array_slim(type,stem) \ 565#define array_slim(type,stem) \
384 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \ 566 if (stem ## max < array_roundsize (stem ## cnt >> 2)) \
385 { \ 567 { \
386 stem ## max = array_roundsize (stem ## cnt >> 1); \ 568 stem ## max = array_roundsize (stem ## cnt >> 1); \
387 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\ 569 base = (type *)ev_realloc (base, sizeof (type) * (stem ## max));\
388 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\ 570 fprintf (stderr, "slimmed down " # stem " to %d\n", stem ## max);/*D*/\
389 } 571 }
572#endif
390 573
391#define array_free(stem, idx) \ 574#define array_free(stem, idx) \
392 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0; 575 ev_free (stem ## s idx); stem ## cnt idx = stem ## max idx = 0;
393 576
394/*****************************************************************************/ 577/*****************************************************************************/
395 578
396void noinline 579void noinline
397ev_feed_event (EV_P_ void *w, int revents) 580ev_feed_event (EV_P_ void *w, int revents)
398{ 581{
399 W w_ = (W)w; 582 W w_ = (W)w;
583 int pri = ABSPRI (w_);
400 584
401 if (expect_false (w_->pending)) 585 if (expect_false (w_->pending))
586 pendings [pri][w_->pending - 1].events |= revents;
587 else
402 { 588 {
589 w_->pending = ++pendingcnt [pri];
590 array_needsize (ANPENDING, pendings [pri], pendingmax [pri], w_->pending, EMPTY2);
591 pendings [pri][w_->pending - 1].w = w_;
403 pendings [ABSPRI (w_)][w_->pending - 1].events |= revents; 592 pendings [pri][w_->pending - 1].events = revents;
404 return;
405 } 593 }
406
407 w_->pending = ++pendingcnt [ABSPRI (w_)];
408 array_needsize (ANPENDING, pendings [ABSPRI (w_)], pendingmax [ABSPRI (w_)], pendingcnt [ABSPRI (w_)], EMPTY2);
409 pendings [ABSPRI (w_)][w_->pending - 1].w = w_;
410 pendings [ABSPRI (w_)][w_->pending - 1].events = revents;
411} 594}
412 595
413void inline_size 596void inline_speed
414queue_events (EV_P_ W *events, int eventcnt, int type) 597queue_events (EV_P_ W *events, int eventcnt, int type)
415{ 598{
416 int i; 599 int i;
417 600
418 for (i = 0; i < eventcnt; ++i) 601 for (i = 0; i < eventcnt; ++i)
450} 633}
451 634
452void 635void
453ev_feed_fd_event (EV_P_ int fd, int revents) 636ev_feed_fd_event (EV_P_ int fd, int revents)
454{ 637{
638 if (fd >= 0 && fd < anfdmax)
455 fd_event (EV_A_ fd, revents); 639 fd_event (EV_A_ fd, revents);
456} 640}
457 641
458void inline_size 642void inline_size
459fd_reify (EV_P) 643fd_reify (EV_P)
460{ 644{
464 { 648 {
465 int fd = fdchanges [i]; 649 int fd = fdchanges [i];
466 ANFD *anfd = anfds + fd; 650 ANFD *anfd = anfds + fd;
467 ev_io *w; 651 ev_io *w;
468 652
469 int events = 0; 653 unsigned char events = 0;
470 654
471 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next) 655 for (w = (ev_io *)anfd->head; w; w = (ev_io *)((WL)w)->next)
472 events |= w->events; 656 events |= (unsigned char)w->events;
473 657
474#if EV_SELECT_IS_WINSOCKET 658#if EV_SELECT_IS_WINSOCKET
475 if (events) 659 if (events)
476 { 660 {
477 unsigned long argp; 661 unsigned long argp;
662 #ifdef EV_FD_TO_WIN32_HANDLE
663 anfd->handle = EV_FD_TO_WIN32_HANDLE (fd);
664 #else
478 anfd->handle = _get_osfhandle (fd); 665 anfd->handle = _get_osfhandle (fd);
666 #endif
479 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0)); 667 assert (("libev only supports socket fds in this configuration", ioctlsocket (anfd->handle, FIONREAD, &argp) == 0));
480 } 668 }
481#endif 669#endif
482 670
671 {
672 unsigned char o_events = anfd->events;
673 unsigned char o_reify = anfd->reify;
674
483 anfd->reify = 0; 675 anfd->reify = 0;
484
485 backend_modify (EV_A_ fd, anfd->events, events);
486 anfd->events = events; 676 anfd->events = events;
677
678 if (o_events != events || o_reify & EV_IOFDSET)
679 backend_modify (EV_A_ fd, o_events, events);
680 }
487 } 681 }
488 682
489 fdchangecnt = 0; 683 fdchangecnt = 0;
490} 684}
491 685
492void inline_size 686void inline_size
493fd_change (EV_P_ int fd) 687fd_change (EV_P_ int fd, int flags)
494{ 688{
495 if (expect_false (anfds [fd].reify)) 689 unsigned char reify = anfds [fd].reify;
496 return;
497
498 anfds [fd].reify = 1; 690 anfds [fd].reify |= flags;
499 691
692 if (expect_true (!reify))
693 {
500 ++fdchangecnt; 694 ++fdchangecnt;
501 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2); 695 array_needsize (int, fdchanges, fdchangemax, fdchangecnt, EMPTY2);
502 fdchanges [fdchangecnt - 1] = fd; 696 fdchanges [fdchangecnt - 1] = fd;
697 }
503} 698}
504 699
505void inline_speed 700void inline_speed
506fd_kill (EV_P_ int fd) 701fd_kill (EV_P_ int fd)
507{ 702{
554static void noinline 749static void noinline
555fd_rearm_all (EV_P) 750fd_rearm_all (EV_P)
556{ 751{
557 int fd; 752 int fd;
558 753
559 /* this should be highly optimised to not do anything but set a flag */
560 for (fd = 0; fd < anfdmax; ++fd) 754 for (fd = 0; fd < anfdmax; ++fd)
561 if (anfds [fd].events) 755 if (anfds [fd].events)
562 { 756 {
563 anfds [fd].events = 0; 757 anfds [fd].events = 0;
564 fd_change (EV_A_ fd); 758 fd_change (EV_A_ fd, EV_IOFDSET | 1);
565 } 759 }
566} 760}
567 761
568/*****************************************************************************/ 762/*****************************************************************************/
569 763
764/* towards the root */
570void inline_speed 765void inline_speed
571upheap (WT *heap, int k) 766upheap (WT *heap, int k)
572{ 767{
573 WT w = heap [k]; 768 WT w = heap [k];
574 769
575 while (k && heap [k >> 1]->at > w->at) 770 for (;;)
576 { 771 {
772 int p = k >> 1;
773
774 /* maybe we could use a dummy element at heap [0]? */
775 if (!p || heap [p]->at <= w->at)
776 break;
777
577 heap [k] = heap [k >> 1]; 778 heap [k] = heap [p];
578 ((W)heap [k])->active = k + 1; 779 ev_active (heap [k]) = k;
579 k >>= 1; 780 k = p;
580 } 781 }
581 782
582 heap [k] = w; 783 heap [k] = w;
583 ((W)heap [k])->active = k + 1; 784 ev_active (heap [k]) = k;
584
585} 785}
586 786
787/* away from the root */
587void inline_speed 788void inline_speed
588downheap (WT *heap, int N, int k) 789downheap (WT *heap, int N, int k)
589{ 790{
590 WT w = heap [k]; 791 WT w = heap [k];
591 792
592 while (k < (N >> 1)) 793 for (;;)
593 { 794 {
594 int j = k << 1; 795 int c = k << 1;
595 796
596 if (j + 1 < N && heap [j]->at > heap [j + 1]->at) 797 if (c > N)
597 ++j;
598
599 if (w->at <= heap [j]->at)
600 break; 798 break;
601 799
800 c += c < N && heap [c]->at > heap [c + 1]->at
801 ? 1 : 0;
802
803 if (w->at <= heap [c]->at)
804 break;
805
602 heap [k] = heap [j]; 806 heap [k] = heap [c];
603 ((W)heap [k])->active = k + 1; 807 ev_active (heap [k]) = k;
808
604 k = j; 809 k = c;
605 } 810 }
606 811
607 heap [k] = w; 812 heap [k] = w;
608 ((W)heap [k])->active = k + 1; 813 ev_active (heap [k]) = k;
609} 814}
610 815
611void inline_size 816void inline_size
612adjustheap (WT *heap, int N, int k) 817adjustheap (WT *heap, int N, int k)
613{ 818{
618/*****************************************************************************/ 823/*****************************************************************************/
619 824
620typedef struct 825typedef struct
621{ 826{
622 WL head; 827 WL head;
623 sig_atomic_t volatile gotsig; 828 EV_ATOMIC_T gotsig;
624} ANSIG; 829} ANSIG;
625 830
626static ANSIG *signals; 831static ANSIG *signals;
627static int signalmax; 832static int signalmax;
628 833
629static int sigpipe [2]; 834static EV_ATOMIC_T gotsig;
630static sig_atomic_t volatile gotsig;
631static ev_io sigev;
632 835
633void inline_size 836void inline_size
634signals_init (ANSIG *base, int count) 837signals_init (ANSIG *base, int count)
635{ 838{
636 while (count--) 839 while (count--)
640 843
641 ++base; 844 ++base;
642 } 845 }
643} 846}
644 847
645static void 848/*****************************************************************************/
646sighandler (int signum)
647{
648#if _WIN32
649 signal (signum, sighandler);
650#endif
651 849
652 signals [signum - 1].gotsig = 1;
653
654 if (!gotsig)
655 {
656 int old_errno = errno;
657 gotsig = 1;
658 write (sigpipe [1], &signum, 1);
659 errno = old_errno;
660 }
661}
662
663void noinline
664ev_feed_signal_event (EV_P_ int signum)
665{
666 WL w;
667
668#if EV_MULTIPLICITY
669 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
670#endif
671
672 --signum;
673
674 if (signum < 0 || signum >= signalmax)
675 return;
676
677 signals [signum].gotsig = 0;
678
679 for (w = signals [signum].head; w; w = w->next)
680 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
681}
682
683static void
684sigcb (EV_P_ ev_io *iow, int revents)
685{
686 int signum;
687
688 read (sigpipe [0], &revents, 1);
689 gotsig = 0;
690
691 for (signum = signalmax; signum--; )
692 if (signals [signum].gotsig)
693 ev_feed_signal_event (EV_A_ signum + 1);
694}
695
696void inline_size 850void inline_speed
697fd_intern (int fd) 851fd_intern (int fd)
698{ 852{
699#ifdef _WIN32 853#ifdef _WIN32
700 int arg = 1; 854 int arg = 1;
701 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg); 855 ioctlsocket (_get_osfhandle (fd), FIONBIO, &arg);
704 fcntl (fd, F_SETFL, O_NONBLOCK); 858 fcntl (fd, F_SETFL, O_NONBLOCK);
705#endif 859#endif
706} 860}
707 861
708static void noinline 862static void noinline
709siginit (EV_P) 863evpipe_init (EV_P)
710{ 864{
865 if (!ev_is_active (&pipeev))
866 {
867#if EV_USE_EVENTFD
868 if ((evfd = eventfd (0, 0)) >= 0)
869 {
870 evpipe [0] = -1;
871 fd_intern (evfd);
872 ev_io_set (&pipeev, evfd, EV_READ);
873 }
874 else
875#endif
876 {
877 while (pipe (evpipe))
878 syserr ("(libev) error creating signal/async pipe");
879
711 fd_intern (sigpipe [0]); 880 fd_intern (evpipe [0]);
712 fd_intern (sigpipe [1]); 881 fd_intern (evpipe [1]);
882 ev_io_set (&pipeev, evpipe [0], EV_READ);
883 }
713 884
714 ev_io_set (&sigev, sigpipe [0], EV_READ);
715 ev_io_start (EV_A_ &sigev); 885 ev_io_start (EV_A_ &pipeev);
716 ev_unref (EV_A); /* child watcher should not keep loop alive */ 886 ev_unref (EV_A); /* watcher should not keep loop alive */
887 }
888}
889
890void inline_size
891evpipe_write (EV_P_ EV_ATOMIC_T *flag)
892{
893 if (!*flag)
894 {
895 int old_errno = errno; /* save errno because write might clobber it */
896
897 *flag = 1;
898
899#if EV_USE_EVENTFD
900 if (evfd >= 0)
901 {
902 uint64_t counter = 1;
903 write (evfd, &counter, sizeof (uint64_t));
904 }
905 else
906#endif
907 write (evpipe [1], &old_errno, 1);
908
909 errno = old_errno;
910 }
911}
912
913static void
914pipecb (EV_P_ ev_io *iow, int revents)
915{
916#if EV_USE_EVENTFD
917 if (evfd >= 0)
918 {
919 uint64_t counter;
920 read (evfd, &counter, sizeof (uint64_t));
921 }
922 else
923#endif
924 {
925 char dummy;
926 read (evpipe [0], &dummy, 1);
927 }
928
929 if (gotsig && ev_is_default_loop (EV_A))
930 {
931 int signum;
932 gotsig = 0;
933
934 for (signum = signalmax; signum--; )
935 if (signals [signum].gotsig)
936 ev_feed_signal_event (EV_A_ signum + 1);
937 }
938
939#if EV_ASYNC_ENABLE
940 if (gotasync)
941 {
942 int i;
943 gotasync = 0;
944
945 for (i = asynccnt; i--; )
946 if (asyncs [i]->sent)
947 {
948 asyncs [i]->sent = 0;
949 ev_feed_event (EV_A_ asyncs [i], EV_ASYNC);
950 }
951 }
952#endif
717} 953}
718 954
719/*****************************************************************************/ 955/*****************************************************************************/
720 956
957static void
958ev_sighandler (int signum)
959{
960#if EV_MULTIPLICITY
961 struct ev_loop *loop = &default_loop_struct;
962#endif
963
964#if _WIN32
965 signal (signum, ev_sighandler);
966#endif
967
968 signals [signum - 1].gotsig = 1;
969 evpipe_write (EV_A_ &gotsig);
970}
971
972void noinline
973ev_feed_signal_event (EV_P_ int signum)
974{
975 WL w;
976
977#if EV_MULTIPLICITY
978 assert (("feeding signal events is only supported in the default loop", loop == ev_default_loop_ptr));
979#endif
980
981 --signum;
982
983 if (signum < 0 || signum >= signalmax)
984 return;
985
986 signals [signum].gotsig = 0;
987
988 for (w = signals [signum].head; w; w = w->next)
989 ev_feed_event (EV_A_ (W)w, EV_SIGNAL);
990}
991
992/*****************************************************************************/
993
721static ev_child *childs [EV_PID_HASHSIZE]; 994static WL childs [EV_PID_HASHSIZE];
722 995
723#ifndef _WIN32 996#ifndef _WIN32
724 997
725static ev_signal childev; 998static ev_signal childev;
726 999
1000#ifndef WIFCONTINUED
1001# define WIFCONTINUED(status) 0
1002#endif
1003
727void inline_speed 1004void inline_speed
728child_reap (EV_P_ ev_signal *sw, int chain, int pid, int status) 1005child_reap (EV_P_ int chain, int pid, int status)
729{ 1006{
730 ev_child *w; 1007 ev_child *w;
1008 int traced = WIFSTOPPED (status) || WIFCONTINUED (status);
731 1009
732 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next) 1010 for (w = (ev_child *)childs [chain & (EV_PID_HASHSIZE - 1)]; w; w = (ev_child *)((WL)w)->next)
1011 {
733 if (w->pid == pid || !w->pid) 1012 if ((w->pid == pid || !w->pid)
1013 && (!traced || (w->flags & 1)))
734 { 1014 {
735 ev_priority (w) = ev_priority (sw); /* need to do it *now* */ 1015 ev_set_priority (w, EV_MAXPRI); /* need to do it *now*, this *must* be the same prio as the signal watcher itself */
736 w->rpid = pid; 1016 w->rpid = pid;
737 w->rstatus = status; 1017 w->rstatus = status;
738 ev_feed_event (EV_A_ (W)w, EV_CHILD); 1018 ev_feed_event (EV_A_ (W)w, EV_CHILD);
739 } 1019 }
1020 }
740} 1021}
741 1022
742#ifndef WCONTINUED 1023#ifndef WCONTINUED
743# define WCONTINUED 0 1024# define WCONTINUED 0
744#endif 1025#endif
753 if (!WCONTINUED 1034 if (!WCONTINUED
754 || errno != EINVAL 1035 || errno != EINVAL
755 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED))) 1036 || 0 >= (pid = waitpid (-1, &status, WNOHANG | WUNTRACED)))
756 return; 1037 return;
757 1038
758 /* make sure we are called again until all childs have been reaped */ 1039 /* make sure we are called again until all children have been reaped */
759 /* we need to do it this way so that the callback gets called before we continue */ 1040 /* we need to do it this way so that the callback gets called before we continue */
760 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL); 1041 ev_feed_event (EV_A_ (W)sw, EV_SIGNAL);
761 1042
762 child_reap (EV_A_ sw, pid, pid, status); 1043 child_reap (EV_A_ pid, pid, status);
763 if (EV_PID_HASHSIZE > 1) 1044 if (EV_PID_HASHSIZE > 1)
764 child_reap (EV_A_ sw, 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */ 1045 child_reap (EV_A_ 0, pid, status); /* this might trigger a watcher twice, but feed_event catches that */
765} 1046}
766 1047
767#endif 1048#endif
768 1049
769/*****************************************************************************/ 1050/*****************************************************************************/
841} 1122}
842 1123
843unsigned int 1124unsigned int
844ev_embeddable_backends (void) 1125ev_embeddable_backends (void)
845{ 1126{
846 return EVBACKEND_EPOLL 1127 int flags = EVBACKEND_EPOLL | EVBACKEND_KQUEUE | EVBACKEND_PORT;
847 | EVBACKEND_KQUEUE 1128
848 | EVBACKEND_PORT; 1129 /* epoll embeddability broken on all linux versions up to at least 2.6.23 */
1130 /* please fix it and tell me how to detect the fix */
1131 flags &= ~EVBACKEND_EPOLL;
1132
1133 return flags;
849} 1134}
850 1135
851unsigned int 1136unsigned int
852ev_backend (EV_P) 1137ev_backend (EV_P)
853{ 1138{
854 return backend; 1139 return backend;
1140}
1141
1142unsigned int
1143ev_loop_count (EV_P)
1144{
1145 return loop_count;
1146}
1147
1148void
1149ev_set_io_collect_interval (EV_P_ ev_tstamp interval)
1150{
1151 io_blocktime = interval;
1152}
1153
1154void
1155ev_set_timeout_collect_interval (EV_P_ ev_tstamp interval)
1156{
1157 timeout_blocktime = interval;
855} 1158}
856 1159
857static void noinline 1160static void noinline
858loop_init (EV_P_ unsigned int flags) 1161loop_init (EV_P_ unsigned int flags)
859{ 1162{
865 if (!clock_gettime (CLOCK_MONOTONIC, &ts)) 1168 if (!clock_gettime (CLOCK_MONOTONIC, &ts))
866 have_monotonic = 1; 1169 have_monotonic = 1;
867 } 1170 }
868#endif 1171#endif
869 1172
870 ev_rt_now = ev_time (); 1173 ev_rt_now = ev_time ();
871 mn_now = get_clock (); 1174 mn_now = get_clock ();
872 now_floor = mn_now; 1175 now_floor = mn_now;
873 rtmn_diff = ev_rt_now - mn_now; 1176 rtmn_diff = ev_rt_now - mn_now;
1177
1178 io_blocktime = 0.;
1179 timeout_blocktime = 0.;
1180 backend = 0;
1181 backend_fd = -1;
1182 gotasync = 0;
1183#if EV_USE_INOTIFY
1184 fs_fd = -2;
1185#endif
1186
1187 /* pid check not overridable via env */
1188#ifndef _WIN32
1189 if (flags & EVFLAG_FORKCHECK)
1190 curpid = getpid ();
1191#endif
874 1192
875 if (!(flags & EVFLAG_NOENV) 1193 if (!(flags & EVFLAG_NOENV)
876 && !enable_secure () 1194 && !enable_secure ()
877 && getenv ("LIBEV_FLAGS")) 1195 && getenv ("LIBEV_FLAGS"))
878 flags = atoi (getenv ("LIBEV_FLAGS")); 1196 flags = atoi (getenv ("LIBEV_FLAGS"));
879 1197
880 if (!(flags & 0x0000ffffUL)) 1198 if (!(flags & 0x0000ffffU))
881 flags |= ev_recommended_backends (); 1199 flags |= ev_recommended_backends ();
882 1200
883 backend = 0;
884#if EV_USE_PORT 1201#if EV_USE_PORT
885 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags); 1202 if (!backend && (flags & EVBACKEND_PORT )) backend = port_init (EV_A_ flags);
886#endif 1203#endif
887#if EV_USE_KQUEUE 1204#if EV_USE_KQUEUE
888 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags); 1205 if (!backend && (flags & EVBACKEND_KQUEUE)) backend = kqueue_init (EV_A_ flags);
895#endif 1212#endif
896#if EV_USE_SELECT 1213#if EV_USE_SELECT
897 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags); 1214 if (!backend && (flags & EVBACKEND_SELECT)) backend = select_init (EV_A_ flags);
898#endif 1215#endif
899 1216
900 ev_init (&sigev, sigcb); 1217 ev_init (&pipeev, pipecb);
901 ev_set_priority (&sigev, EV_MAXPRI); 1218 ev_set_priority (&pipeev, EV_MAXPRI);
902 } 1219 }
903} 1220}
904 1221
905static void noinline 1222static void noinline
906loop_destroy (EV_P) 1223loop_destroy (EV_P)
907{ 1224{
908 int i; 1225 int i;
909 1226
1227 if (ev_is_active (&pipeev))
1228 {
1229 ev_ref (EV_A); /* signal watcher */
1230 ev_io_stop (EV_A_ &pipeev);
1231
1232#if EV_USE_EVENTFD
1233 if (evfd >= 0)
1234 close (evfd);
1235#endif
1236
1237 if (evpipe [0] >= 0)
1238 {
1239 close (evpipe [0]);
1240 close (evpipe [1]);
1241 }
1242 }
1243
1244#if EV_USE_INOTIFY
1245 if (fs_fd >= 0)
1246 close (fs_fd);
1247#endif
1248
1249 if (backend_fd >= 0)
1250 close (backend_fd);
1251
910#if EV_USE_PORT 1252#if EV_USE_PORT
911 if (backend == EVBACKEND_PORT ) port_destroy (EV_A); 1253 if (backend == EVBACKEND_PORT ) port_destroy (EV_A);
912#endif 1254#endif
913#if EV_USE_KQUEUE 1255#if EV_USE_KQUEUE
914 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A); 1256 if (backend == EVBACKEND_KQUEUE) kqueue_destroy (EV_A);
922#if EV_USE_SELECT 1264#if EV_USE_SELECT
923 if (backend == EVBACKEND_SELECT) select_destroy (EV_A); 1265 if (backend == EVBACKEND_SELECT) select_destroy (EV_A);
924#endif 1266#endif
925 1267
926 for (i = NUMPRI; i--; ) 1268 for (i = NUMPRI; i--; )
1269 {
927 array_free (pending, [i]); 1270 array_free (pending, [i]);
1271#if EV_IDLE_ENABLE
1272 array_free (idle, [i]);
1273#endif
1274 }
1275
1276 ev_free (anfds); anfdmax = 0;
928 1277
929 /* have to use the microsoft-never-gets-it-right macro */ 1278 /* have to use the microsoft-never-gets-it-right macro */
930 array_free (fdchange, EMPTY0); 1279 array_free (fdchange, EMPTY);
931 array_free (timer, EMPTY0); 1280 array_free (timer, EMPTY);
932#if EV_PERIODIC_ENABLE 1281#if EV_PERIODIC_ENABLE
933 array_free (periodic, EMPTY0); 1282 array_free (periodic, EMPTY);
934#endif 1283#endif
1284#if EV_FORK_ENABLE
935 array_free (idle, EMPTY0); 1285 array_free (fork, EMPTY);
1286#endif
936 array_free (prepare, EMPTY0); 1287 array_free (prepare, EMPTY);
937 array_free (check, EMPTY0); 1288 array_free (check, EMPTY);
1289#if EV_ASYNC_ENABLE
1290 array_free (async, EMPTY);
1291#endif
938 1292
939 backend = 0; 1293 backend = 0;
940} 1294}
1295
1296#if EV_USE_INOTIFY
1297void inline_size infy_fork (EV_P);
1298#endif
941 1299
942void inline_size 1300void inline_size
943loop_fork (EV_P) 1301loop_fork (EV_P)
944{ 1302{
945#if EV_USE_PORT 1303#if EV_USE_PORT
949 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A); 1307 if (backend == EVBACKEND_KQUEUE) kqueue_fork (EV_A);
950#endif 1308#endif
951#if EV_USE_EPOLL 1309#if EV_USE_EPOLL
952 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A); 1310 if (backend == EVBACKEND_EPOLL ) epoll_fork (EV_A);
953#endif 1311#endif
1312#if EV_USE_INOTIFY
1313 infy_fork (EV_A);
1314#endif
954 1315
955 if (ev_is_active (&sigev)) 1316 if (ev_is_active (&pipeev))
956 { 1317 {
957 /* default loop */ 1318 /* this "locks" the handlers against writing to the pipe */
1319 /* while we modify the fd vars */
1320 gotsig = 1;
1321#if EV_ASYNC_ENABLE
1322 gotasync = 1;
1323#endif
958 1324
959 ev_ref (EV_A); 1325 ev_ref (EV_A);
960 ev_io_stop (EV_A_ &sigev); 1326 ev_io_stop (EV_A_ &pipeev);
1327
1328#if EV_USE_EVENTFD
1329 if (evfd >= 0)
1330 close (evfd);
1331#endif
1332
1333 if (evpipe [0] >= 0)
1334 {
961 close (sigpipe [0]); 1335 close (evpipe [0]);
962 close (sigpipe [1]); 1336 close (evpipe [1]);
1337 }
963 1338
964 while (pipe (sigpipe))
965 syserr ("(libev) error creating pipe");
966
967 siginit (EV_A); 1339 evpipe_init (EV_A);
1340 /* now iterate over everything, in case we missed something */
1341 pipecb (EV_A_ &pipeev, EV_READ);
968 } 1342 }
969 1343
970 postfork = 0; 1344 postfork = 0;
971} 1345}
972 1346
994} 1368}
995 1369
996void 1370void
997ev_loop_fork (EV_P) 1371ev_loop_fork (EV_P)
998{ 1372{
999 postfork = 1; 1373 postfork = 1; /* must be in line with ev_default_fork */
1000} 1374}
1001 1375
1002#endif 1376#endif
1003 1377
1004#if EV_MULTIPLICITY 1378#if EV_MULTIPLICITY
1007#else 1381#else
1008int 1382int
1009ev_default_loop (unsigned int flags) 1383ev_default_loop (unsigned int flags)
1010#endif 1384#endif
1011{ 1385{
1012 if (sigpipe [0] == sigpipe [1])
1013 if (pipe (sigpipe))
1014 return 0;
1015
1016 if (!ev_default_loop_ptr) 1386 if (!ev_default_loop_ptr)
1017 { 1387 {
1018#if EV_MULTIPLICITY 1388#if EV_MULTIPLICITY
1019 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct; 1389 struct ev_loop *loop = ev_default_loop_ptr = &default_loop_struct;
1020#else 1390#else
1023 1393
1024 loop_init (EV_A_ flags); 1394 loop_init (EV_A_ flags);
1025 1395
1026 if (ev_backend (EV_A)) 1396 if (ev_backend (EV_A))
1027 { 1397 {
1028 siginit (EV_A);
1029
1030#ifndef _WIN32 1398#ifndef _WIN32
1031 ev_signal_init (&childev, childcb, SIGCHLD); 1399 ev_signal_init (&childev, childcb, SIGCHLD);
1032 ev_set_priority (&childev, EV_MAXPRI); 1400 ev_set_priority (&childev, EV_MAXPRI);
1033 ev_signal_start (EV_A_ &childev); 1401 ev_signal_start (EV_A_ &childev);
1034 ev_unref (EV_A); /* child watcher should not keep loop alive */ 1402 ev_unref (EV_A); /* child watcher should not keep loop alive */
1051#ifndef _WIN32 1419#ifndef _WIN32
1052 ev_ref (EV_A); /* child watcher */ 1420 ev_ref (EV_A); /* child watcher */
1053 ev_signal_stop (EV_A_ &childev); 1421 ev_signal_stop (EV_A_ &childev);
1054#endif 1422#endif
1055 1423
1056 ev_ref (EV_A); /* signal watcher */
1057 ev_io_stop (EV_A_ &sigev);
1058
1059 close (sigpipe [0]); sigpipe [0] = 0;
1060 close (sigpipe [1]); sigpipe [1] = 0;
1061
1062 loop_destroy (EV_A); 1424 loop_destroy (EV_A);
1063} 1425}
1064 1426
1065void 1427void
1066ev_default_fork (void) 1428ev_default_fork (void)
1068#if EV_MULTIPLICITY 1430#if EV_MULTIPLICITY
1069 struct ev_loop *loop = ev_default_loop_ptr; 1431 struct ev_loop *loop = ev_default_loop_ptr;
1070#endif 1432#endif
1071 1433
1072 if (backend) 1434 if (backend)
1073 postfork = 1; 1435 postfork = 1; /* must be in line with ev_loop_fork */
1074} 1436}
1075 1437
1076/*****************************************************************************/ 1438/*****************************************************************************/
1077 1439
1078int inline_size 1440void
1079any_pending (EV_P) 1441ev_invoke (EV_P_ void *w, int revents)
1080{ 1442{
1081 int pri; 1443 EV_CB_INVOKE ((W)w, revents);
1082
1083 for (pri = NUMPRI; pri--; )
1084 if (pendingcnt [pri])
1085 return 1;
1086
1087 return 0;
1088} 1444}
1089 1445
1090void inline_speed 1446void inline_speed
1091call_pending (EV_P) 1447call_pending (EV_P)
1092{ 1448{
1108} 1464}
1109 1465
1110void inline_size 1466void inline_size
1111timers_reify (EV_P) 1467timers_reify (EV_P)
1112{ 1468{
1113 while (timercnt && ((WT)timers [0])->at <= mn_now) 1469 while (timercnt && ev_at (timers [1]) <= mn_now)
1114 { 1470 {
1115 ev_timer *w = timers [0]; 1471 ev_timer *w = (ev_timer *)timers [1];
1116 1472
1117 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/ 1473 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1118 1474
1119 /* first reschedule or stop timer */ 1475 /* first reschedule or stop timer */
1120 if (w->repeat) 1476 if (w->repeat)
1121 { 1477 {
1122 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.)); 1478 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1123 1479
1124 ((WT)w)->at += w->repeat; 1480 ev_at (w) += w->repeat;
1125 if (((WT)w)->at < mn_now) 1481 if (ev_at (w) < mn_now)
1126 ((WT)w)->at = mn_now; 1482 ev_at (w) = mn_now;
1127 1483
1128 downheap ((WT *)timers, timercnt, 0); 1484 downheap (timers, timercnt, 1);
1129 } 1485 }
1130 else 1486 else
1131 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */ 1487 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1132 1488
1133 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT); 1489 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1136 1492
1137#if EV_PERIODIC_ENABLE 1493#if EV_PERIODIC_ENABLE
1138void inline_size 1494void inline_size
1139periodics_reify (EV_P) 1495periodics_reify (EV_P)
1140{ 1496{
1141 while (periodiccnt && ((WT)periodics [0])->at <= ev_rt_now) 1497 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1142 { 1498 {
1143 ev_periodic *w = periodics [0]; 1499 ev_periodic *w = (ev_periodic *)periodics [1];
1144 1500
1145 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/ 1501 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1146 1502
1147 /* first reschedule or stop timer */ 1503 /* first reschedule or stop timer */
1148 if (w->reschedule_cb) 1504 if (w->reschedule_cb)
1149 { 1505 {
1150 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now + 0.0001); 1506 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1151 assert (("ev_periodic reschedule callback returned time in the past", ((WT)w)->at > ev_rt_now)); 1507 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1152 downheap ((WT *)periodics, periodiccnt, 0); 1508 downheap (periodics, periodiccnt, 1);
1153 } 1509 }
1154 else if (w->interval) 1510 else if (w->interval)
1155 { 1511 {
1156 ((WT)w)->at += floor ((ev_rt_now - ((WT)w)->at) / w->interval + 1.) * w->interval; 1512 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1513 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1157 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ((WT)w)->at > ev_rt_now)); 1514 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1158 downheap ((WT *)periodics, periodiccnt, 0); 1515 downheap (periodics, periodiccnt, 1);
1159 } 1516 }
1160 else 1517 else
1161 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */ 1518 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1162 1519
1163 ev_feed_event (EV_A_ (W)w, EV_PERIODIC); 1520 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1168periodics_reschedule (EV_P) 1525periodics_reschedule (EV_P)
1169{ 1526{
1170 int i; 1527 int i;
1171 1528
1172 /* adjust periodics after time jump */ 1529 /* adjust periodics after time jump */
1173 for (i = 0; i < periodiccnt; ++i) 1530 for (i = 1; i <= periodiccnt; ++i)
1174 { 1531 {
1175 ev_periodic *w = periodics [i]; 1532 ev_periodic *w = (ev_periodic *)periodics [i];
1176 1533
1177 if (w->reschedule_cb) 1534 if (w->reschedule_cb)
1178 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1535 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1179 else if (w->interval) 1536 else if (w->interval)
1180 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1537 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1181 } 1538 }
1182 1539
1183 /* now rebuild the heap */ 1540 /* now rebuild the heap */
1184 for (i = periodiccnt >> 1; i--; ) 1541 for (i = periodiccnt >> 1; i--; )
1185 downheap ((WT *)periodics, periodiccnt, i); 1542 downheap (periodics, periodiccnt, i);
1186} 1543}
1187#endif 1544#endif
1188 1545
1546#if EV_IDLE_ENABLE
1189int inline_size 1547void inline_size
1190time_update_monotonic (EV_P) 1548idle_reify (EV_P)
1191{ 1549{
1550 if (expect_false (idleall))
1551 {
1552 int pri;
1553
1554 for (pri = NUMPRI; pri--; )
1555 {
1556 if (pendingcnt [pri])
1557 break;
1558
1559 if (idlecnt [pri])
1560 {
1561 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1562 break;
1563 }
1564 }
1565 }
1566}
1567#endif
1568
1569void inline_speed
1570time_update (EV_P_ ev_tstamp max_block)
1571{
1572 int i;
1573
1574#if EV_USE_MONOTONIC
1575 if (expect_true (have_monotonic))
1576 {
1577 ev_tstamp odiff = rtmn_diff;
1578
1192 mn_now = get_clock (); 1579 mn_now = get_clock ();
1193 1580
1581 /* only fetch the realtime clock every 0.5*MIN_TIMEJUMP seconds */
1582 /* interpolate in the meantime */
1194 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5)) 1583 if (expect_true (mn_now - now_floor < MIN_TIMEJUMP * .5))
1195 { 1584 {
1196 ev_rt_now = rtmn_diff + mn_now; 1585 ev_rt_now = rtmn_diff + mn_now;
1197 return 0; 1586 return;
1198 } 1587 }
1199 else 1588
1200 {
1201 now_floor = mn_now; 1589 now_floor = mn_now;
1202 ev_rt_now = ev_time (); 1590 ev_rt_now = ev_time ();
1203 return 1;
1204 }
1205}
1206 1591
1207void inline_size 1592 /* loop a few times, before making important decisions.
1208time_update (EV_P) 1593 * on the choice of "4": one iteration isn't enough,
1209{ 1594 * in case we get preempted during the calls to
1210 int i; 1595 * ev_time and get_clock. a second call is almost guaranteed
1211 1596 * to succeed in that case, though. and looping a few more times
1212#if EV_USE_MONOTONIC 1597 * doesn't hurt either as we only do this on time-jumps or
1213 if (expect_true (have_monotonic)) 1598 * in the unlikely event of having been preempted here.
1214 { 1599 */
1215 if (time_update_monotonic (EV_A)) 1600 for (i = 4; --i; )
1216 { 1601 {
1217 ev_tstamp odiff = rtmn_diff;
1218
1219 /* loop a few times, before making important decisions.
1220 * on the choice of "4": one iteration isn't enough,
1221 * in case we get preempted during the calls to
1222 * ev_time and get_clock. a second call is almost guarenteed
1223 * to succeed in that case, though. and looping a few more times
1224 * doesn't hurt either as we only do this on time-jumps or
1225 * in the unlikely event of getting preempted here.
1226 */
1227 for (i = 4; --i; )
1228 {
1229 rtmn_diff = ev_rt_now - mn_now; 1602 rtmn_diff = ev_rt_now - mn_now;
1230 1603
1231 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1604 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP)
1232 return; /* all is well */ 1605 return; /* all is well */
1233 1606
1234 ev_rt_now = ev_time (); 1607 ev_rt_now = ev_time ();
1235 mn_now = get_clock (); 1608 mn_now = get_clock ();
1236 now_floor = mn_now; 1609 now_floor = mn_now;
1237 } 1610 }
1238 1611
1239# if EV_PERIODIC_ENABLE 1612# if EV_PERIODIC_ENABLE
1240 periodics_reschedule (EV_A); 1613 periodics_reschedule (EV_A);
1241# endif 1614# endif
1242 /* no timer adjustment, as the monotonic clock doesn't jump */ 1615 /* no timer adjustment, as the monotonic clock doesn't jump */
1243 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */ 1616 /* timers_reschedule (EV_A_ rtmn_diff - odiff) */
1244 }
1245 } 1617 }
1246 else 1618 else
1247#endif 1619#endif
1248 { 1620 {
1249 ev_rt_now = ev_time (); 1621 ev_rt_now = ev_time ();
1250 1622
1251 if (expect_false (mn_now > ev_rt_now || mn_now < ev_rt_now - MAX_BLOCKTIME - MIN_TIMEJUMP)) 1623 if (expect_false (mn_now > ev_rt_now || ev_rt_now > mn_now + max_block + MIN_TIMEJUMP))
1252 { 1624 {
1253#if EV_PERIODIC_ENABLE 1625#if EV_PERIODIC_ENABLE
1254 periodics_reschedule (EV_A); 1626 periodics_reschedule (EV_A);
1255#endif 1627#endif
1256
1257 /* adjust timers. this is easy, as the offset is the same for all */ 1628 /* adjust timers. this is easy, as the offset is the same for all of them */
1258 for (i = 0; i < timercnt; ++i) 1629 for (i = 1; i <= timercnt; ++i)
1259 ((WT)timers [i])->at += ev_rt_now - mn_now; 1630 ev_at (timers [i]) += ev_rt_now - mn_now;
1260 } 1631 }
1261 1632
1262 mn_now = ev_rt_now; 1633 mn_now = ev_rt_now;
1263 } 1634 }
1264} 1635}
1278static int loop_done; 1649static int loop_done;
1279 1650
1280void 1651void
1281ev_loop (EV_P_ int flags) 1652ev_loop (EV_P_ int flags)
1282{ 1653{
1283 loop_done = flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK) 1654 loop_done = EVUNLOOP_CANCEL;
1284 ? EVUNLOOP_ONE
1285 : EVUNLOOP_CANCEL;
1286 1655
1287 while (activecnt) 1656 call_pending (EV_A); /* in case we recurse, ensure ordering stays nice and clean */
1657
1658 do
1288 { 1659 {
1289 /* we might have forked, so reify kernel state if necessary */ 1660#ifndef _WIN32
1661 if (expect_false (curpid)) /* penalise the forking check even more */
1662 if (expect_false (getpid () != curpid))
1663 {
1664 curpid = getpid ();
1665 postfork = 1;
1666 }
1667#endif
1668
1290 #if EV_FORK_ENABLE 1669#if EV_FORK_ENABLE
1670 /* we might have forked, so queue fork handlers */
1291 if (expect_false (postfork)) 1671 if (expect_false (postfork))
1292 if (forkcnt) 1672 if (forkcnt)
1293 { 1673 {
1294 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK); 1674 queue_events (EV_A_ (W *)forks, forkcnt, EV_FORK);
1295 call_pending (EV_A); 1675 call_pending (EV_A);
1296 } 1676 }
1297 #endif 1677#endif
1298 1678
1299 /* queue check watchers (and execute them) */ 1679 /* queue prepare watchers (and execute them) */
1300 if (expect_false (preparecnt)) 1680 if (expect_false (preparecnt))
1301 { 1681 {
1302 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE); 1682 queue_events (EV_A_ (W *)prepares, preparecnt, EV_PREPARE);
1303 call_pending (EV_A); 1683 call_pending (EV_A);
1304 } 1684 }
1305 1685
1686 if (expect_false (!activecnt))
1687 break;
1688
1306 /* we might have forked, so reify kernel state if necessary */ 1689 /* we might have forked, so reify kernel state if necessary */
1307 if (expect_false (postfork)) 1690 if (expect_false (postfork))
1308 loop_fork (EV_A); 1691 loop_fork (EV_A);
1309 1692
1310 /* update fd-related kernel structures */ 1693 /* update fd-related kernel structures */
1311 fd_reify (EV_A); 1694 fd_reify (EV_A);
1312 1695
1313 /* calculate blocking time */ 1696 /* calculate blocking time */
1314 { 1697 {
1315 double block; 1698 ev_tstamp waittime = 0.;
1699 ev_tstamp sleeptime = 0.;
1316 1700
1317 if (flags & EVLOOP_NONBLOCK || idlecnt) 1701 if (expect_true (!(flags & EVLOOP_NONBLOCK || idleall || !activecnt)))
1318 block = 0.; /* do not block at all */
1319 else
1320 { 1702 {
1321 /* update time to cancel out callback processing overhead */ 1703 /* update time to cancel out callback processing overhead */
1322#if EV_USE_MONOTONIC
1323 if (expect_true (have_monotonic))
1324 time_update_monotonic (EV_A); 1704 time_update (EV_A_ 1e100);
1325 else
1326#endif
1327 {
1328 ev_rt_now = ev_time ();
1329 mn_now = ev_rt_now;
1330 }
1331 1705
1332 block = MAX_BLOCKTIME; 1706 waittime = MAX_BLOCKTIME;
1333 1707
1334 if (timercnt) 1708 if (timercnt)
1335 { 1709 {
1336 ev_tstamp to = ((WT)timers [0])->at - mn_now + backend_fudge; 1710 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge;
1337 if (block > to) block = to; 1711 if (waittime > to) waittime = to;
1338 } 1712 }
1339 1713
1340#if EV_PERIODIC_ENABLE 1714#if EV_PERIODIC_ENABLE
1341 if (periodiccnt) 1715 if (periodiccnt)
1342 { 1716 {
1343 ev_tstamp to = ((WT)periodics [0])->at - ev_rt_now + backend_fudge; 1717 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge;
1344 if (block > to) block = to; 1718 if (waittime > to) waittime = to;
1345 } 1719 }
1346#endif 1720#endif
1347 1721
1348 if (expect_false (block < 0.)) block = 0.; 1722 if (expect_false (waittime < timeout_blocktime))
1723 waittime = timeout_blocktime;
1724
1725 sleeptime = waittime - backend_fudge;
1726
1727 if (expect_true (sleeptime > io_blocktime))
1728 sleeptime = io_blocktime;
1729
1730 if (sleeptime)
1731 {
1732 ev_sleep (sleeptime);
1733 waittime -= sleeptime;
1734 }
1349 } 1735 }
1350 1736
1737 ++loop_count;
1351 backend_poll (EV_A_ block); 1738 backend_poll (EV_A_ waittime);
1739
1740 /* update ev_rt_now, do magic */
1741 time_update (EV_A_ waittime + sleeptime);
1352 } 1742 }
1353
1354 /* update ev_rt_now, do magic */
1355 time_update (EV_A);
1356 1743
1357 /* queue pending timers and reschedule them */ 1744 /* queue pending timers and reschedule them */
1358 timers_reify (EV_A); /* relative timers called last */ 1745 timers_reify (EV_A); /* relative timers called last */
1359#if EV_PERIODIC_ENABLE 1746#if EV_PERIODIC_ENABLE
1360 periodics_reify (EV_A); /* absolute timers called first */ 1747 periodics_reify (EV_A); /* absolute timers called first */
1361#endif 1748#endif
1362 1749
1750#if EV_IDLE_ENABLE
1363 /* queue idle watchers unless other events are pending */ 1751 /* queue idle watchers unless other events are pending */
1364 if (idlecnt && !any_pending (EV_A)) 1752 idle_reify (EV_A);
1365 queue_events (EV_A_ (W *)idles, idlecnt, EV_IDLE); 1753#endif
1366 1754
1367 /* queue check watchers, to be executed first */ 1755 /* queue check watchers, to be executed first */
1368 if (expect_false (checkcnt)) 1756 if (expect_false (checkcnt))
1369 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK); 1757 queue_events (EV_A_ (W *)checks, checkcnt, EV_CHECK);
1370 1758
1371 call_pending (EV_A); 1759 call_pending (EV_A);
1372
1373 if (expect_false (loop_done))
1374 break;
1375 } 1760 }
1761 while (expect_true (
1762 activecnt
1763 && !loop_done
1764 && !(flags & (EVLOOP_ONESHOT | EVLOOP_NONBLOCK))
1765 ));
1376 1766
1377 if (loop_done == EVUNLOOP_ONE) 1767 if (loop_done == EVUNLOOP_ONE)
1378 loop_done = EVUNLOOP_CANCEL; 1768 loop_done = EVUNLOOP_CANCEL;
1379} 1769}
1380 1770
1407 head = &(*head)->next; 1797 head = &(*head)->next;
1408 } 1798 }
1409} 1799}
1410 1800
1411void inline_speed 1801void inline_speed
1412ev_clear_pending (EV_P_ W w) 1802clear_pending (EV_P_ W w)
1413{ 1803{
1414 if (w->pending) 1804 if (w->pending)
1415 { 1805 {
1416 pendings [ABSPRI (w)][w->pending - 1].w = 0; 1806 pendings [ABSPRI (w)][w->pending - 1].w = 0;
1417 w->pending = 0; 1807 w->pending = 0;
1418 } 1808 }
1419} 1809}
1420 1810
1811int
1812ev_clear_pending (EV_P_ void *w)
1813{
1814 W w_ = (W)w;
1815 int pending = w_->pending;
1816
1817 if (expect_true (pending))
1818 {
1819 ANPENDING *p = pendings [ABSPRI (w_)] + pending - 1;
1820 w_->pending = 0;
1821 p->w = 0;
1822 return p->events;
1823 }
1824 else
1825 return 0;
1826}
1827
1828void inline_size
1829pri_adjust (EV_P_ W w)
1830{
1831 int pri = w->priority;
1832 pri = pri < EV_MINPRI ? EV_MINPRI : pri;
1833 pri = pri > EV_MAXPRI ? EV_MAXPRI : pri;
1834 w->priority = pri;
1835}
1836
1421void inline_speed 1837void inline_speed
1422ev_start (EV_P_ W w, int active) 1838ev_start (EV_P_ W w, int active)
1423{ 1839{
1424 if (w->priority < EV_MINPRI) w->priority = EV_MINPRI; 1840 pri_adjust (EV_A_ w);
1425 if (w->priority > EV_MAXPRI) w->priority = EV_MAXPRI;
1426
1427 w->active = active; 1841 w->active = active;
1428 ev_ref (EV_A); 1842 ev_ref (EV_A);
1429} 1843}
1430 1844
1431void inline_size 1845void inline_size
1435 w->active = 0; 1849 w->active = 0;
1436} 1850}
1437 1851
1438/*****************************************************************************/ 1852/*****************************************************************************/
1439 1853
1440void 1854void noinline
1441ev_io_start (EV_P_ ev_io *w) 1855ev_io_start (EV_P_ ev_io *w)
1442{ 1856{
1443 int fd = w->fd; 1857 int fd = w->fd;
1444 1858
1445 if (expect_false (ev_is_active (w))) 1859 if (expect_false (ev_is_active (w)))
1447 1861
1448 assert (("ev_io_start called with negative fd", fd >= 0)); 1862 assert (("ev_io_start called with negative fd", fd >= 0));
1449 1863
1450 ev_start (EV_A_ (W)w, 1); 1864 ev_start (EV_A_ (W)w, 1);
1451 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init); 1865 array_needsize (ANFD, anfds, anfdmax, fd + 1, anfds_init);
1452 wlist_add ((WL *)&anfds[fd].head, (WL)w); 1866 wlist_add (&anfds[fd].head, (WL)w);
1453 1867
1454 fd_change (EV_A_ fd); 1868 fd_change (EV_A_ fd, w->events & EV_IOFDSET | 1);
1869 w->events &= ~EV_IOFDSET;
1455} 1870}
1456 1871
1457void 1872void noinline
1458ev_io_stop (EV_P_ ev_io *w) 1873ev_io_stop (EV_P_ ev_io *w)
1459{ 1874{
1460 ev_clear_pending (EV_A_ (W)w); 1875 clear_pending (EV_A_ (W)w);
1461 if (expect_false (!ev_is_active (w))) 1876 if (expect_false (!ev_is_active (w)))
1462 return; 1877 return;
1463 1878
1464 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 1879 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1465 1880
1466 wlist_del ((WL *)&anfds[w->fd].head, (WL)w); 1881 wlist_del (&anfds[w->fd].head, (WL)w);
1467 ev_stop (EV_A_ (W)w); 1882 ev_stop (EV_A_ (W)w);
1468 1883
1469 fd_change (EV_A_ w->fd); 1884 fd_change (EV_A_ w->fd, 1);
1470} 1885}
1471 1886
1472void 1887void noinline
1473ev_timer_start (EV_P_ ev_timer *w) 1888ev_timer_start (EV_P_ ev_timer *w)
1474{ 1889{
1475 if (expect_false (ev_is_active (w))) 1890 if (expect_false (ev_is_active (w)))
1476 return; 1891 return;
1477 1892
1478 ((WT)w)->at += mn_now; 1893 ev_at (w) += mn_now;
1479 1894
1480 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 1895 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1481 1896
1482 ev_start (EV_A_ (W)w, ++timercnt); 1897 ev_start (EV_A_ (W)w, ++timercnt);
1483 array_needsize (ev_timer *, timers, timermax, timercnt, EMPTY2); 1898 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2);
1484 timers [timercnt - 1] = w; 1899 timers [timercnt] = (WT)w;
1485 upheap ((WT *)timers, timercnt - 1); 1900 upheap (timers, timercnt);
1486 1901
1487 /*assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));*/ 1902 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/
1488} 1903}
1489 1904
1490void 1905void noinline
1491ev_timer_stop (EV_P_ ev_timer *w) 1906ev_timer_stop (EV_P_ ev_timer *w)
1492{ 1907{
1493 ev_clear_pending (EV_A_ (W)w); 1908 clear_pending (EV_A_ (W)w);
1494 if (expect_false (!ev_is_active (w))) 1909 if (expect_false (!ev_is_active (w)))
1495 return; 1910 return;
1496 1911
1497 assert (("internal timer heap corruption", timers [((W)w)->active - 1] == w));
1498
1499 { 1912 {
1500 int active = ((W)w)->active; 1913 int active = ev_active (w);
1501 1914
1915 assert (("internal timer heap corruption", timers [active] == (WT)w));
1916
1502 if (expect_true (--active < --timercnt)) 1917 if (expect_true (active < timercnt))
1503 { 1918 {
1504 timers [active] = timers [timercnt]; 1919 timers [active] = timers [timercnt];
1505 adjustheap ((WT *)timers, timercnt, active); 1920 adjustheap (timers, timercnt, active);
1506 } 1921 }
1922
1923 --timercnt;
1507 } 1924 }
1508 1925
1509 ((WT)w)->at -= mn_now; 1926 ev_at (w) -= mn_now;
1510 1927
1511 ev_stop (EV_A_ (W)w); 1928 ev_stop (EV_A_ (W)w);
1512} 1929}
1513 1930
1514void 1931void noinline
1515ev_timer_again (EV_P_ ev_timer *w) 1932ev_timer_again (EV_P_ ev_timer *w)
1516{ 1933{
1517 if (ev_is_active (w)) 1934 if (ev_is_active (w))
1518 { 1935 {
1519 if (w->repeat) 1936 if (w->repeat)
1520 { 1937 {
1521 ((WT)w)->at = mn_now + w->repeat; 1938 ev_at (w) = mn_now + w->repeat;
1522 adjustheap ((WT *)timers, timercnt, ((W)w)->active - 1); 1939 adjustheap (timers, timercnt, ev_active (w));
1523 } 1940 }
1524 else 1941 else
1525 ev_timer_stop (EV_A_ w); 1942 ev_timer_stop (EV_A_ w);
1526 } 1943 }
1527 else if (w->repeat) 1944 else if (w->repeat)
1528 { 1945 {
1529 w->at = w->repeat; 1946 ev_at (w) = w->repeat;
1530 ev_timer_start (EV_A_ w); 1947 ev_timer_start (EV_A_ w);
1531 } 1948 }
1532} 1949}
1533 1950
1534#if EV_PERIODIC_ENABLE 1951#if EV_PERIODIC_ENABLE
1535void 1952void noinline
1536ev_periodic_start (EV_P_ ev_periodic *w) 1953ev_periodic_start (EV_P_ ev_periodic *w)
1537{ 1954{
1538 if (expect_false (ev_is_active (w))) 1955 if (expect_false (ev_is_active (w)))
1539 return; 1956 return;
1540 1957
1541 if (w->reschedule_cb) 1958 if (w->reschedule_cb)
1542 ((WT)w)->at = w->reschedule_cb (w, ev_rt_now); 1959 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1543 else if (w->interval) 1960 else if (w->interval)
1544 { 1961 {
1545 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.)); 1962 assert (("ev_periodic_start called with negative interval value", w->interval >= 0.));
1546 /* this formula differs from the one in periodic_reify because we do not always round up */ 1963 /* this formula differs from the one in periodic_reify because we do not always round up */
1547 ((WT)w)->at += ceil ((ev_rt_now - ((WT)w)->at) / w->interval) * w->interval; 1964 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1548 } 1965 }
1966 else
1967 ev_at (w) = w->offset;
1549 1968
1550 ev_start (EV_A_ (W)w, ++periodiccnt); 1969 ev_start (EV_A_ (W)w, ++periodiccnt);
1551 array_needsize (ev_periodic *, periodics, periodicmax, periodiccnt, EMPTY2); 1970 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2);
1552 periodics [periodiccnt - 1] = w; 1971 periodics [periodiccnt] = (WT)w;
1553 upheap ((WT *)periodics, periodiccnt - 1); 1972 upheap (periodics, periodiccnt);
1554 1973
1555 /*assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));*/ 1974 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/
1556} 1975}
1557 1976
1558void 1977void noinline
1559ev_periodic_stop (EV_P_ ev_periodic *w) 1978ev_periodic_stop (EV_P_ ev_periodic *w)
1560{ 1979{
1561 ev_clear_pending (EV_A_ (W)w); 1980 clear_pending (EV_A_ (W)w);
1562 if (expect_false (!ev_is_active (w))) 1981 if (expect_false (!ev_is_active (w)))
1563 return; 1982 return;
1564 1983
1565 assert (("internal periodic heap corruption", periodics [((W)w)->active - 1] == w));
1566
1567 { 1984 {
1568 int active = ((W)w)->active; 1985 int active = ev_active (w);
1569 1986
1987 assert (("internal periodic heap corruption", periodics [active] == (WT)w));
1988
1570 if (expect_true (--active < --periodiccnt)) 1989 if (expect_true (active < periodiccnt))
1571 { 1990 {
1572 periodics [active] = periodics [periodiccnt]; 1991 periodics [active] = periodics [periodiccnt];
1573 adjustheap ((WT *)periodics, periodiccnt, active); 1992 adjustheap (periodics, periodiccnt, active);
1574 } 1993 }
1994
1995 --periodiccnt;
1575 } 1996 }
1576 1997
1577 ev_stop (EV_A_ (W)w); 1998 ev_stop (EV_A_ (W)w);
1578} 1999}
1579 2000
1580void 2001void noinline
1581ev_periodic_again (EV_P_ ev_periodic *w) 2002ev_periodic_again (EV_P_ ev_periodic *w)
1582{ 2003{
1583 /* TODO: use adjustheap and recalculation */ 2004 /* TODO: use adjustheap and recalculation */
1584 ev_periodic_stop (EV_A_ w); 2005 ev_periodic_stop (EV_A_ w);
1585 ev_periodic_start (EV_A_ w); 2006 ev_periodic_start (EV_A_ w);
1588 2009
1589#ifndef SA_RESTART 2010#ifndef SA_RESTART
1590# define SA_RESTART 0 2011# define SA_RESTART 0
1591#endif 2012#endif
1592 2013
1593void 2014void noinline
1594ev_signal_start (EV_P_ ev_signal *w) 2015ev_signal_start (EV_P_ ev_signal *w)
1595{ 2016{
1596#if EV_MULTIPLICITY 2017#if EV_MULTIPLICITY
1597 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr)); 2018 assert (("signal watchers are only supported in the default loop", loop == ev_default_loop_ptr));
1598#endif 2019#endif
1599 if (expect_false (ev_is_active (w))) 2020 if (expect_false (ev_is_active (w)))
1600 return; 2021 return;
1601 2022
1602 assert (("ev_signal_start called with illegal signal number", w->signum > 0)); 2023 assert (("ev_signal_start called with illegal signal number", w->signum > 0));
1603 2024
2025 evpipe_init (EV_A);
2026
2027 {
2028#ifndef _WIN32
2029 sigset_t full, prev;
2030 sigfillset (&full);
2031 sigprocmask (SIG_SETMASK, &full, &prev);
2032#endif
2033
2034 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
2035
2036#ifndef _WIN32
2037 sigprocmask (SIG_SETMASK, &prev, 0);
2038#endif
2039 }
2040
1604 ev_start (EV_A_ (W)w, 1); 2041 ev_start (EV_A_ (W)w, 1);
1605 array_needsize (ANSIG, signals, signalmax, w->signum, signals_init);
1606 wlist_add ((WL *)&signals [w->signum - 1].head, (WL)w); 2042 wlist_add (&signals [w->signum - 1].head, (WL)w);
1607 2043
1608 if (!((WL)w)->next) 2044 if (!((WL)w)->next)
1609 { 2045 {
1610#if _WIN32 2046#if _WIN32
1611 signal (w->signum, sighandler); 2047 signal (w->signum, ev_sighandler);
1612#else 2048#else
1613 struct sigaction sa; 2049 struct sigaction sa;
1614 sa.sa_handler = sighandler; 2050 sa.sa_handler = ev_sighandler;
1615 sigfillset (&sa.sa_mask); 2051 sigfillset (&sa.sa_mask);
1616 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */ 2052 sa.sa_flags = SA_RESTART; /* if restarting works we save one iteration */
1617 sigaction (w->signum, &sa, 0); 2053 sigaction (w->signum, &sa, 0);
1618#endif 2054#endif
1619 } 2055 }
1620} 2056}
1621 2057
1622void 2058void noinline
1623ev_signal_stop (EV_P_ ev_signal *w) 2059ev_signal_stop (EV_P_ ev_signal *w)
1624{ 2060{
1625 ev_clear_pending (EV_A_ (W)w); 2061 clear_pending (EV_A_ (W)w);
1626 if (expect_false (!ev_is_active (w))) 2062 if (expect_false (!ev_is_active (w)))
1627 return; 2063 return;
1628 2064
1629 wlist_del ((WL *)&signals [w->signum - 1].head, (WL)w); 2065 wlist_del (&signals [w->signum - 1].head, (WL)w);
1630 ev_stop (EV_A_ (W)w); 2066 ev_stop (EV_A_ (W)w);
1631 2067
1632 if (!signals [w->signum - 1].head) 2068 if (!signals [w->signum - 1].head)
1633 signal (w->signum, SIG_DFL); 2069 signal (w->signum, SIG_DFL);
1634} 2070}
1641#endif 2077#endif
1642 if (expect_false (ev_is_active (w))) 2078 if (expect_false (ev_is_active (w)))
1643 return; 2079 return;
1644 2080
1645 ev_start (EV_A_ (W)w, 1); 2081 ev_start (EV_A_ (W)w, 1);
1646 wlist_add ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2082 wlist_add (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1647} 2083}
1648 2084
1649void 2085void
1650ev_child_stop (EV_P_ ev_child *w) 2086ev_child_stop (EV_P_ ev_child *w)
1651{ 2087{
1652 ev_clear_pending (EV_A_ (W)w); 2088 clear_pending (EV_A_ (W)w);
1653 if (expect_false (!ev_is_active (w))) 2089 if (expect_false (!ev_is_active (w)))
1654 return; 2090 return;
1655 2091
1656 wlist_del ((WL *)&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w); 2092 wlist_del (&childs [w->pid & (EV_PID_HASHSIZE - 1)], (WL)w);
1657 ev_stop (EV_A_ (W)w); 2093 ev_stop (EV_A_ (W)w);
1658} 2094}
1659 2095
1660#if EV_STAT_ENABLE 2096#if EV_STAT_ENABLE
1661 2097
1665# endif 2101# endif
1666 2102
1667#define DEF_STAT_INTERVAL 5.0074891 2103#define DEF_STAT_INTERVAL 5.0074891
1668#define MIN_STAT_INTERVAL 0.1074891 2104#define MIN_STAT_INTERVAL 0.1074891
1669 2105
2106static void noinline stat_timer_cb (EV_P_ ev_timer *w_, int revents);
2107
2108#if EV_USE_INOTIFY
2109# define EV_INOTIFY_BUFSIZE 8192
2110
2111static void noinline
2112infy_add (EV_P_ ev_stat *w)
2113{
2114 w->wd = inotify_add_watch (fs_fd, w->path, IN_ATTRIB | IN_DELETE_SELF | IN_MOVE_SELF | IN_MODIFY | IN_DONT_FOLLOW | IN_MASK_ADD);
2115
2116 if (w->wd < 0)
2117 {
2118 ev_timer_start (EV_A_ &w->timer); /* this is not race-free, so we still need to recheck periodically */
2119
2120 /* monitor some parent directory for speedup hints */
2121 /* note that exceeding the hardcoded limit is not a correctness issue, */
2122 /* but an efficiency issue only */
2123 if ((errno == ENOENT || errno == EACCES) && strlen (w->path) < 4096)
2124 {
2125 char path [4096];
2126 strcpy (path, w->path);
2127
2128 do
2129 {
2130 int mask = IN_MASK_ADD | IN_DELETE_SELF | IN_MOVE_SELF
2131 | (errno == EACCES ? IN_ATTRIB : IN_CREATE | IN_MOVED_TO);
2132
2133 char *pend = strrchr (path, '/');
2134
2135 if (!pend)
2136 break; /* whoops, no '/', complain to your admin */
2137
2138 *pend = 0;
2139 w->wd = inotify_add_watch (fs_fd, path, mask);
2140 }
2141 while (w->wd < 0 && (errno == ENOENT || errno == EACCES));
2142 }
2143 }
2144 else
2145 ev_timer_stop (EV_A_ &w->timer); /* we can watch this in a race-free way */
2146
2147 if (w->wd >= 0)
2148 wlist_add (&fs_hash [w->wd & (EV_INOTIFY_HASHSIZE - 1)].head, (WL)w);
2149}
2150
2151static void noinline
2152infy_del (EV_P_ ev_stat *w)
2153{
2154 int slot;
2155 int wd = w->wd;
2156
2157 if (wd < 0)
2158 return;
2159
2160 w->wd = -2;
2161 slot = wd & (EV_INOTIFY_HASHSIZE - 1);
2162 wlist_del (&fs_hash [slot].head, (WL)w);
2163
2164 /* remove this watcher, if others are watching it, they will rearm */
2165 inotify_rm_watch (fs_fd, wd);
2166}
2167
2168static void noinline
2169infy_wd (EV_P_ int slot, int wd, struct inotify_event *ev)
2170{
2171 if (slot < 0)
2172 /* overflow, need to check for all hahs slots */
2173 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2174 infy_wd (EV_A_ slot, wd, ev);
2175 else
2176 {
2177 WL w_;
2178
2179 for (w_ = fs_hash [slot & (EV_INOTIFY_HASHSIZE - 1)].head; w_; )
2180 {
2181 ev_stat *w = (ev_stat *)w_;
2182 w_ = w_->next; /* lets us remove this watcher and all before it */
2183
2184 if (w->wd == wd || wd == -1)
2185 {
2186 if (ev->mask & (IN_IGNORED | IN_UNMOUNT | IN_DELETE_SELF))
2187 {
2188 w->wd = -1;
2189 infy_add (EV_A_ w); /* re-add, no matter what */
2190 }
2191
2192 stat_timer_cb (EV_A_ &w->timer, 0);
2193 }
2194 }
2195 }
2196}
2197
2198static void
2199infy_cb (EV_P_ ev_io *w, int revents)
2200{
2201 char buf [EV_INOTIFY_BUFSIZE];
2202 struct inotify_event *ev = (struct inotify_event *)buf;
2203 int ofs;
2204 int len = read (fs_fd, buf, sizeof (buf));
2205
2206 for (ofs = 0; ofs < len; ofs += sizeof (struct inotify_event) + ev->len)
2207 infy_wd (EV_A_ ev->wd, ev->wd, ev);
2208}
2209
2210void inline_size
2211infy_init (EV_P)
2212{
2213 if (fs_fd != -2)
2214 return;
2215
2216 fs_fd = inotify_init ();
2217
2218 if (fs_fd >= 0)
2219 {
2220 ev_io_init (&fs_w, infy_cb, fs_fd, EV_READ);
2221 ev_set_priority (&fs_w, EV_MAXPRI);
2222 ev_io_start (EV_A_ &fs_w);
2223 }
2224}
2225
2226void inline_size
2227infy_fork (EV_P)
2228{
2229 int slot;
2230
2231 if (fs_fd < 0)
2232 return;
2233
2234 close (fs_fd);
2235 fs_fd = inotify_init ();
2236
2237 for (slot = 0; slot < EV_INOTIFY_HASHSIZE; ++slot)
2238 {
2239 WL w_ = fs_hash [slot].head;
2240 fs_hash [slot].head = 0;
2241
2242 while (w_)
2243 {
2244 ev_stat *w = (ev_stat *)w_;
2245 w_ = w_->next; /* lets us add this watcher */
2246
2247 w->wd = -1;
2248
2249 if (fs_fd >= 0)
2250 infy_add (EV_A_ w); /* re-add, no matter what */
2251 else
2252 ev_timer_start (EV_A_ &w->timer);
2253 }
2254
2255 }
2256}
2257
2258#endif
2259
1670void 2260void
1671ev_stat_stat (EV_P_ ev_stat *w) 2261ev_stat_stat (EV_P_ ev_stat *w)
1672{ 2262{
1673 if (lstat (w->path, &w->attr) < 0) 2263 if (lstat (w->path, &w->attr) < 0)
1674 w->attr.st_nlink = 0; 2264 w->attr.st_nlink = 0;
1675 else if (!w->attr.st_nlink) 2265 else if (!w->attr.st_nlink)
1676 w->attr.st_nlink = 1; 2266 w->attr.st_nlink = 1;
1677} 2267}
1678 2268
1679static void 2269static void noinline
1680stat_timer_cb (EV_P_ ev_timer *w_, int revents) 2270stat_timer_cb (EV_P_ ev_timer *w_, int revents)
1681{ 2271{
1682 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer)); 2272 ev_stat *w = (ev_stat *)(((char *)w_) - offsetof (ev_stat, timer));
1683 2273
1684 /* we copy this here each the time so that */ 2274 /* we copy this here each the time so that */
1685 /* prev has the old value when the callback gets invoked */ 2275 /* prev has the old value when the callback gets invoked */
1686 w->prev = w->attr; 2276 w->prev = w->attr;
1687 ev_stat_stat (EV_A_ w); 2277 ev_stat_stat (EV_A_ w);
1688 2278
1689 if (memcmp (&w->prev, &w->attr, sizeof (ev_statdata))) 2279 /* memcmp doesn't work on netbsd, they.... do stuff to their struct stat */
2280 if (
2281 w->prev.st_dev != w->attr.st_dev
2282 || w->prev.st_ino != w->attr.st_ino
2283 || w->prev.st_mode != w->attr.st_mode
2284 || w->prev.st_nlink != w->attr.st_nlink
2285 || w->prev.st_uid != w->attr.st_uid
2286 || w->prev.st_gid != w->attr.st_gid
2287 || w->prev.st_rdev != w->attr.st_rdev
2288 || w->prev.st_size != w->attr.st_size
2289 || w->prev.st_atime != w->attr.st_atime
2290 || w->prev.st_mtime != w->attr.st_mtime
2291 || w->prev.st_ctime != w->attr.st_ctime
2292 ) {
2293 #if EV_USE_INOTIFY
2294 infy_del (EV_A_ w);
2295 infy_add (EV_A_ w);
2296 ev_stat_stat (EV_A_ w); /* avoid race... */
2297 #endif
2298
1690 ev_feed_event (EV_A_ w, EV_STAT); 2299 ev_feed_event (EV_A_ w, EV_STAT);
2300 }
1691} 2301}
1692 2302
1693void 2303void
1694ev_stat_start (EV_P_ ev_stat *w) 2304ev_stat_start (EV_P_ ev_stat *w)
1695{ 2305{
1705 if (w->interval < MIN_STAT_INTERVAL) 2315 if (w->interval < MIN_STAT_INTERVAL)
1706 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL; 2316 w->interval = w->interval ? MIN_STAT_INTERVAL : DEF_STAT_INTERVAL;
1707 2317
1708 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval); 2318 ev_timer_init (&w->timer, stat_timer_cb, w->interval, w->interval);
1709 ev_set_priority (&w->timer, ev_priority (w)); 2319 ev_set_priority (&w->timer, ev_priority (w));
2320
2321#if EV_USE_INOTIFY
2322 infy_init (EV_A);
2323
2324 if (fs_fd >= 0)
2325 infy_add (EV_A_ w);
2326 else
2327#endif
1710 ev_timer_start (EV_A_ &w->timer); 2328 ev_timer_start (EV_A_ &w->timer);
1711 2329
1712 ev_start (EV_A_ (W)w, 1); 2330 ev_start (EV_A_ (W)w, 1);
1713} 2331}
1714 2332
1715void 2333void
1716ev_stat_stop (EV_P_ ev_stat *w) 2334ev_stat_stop (EV_P_ ev_stat *w)
1717{ 2335{
1718 ev_clear_pending (EV_A_ (W)w); 2336 clear_pending (EV_A_ (W)w);
1719 if (expect_false (!ev_is_active (w))) 2337 if (expect_false (!ev_is_active (w)))
1720 return; 2338 return;
1721 2339
2340#if EV_USE_INOTIFY
2341 infy_del (EV_A_ w);
2342#endif
1722 ev_timer_stop (EV_A_ &w->timer); 2343 ev_timer_stop (EV_A_ &w->timer);
1723 2344
1724 ev_stop (EV_A_ (W)w); 2345 ev_stop (EV_A_ (W)w);
1725} 2346}
1726#endif 2347#endif
1727 2348
2349#if EV_IDLE_ENABLE
1728void 2350void
1729ev_idle_start (EV_P_ ev_idle *w) 2351ev_idle_start (EV_P_ ev_idle *w)
1730{ 2352{
1731 if (expect_false (ev_is_active (w))) 2353 if (expect_false (ev_is_active (w)))
1732 return; 2354 return;
1733 2355
2356 pri_adjust (EV_A_ (W)w);
2357
2358 {
2359 int active = ++idlecnt [ABSPRI (w)];
2360
2361 ++idleall;
1734 ev_start (EV_A_ (W)w, ++idlecnt); 2362 ev_start (EV_A_ (W)w, active);
2363
1735 array_needsize (ev_idle *, idles, idlemax, idlecnt, EMPTY2); 2364 array_needsize (ev_idle *, idles [ABSPRI (w)], idlemax [ABSPRI (w)], active, EMPTY2);
1736 idles [idlecnt - 1] = w; 2365 idles [ABSPRI (w)][active - 1] = w;
2366 }
1737} 2367}
1738 2368
1739void 2369void
1740ev_idle_stop (EV_P_ ev_idle *w) 2370ev_idle_stop (EV_P_ ev_idle *w)
1741{ 2371{
1742 ev_clear_pending (EV_A_ (W)w); 2372 clear_pending (EV_A_ (W)w);
1743 if (expect_false (!ev_is_active (w))) 2373 if (expect_false (!ev_is_active (w)))
1744 return; 2374 return;
1745 2375
1746 { 2376 {
1747 int active = ((W)w)->active; 2377 int active = ev_active (w);
1748 idles [active - 1] = idles [--idlecnt]; 2378
1749 ((W)idles [active - 1])->active = active; 2379 idles [ABSPRI (w)][active - 1] = idles [ABSPRI (w)][--idlecnt [ABSPRI (w)]];
2380 ev_active (idles [ABSPRI (w)][active - 1]) = active;
2381
2382 ev_stop (EV_A_ (W)w);
2383 --idleall;
1750 } 2384 }
1751
1752 ev_stop (EV_A_ (W)w);
1753} 2385}
2386#endif
1754 2387
1755void 2388void
1756ev_prepare_start (EV_P_ ev_prepare *w) 2389ev_prepare_start (EV_P_ ev_prepare *w)
1757{ 2390{
1758 if (expect_false (ev_is_active (w))) 2391 if (expect_false (ev_is_active (w)))
1764} 2397}
1765 2398
1766void 2399void
1767ev_prepare_stop (EV_P_ ev_prepare *w) 2400ev_prepare_stop (EV_P_ ev_prepare *w)
1768{ 2401{
1769 ev_clear_pending (EV_A_ (W)w); 2402 clear_pending (EV_A_ (W)w);
1770 if (expect_false (!ev_is_active (w))) 2403 if (expect_false (!ev_is_active (w)))
1771 return; 2404 return;
1772 2405
1773 { 2406 {
1774 int active = ((W)w)->active; 2407 int active = ev_active (w);
2408
1775 prepares [active - 1] = prepares [--preparecnt]; 2409 prepares [active - 1] = prepares [--preparecnt];
1776 ((W)prepares [active - 1])->active = active; 2410 ev_active (prepares [active - 1]) = active;
1777 } 2411 }
1778 2412
1779 ev_stop (EV_A_ (W)w); 2413 ev_stop (EV_A_ (W)w);
1780} 2414}
1781 2415
1791} 2425}
1792 2426
1793void 2427void
1794ev_check_stop (EV_P_ ev_check *w) 2428ev_check_stop (EV_P_ ev_check *w)
1795{ 2429{
1796 ev_clear_pending (EV_A_ (W)w); 2430 clear_pending (EV_A_ (W)w);
1797 if (expect_false (!ev_is_active (w))) 2431 if (expect_false (!ev_is_active (w)))
1798 return; 2432 return;
1799 2433
1800 { 2434 {
1801 int active = ((W)w)->active; 2435 int active = ev_active (w);
2436
1802 checks [active - 1] = checks [--checkcnt]; 2437 checks [active - 1] = checks [--checkcnt];
1803 ((W)checks [active - 1])->active = active; 2438 ev_active (checks [active - 1]) = active;
1804 } 2439 }
1805 2440
1806 ev_stop (EV_A_ (W)w); 2441 ev_stop (EV_A_ (W)w);
1807} 2442}
1808 2443
1809#if EV_EMBED_ENABLE 2444#if EV_EMBED_ENABLE
1810void noinline 2445void noinline
1811ev_embed_sweep (EV_P_ ev_embed *w) 2446ev_embed_sweep (EV_P_ ev_embed *w)
1812{ 2447{
1813 ev_loop (w->loop, EVLOOP_NONBLOCK); 2448 ev_loop (w->other, EVLOOP_NONBLOCK);
1814} 2449}
1815 2450
1816static void 2451static void
1817embed_cb (EV_P_ ev_io *io, int revents) 2452embed_io_cb (EV_P_ ev_io *io, int revents)
1818{ 2453{
1819 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io)); 2454 ev_embed *w = (ev_embed *)(((char *)io) - offsetof (ev_embed, io));
1820 2455
1821 if (ev_cb (w)) 2456 if (ev_cb (w))
1822 ev_feed_event (EV_A_ (W)w, EV_EMBED); 2457 ev_feed_event (EV_A_ (W)w, EV_EMBED);
1823 else 2458 else
1824 ev_embed_sweep (loop, w); 2459 ev_loop (w->other, EVLOOP_NONBLOCK);
1825} 2460}
2461
2462static void
2463embed_prepare_cb (EV_P_ ev_prepare *prepare, int revents)
2464{
2465 ev_embed *w = (ev_embed *)(((char *)prepare) - offsetof (ev_embed, prepare));
2466
2467 {
2468 struct ev_loop *loop = w->other;
2469
2470 while (fdchangecnt)
2471 {
2472 fd_reify (EV_A);
2473 ev_loop (EV_A_ EVLOOP_NONBLOCK);
2474 }
2475 }
2476}
2477
2478#if 0
2479static void
2480embed_idle_cb (EV_P_ ev_idle *idle, int revents)
2481{
2482 ev_idle_stop (EV_A_ idle);
2483}
2484#endif
1826 2485
1827void 2486void
1828ev_embed_start (EV_P_ ev_embed *w) 2487ev_embed_start (EV_P_ ev_embed *w)
1829{ 2488{
1830 if (expect_false (ev_is_active (w))) 2489 if (expect_false (ev_is_active (w)))
1831 return; 2490 return;
1832 2491
1833 { 2492 {
1834 struct ev_loop *loop = w->loop; 2493 struct ev_loop *loop = w->other;
1835 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ())); 2494 assert (("loop to be embedded is not embeddable", backend & ev_embeddable_backends ()));
1836 ev_io_init (&w->io, embed_cb, backend_fd, EV_READ); 2495 ev_io_init (&w->io, embed_io_cb, backend_fd, EV_READ);
1837 } 2496 }
1838 2497
1839 ev_set_priority (&w->io, ev_priority (w)); 2498 ev_set_priority (&w->io, ev_priority (w));
1840 ev_io_start (EV_A_ &w->io); 2499 ev_io_start (EV_A_ &w->io);
1841 2500
2501 ev_prepare_init (&w->prepare, embed_prepare_cb);
2502 ev_set_priority (&w->prepare, EV_MINPRI);
2503 ev_prepare_start (EV_A_ &w->prepare);
2504
2505 /*ev_idle_init (&w->idle, e,bed_idle_cb);*/
2506
1842 ev_start (EV_A_ (W)w, 1); 2507 ev_start (EV_A_ (W)w, 1);
1843} 2508}
1844 2509
1845void 2510void
1846ev_embed_stop (EV_P_ ev_embed *w) 2511ev_embed_stop (EV_P_ ev_embed *w)
1847{ 2512{
1848 ev_clear_pending (EV_A_ (W)w); 2513 clear_pending (EV_A_ (W)w);
1849 if (expect_false (!ev_is_active (w))) 2514 if (expect_false (!ev_is_active (w)))
1850 return; 2515 return;
1851 2516
1852 ev_io_stop (EV_A_ &w->io); 2517 ev_io_stop (EV_A_ &w->io);
2518 ev_prepare_stop (EV_A_ &w->prepare);
1853 2519
1854 ev_stop (EV_A_ (W)w); 2520 ev_stop (EV_A_ (W)w);
1855} 2521}
1856#endif 2522#endif
1857 2523
1868} 2534}
1869 2535
1870void 2536void
1871ev_fork_stop (EV_P_ ev_fork *w) 2537ev_fork_stop (EV_P_ ev_fork *w)
1872{ 2538{
1873 ev_clear_pending (EV_A_ (W)w); 2539 clear_pending (EV_A_ (W)w);
1874 if (expect_false (!ev_is_active (w))) 2540 if (expect_false (!ev_is_active (w)))
1875 return; 2541 return;
1876 2542
1877 { 2543 {
1878 int active = ((W)w)->active; 2544 int active = ev_active (w);
2545
1879 forks [active - 1] = forks [--forkcnt]; 2546 forks [active - 1] = forks [--forkcnt];
1880 ((W)forks [active - 1])->active = active; 2547 ev_active (forks [active - 1]) = active;
1881 } 2548 }
1882 2549
1883 ev_stop (EV_A_ (W)w); 2550 ev_stop (EV_A_ (W)w);
2551}
2552#endif
2553
2554#if EV_ASYNC_ENABLE
2555void
2556ev_async_start (EV_P_ ev_async *w)
2557{
2558 if (expect_false (ev_is_active (w)))
2559 return;
2560
2561 evpipe_init (EV_A);
2562
2563 ev_start (EV_A_ (W)w, ++asynccnt);
2564 array_needsize (ev_async *, asyncs, asyncmax, asynccnt, EMPTY2);
2565 asyncs [asynccnt - 1] = w;
2566}
2567
2568void
2569ev_async_stop (EV_P_ ev_async *w)
2570{
2571 clear_pending (EV_A_ (W)w);
2572 if (expect_false (!ev_is_active (w)))
2573 return;
2574
2575 {
2576 int active = ev_active (w);
2577
2578 asyncs [active - 1] = asyncs [--asynccnt];
2579 ev_active (asyncs [active - 1]) = active;
2580 }
2581
2582 ev_stop (EV_A_ (W)w);
2583}
2584
2585void
2586ev_async_send (EV_P_ ev_async *w)
2587{
2588 w->sent = 1;
2589 evpipe_write (EV_A_ &gotasync);
1884} 2590}
1885#endif 2591#endif
1886 2592
1887/*****************************************************************************/ 2593/*****************************************************************************/
1888 2594
1946 ev_timer_set (&once->to, timeout, 0.); 2652 ev_timer_set (&once->to, timeout, 0.);
1947 ev_timer_start (EV_A_ &once->to); 2653 ev_timer_start (EV_A_ &once->to);
1948 } 2654 }
1949} 2655}
1950 2656
2657#if EV_MULTIPLICITY
2658 #include "ev_wrap.h"
2659#endif
2660
1951#ifdef __cplusplus 2661#ifdef __cplusplus
1952} 2662}
1953#endif 2663#endif
1954 2664

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines