ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/libev/ev.c
(Generate patch)

Comparing libev/ev.c (file contents):
Revision 1.233 by root, Tue May 6 23:34:16 2008 UTC vs.
Revision 1.247 by root, Wed May 21 21:22:10 2008 UTC

235# else 235# else
236# define EV_USE_EVENTFD 0 236# define EV_USE_EVENTFD 0
237# endif 237# endif
238#endif 238#endif
239 239
240#ifndef EV_USE_4HEAP
241# define EV_USE_4HEAP !EV_MINIMAL
242#endif
243
244#ifndef EV_HEAP_CACHE_AT
245# define EV_HEAP_CACHE_AT !EV_MINIMAL
246#endif
247
240/* this block fixes any misconfiguration where we know we run into trouble otherwise */ 248/* this block fixes any misconfiguration where we know we run into trouble otherwise */
241 249
242#ifndef CLOCK_MONOTONIC 250#ifndef CLOCK_MONOTONIC
243# undef EV_USE_MONOTONIC 251# undef EV_USE_MONOTONIC
244# define EV_USE_MONOTONIC 0 252# define EV_USE_MONOTONIC 0
422 W w; 430 W w;
423 int events; 431 int events;
424} ANPENDING; 432} ANPENDING;
425 433
426#if EV_USE_INOTIFY 434#if EV_USE_INOTIFY
435/* hash table entry per inotify-id */
427typedef struct 436typedef struct
428{ 437{
429 WL head; 438 WL head;
430} ANFS; 439} ANFS;
440#endif
441
442/* Heap Entry */
443#if EV_HEAP_CACHE_AT
444 typedef struct {
445 ev_tstamp at;
446 WT w;
447 } ANHE;
448
449 #define ANHE_w(he) (he).w /* access watcher, read-write */
450 #define ANHE_at(he) (he).at /* access cached at, read-only */
451 #define ANHE_at_set(he) (he).at = (he).w->at /* update at from watcher */
452#else
453 typedef WT ANHE;
454
455 #define ANHE_w(he) (he)
456 #define ANHE_at(he) (he)->at
457 #define ANHE_at_set(he)
431#endif 458#endif
432 459
433#if EV_MULTIPLICITY 460#if EV_MULTIPLICITY
434 461
435 struct ev_loop 462 struct ev_loop
759 } 786 }
760} 787}
761 788
762/*****************************************************************************/ 789/*****************************************************************************/
763 790
791/*
792 * the heap functions want a real array index. array index 0 uis guaranteed to not
793 * be in-use at any time. the first heap entry is at array [HEAP0]. DHEAP gives
794 * the branching factor of the d-tree.
795 */
796
797/*
798 * at the moment we allow libev the luxury of two heaps,
799 * a small-code-size 2-heap one and a ~1.5kb larger 4-heap
800 * which is more cache-efficient.
801 * the difference is about 5% with 50000+ watchers.
802 */
803#if EV_USE_4HEAP
804
805#define DHEAP 4
806#define HEAP0 (DHEAP - 1) /* index of first element in heap */
807#define HPARENT(k) ((((k) - HEAP0 - 1) / DHEAP) + HEAP0)
808
764/* towards the root */ 809/* towards the root */
765void inline_speed 810void inline_speed
766upheap (WT *heap, int k) 811upheap (ANHE *heap, int k)
767{ 812{
768 WT w = heap [k]; 813 ANHE he = heap [k];
769 814
770 for (;;) 815 for (;;)
771 { 816 {
772 int p = k >> 1; 817 int p = HPARENT (k);
773 818
774 /* maybe we could use a dummy element at heap [0]? */ 819 if (p == k || ANHE_at (heap [p]) <= ANHE_at (he))
775 if (!p || heap [p]->at <= w->at)
776 break; 820 break;
777 821
778 heap [k] = heap [p]; 822 heap [k] = heap [p];
779 ev_active (heap [k]) = k; 823 ev_active (ANHE_w (heap [k])) = k;
780 k = p; 824 k = p;
781 } 825 }
782 826
783 heap [k] = w; 827 heap [k] = he;
784 ev_active (heap [k]) = k; 828 ev_active (ANHE_w (he)) = k;
785} 829}
786 830
787/* away from the root */ 831/* away from the root */
788void inline_speed 832void inline_speed
789downheap (WT *heap, int N, int k) 833downheap (ANHE *heap, int N, int k)
790{ 834{
791 WT w = heap [k]; 835 ANHE he = heap [k];
836 ANHE *E = heap + N + HEAP0;
837
838 for (;;)
839 {
840 ev_tstamp minat;
841 ANHE *minpos;
842 ANHE *pos = heap + DHEAP * (k - HEAP0) + HEAP0;
843
844 // find minimum child
845 if (expect_true (pos + DHEAP - 1 < E))
846 {
847 /* fast path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
848 if ( ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
849 if ( ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
850 if ( ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
851 }
852 else if (pos < E)
853 {
854 /* slow path */ (minpos = pos + 0), (minat = ANHE_at (*minpos));
855 if (pos + 1 < E && ANHE_at (pos [1]) < minat) (minpos = pos + 1), (minat = ANHE_at (*minpos));
856 if (pos + 2 < E && ANHE_at (pos [2]) < minat) (minpos = pos + 2), (minat = ANHE_at (*minpos));
857 if (pos + 3 < E && ANHE_at (pos [3]) < minat) (minpos = pos + 3), (minat = ANHE_at (*minpos));
858 }
859 else
860 break;
861
862 if (ANHE_at (he) <= minat)
863 break;
864
865 heap [k] = *minpos;
866 ev_active (ANHE_w (*minpos)) = k;
867
868 k = minpos - heap;
869 }
870
871 heap [k] = he;
872 ev_active (ANHE_w (he)) = k;
873}
874
875#else // 4HEAP
876
877#define HEAP0 1
878#define HPARENT(k) ((k) >> 1)
879
880/* towards the root */
881void inline_speed
882upheap (ANHE *heap, int k)
883{
884 ANHE he = heap [k];
885
886 for (;;)
887 {
888 int p = HPARENT (k);
889
890 /* maybe we could use a dummy element at heap [0]? */
891 if (!p || ANHE_at (heap [p]) <= ANHE_at (he))
892 break;
893
894 heap [k] = heap [p];
895 ev_active (ANHE_w (heap [k])) = k;
896 k = p;
897 }
898
899 heap [k] = he;
900 ev_active (ANHE_w (heap [k])) = k;
901}
902
903/* away from the root */
904void inline_speed
905downheap (ANHE *heap, int N, int k)
906{
907 ANHE he = heap [k];
792 908
793 for (;;) 909 for (;;)
794 { 910 {
795 int c = k << 1; 911 int c = k << 1;
796 912
797 if (c > N) 913 if (c > N)
798 break; 914 break;
799 915
800 c += c < N && heap [c]->at > heap [c + 1]->at 916 c += c + 1 < N && ANHE_at (heap [c]) > ANHE_at (heap [c + 1])
801 ? 1 : 0; 917 ? 1 : 0;
802 918
803 if (w->at <= heap [c]->at) 919 if (ANHE_at (he) <= ANHE_at (heap [c]))
804 break; 920 break;
805 921
806 heap [k] = heap [c]; 922 heap [k] = heap [c];
807 ev_active (heap [k]) = k; 923 ev_active (ANHE_w (heap [k])) = k;
808 924
809 k = c; 925 k = c;
810 } 926 }
811 927
812 heap [k] = w; 928 heap [k] = he;
813 ev_active (heap [k]) = k; 929 ev_active (ANHE_w (he)) = k;
814} 930}
931#endif
815 932
816void inline_size 933void inline_size
817adjustheap (WT *heap, int N, int k) 934adjustheap (ANHE *heap, int N, int k)
818{ 935{
936 if (k > HEAP0 && ANHE_at (heap [HPARENT (k)]) >= ANHE_at (heap [k]))
819 upheap (heap, k); 937 upheap (heap, k);
938 else
820 downheap (heap, N, k); 939 downheap (heap, N, k);
821} 940}
822 941
823/*****************************************************************************/ 942/*****************************************************************************/
824 943
825typedef struct 944typedef struct
1370void 1489void
1371ev_loop_fork (EV_P) 1490ev_loop_fork (EV_P)
1372{ 1491{
1373 postfork = 1; /* must be in line with ev_default_fork */ 1492 postfork = 1; /* must be in line with ev_default_fork */
1374} 1493}
1375
1376#endif 1494#endif
1377 1495
1378#if EV_MULTIPLICITY 1496#if EV_MULTIPLICITY
1379struct ev_loop * 1497struct ev_loop *
1380ev_default_loop_init (unsigned int flags) 1498ev_default_loop_init (unsigned int flags)
1461 EV_CB_INVOKE (p->w, p->events); 1579 EV_CB_INVOKE (p->w, p->events);
1462 } 1580 }
1463 } 1581 }
1464} 1582}
1465 1583
1466void inline_size
1467timers_reify (EV_P)
1468{
1469 while (timercnt && ev_at (timers [1]) <= mn_now)
1470 {
1471 ev_timer *w = (ev_timer *)timers [1];
1472
1473 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1474
1475 /* first reschedule or stop timer */
1476 if (w->repeat)
1477 {
1478 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1479
1480 ev_at (w) += w->repeat;
1481 if (ev_at (w) < mn_now)
1482 ev_at (w) = mn_now;
1483
1484 downheap (timers, timercnt, 1);
1485 }
1486 else
1487 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1488
1489 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1490 }
1491}
1492
1493#if EV_PERIODIC_ENABLE
1494void inline_size
1495periodics_reify (EV_P)
1496{
1497 while (periodiccnt && ev_at (periodics [1]) <= ev_rt_now)
1498 {
1499 ev_periodic *w = (ev_periodic *)periodics [1];
1500
1501 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1502
1503 /* first reschedule or stop timer */
1504 if (w->reschedule_cb)
1505 {
1506 ev_at (w) = w->reschedule_cb (w, ev_rt_now + TIME_EPSILON);
1507 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) > ev_rt_now));
1508 downheap (periodics, periodiccnt, 1);
1509 }
1510 else if (w->interval)
1511 {
1512 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1513 if (ev_at (w) - ev_rt_now <= TIME_EPSILON) ev_at (w) += w->interval;
1514 assert (("ev_periodic timeout in the past detected while processing timers, negative interval?", ev_at (w) > ev_rt_now));
1515 downheap (periodics, periodiccnt, 1);
1516 }
1517 else
1518 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1519
1520 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1521 }
1522}
1523
1524static void noinline
1525periodics_reschedule (EV_P)
1526{
1527 int i;
1528
1529 /* adjust periodics after time jump */
1530 for (i = 1; i <= periodiccnt; ++i)
1531 {
1532 ev_periodic *w = (ev_periodic *)periodics [i];
1533
1534 if (w->reschedule_cb)
1535 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1536 else if (w->interval)
1537 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1538 }
1539
1540 /* now rebuild the heap */
1541 for (i = periodiccnt >> 1; i--; )
1542 downheap (periodics, periodiccnt, i);
1543}
1544#endif
1545
1546#if EV_IDLE_ENABLE 1584#if EV_IDLE_ENABLE
1547void inline_size 1585void inline_size
1548idle_reify (EV_P) 1586idle_reify (EV_P)
1549{ 1587{
1550 if (expect_false (idleall)) 1588 if (expect_false (idleall))
1561 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE); 1599 queue_events (EV_A_ (W *)idles [pri], idlecnt [pri], EV_IDLE);
1562 break; 1600 break;
1563 } 1601 }
1564 } 1602 }
1565 } 1603 }
1604}
1605#endif
1606
1607void inline_size
1608timers_reify (EV_P)
1609{
1610 while (timercnt && ANHE_at (timers [HEAP0]) < mn_now)
1611 {
1612 ev_timer *w = (ev_timer *)ANHE_w (timers [HEAP0]);
1613
1614 /*assert (("inactive timer on timer heap detected", ev_is_active (w)));*/
1615
1616 /* first reschedule or stop timer */
1617 if (w->repeat)
1618 {
1619 ev_at (w) += w->repeat;
1620 if (ev_at (w) < mn_now)
1621 ev_at (w) = mn_now;
1622
1623 assert (("negative ev_timer repeat value found while processing timers", w->repeat > 0.));
1624
1625 ANHE_at_set (timers [HEAP0]);
1626 downheap (timers, timercnt, HEAP0);
1627 }
1628 else
1629 ev_timer_stop (EV_A_ w); /* nonrepeating: stop timer */
1630
1631 ev_feed_event (EV_A_ (W)w, EV_TIMEOUT);
1632 }
1633}
1634
1635#if EV_PERIODIC_ENABLE
1636void inline_size
1637periodics_reify (EV_P)
1638{
1639 while (periodiccnt && ANHE_at (periodics [HEAP0]) < ev_rt_now)
1640 {
1641 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [HEAP0]);
1642
1643 /*assert (("inactive timer on periodic heap detected", ev_is_active (w)));*/
1644
1645 /* first reschedule or stop timer */
1646 if (w->reschedule_cb)
1647 {
1648 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1649
1650 assert (("ev_periodic reschedule callback returned time in the past", ev_at (w) >= ev_rt_now));
1651
1652 ANHE_at_set (periodics [HEAP0]);
1653 downheap (periodics, periodiccnt, HEAP0);
1654 }
1655 else if (w->interval)
1656 {
1657 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1658 /* if next trigger time is not sufficiently in the future, put it there */
1659 /* this might happen because of floating point inexactness */
1660 if (ev_at (w) - ev_rt_now < TIME_EPSILON)
1661 {
1662 ev_at (w) += w->interval;
1663
1664 /* if interval is unreasonably low we might still have a time in the past */
1665 /* so correct this. this will make the periodic very inexact, but the user */
1666 /* has effectively asked to get triggered more often than possible */
1667 if (ev_at (w) < ev_rt_now)
1668 ev_at (w) = ev_rt_now;
1669 }
1670
1671 ANHE_at_set (periodics [HEAP0]);
1672 downheap (periodics, periodiccnt, HEAP0);
1673 }
1674 else
1675 ev_periodic_stop (EV_A_ w); /* nonrepeating: stop timer */
1676
1677 ev_feed_event (EV_A_ (W)w, EV_PERIODIC);
1678 }
1679}
1680
1681static void noinline
1682periodics_reschedule (EV_P)
1683{
1684 int i;
1685
1686 /* adjust periodics after time jump */
1687 for (i = HEAP0; i < periodiccnt + HEAP0; ++i)
1688 {
1689 ev_periodic *w = (ev_periodic *)ANHE_w (periodics [i]);
1690
1691 if (w->reschedule_cb)
1692 ev_at (w) = w->reschedule_cb (w, ev_rt_now);
1693 else if (w->interval)
1694 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1695
1696 ANHE_at_set (periodics [i]);
1697 }
1698
1699 /* we don't use floyds algorithm, uphead is simpler and is more cache-efficient */
1700 /* also, this is easy and corretc for both 2-heaps and 4-heaps */
1701 for (i = 0; i < periodiccnt; ++i)
1702 upheap (periodics, i + HEAP0);
1566} 1703}
1567#endif 1704#endif
1568 1705
1569void inline_speed 1706void inline_speed
1570time_update (EV_P_ ev_tstamp max_block) 1707time_update (EV_P_ ev_tstamp max_block)
1599 */ 1736 */
1600 for (i = 4; --i; ) 1737 for (i = 4; --i; )
1601 { 1738 {
1602 rtmn_diff = ev_rt_now - mn_now; 1739 rtmn_diff = ev_rt_now - mn_now;
1603 1740
1604 if (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP) 1741 if (expect_true (fabs (odiff - rtmn_diff) < MIN_TIMEJUMP))
1605 return; /* all is well */ 1742 return; /* all is well */
1606 1743
1607 ev_rt_now = ev_time (); 1744 ev_rt_now = ev_time ();
1608 mn_now = get_clock (); 1745 mn_now = get_clock ();
1609 now_floor = mn_now; 1746 now_floor = mn_now;
1624 { 1761 {
1625#if EV_PERIODIC_ENABLE 1762#if EV_PERIODIC_ENABLE
1626 periodics_reschedule (EV_A); 1763 periodics_reschedule (EV_A);
1627#endif 1764#endif
1628 /* adjust timers. this is easy, as the offset is the same for all of them */ 1765 /* adjust timers. this is easy, as the offset is the same for all of them */
1629 for (i = 1; i <= timercnt; ++i) 1766 for (i = 0; i < timercnt; ++i)
1630 ev_at (timers [i]) += ev_rt_now - mn_now; 1767 {
1768 ANHE *he = timers + i + HEAP0;
1769 ANHE_w (*he)->at += ev_rt_now - mn_now;
1770 ANHE_at_set (*he);
1771 }
1631 } 1772 }
1632 1773
1633 mn_now = ev_rt_now; 1774 mn_now = ev_rt_now;
1634 } 1775 }
1635} 1776}
1705 1846
1706 waittime = MAX_BLOCKTIME; 1847 waittime = MAX_BLOCKTIME;
1707 1848
1708 if (timercnt) 1849 if (timercnt)
1709 { 1850 {
1710 ev_tstamp to = ev_at (timers [1]) - mn_now + backend_fudge; 1851 ev_tstamp to = ANHE_at (timers [HEAP0]) - mn_now + backend_fudge;
1711 if (waittime > to) waittime = to; 1852 if (waittime > to) waittime = to;
1712 } 1853 }
1713 1854
1714#if EV_PERIODIC_ENABLE 1855#if EV_PERIODIC_ENABLE
1715 if (periodiccnt) 1856 if (periodiccnt)
1716 { 1857 {
1717 ev_tstamp to = ev_at (periodics [1]) - ev_rt_now + backend_fudge; 1858 ev_tstamp to = ANHE_at (periodics [HEAP0]) - ev_rt_now + backend_fudge;
1718 if (waittime > to) waittime = to; 1859 if (waittime > to) waittime = to;
1719 } 1860 }
1720#endif 1861#endif
1721 1862
1722 if (expect_false (waittime < timeout_blocktime)) 1863 if (expect_false (waittime < timeout_blocktime))
1874{ 2015{
1875 clear_pending (EV_A_ (W)w); 2016 clear_pending (EV_A_ (W)w);
1876 if (expect_false (!ev_is_active (w))) 2017 if (expect_false (!ev_is_active (w)))
1877 return; 2018 return;
1878 2019
1879 assert (("ev_io_start called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax)); 2020 assert (("ev_io_stop called with illegal fd (must stay constant after start!)", w->fd >= 0 && w->fd < anfdmax));
1880 2021
1881 wlist_del (&anfds[w->fd].head, (WL)w); 2022 wlist_del (&anfds[w->fd].head, (WL)w);
1882 ev_stop (EV_A_ (W)w); 2023 ev_stop (EV_A_ (W)w);
1883 2024
1884 fd_change (EV_A_ w->fd, 1); 2025 fd_change (EV_A_ w->fd, 1);
1892 2033
1893 ev_at (w) += mn_now; 2034 ev_at (w) += mn_now;
1894 2035
1895 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.)); 2036 assert (("ev_timer_start called with negative timer repeat value", w->repeat >= 0.));
1896 2037
1897 ev_start (EV_A_ (W)w, ++timercnt); 2038 ev_start (EV_A_ (W)w, ++timercnt + HEAP0 - 1);
1898 array_needsize (WT, timers, timermax, timercnt + 1, EMPTY2); 2039 array_needsize (ANHE, timers, timermax, ev_active (w) + 1, EMPTY2);
1899 timers [timercnt] = (WT)w; 2040 ANHE_w (timers [ev_active (w)]) = (WT)w;
2041 ANHE_at_set (timers [ev_active (w)]);
1900 upheap (timers, timercnt); 2042 upheap (timers, ev_active (w));
1901 2043
1902 /*assert (("internal timer heap corruption", timers [ev_active (w)] == w));*/ 2044 /*assert (("internal timer heap corruption", timers [ev_active (w)] == (WT)w));*/
1903} 2045}
1904 2046
1905void noinline 2047void noinline
1906ev_timer_stop (EV_P_ ev_timer *w) 2048ev_timer_stop (EV_P_ ev_timer *w)
1907{ 2049{
1910 return; 2052 return;
1911 2053
1912 { 2054 {
1913 int active = ev_active (w); 2055 int active = ev_active (w);
1914 2056
1915 assert (("internal timer heap corruption", timers [active] == (WT)w)); 2057 assert (("internal timer heap corruption", ANHE_w (timers [active]) == (WT)w));
1916 2058
1917 if (expect_true (active < timercnt)) 2059 if (expect_true (active < timercnt + HEAP0 - 1))
1918 { 2060 {
1919 timers [active] = timers [timercnt]; 2061 timers [active] = timers [timercnt + HEAP0 - 1];
1920 adjustheap (timers, timercnt, active); 2062 adjustheap (timers, timercnt, active);
1921 } 2063 }
1922 2064
1923 --timercnt; 2065 --timercnt;
1924 } 2066 }
1934 if (ev_is_active (w)) 2076 if (ev_is_active (w))
1935 { 2077 {
1936 if (w->repeat) 2078 if (w->repeat)
1937 { 2079 {
1938 ev_at (w) = mn_now + w->repeat; 2080 ev_at (w) = mn_now + w->repeat;
2081 ANHE_at_set (timers [ev_active (w)]);
1939 adjustheap (timers, timercnt, ev_active (w)); 2082 adjustheap (timers, timercnt, ev_active (w));
1940 } 2083 }
1941 else 2084 else
1942 ev_timer_stop (EV_A_ w); 2085 ev_timer_stop (EV_A_ w);
1943 } 2086 }
1964 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval; 2107 ev_at (w) = w->offset + ceil ((ev_rt_now - w->offset) / w->interval) * w->interval;
1965 } 2108 }
1966 else 2109 else
1967 ev_at (w) = w->offset; 2110 ev_at (w) = w->offset;
1968 2111
1969 ev_start (EV_A_ (W)w, ++periodiccnt); 2112 ev_start (EV_A_ (W)w, ++periodiccnt + HEAP0 - 1);
1970 array_needsize (WT, periodics, periodicmax, periodiccnt + 1, EMPTY2); 2113 array_needsize (ANHE, periodics, periodicmax, ev_active (w) + 1, EMPTY2);
1971 periodics [periodiccnt] = (WT)w; 2114 ANHE_w (periodics [ev_active (w)]) = (WT)w;
1972 upheap (periodics, periodiccnt); 2115 ANHE_at_set (periodics [ev_active (w)]);
2116 upheap (periodics, ev_active (w));
1973 2117
1974 /*assert (("internal periodic heap corruption", periodics [ev_active (w)] == w));*/ 2118 /*assert (("internal periodic heap corruption", ANHE_w (periodics [ev_active (w)]) == (WT)w));*/
1975} 2119}
1976 2120
1977void noinline 2121void noinline
1978ev_periodic_stop (EV_P_ ev_periodic *w) 2122ev_periodic_stop (EV_P_ ev_periodic *w)
1979{ 2123{
1982 return; 2126 return;
1983 2127
1984 { 2128 {
1985 int active = ev_active (w); 2129 int active = ev_active (w);
1986 2130
1987 assert (("internal periodic heap corruption", periodics [active] == (WT)w)); 2131 assert (("internal periodic heap corruption", ANHE_w (periodics [active]) == (WT)w));
1988 2132
1989 if (expect_true (active < periodiccnt)) 2133 if (expect_true (active < periodiccnt + HEAP0 - 1))
1990 { 2134 {
1991 periodics [active] = periodics [periodiccnt]; 2135 periodics [active] = periodics [periodiccnt + HEAP0 - 1];
1992 adjustheap (periodics, periodiccnt, active); 2136 adjustheap (periodics, periodiccnt, active);
1993 } 2137 }
1994 2138
1995 --periodiccnt; 2139 --periodiccnt;
1996 } 2140 }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines